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On the class of cycle-free directed graph games with transferable utility solution concepts, called web
values, are introduced axiomatically, each one with respect to a chosen coalition of players that is
assumed to be an anti-chain in the directed graph and is considered as a management team. We provide
their explicit formula representation and simple recursive algorithms to calculate them. Additionally the
efficiency and stability of web values are studied. Web values may be considered as natural extensions of
the tree and sink values as has been defined correspondingly for rooted and sink forest graph games. In
case the management team consists of all sources (sinks) in the graph a kind of tree (sink) value is
obtained. In general, at a web value each player receives the worth of this player together with his sub-
ordinates minus the total worths of these subordinates. It implies that every coalition of players consist-
ing of a player with all his subordinates receives precisely its worth. We also define the average web
value as the average of web values over all management teams in the graph. As application the water dis-
tribution problem of a river with multiple sources, a delta and possibly islands is considered.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In standard cooperative game theory it is assumed that any
coalition of players may form. However, in many practical situations
the collection of coalitions that can be formed is restricted by
some social, economical, hierarchical, communication, or technical
structure. The study of games with transferable utility and limited
cooperation introduced by means of communication graphs was ini-
tiated by Myerson (1977). In this paper we restrict our consideration
to the class of cycle-free digraph games in which the players are
partially ordered and the communication via bilateral agreements
between players is represented by a directed graph without directed
cycles. A cycle-free digraph cooperation structure allows modeling
of various flow situations when several links may merge at a node,
while other links split at a node into several separate ones.

It is assumed that a directed link represents a one-way commu-
nication situation. This restricts the set of coalitions that can be
formed. There are different scenarios possible for controlling coop-
eration in case of directed communication. It is possible that players
are controlled only by their predecessors. Another scenario assumes
that players are controlled only by their successors. But it is also pos-
sible that the management team is located neither at the top nor at
the bottom of the given directed communication structure but
somewhere in between and each manager keeps control over all of
his successors and predecessors. Important is that no manager is a
subordinate of any other manager. In general, any anti-chain in
the digraph can be chosen as a management team.

We introduce web values for cycle-free digraph games axiomat-
ically, each one with respect to a chosen management team, and
provide their explicit formula representation. The web value as-
signs to every player what he contributes when he joins his subor-
dinates in the graph and that the total payoff for any player
together with all his subordinates is equal to the worth they can
get all together by their own. We also provide simple recursive
computational methods for computing web values and study their
efficiency and when possible stability. The values are introduced
for arbitrary cycle-free digraph games and can be considered as
natural extensions of the tree and sink values defined for rooted
and sink forest digraph games, respectively (cf. Demange (2004),
Khmelnitskaya (2010)). Besides, we define the average web value
by taking the average of web values over all management teams
of the graph. This value depends only on a given TU game and
a given cycle-free directed communication graph and does not de-
pend on the choice among different options for controlling cooper-
ation. Furthermore, we extend the Ambec and Sprumont (2002)
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line-graph river game model of sharing a river to the case of a river
with multiple sources, a delta and possibly islands by applying the
results obtained to this more general setting of sharing a river
among different agents located at different levels along the river
bed restated in terms of a cycle-free digraph game.

The study of cooperative games with limited cooperation
depending on partial orders of players is not new. Faigle and Kern
(1992) initiated the study of cooperative games under precedence
constraints that can be reformulated in terms of directed graphs,
possibly disconnected. They consider different coalitional struc-
tures and allow for certain coalitions to be disconnected. Another
extension of the tree value for arbitrary cycle-free digraph games
has been recently proposed in Li and Li (2011). In that paper it is
assumed that on each edge of a cycle-free digraph that underlies
the game there is a flow amount along the edge. As solution the
authors consider the value which assigns to every player the worth
of this player together with his successors minus a weighted sum
of the worths of these successors together with their successors,
where the weights are determined by the relative flow amounts.
The definition of this value requires additional and in general not
easily available information about the flow distribution in the di-
graph. Besides, in this value the payoffs for the players are not ad-
justed for the fact that sets of successors of different successors of a
same player may overlap each other.

The paper has the following structure. Basic definitions and nota-
tion are introduced in Section 2. In Section 3 we discuss different sce-
narios possible for controlling the situation defined by a digraph
communication structure. Section 4 investigates a particular case
when the control is going from the top to the bottom, which provides
the so-called tree value. In Section 5 the general case of web values is
studied. The average web value is introduced in Section 6. In Sec-
tion 7 the application to the water distribution problem of a river
with multiple sources, a delta and possibly islands is considered.

2. Preliminaries

A cooperative game with transferable utility, or TU game, is a pair
hN, vi, where N = {1, . . . ,n} is a finite set of n P 2 players and
v :¼ 2N ! R is a characteristic function with v(;) = 0, assigning to
any coalition S # N its worth v(S). The set of TU games with fixed
player set N is denoted by GN . For simplicity of notation and if no
ambiguity appears we write v when we refer to a TU game hN, vi.
The subgame of a TU game v 2 GN with nonempty player set T # N
is the TU game v jT 2 GT defined by vjT(S) = v(S), S # T. A payoff vector
is a vector x 2 RN with xi the payoff to player i 2 N and xðSÞ ¼

P
i2Sxi

the total payoff to the members of coalition S # N.
The cooperation structure on the player set N is specified by a

graph, directed or undirected, on N, determining which coalitions
are feasible. A graph on N consists of N as the set of nodes and
for a directed graph, or digraph, a collection of ordered pairs
C # {(i, j)ji, j 2 N, i – j} as the set of directed links from one node
to another node in N, and for an undirected graph a collection of
unordered pairs C # {{i, j}ji, j 2 N, i – j} as the set of links between
two nodes in N. For a subgraph C0 # C, N(C0) denotes the set of
nodes in C0. For a digraph C on N and a coalition S # N, CjS =
{(i, j) 2Cji, j 2 S} is the subgraph of C on S.

For a digraph C on N, a sequence of different nodes
(i1, . . . , ir), r P 2, is a path in C between nodes i1 and ir if {(ih, ih+1),
(ih+1, ih)} \ C – ; for h = 1, . . . ,r � 1, and a directed path in C from
node i1 to node ir if (ih, ih+1) 2C for h = 1, . . . ,r � 1. A path
(i1, . . . , ir) in digraph C is a cycle if r � 3 and fðir ; i1Þ,
ði1; irÞg \ C – ;, and a directed path (i1, . . . , ir) in C is a directed cycle
if (ir, i1) 2 C. Digraph C is cycle-free if it contains no directed cycles,
and C is strongly cycle-free if it is cycle-free and contains no cycles.
Nodes i and j in N are connected in C if there exists a path in C
between i and j. C is connected if any two different nodes in N
are connected in C. A subset S # N is connected in C if the sub-
graph CjS is connected. For S # N, CC(S) denotes the collection of
subsets of S being connected in C, S/C is the collection of maxi-
mally connected subsets, called components, of S in C, and (S/C)i

is the (unique) component of S in C containing i 2 S.
For a cycle-free digraphCon N and i; j 2 N; ~PCði; jÞdenotes the set

of directed paths in C from node i to node j. A node i on a (directed)
path p we denote as an element of p, i.e., i 2 p. For a directed path~p in
C we write ði; jÞ 2~p if i and j are consecutive nodes in~p. For any set
P of (directed) paths in C, N(P) = {i 2 pjp 2 P}. A link (i, j) 2 C is ines-
sential if there exists~p 2~PCði; jÞ such that~p–ði; jÞ, otherwise (i, j) is
essential. A directed path~p is proper if it contains no inessential links.
In a strongly cycle-free digraph all links are essential.

For a cycle-free digraph C on N and i, j 2 N, j is a (proper) succes-
sor of i and i is a (proper) predecessor of j if there is a (proper) direc-
ted path in C from i to j. For an (essential) link (i, j) 2 C, i is the
origin and j is the terminus, i is a (proper) immediate predecessor
of j and j is a (proper) immediate successor of i. For i 2 N, we denote
by PC(i) (SC(i)) the set of predecessors (successors) of i in C, bybPCðiÞ ðbSCðiÞÞ the set of immediate predecessors (successors) of i
in C, and by bPC

� ðiÞ bSC
� ðiÞ

� �
the set of proper immediate predecessors

(successors) of i. For i 2 N, we define PCðiÞ ¼ PCðiÞ [ fig,
SCðiÞ ¼ SCðiÞ [ fig, and the set WC(i) = SC(i) [ PC(i) [ {i} as the web
of node i with i its hub and each node j 2WC(i)n{i} being a subordi-
nate of i. For S # N, we define PC(S) = [ i2SPC(i), SC(S) = [ i2SSC(i),
WC(S) = [ i2SWC(i), PCðSÞ ¼ PCðSÞ [ S, and SCðSÞ ¼ SCðSÞ [ S. A coali-
tion S # N is a full successors set (full predecessors set) in C if
S ¼ SCðiÞ (S ¼ PCðiÞ) for some i 2 N, and S is a full web set in C if
S = WC(i)) for some i 2 N. For a node i 2 N, dCðiÞ ¼ bPC

� ðiÞ
��� ��� is the in-

degree of i in C and eCðiÞ ¼ bSC
� ðiÞ

��� ��� is the out-degree of i in C. More-

over, for j 2 SCðiÞ; dC
i ðjÞ ¼ bPCi

� ðjÞ
��� ��� is the in-degree of j from i in C,

where Ci ¼ CjSCðiÞ, and for j 2 PC(i), eC
i ðjÞ ¼ bSCi

� ðjÞ
��� ��� is the out-degree

of j to i in C, where Ci ¼ CjPCðiÞ.

For a cycle-free digraph C on N, a node i 2 N having no predeces-
sor (successor) in C, i.e., PC(i) = ; (SC(i) = ;), is a source (sink) in C. For
a coalition S # N, RC(S) is the set of sources in CjS and LC(S) is the set
of sinks in CjS. A strongly cycle-free digraphC on N is a (rooted) tree if
it has only one source in C, denoted by the root r(C), and C is a sink
tree if it has only one sink in C, denoted by s(C). A (rooted or sink) for-
est is composed of a finite number of disjoint (rooted or sink) trees. A
line-graph is a digraph for which each node has at most one immedi-
ate successor and at most one immediate predecessor. A subgraph T
of a digraph C on N is a subtree of C if T is a tree on N(T). A subtree T of
C is a full subtree of C if NðTÞ ¼ SCðrðTÞÞ. A full subtree T of C is a max-
imal subtree if r(T) is a source in C.

We assume that the cooperation structure on the player set N is
specified by a cycle-free directed graph. A pair hv, Ci of a TU-game
v 2 GN and a cycle-free directed graph C on N constitutes a game
with cycle-free digraph communication structure and is called a cy-
cle-free directed graph game or cycle-free digraph game. The set of all
cycle-free digraph games on a fixed player set N is denoted GC

N . A va-
lue on GC

N is a function n : GC
N ! RN that assigns to every cycle-free di-

graph game hv ;Ci 2 GC
N a payoff vector nðv ;CÞ 2 RN . For a game

hv ;Ci 2 GC
N , a payoff vector x 2 RN is component efficient if for every

component C 2 N/C it holds that x(C) = v(C), and x is component fea-
sible if for every component C 2 N/C it holds that x(C) 6 v(C). A value
n on GC

N satisfies one of these properties on a subset G of GC
N if for any

digraph game hv ;Ci 2 G it holds that n(v, C) satisfies this property.
3. Web connectedness and management teams

For a directed link in an arbitrary digraph there are two differ-
ent interpretations possible. One interpretation is that a link is
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directed to indicate which player has initiated the communication,
but at the same time it represents a fully developed communica-
tion link. In such a case, following Myerson (1977), it is assumed
that cooperation is possible among any set of connected players,
i.e., the coalitions in which players are able to cooperate, the feasi-
ble coalitions, are all the connected coalitions. In this case the focus
is on component efficient values, at which all components of the
graphs get their worth. Another interpretation of a directed link as-
sumes that a directed link represents the only one-way communi-
cation situation. In that case not every connected coalition might
be feasible. In this paper we abide by the second interpretation
of a directed link and consider different scenarios possible for con-
trolling cooperation and creation of feasible coalitions under the
assumption of one-directional communication.

In directed communication structures it is often assumed that
management is organized downwards from the top when players
are controlled by their predecessors and the main managers are lo-
cated at the sources of a given digraph, e.g., see Demange (2004)
for tree structures and Faigle and Kern (1992) in the case of prece-
dence constraints. However, the opposite direction of management
is also possible when main managers are located at the sinks and
players are controlled by their successors, see Khmelnitskaya
(2010). This, for example, may happen in multistage technological
processes when subsequent players determine the amount of pro-
duction on previous stages that they may handle. In a directed
graph each player is in fact a sink for his predecessors and a source
for his successors and, therefore, his communication is restricted
by these two sets of players with whom he is connected via direc-
ted paths, and no communication is possible with other players. In
general in a directed graph any player can be chosen as a manager
for controlling the situation and he is able to keep control over his
full web consisting of all his subordinates. As adjunct manager a
successor of a manager is able to control only his own successors
set and a predecessor of a manager is able to control only his
own predecessors set. The links of the digraph show which sets
of players can be controlled by a given management team, not indi-
vidually, but as coalitions. Talking about control we do not assume
the individual control of the players, but we assume that the (local)
managers regardless of whether they are sources or not control the
cooperation within feasible coalitions of players as is reflected by
their worths. For example in case of the river application discussed
in Section 7 a manager not being a source may build a dam allow-
ing him to control the total amount of water that he wants to con-
sume for his own purposes plus what he accepts to pass through
his territory for extra consumption of downstream users, if they
are, and to leave it to the entire coalition of upstream players what
to do with the remaining water.

For a coalition of players to create a management team its
members cannot be subordinates of each other and together they
keep control over the entire society given by N. Therefore, given
a cycle-free digraph C on N, a coalition M # N is a management
team in C if

(i) WC(M) = N,
(ii) i R WC(j) "i, j 2M, i – j.

For a cycle-free digraph C the set of all possible management
teams we denote by MðCÞ. Notice that a management team is an
anti-chain in terms of graph theory. Observe that we prescribe
the subordination of players in a given digraph C when we choose
a management team. It is easy to see that for every player there ex-
ists at least one management team containing this player, in par-
ticular, some managers might be simply sources or sinks in the
digraph. Moreover, there exist two particular management teams
– one composed by all sources in the digraph and another one
composed by all sinks in the digraph. Besides, as a consequence
of condition (ii), we obtain that each management team M in a di-
graph C is minimal since WC(Mn{j}) – N for any j 2M. Further-
more, the set of predecessors PC(M) and the set of successors
SC(M) of a management team M in C are well defined because
PC(M) \ SC(M) = ;. In fact, {PC(M), M, SC(M)} is a partition of the
player set N.

For any coalition S # N to keep the subordination prescribed by
a given management team M 2MðCÞ a local management team
M(S) # S in CjS needs to consist of the nodes in S that are closest
in subordination to the management team M. Besides the manag-
ers of M who are already in S, if any, the management team M(S)
of S should also contain predecessors (successors) of M who are
not in the web of those managers in S and who are either sinks
(sources) in CjS or whose immediate successors (predecessors) in
CjS are also successors (predecessors) of the management team
M. In this way coalition S inherits the subordination of players in-
duced by M in the sense that for any i 2 SnM(S) it holds that
i 2 PCjS ðMðSÞÞ if i 2 PC(M) and i 2 SCjS ðMðSÞÞ if i 2 SC(M). However,
when there is a link in CjS from one of the predecessors of M to
one of the successors of M, then both have equal rights to become
a local manager in S but only one can be chosen, i.e., in general M(S)
might be not uniquely determined.

To avoid this ambiguity, given a cycle-free digraph C on N and a
management team M 2MðCÞ, we define the (local) management
team M(S) of a coalition S # N induced by M as

MðSÞ ¼ M1ðSÞ [M2ðSÞ [M3ðSÞ;

where

M1ðSÞ ¼ M \ S;

M2ðSÞ ¼ fi 2 PCðMÞ \ Sji R WCjS ðM \ SÞ and bSCjS ðiÞ# SCðMÞg;
M3ðSÞ ¼ fi 2 SCðMÞ \ Sji R WCjS ðM \ SÞ and bPCjS ðiÞ# PCðMÞ nM2ðSÞg:

If node i 2 PC(M) \ S (i 2 SC (M) \ S) and i R WCjS ðM \ SÞ is a sink
(source) in CjS, then i has no immediate successors (predecessors)
in CjS, i.e., bSCjS ðiÞ ¼ ; (bPCjS ðiÞ ¼ ;), and therefore i 2M2(S) (i 2M3(S))
automatically. When coalition S contains two players i and
j with (i, j) 2 C such that i; j R WCjS ðM \ SÞ; i 2 PCðMÞ \ S andbSCjS ðiÞ# SCðMÞ, and j 2 SC(M) \ S and bPCjS ðjÞ# PCðMÞ, then only one
of these players can become a local manager in S. The definition
chooses for the predecessor, player i, to become local manager.

When a directed link binding a manager is broken we get the
following rule.

Management team development rule: Given a cycle-free digraph
C on N and management team M in C, for an immediate successor

j 2 bSCðiÞ of some manager i 2M, M [ {j} becomes a management

team in Cn{(i, j)} if j R bSCðhÞ for all h 2M, h – i, and similar, for

an immediate predecessor k 2 bPCðiÞ of some i 2M, M [ {k} becomes

a management team in Cn{(k, i)} if k R bPCðhÞ for all h 2M, h – i.
Observe that in the first case the adjunct manager j is not nec-

essarily a source in Cn{(i, j)} because j may have predecessors
among players in PC(M), in particular, j might be a sink in
Cn{(i, j)} (see Example 1). A similar remark concerns the second
case when the adjunct manager k is not a sink in Cn{(k, i)} if k
has successors among players in SC(M).

In real-life situations usually no agent who is (adjunct) manager
will accept that one of his subordinates becomes his equal partner
if a coalition forms. So, given a cycle-free digraph C on N and a
management team M 2 MðCÞ, we assume that the only feasible
coalitions are the so-called M-web connected coalitions, being the
connected coalitions S 2 CC(N) that meet the condition that for
every local manager i 2M(S) it holds that i R WC(j) for any other lo-
cal manager j 2M(S). This means that no local manager can be in
the web of another local manager. It guarantees that an
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M-web connected coalition inherits the subordination of players
prescribed by the management team M in C. Obviously, every
component C 2 N/C is M-web connected. Also, any full web set in
C with its hub being a manager in M is M-web connected. An
M-web connected coalition is full M-web connected if it also
contains all subordinates of the local management team. A full
M-web connected coalition is the union of one or more full web
sets. For a given cycle-free digraph C on N, management team
M 2 MðCÞ and coalition S # N, by CC

MðSÞ we denote the set of M-
web connected subsets of S, by [S/C]M the set of maximally M-web
connected subsets of S, called the M-web components of S in C,

and by ½S=C�Mi the M-web component of S containing player i 2 S.

Example 1. The set of management teams in the cycle-free
digraph C depicted in Fig. 1 equals to

MðCÞ ¼ ff1;2g; f2;3g; f2;5g; f3;4;10g; f4;5;10g; f6;7g; f7;9g; f7;10g; f8;9gg:

For management team M = {6,7}, the local management team in
coalition S = {3,4,6,8,10} is M(S) = {3,6} where 6 2M1(S) and
3 2M2(S), and in coalition S0 = {2,3,4,7,8,9,10} the local manage-
ment team is M(S0) = {3,7,9,10} where 7 2M1(S0), 3,10 2M2(S0)
and 9 2M3(S). For management team M = {4,5,10} the deletion of
link (5,6) does not lead to the change of the management team
while in case of management team M = {7,9} the deletion of link
(7,8) is accompanied by the creation of a new management team
M0 = {7,8,9}. In the latter case the adjunct manager 8 is a sink in
the digraph Cn{(7,8)}. For management team M = {3,4,10} coali-
tions {5,6,7,8} and {6,7,8} are M-web connected, but coalition
S = {3,6,7,8} is not M-web connected since M(S) = {3,6,7} and
6,7 2WC(3).

For a given cycle-free digraph game hv ;Ci 2 GC
N the set of triples

fhv ;C;MigM2MðCÞ determines the set of different scenarios possible
in the TU game v for controlling the cooperation defined by di-
graph communication structure C. In the remaining of this section
and in Sections 4 and 5 we assume that for every cycle-free digraph
game hv ;Ci 2 GC

N some management team M 2 MðCÞ is a priori
fixed. When we consider a particular management team
M 2 MðCÞ, we write hv, C, Mi instead of hv, Ci.

For efficiency of a value we require that every M-web connected
coalition composed by one of the managers together with all his
subordinates realizes its worth. This gives the first axiom a value
must satisfy, called M-web efficiency.

A value n on GC
N is M-web efficient (MWE) if for every cycle-free

digraph game hv ;C;Mi 2 GC
N it holds thatX

j2WCðiÞ

njðv;C;MÞ ¼ vðWCðiÞÞ; for all i 2 M:
Fig. 1. The digraph in Example 1).
MWE generalizes the usual definition of efficiency for a (rooted/
sink) tree. Indeed, in a (rooted) tree when it is assumed that the
root is the only manager, M-web efficiency just says that the total
payoff should be equal to the worth of the grand coalition N. A sim-
ilar remark holds true for a sink tree with the sink as only manager.
Still, MWE is different from component efficiency. Different from
the Myerson (1977) case with undirected communication graph
we do not assume that every component is able to realize its exact
capacity but only the components having a web structure. For
example, if one worker works in two different divisions, the two
managers of these divisions and the worker may form a feasible
coalition. Yet, it is impossible to guarantee the efficiency of this
coalition because there is no communication link between the
managers of the two divisions.

The next two axioms reflect the desirable property of stability of
the management system – any changes on the upper levels of the
management hierarchy should not destroy the stable performance
at the lower levels. The first axiom, called M-web successor equiv-
alence, says that if a link with terminus being a successor of the gi-
ven management team is deleted, then this player and all his
successors still receive the same payoff.

A value n on GC
N is M-web successor equivalent (MWSE) if for

every cycle-free digraph game hv ;C;Mi 2 GC
N it holds that for all

(i, j) 2C such that i; j 2 SCðMÞ,

nkðv ;C n fði; jÞg;MÞ ¼ nkðv ;C;MÞ; for all k 2 SCðjÞ:

MWSE means that the payoff to each player in the full succes-
sors set of any successor of the given management team does not
change if any of the immediate predecessors of that successor
breaks his link to him. It implies that for every successors set of
a successor of the management team the payoff distribution is
completely determined by the players of this set.

The second axiom, called M-web predecessor equivalence, says
that if a link with the origin being a predecessor of the given man-
agement team is deleted, then this origin and all his predecessors
still receive the same payoff.

A value n on GC
N is M-web predecessor equivalent (MWPE) if for

every cycle-free digraph game hv ;C;Mi 2 GC
N it holds that for all

(i, j) 2C such that i; j 2 PCðMÞ,

nkðv ;C n fði; jÞg;MÞ ¼ nkðv ;C;MÞ; for all k 2 PCðiÞ:

MWPE means that the payoff to each player in the full predeces-
sors set of any predecessor of the given management team does
not change if any of the immediate successors of that predecessor
breaks his link from him. It implies that for every predecessors set
of a predecessor of the management team the payoff distribution is
fully determined by the players of this set.

Along with MWE we consider also two other efficiency proper-
ties requiring that the full sets of subordinates of a player, not only
of a manager, are also able to realize their full capacity. M-web full-
tree efficiency and M-web full-sink efficiency require correspond-
ingly that every full successors set within the set of successors of
a given management team and every full predecessors set within
the set of predecessors of a given management team realize their
worths.

A value n on GC
N is M-web full-tree efficient (MWFTE) if for every

cycle-free digraph game hv ;C;Mi 2 GC
N it holds thatX

j2SCðiÞ

njðv ;C;MÞ ¼ vðSCðiÞÞ; for all i 2 SCðMÞ:

A value n on GC
N is M-web full-sink efficient (MWFSE) if for every

cycle-free digraph game hv ;C;Mi 2 GC
N it holds thatX

j2PCðiÞ

njðv;C;MÞ ¼ vðPCðiÞÞ; for all i 2 PCðMÞ:
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4. The tree value

In this section we consider the situation when a management
team in a digraph is composed by the set of all sources of the graph.

4.1. Axiomatic definition

For a management team that consists of all sources of a given
cycle-free digraph M-web connectedness can be restated in terms
of tree-connectedness. For a cycle-free digraph C on N a connected
coalition S 2 CC(N) is tree-connected, or simply t-connected, if it
meets the condition that for every source i 2 RC(S) it holds that
i R SC(j) for every other source j 2 RC(S). A t-connected coalition is
full t-connected, if it contains all successors of its sources.

In what follows, for a cycle-free digraph C on N and a coalition
S # N, let CC

t ðSÞ denote the set of t-connected subsets of S, [S/C]t

the set of maximally t-connected subsets of S, called the t-con-
nected components of S, and ½S=C�ti the t-connected component of
S containing i 2 S.

In case the management team M in the digraph is the set of
sources, M-web efficiency reduces to maximal-tree efficiency,
M-web successor equivalence to successor equivalence, and
M-web full-tree efficiency to full-tree efficiency, being stronger
than maximal-tree efficiency, while M-web predecessor equiva-
lence and M-web full-sink efficiency become redundant. Moreover,
M(S) = RC(S) for all S # N.

A value n on GC
N is maximal-tree efficient (MTE) if for every cycle-

free digraph game hv;Ci 2 GC
N it holds thatX

j2SCðiÞ

njðv ;CÞ ¼ vðSCðiÞÞ; for all i 2 RCðNÞ:

A value n on GC
N is successor equivalent (SE) if for every cycle-free

digraph game hv ;Ci 2 GC
N it holds that for all (i, j) 2C

nkðv;C n fði; jÞg ¼ nkðv ;CÞ; for all k 2 SCðjÞ:

A value n on GC
N is full-tree efficient (FTE) if for every cycle-free

digraph game hv ;Ci 2 GC
N it holds thatX

j2SCðiÞ

njðv ;CÞ ¼ vðSCðiÞÞ; for all i 2 N: ð1Þ
Proposition 1. On the class of cycle-free digraph games GC
N, MTE and

SE imply FTE.
Proof. Let n be a value on GC
N that meets MTE and SE, and let a cycle-

free digraph game hv ;Ci 2 GC
N be arbitrarily chosen. For every given

i 2 N, the subgraph Ci is a maximal tree in the subgraph C0 ¼
C n fðk; iÞjk 2 bPCðiÞg. Since SC0 ðiÞ ¼ SCðiÞ; i 2 RC0 ðNÞ, and due to MTE,X
j2SCðiÞ

njðv ;C n fðk; iÞjk 2 bPCðiÞgÞ ¼MTEvðSCðiÞÞ:

By successive application of SE,

njðv;C n fðk; iÞjk 2 bPCðiÞgÞ¼SE
njðv ;CÞ; for all j 2 SCðiÞ:

Whence,X
j2SCðiÞ

njðv ;CÞ ¼ vðSCðiÞÞ; for all i 2 N;

i.e., the value n meets FTE. h

Given a cycle-free digraph C on N, for i 2 N and j 2 SC(i) we de-
fine the integer jC

ij by

jC
ij ¼

Xn�2

r¼0

ð�1ÞrjC;r
ij ; ð2Þ
where, for r ¼ 0;1; . . . ;n� 2; jC;r
ij is the number of tuples (i0, . . . , ir+1)

such that i0 = i, ir+1 = j, ih 2 SC(ih�1), h = 1, . . . ,r + 1. Since all nodes
forming a tuple (i0, . . . , ir+1) in which i0 = i, ir+1 = j, ih 2 SC(ih�1),
h = 1, . . . ,r + 1, belong to some directed path ~p in ~PCði; jÞ, any jC

ij is
defined only via tuples of nodes from the set Nð~PCði; jÞÞ.

It turns out that MTE and SE uniquely define a value on the class
of cycle-free digraph games.

Theorem 1. On the class of cycle-free digraph games GC
N there is a

unique value t that satisfies MTE and SE. For every cycle-free digraph
game hv ;Ci 2 GC

N, the value t(v, C) possesses the following properties:

(i) it obeys the recursive equality
tiðv ;CÞ ¼ vðSCðiÞÞ �
X

j2SCðiÞ

tjðv ;CÞ; for all i 2 N; ð3Þ
(ii) it admits the explicit representation in the form
tiðv ;CÞ ¼ vðSCðiÞÞ �
X

j2SCðiÞ

jC
ij vðSCðjÞÞ; for all i 2 N: ð4Þ
Proof. Due to Proposition 1 the value t on GC
N that satisfies MTE and

SE meets FTE as well, wherefrom the recursive equality (3) follows
straightforwardly. Next, we show that the representation in the form
(3) is equivalent to the representation in the form (4). According to
(3) it holds for the value t that every player receives what this player
together with his successors can get on their own, their worth, minus
what all his successors will receive by themselves. Since the same
property holds for these successors as well, it is not difficult to see
that (4) follows directly from (3) by successive substitution. Indeed,
for any hv;Ci 2 GC

N and i 2 N it holds that

tiðv ;CÞ ¼ vðSCðiÞÞ �
X

j2SCðiÞ

tjðv;CÞ¼
ð3Þ

vðSCðiÞÞ �
X

j2SCðiÞ

vðSCðjÞÞ þ
X

j2SCðiÞ

X
k2SCðjÞ

tkðv;CÞ¼
ð3Þ

vðSCðiÞÞ �
X

j2SCðiÞ

vðSCðjÞÞ þ
X

j2SCðiÞ

X
k2SCðjÞ

vðSCðkÞÞ

�
X

j2SCðiÞ

X
k2SCðjÞ

X
h2SCðkÞ

thðv ;CÞ¼
ð3Þ

. . . ¼

vðSCðiÞÞ �
X

j2SCðiÞ

Xn�2

r¼0

ð�1ÞrjC;r
ij vðSCðjÞÞ ¼

vðSCðiÞÞ �
X

j2SCðiÞ

jC
ij vðSCðjÞÞ:

From (4), we obtain immediately that the value t meets SE,
because in any digraph C for all (i, j) 2 C and k 2 SCðjÞ the full sub-
trees Ck and (Cn{(i, j)})k coincide. This completes the proof, since
MTE follows from FTE automatically. h

According to the recursive formula (3), in a cycle-free digraph
game the value t assigns to every player the worth of his full suc-
cessors set minus the total payoff to his successors. This implies
that every player receives as payoff what he contributes when he
joins his successors in the digraph. In particular, every player
who is a sink receives as payoff just his own worth, every player
who has only sinks as successors receives as payoff the worth of
him together with his succeeding sinks minus what the sinks al-
ready receive, and so on.

Corollary 1. There exists a simple recursive algorithm for computing
the value t going upstream from the sinks of the given digraph.

The computation of the coefficients jC
ij ; i 2 N; j 2 SCðiÞ, defined

by (2) in the explicit formula representation (4) requires, in gen-
eral, the enumeration of quite a lot of possibilities. We show below
that in many cases the coefficients jC

ij can be more easily computed
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and the value t can be presented in a computationally more trans-
parent and simpler form. For i 2 N, j 2 SC(i) and S # Nð~PCði; jÞÞ con-
taining nodes i and j, define

jC
ij ðSÞ ¼

Xn�2

r¼0

ð�1ÞrjC;r
ij ðSÞ; ð5Þ

where, for r ¼ 0;1; . . . ;n� 2; jC;r
ij ðSÞ counts all tuples (i0, . . . , ir+1) for

which i0 = i, ir+1 = j, and ih 2 SC(ih�1) \ S, h = 1, . . . , r + 1. Remark that

jC
ij ¼ jC

ij ðNð~PCði; jÞÞÞ for all j 2 SC(i), i 2 N. For any cycle-free digraph

C on N, i 2 N and j 2 SC(i), the set~PCði; jÞ of directed paths in C from
i to j can be partitioned into a number of separate subsets of paths
of two types, possibly only one subset of one of the types, or some of
the subsets containing only one path, such that paths from different
subsets do not intersect between i and j, in subsets of the first type
all paths belonging to the same subset have at least one common
node different from i and j, and for the paths in each subset of the
second type it holds that every path intersects at least one of the
other paths between i and j but all of them together have no other
nodes in common than i and j. More exactly, given a cycle-free di-
graph C on N, for all i 2 N and j 2 SC(i) there exist two integers

0 6 ~qC
ij 6 qC

ij and a partition of ~PCði; jÞ into sets

~P1ði; jÞ; . . . ;~P~qC
ij
ði; jÞ;~P~qC

ij
þ1ði; jÞ; . . . ;~PqC

ij
ði; jÞ ð6Þ

satisfying

(i) ~p1 \~p2 ¼ fi; jg for all ~p1 2~Phði; jÞ; ~p2 2~Plði; jÞ, h; l ¼ 1; . . . ; qC
ij ;

h–l;
(ii) ð

T
~p2~Phði;jÞ

~pÞ n fi; jg–; for all h ¼ 1; . . . ; ~qC
ij ;

(iii)
T
~p2~Phði;jÞ

~p ¼ fi; jg and ð~p0 \ ð
S
~p2~Phði;jÞnf~p0g

~pÞÞ n fi; jg–; for all
~p0 2~Phði; jÞ, h ¼ ~qC

ij þ 1; . . . ; qC
ij .
Fig. 2. The set of paths in Example 2.
Example 2. The set of paths from i to j depicted in Fig. 2 is com-
posed by three subsets of paths, two of the first type and one of
the second type.

Given a digraph C on N and a set of paths ~P #~PCði; jÞ; i 2 N;
j 2 SCðiÞ, we may consider the subgraph Cj~P on Nð~PÞ induced by

the paths in ~P, i.e., Cj~P ¼ fðh; lÞ 2~pj~p 2~Pg. A node h 2 Nð~PÞ which
has at least two proper immediate predecessors or at least two prop-
er immediate successors in Cj~P , i.e., if jbPCj~P� ðhÞj � jbSCj~P� ðhÞj > 1, is called
a proper intersection point in Nð~PÞ. At a proper intersection point in
Nð~PÞ two or more different paths in~P join, split, or cross each other.
As shown below in Lemma 1 only these proper intersection points
and the proper immediate successors of i which are also predeces-
sors of j are needed in the computation ofjC

ij . The subset of Nð~PÞ com-
posed by i, j, all proper immediate successors h 2 bSCj~P� ðiÞof i in Cj~P and
all proper intersection points in Nð~PÞ defines the upper covering set
CCð~PÞ for~P, and the subset of Nð~PÞ composed by i, j, all proper imme-
diate predecessors h 2 bPCj~P� ðjÞ of j in Cj~P and all proper intersection
points in Nð~PÞ defines the lower covering set CCð~PÞ for~P.

Theorem 2. For every cycle-free digraph game hv ;Ci 2 GC
N the value t

given by (4) admits the equivalent representation in the form

tiðv;CÞ ¼ vðSCðiÞÞ �
X

j2ŜC
� ðiÞ

vðSCðjÞÞ þ
X
j2SC ðiÞ

dC
i
ðjÞ>1

qC
ij � 1�

XqC
ij

h¼~qC
ij
þ1

jC
ij ðCCð~Phði; jÞÞÞ

0B@
1CA

vðSCðjÞÞ; for all i 2 N; ð7Þ

where, for all i 2 N and j 2 SC(i), ~Phði; jÞ; h ¼ 1; . . . ; qC
ij , form the parti-

tion of ~PCði; jÞ in (6).
If hv, Ci is a strongly cycle-free digraph game, then the above

representation reduces to

tiðv;CÞ ¼ vðSCðiÞÞ �
X

j2ŜCðiÞ

vðSCðjÞÞ; for all i 2 N: ð8Þ
For rooted forest digraph games defined by rooted forest digraph
structures, which are strongly cycle-free, the value given by (8) coin-
cides with the tree value introduced first under the name of hierar-
chical outcome in Demange (2004), where it is also shown that
under the mild condition of superadditivity it belongs to the core
of the restricted game as defined in Myerson (1977). More recently,
the tree value for rooted forest games was used as a basic element in
the construction of the average tree solution for cycle-free undi-
rected graph games in Herings et al. (2008). In Khmelnitskaya
(2010) it is shown that on the class of rooted forest digraph games
the tree value can be characterized via component efficiency and
successor equivalence; moreover, it is shown that the class of rooted
forest digraph games is the maximal subclass in the class of strongly
cycle-free digraph games where this axiomatization holds true. Re-
call that the subgraph of any component in a forest digraph is a
rooted tree. Hence, on the class of rooted forest digraph games max-
imal-tree efficiency coincides with component efficiency.

From now on we refer to the value t for cycle-free digraph games gi-
ven by (3), or equivalently by (4) or (7) and for strongly cycle-free di-
graph games by (8), as the root tree value, or simply the tree value.

The validity of the first statement of Theorem 2 follows from
Theorem 1 and Lemma 1 below and Corollary 2 to it. The second
statement follows easily from the first one. Indeed, in any strongly
cycle-free digraph C all links are essential, whence bSC

� ðiÞ ¼ bSCðiÞ,
and dC

i ðjÞ ¼ 1 for all i 2 N and j 2 SC(i).

Lemma 1. For any cycle-free digraph C on N, the coefficients
jC

ij ; i 2 N; j 2 SCðiÞ, defined by (2) possess the following properties:

(i) if a link (k, l) 2 C is inessential, then jC
ij ¼ jC0

ij for all i 2 N and
j 2 SC(i), where C0 = Cn{(k, l)};

(ii) jC
ij ¼ 1 for all i 2 N and j 2 bSC

� ðiÞ;
(iii) jC

ij ¼ �qC
ij þ 1þ

PqC
ij

h¼~qC
ij
þ1

jC
ij ðCCð~Phði; jÞÞÞ for all i 2 N and

j 2 SCðiÞ n bSC
� ðiÞ;

(iv)
P

h2Nð~PCði;jÞÞnfjgj
C
hj ¼ 1 and

P
h2Nð~PCði;jÞÞnfigj

C
ih ¼ 1 for all i 2 N and

j 2 SC(i).
Proof.
(i). It is sufficient to prove the statement only in case when

k 2 SC(i) and j 2 SC(l). Let ~p 2~PCði; jÞ be such that ~p 3 ðk; lÞ. By def-

inition of an inessential link there exists ~p0 2~PCðk; lÞ such that
~p0–ðk; lÞ. It is not difficult to see that the path ~p1 ¼~p n fðk; lÞg [~p0

obtained from the path ~p by replacing the link (k, l) by the path
~p0 belongs to~PCði; jÞ, and moreover, all tuples (i0, . . . , ir+1) in the def-
inition of jC

ij that belong to~p also belong to~p1. Whence deleting an

inessential link does not change the value of jC
ij .

In the remaining of the proof without loss of generality we may
assume that ~PCði; jÞ consists of proper paths.

(ii). If j 2 bSC
� ðiÞ for some i 2 N, then~PCði; jÞ contains only the path

~p ¼ ði; jÞ. Wherefrom it follows that jC
ij ¼ 1.
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(iii). Take i 2 N and j 2 SCðiÞ n bSC
� ðiÞ and let ~Phði; jÞ, h ¼ 1; . . . ; qC

ij ,
form the partition of ~PCði; jÞ in (6). Then

jC
ij ¼ jC

ij ðNð~P1ði; jÞÞÞ

þ jC
ij ðNð~P2ði; jÞÞÞ � jC

ij ðNð~P1ði; jÞ \~P2ði; jÞÞÞ
h i

þ � � �

þ jC
ij N ~PqC

ij
ði; jÞ

� �� �
� jC

ij N
\qC

ij

h¼1

~Phði; jÞ

0@ 1A0@ 1A24 35:
Since the paths from different~Phði; jÞ do not intersect between i and j,

jC
ij N

\k
h¼1

~Phði; jÞ
 ! !

¼ 1; for k ¼ 2; . . . ; qC
ij :

Whence it follows that

jC
ij ¼ �qC

ij þ 1þ
XqC

ij

h¼1

jC
ij ðNð~Phði; jÞÞÞ:

First, consider h 2 1; . . . ; ~qC
ij

n o
, then there exists

k 2 Nð~Phði; jÞÞ; k–i; j, such that k 2~p for all~p 2~Phði; jÞ. By definition,

jC;r
ij ðNð~Phði; jÞÞÞ is equal to the number of tuples (i0, . . . , ir+1) such

that i0 = i, ir+1 = j, il 2 SCðil�1Þ \ Nð~Phði; jÞÞ, l = 1, . . . ,r + 1, or equiva-
lently, jC;r

ij is equal to the number of these tuples (i0, . . . , ir+1) that
do not contain k plus the number of these tuples (i0, . . . , ir+1) that

contain k. Since k 2~p for all ~p 2~Phði; jÞ, for every (r + 2)-tuple
(i0, . . . , ir+1) that does not contain k there exists a uniquely defined
(r + 3)-tuple composed by the same nodes plus node k. Wherefrom

together with equality (5) it follows that jC
ij ðNð~Phði; jÞÞÞ ¼ 0.

Next, consider h 2 ~qC
ij þ 1; . . . ; qC

ij

n o
. We show that jC

ij ðNð~Phði; jÞÞÞ ¼
jC

ij ðCCð~Phði; jÞÞÞ. Take any k 2 Nð~Phði; jÞÞ n CCð~Phði; jÞÞ. Then

jC
ij ðNð~Phði; jÞÞÞ ¼ jC

ij ðNð~Phði; jÞÞ; kÞ þ jC
ij ðNð~Phði; jÞÞ n fkgÞ;

where jC
ij ðNð~Phði; jÞÞ; kÞ counts all tuples in Nð~Phði; jÞÞ containing k. By

definition of upper covering set, CCð~Phði; jÞÞ contains some predeces-

sor of k, i.e., CCð~Phði; jÞÞ \ PCðkÞ–;. Moreover, since k R CCð~Phði; jÞÞ, i.e.,
k is neither a proper immediate successor of i nor a proper intersec-

tion point in the subgraph CjNð~Phði;jÞÞ
, there exists l 2 CCð~Phði; jÞÞ\

PCðkÞ that belongs to all paths in ~Phði; jÞ containing k. Applying the

same argument as before to ~Plði; jÞ of the first type, we obtain that

jC
ij ðNð~Phði; jÞÞ; kÞ ¼ 0. Thus jC

ij ðNð~Phði; jÞÞÞ ¼ jC
ij ðNð~Phði; jÞÞ n fkgÞ.

Repeating the same reasoning successively with respect to all

k0 2 Nð~Phði; jÞÞ n ðCCð~Phði; jÞÞ [ fkgÞ we obtain jC
ij ðNð~Phði; jÞÞÞ ¼

jC
ij ðCCð~Phði; jÞÞÞ.

(iv). Take any i 2 N and j 2 SC(i). By definition, jC;0
ij ¼ 1 and, for

r P 1, jC;r
ij ¼

P
h2SCðiÞ\PCðjÞj

C;r�1
hj ¼

P
h2SCðiÞ\PCðjÞj

C;r�1
ih . Hence,

jC
ij ¼ 1�

P
h2SCðiÞ\PCðjÞj

C
hj and jC

ij ¼ 1�
P

h2SCðiÞ\PCðjÞj
C
ih. Since

SCðiÞ \ PCðjÞ ¼ Nð~PCði; jÞÞ n fi; jg, this implies (iv). h

Remark that the system of equations in (iv) also uniquely deter-
mines the coefficients jC

ij ; i 2 N; j 2 SCðiÞ. From case (iii) of Lemma
1 we obtain the next corollary.

Corollary 2. For a cycle-free digraph C it holds that jC
ij ¼ 0 for all

i 2 N and j 2 SCðiÞ n bSC
� ðiÞ for which qC

ij ¼ ~qC
ij ¼ 1. In particular, jC

ij ¼ 0
for all i 2 N and j 2 SCðiÞ n bSC

� ðiÞ with dC
i ðjÞ ¼ 1.

The second statement holds because for all j 2 SCðiÞ n bSC
� ðiÞ with

dC
i ðjÞ ¼ 1 there is a unique proper immediate predecessor of j that

belongs to all paths in ~PCði; jÞ.
Example 3. Fig. 3 illustrates the situation when j 2 SCðiÞ n bSC
� ðiÞ

with dC
i ðjÞ ¼ 1.
Example 4. The examples of digraphs depicted in Fig. 4 demon-
strate the situation when for some i 2 N and j 2 SC(i) the paths in
~PCði; jÞ constitute one subset of the second type, i.e., paths in~PCði; jÞ
do intersect but have no other nodes in common than i and j.

For the digraph depicted in Fig. 4(a) it holds that dC
1 ð7Þ ¼ 2 and

jC
17 ¼ 0, for the one in Fig. 4(b) dC

1 ð6Þ ¼ 2 and jC
16 ¼ 1, and for the

one in Fig. 4(c) dC
1 ð8Þ ¼ 2 and jC

18 ¼ �1.
According to formula (4), or equivalently (7), the tree value as-

signs to a player the worth of his full successors set minus appropri-
ate positive or negative multiples of the worths of the full successors
sets of all his successors such that, in order to correct for overlapping
successor sets, as stated in (iv) of Lemma 1, for each successor the
sum of the positive and negative multiples, with which the worths
of the full successors sets he belongs to are multiplied, is equal to
1. It is worth to note that from this it follows that the right hand side
of formula (4), being considered with respect not to coalitional
worths but to players in these coalitions, contains only player i
when counting the total of all multiple pluses and minuses.

A value n on GC
N is independent of inessential links if for every cy-

cle-free digraph game hv ;Ci 2 GC
N and cycle-free digraph game

hv ;C0i 2 GC
N with C0 being the subgraph C0 of C composed by all

essential links of C it holds that n(v, C) = n(v, C0).

Corollary 3. The tree value satisfies independence of inessential links.

From Theorem 2 the tree value is determined only by the
coalitions having the full successors set structure. Deletion of ines-
sential links does not change this set of coalitions. All other coali-
tions, in particular any t-connected coalition composed of nodes
connected by inessential links, even if their worths are very high,
are irrelevant. A similar situation occurs in the commonly accepted
Myerson (1977) undirected graph game model where every dis-
connected coalition, even being of very high worth, is irrelevant.
The property of independence of inessential links in fact reflects
the rigidity of the entire management system in a sense of impor-
tance of all lower level managers since an attempt of a higher level
manager to control any one of his not immediate subordinates di-
rectly, which is represented as an inessential link, does not change
the total distribution of payoffs.

Example 5. Fig. 5 provides an example of the tree value for a 10-
person game with cycle-free but not strongly cycle-free digraph
structure as depicted in Fig. 1. If there is no confusion, a set
{i1, . . . , ik} is denoted by i1 � � � ik.

The tree value can be computed by using the recursive formula
(3) or the explicit representation (7). We explain in detail the
computation of t1(v, C) based on the explicit formula (7):

bSC
� ð1Þ ¼ f3;4;10g ) jC

13 ¼ jC
14 ¼ jC

1;10 ¼ 1;
SCð1Þ n bSC

� ð1Þ ¼ f5;6;7;8;9g:
dC

1 ð5Þ ¼ dC
1 ð9Þ ¼ 1) jC

15 ¼ jC
19 ¼ 0;

~PCð1;6Þ ¼ fð1;3;5;6Þ; ð1;4;6Þ; ð1;10;6Þg, no intersections )
qC

16 ¼ ~qC
16 ¼ 3) jC

16 ¼ �2;
~PCð1;7Þ ¼ fð1;3;5;7Þ; ð1;4;7Þg, no intersections ) qC

17 ¼
~qC

17 ¼ 2) jC
17 ¼ �1;

~PCð1;8Þ is composed by ~p1 ¼ ð1;3;5;7;8Þ;~p2 ¼ ð1;3;5;6;8Þ;
~p3 ¼ ð1;10;6;8Þ; ~p4 ¼ ð1;4;7;8Þ,
~p5 ¼ ð1;4;6;8Þ;~p6 ¼ ð1;3;8Þ; eliminate path~p6 containing ines-
sential link (3,8);
paths ~p1; ~p2; ~p3; ~p4 and ~p5 form one subset of the second type
) qC

18 ¼ 1; ~qC
18 ¼ 0;



Fig. 3. Illustration of Example 3.

(a) (b) (c)

Fig. 4. The digraphs in Example 4.

Fig. 6. Illustration of Example 6.
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CCð~PCð1;8ÞÞ ¼ f1;4;5;6;7;8;10g;
jC

18ð~p1Þ ¼ 0;
~p2 n~p1 contains tuples (1,6,8) and ð1;5;6;8Þ ) jC

18ð~p2 n~p1Þ ¼ 0;
~p3 n ð~p1 [~p2Þ contains tuples ð1;10;8Þ; ð1;10;6;8Þ ) jC

18ð~p3n
ð~p1 [~p2ÞÞ ¼ 0;
~p4 n ð~p1 [~p2 [~p3Þ contains ð1;4;8Þ; ð1;4;7;8Þ ) jC

18ð~p4 n ð~p1[
~p2 [~p3ÞÞ ¼ 0;
~p5 n ð~p1 [~p2 [~p3 [~p4Þ contains ð1;4;6;8Þ ) jC

18ð~p5 n ð~p1 [~p2 [
~p3 [~p4ÞÞ ¼ 1;
) jC

18 ¼ 1.

Therefore, t1(v, C) = v (13456789,10) � v (356789) � v (46789)
� v (689,10) + 2v (689) + v (78) � v (8).
Example 6. Fig. 6 gives an example of the tree value for a 10-per-
son game with strongly cycle-free digraph structure.

On the class of cycle-free digraph games the tree value not only
meets FTE but FTE alone uniquely defines the tree value.

Theorem 3. On the class of cycle-free digraph games GC
N the tree

value is the unique value that satisfies FTE.
Fig. 5. Illustration
Proof. Since the tree value satisfies FTE, it is enough to show that
the tree value is the unique value that meets FTE on GC

N . Let a value
n on GC

N satisfy FTE. Then, (1) holds for every hv ;Ci 2 GC
N . Every

digraph C under consideration is cycle-free, i.e., no player in N
appears to be a successor of itself. Hence, due to the arbitrariness
of game hv, Ci, the n equalities in (1) are independent. Thus, we
have a system of n independent linear equalities with respect to
n variables nj(v, C) which uniquely determines n(v, C) that in this
case coincides with t(v, C). h
Corollary 4. On the class of cycle-free digraph games GC
N FTE is equiv-

alent to MTE and SE.
Remark 1. Observe that the independence of inessential links of
the tree value can be also obtained as a corollary to Theorem 3.
4.2. Component efficiency and stability

In this subsection we consider component efficiency and stabil-
ity of the tree value. First we derive the total payoff given by the
tree value to any t-connected coalition.

Theorem 4. Given a cycle-free digraph game hv ;Ci 2 GC
N, for any

t-connected coalition S 2 CC
t ðNÞ it holds that
X
i2S

tiðv;CÞ ¼
X

i2RCðSÞ

vðSCðiÞÞ �
X

i2SnRCðSÞ

ðjC
S;i � 1ÞvðSCðiÞÞ

�
X

i2SCðSÞnS

jC
S;ivðSCðiÞÞ; ð9Þ

where jC
S;j ¼

P
i2PCðjÞ\S jC

ij for all j 2 SCðSÞ.
of Example 5.
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If hv, Ci is a strongly cycle-free digraph games, then for any
t-connected coalition S 2 CC

t ðNÞ it holds thatX
i2S

tiðv ;CÞ ¼
X

i2RCðSÞ

vðSCðiÞÞ �
X

i2SnRCðSÞ

ðdC
S ðiÞ � 1ÞvðSCðiÞÞ

�
X

i2RCðSCðSÞnSÞ

dC
S ðiÞvðSCðiÞÞ; ð10Þ

where dC
S ðjÞ ¼ jbPC

� ðjÞ \ SCðSÞj for all j 2 SCðSÞ.
Proof. For any S 2 CC
t ðNÞ it holds thatX

i2S

tiðv ;CÞ¼
ð4ÞX

i2S

vðSCðiÞÞ �
X

j2SCðiÞ

jC
ij vðSCðjÞÞ

0@ 1A
¼
X
i2S

vðSCðiÞÞ �
X

j2SCðSÞnRCðSÞ

X
i2PCðjÞ\S

jC
ij vðSCðjÞÞ

0@ 1A
¼
X

i2RCðSÞ

vðSCðiÞÞ �
X

i2SnRCðSÞ

jC
S;i � 1

� �
vðSCðiÞÞ �

X
i2SCðSÞnS

jC
S;ivðSCðiÞÞ:

In case C is a strongly cycle-free digraph, it holds thatX
i2S

tiðv ;CÞ¼
ð8ÞX

i2S

ðvðSCðiÞÞ �
X

j2ŜCðiÞ

vðSCðjÞÞÞ

¼
X

i2RCðSÞ

vðSCðiÞÞ �
X

i2SnRCðSÞ

dC
S ðiÞ � 1

� �
vðSCðiÞÞ

�
X

j2bSC ðiÞ
i2S; jRS

To complete the proof of (10) it suffices to notice that, since C is a
strongly cycle-free digraph, every j 2 bSCðiÞ such that i 2 S and j R S is
a source in SCðSÞ n S. h

Observe that for j 2 SCðSÞ and S 2 CC
t ðNÞ the number dC

S ðjÞ can be
interpreted as the in-degree of j from S. Remark also that for any
connected component C 2 N/C it holds that dC

C ðiÞ ¼ dCðiÞ for all
i 2 C.

From Theorem 4 it follows that for any cycle-free digraph game
hv;Ci 2 GC

N the total payoff to any component C 2 N/C is given byX
i2C

tiðv ;CÞ ¼
X

i2RCðCÞ

vðSCðiÞÞ �
X

i2CnRCðCÞ

jC
C;i � 1

� �
vðSCðiÞÞ; ð11Þ

while if hv, Ci is a strongly cycle-free digraph game, (11) reduces toX
i2C

tiðv ;CÞ ¼
X

i2RCðCÞ

vðSCðiÞÞ �
X

i2CnRCðCÞ

ðdCðiÞ � 1ÞvðSCðiÞÞ: ð12Þ

To support these expressions we recall the Myerson model in
Myerson (1977) of a TU game with undirected cooperation struc-
ture, in which the total payoff to each component C 2 N/C equals
its worthX
i2C

niðv ;CÞ ¼ vðCÞ: ð13Þ

While in the Myerson model the components are the only efficient
feasible coalitions, the building bricks in (11) and (12) are the full
successors sets which are the efficient feasible coalitions under
the assumption of t-connectedness. Observe also that for strongly
cycle-free rooted forest digraph games (12) reduces to (13),X
i2C

tiðv ;CÞ ¼ vðSCðrðCjCÞÞÞ ¼ vðCÞ:

The concept of the core of a TU game as the set of efficient payoff
vectors that are not dominated by any coalition of players was intro-
duced in Gillies (1953). A solution for a class of TU games is stable if it
belongs to the core of any game of this class with nonempty core. For
the class of cycle-free digraph games GC
N we define t-stability of a

solution by the t-core. For a cycle-free digraph game hv;Ci 2 GC
N

the t-core Ct(v, C) is defined as the set of component efficient payoff
vectors that are not dominated by any t-connected coalition,

Ctðv ;CÞ ¼ x 2 RN jxðCÞ ¼ vðCÞ; 8C 2 N=C; xðSÞP vðSÞ; 8S 2 CC
t ðNÞ

n o
:

A game v 2 GN is superadditive if v(S) + v(T) 6 v(S [ T) for all S,
T # N, such that S \ T = ;.

Theorem 5. On the subclass of superadditive rooted forest digraph
games the tree value is an element of the t-core.
Proof. Let hv ;Ci 2 GC
N be any superadditive rooted forest digraph

game. We show that the tree value t(v, C) belongs to Ct(v, C). Con-
sider an arbitrary C 2 N/C, then C is a tree. Let i 2 C be a source in C,
then C ¼ SCðiÞ because of the rooted forest structure of C. Due to
the full-tree efficiency of the tree value, it holds that

X
j2SCðiÞ

tjðv ;CÞ¼
FTEvðSCðiÞÞ;

wherefrom it follows thatX
j2C

tjðv;CÞ ¼ vðCÞ:

Take any S 2 CC
t ðNÞ. Because of the rooted forest structure of C,

it holds that dC
NðiÞ ¼ 1 for all i 2 NnRC(N), from which it follows that

CjS contains exactly one source, say, node i, i.e., CjS is a subtree, and
S # SCðiÞ. Moreover, since C is strongly cycle-free, CjSCðiÞ is a full
subtree, and because of the tree structure of CjS, CjSCðiÞnS is a forest
of full subtrees on disjoint node sets, say, T1, . . . ,Tq. Hence,

SCðiÞ ¼ S [
[q
k¼1

Tk

 !
:

Applying again the full-tree efficiency of the tree value, we obtain
thatX
j2SCðiÞ

tjðv ;CÞ¼
FTEvðSCðiÞÞ and

X
j2Tk

tjðv ;CÞ¼
FTEvðTkÞ for k ¼ 1; . . . ; q:

From the superadditivity of v and the last three equalities, it follows
thatX
j2S

tjðv;CÞ ¼ vðSCðiÞÞ �
Xq

k¼1

vðTkÞP vðSÞ: �

Remark 2. The statement of Theorem 5 can also be obtained as a
corollary of the stability result proved in Demange (2004). Indeed,
in a rooted forest every component has a tree structure and, there-
fore, is t-connected. Whence, for any rooted forest digraph game
the t-core coincides with the core of the Myerson restricted game.

The following examples show that for t-stability of a superaddi-
tive digraph game the requirement on the digraph to be a rooted
forest is non-reducible. In Example 7 the tree value of a superaddi-
tive cycle-free but not strongly cycle-free digraph game violates
individual rationality and therefore does not meet the inequality
constraints of the t-core, while in Example 8 the tree value of a
superadditive strongly cycle-free game in which the graph con-
tains two sources violates feasibility.

Example 7. Consider a 4-person cycle-free superadditive digraph
game hv, Ci with v({2,4}) = v({3,4}) = v({2,3,4}) = v(N) = 1, v(S) = 0
otherwise, and C depicted in Fig. 7.

Then t(v, C) = (�1,1,1,0), whence t1(v, C) = � 1 < 0 = v({1}). By
definition, every singleton coalition, in particular S = {1}, is
t-connected.



Fig. 7. The digraph in Example 7.
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Example 8. Consider a 3-person cycle-free superadditive digraph
game hv, Ci with v({1,2}) = v({1,3}) = v(N) = 1, v(S) = 0 otherwise,
and C depicted in Fig. 8.

Then t(v,C) = (1,1,0), whence t1(v, C) + t2(v, C) + t3(v, C) =
2 > 1 = v(N).

A game v 2 GN is convex if for all T, Q # N it holds that

vðTÞ þ vðQÞ 6 vðT [ QÞ þ vðT \ QÞ: ð14Þ

For TU games the notion of convexity was introduced in Shapley
(1971), where it is shown that unlike for the superadditive games
on the class of convex games the Shapley value is stable. For cy-
cle-free undirected graph games if we choose a node in a given cy-
cle-free undirected graph as a root of the rooted tree and apply the
corresponding tree value as a solution of the original undirected
graph game, superadditivity guarantees stability of this solution.
However, for strongly cycle-free digraph games convexity ensures
only component feasibility. In fact, to guarantee component feasi-
bility it suffices that the strongly cycle-free digraph game is t-con-
vex, which is a weaker condition than convexity of the game v.

A cycle-free digraph game hv, Ci is t-convex, if the inequality
(14) holds for all t-connected coalitions T;Q � CC

t ðNÞ such that T
is a full t-connected set, Q is a full successors set, and
T [ Q 2 CC

t ðNÞ.

Theorem 6. On the subclass of t-convex strongly cycle-free digraph
games the tree value is component feasible.
Proof. Let hv ;Ci 2 GC
N be any t-convex strongly cycle-free digraph

game. Assume that C is connected, otherwise we apply the same
argument to any component C 2 N/C. If there is only one source
in C, it holds that

Pn
i¼1 tiðv ;CÞ ¼ vðNÞ and the tree value is even

efficient. So, assume that there are q different sources r1, . . . ,rq in
C for some q P 2. Since C is connected, the sources in C can be
ordered in such a way that

[j�1

h¼1

SCðrhÞ
 !

\ SCðrjÞ–;; for j ¼ 2; . . . ; q:

For j = 1, . . . ,q, let Tj ¼
Sj

h¼1 SCðrhÞ. From the strongly cycle-freeness
of C it follows that for j = 2, . . . ,q there exists a unique ij 2 N such
that

Tj�1 \ SCðrjÞ ¼ SCðijÞ:

By t-convexity of the digraph game hv, Ci it holds that

vðTj�1Þ þ vðSCðrjÞÞ 6 vðTjÞ þ vðSCðijÞÞ; for j ¼ 2; . . . ; q:
Fig. 8. The digraph in Example 8.
Since T1 ¼ SCðr1Þ and Tq = N and applying the last inequality succes-
sively for j = 2, . . . ,q, we obtain thatXq

j¼1

vðSCðrjÞÞ 6 vðNÞ þ
Xq

j¼2

vðSCðijÞÞ:

Hence,

vðNÞP
Xq

j¼1

vðSCðrjÞÞ �
Xq

j¼2

vðSCðijÞÞ:

Since C is strongly cycle-free, for any i 2 NnRC(N), node i has dC(i)
different sources as predecessors, which implies that the term
vðSCðiÞÞ appears precisely dC(i) � 1 times. Therefore,

vðNÞP
X

i2RCðNÞ

vðSCðiÞÞ �
X

i2NnRCðNÞ

ðdCðiÞ � 1ÞvðSCðiÞÞ: �

The following example shows that under the assumption of
convexity, which is stronger than t-convexity, one or more con-
straints for not being dominated in the definition of the t-core
might be violated for the tree value.
Example 9. Consider a 5-person strongly cycle-free convex
digraph game hv,Ci with v(N) = 10, v({1,2,3}) = v({1,2,3,4}) =
v({1,2,3,5}) = 3, v({1,3,4,5}) = v({2,3,4,5}) = 1, v(S) = 0 otherwise,
and digraph C depicted in Fig. 9.

Then t(v, C) = (1,1,0,0,0), whence the total payoff of the t-
connected coalition S = {1,2,3} is equal to 2, which is smaller than
v(S) equal to 3.

From (11) it follows that for a cycle-free (connected) digraph
game hv ;Ci 2 GC

N a necessary and sufficient condition for the over-
all feasibility of the tree value is thatX
i2RCðNÞ

vðSCðiÞÞ 6 vðNÞ þ
X

i2NnRCðNÞ

jC
N;i � 1

� �
vðSCðiÞÞ: ð15Þ

Since N ¼ [i2RCðNÞ SCðiÞ, the grand coalition equals the union of the
successors sets of all sources in the graph C. In case there is only
one source in C, condition (15) is redundant, because the left side
is then equal to v(N). In case there is more than one source in C,
the different successors sets of the sources of C will intersect each
other and for any i 2 NnRC(N) the number jC

N;i � 1 is the number of
times that the successors set SCðiÞ of node i equals the intersection
of successors sets of the sources of C. Therefore, condition (15) is a
kind of convexity condition for the grand coalition saying that the
sum of the worths of the successors sets of all the sources of the
graph should be less than or equal to the worth of the grand coali-
tion (their union) plus the total worths of their intersections. In a
firm where any full successors set of a source is a division within
the firm and subdivisions that are intersections of several divisions
are shared by these divisions, in (15) the left-side minus the sum in
the right-side can be economically interpreted as the total worths of
the divisions when they do not cooperate, while v(N) is the worth of
the firm when the divisions do cooperate. To have feasibility the lat-
ter value should be at least equal to the former value. Remark that
v(N) minus the total payoff at the tree value can be interpreted as
the net profit of the firm (or the synergy effect from cooperation)
that can be given to its shareholders.

5. Web values

In this section we consider the case of an arbitrary management
team in a given cycle-free directed communication graph and as-
sume that for every cycle-free digraph game hv ;Ci 2 GC

N some man-
agement team M 2MðCÞ is a priori fixed.

To a cycle-free digraph C on N and management team
M 2MðCÞ we associate the digraph



Fig. 9. The digraph in Example 9.
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CM ¼ fði; jÞ 2 Cjj 2 SCðMÞg
[
fðj; iÞjði; jÞ 2 C; i 2 PCðMÞ; j R SCðMÞg;

composed by the same links as C but with reversed orientation of
any link with origin a predecessor of M and terminus not a succes-
sor of M. The set of sources in CM coincides with the management
team M in C, i.e., RCM

ðNÞ ¼ M.

Example 10. Fig. 10 provides an example of the digraph CM for the
cycle-free digraph C depicted in Fig. 1 and the management team
M = {3,4,10}.

Due to the management team development rule and the agree-
ments on the asymmetries in the definitions of CM and of the man-
agement team of a coalition, the assumption of M-web
connectedness with respect to M in C is equivalent to the assump-
tion of tree connectedness in digraph CM, and the requirements of
axioms MWE, MWSE together with MWPE, and MWE together
with MWFTE and MWFSE with respect to game hv, C, Mi are equiv-
alent to the requirements of axioms MTE, SE and FTE with respect
to game hv, CMi correspondingly. The latter observations allow to
get for the general case of M-web connectedness the following re-
sults obtained straightforwardly from the results proved in Sec-
tion 4 for the case of tree connectedness.

Proposition 2. On the class of cycle-free digraph games GC
N MWE

together with MWSE imply MWFTE, and MWE together with MWPE
imply MWFSE with respect to any management team.
Theorem 7. On the class of cycle-free digraph games GC
N there is a

unique value w that satisfies MWE, MWSE and MWPE with respect
to any management team. For every cycle-free digraph game
hv;C;Mi 2 GC

N, the payoff vector w(v, C, M) possesses the following
properties:

(i) it meets the equality
wðv ;C;MÞ ¼ tðv ;CMÞ; ð16Þ
Fig. 10. The digraph in Example 10.
(ii) it obeys the recursive formula
wiðv;C;MÞ ¼

vðSCðiÞÞ �
X

j2SCðiÞ

wjðv ;C;MÞ; 8i 2 SCðMÞ;

vðPCðiÞÞ �
X

j2PCðiÞ

wjðv ;C;MÞ; 8i 2 PCðMÞ;

vðWCðiÞÞ �
X

j2WCðiÞnfig

wjðv ;C;MÞ; 8i 2 M;

8>>>>>>>>>><>>>>>>>>>>:
ð17Þ
(iii) it admits the explicit representation in the form
wiðv ;C;MÞ ¼

vðSCðiÞÞ �
X

j2SCðiÞ

jC
ij vðSCðjÞÞ; 8i 2 SCðMÞ;

vðPCðiÞÞ �
X

j2PC ðiÞ

jC
ji vðPCðjÞÞ; 8i 2 PCðMÞ;

vðWCðiÞÞ �
X

j2SCðiÞ

jC
ij vðSCðjÞÞ �

X
j2PC ðiÞ

jC
ji vðPCðjÞÞ; 8i 2 M;

8>>>>>>>>>><>>>>>>>>>>:
ð18Þ
where for all i 2 N and j 2 SC(i), jC
ij is defined by (2).

We refer to the value w as to the M-web value or web value for
cycle-free digraph games with respect to management team M.

According to (17) the web value assigns to every manager the
worth of his full web minus the total payoff to all his subordinates
and to every successor (predecessor) of the given management
team the worth of his full successors (predecessors) set minus
the total payoff to his successors (predecessors). Wherefrom we
obtain a simple recursive algorithm for computing the web value
by going upstream from the sinks and downstream from the
sources till the chosen management team is reached.

Remark 3. From (17) it follows that each member of a manage-
ment team M can be considered as an independent entity in a
sense that for every manager i 2M it holds that wjðv ;C;MÞ ¼
wjðv jWCðiÞ;CjWCðiÞ; figÞ for all j 2WC(i).

The next theorem provides an explicit representation of the M-
web value.

Theorem 8. For any cycle-free digraph game hv ;C;Mi 2 GC
N, the M-

web value w(v, C, M) admits the equivalent representation in the form

wiðv;C;MÞ ¼

vðSCðiÞÞ �
X

j2bSC
� ðiÞ

vðSCðjÞÞ

þ
X
j2SC ðiÞ

dC
i
ðjÞ>1

qC
ij � 1�

XqC
ij

h¼~qC
ij
þ1

jC
ij ðCCð~Phði; jÞÞÞ

0B@
1CAvðSCðjÞÞ; 8i 2 SCðMÞ;

vðPCðiÞÞ �
X

j2bPC
� ðiÞ

vðPCðjÞÞ

þ
X

j2PC ðiÞ
eC
i
ðjÞ>1

qC
ji � 1�

XqC
ji

h¼~qC
ji
þ1

jC
ji ðCCð~Phði; jÞÞÞ

0B@
1CAvðPCðjÞÞ; 8i 2 PCðMÞ;

vðWCðiÞÞ �
X

j2bSC
� ðiÞ

vðSCðjÞÞ �
X

j2bPC
� ðiÞ

vðPCðjÞÞ

þ
P

j2SC ðiÞ
dC

i
ðjÞ>1

qC
ij � 1�

XqC
ij

h¼~qC
ij
þ1

jC
ij ðCCð~Phði; jÞÞÞ

0B@
1CAvðSCðjÞÞ

þ
X

j2PC ðiÞ
eC
i
ðjÞ>1

qC
ji � 1�

XqC
ji

h¼~qC
ji
þ1

jC
ji ðCCð~Phði; jÞÞÞ

0B@
1CAvðPCðjÞÞ; 8i 2 M:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð19Þ

If hv, C, Mi is a strongly cycle-free digraph games, then the above
representation reduces to



Fig. 11. Illustration of Example 11.
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wiðv ;C;MÞ ¼

vðSCðiÞÞ �
X

j2ŜCðiÞ

vðSCðjÞÞ; 8i 2 SCðMÞ;

vðPCðiÞÞ �
X

j2P̂CðiÞ

vðPCðjÞÞ; 8i 2 PCðMÞ;

vðWCðiÞÞ �
X

j2ŜCðiÞ

vðSCðjÞÞ �
X

j2P̂CðiÞ

vðPCðjÞÞ; 8i 2 M:

8>>>>>>>><>>>>>>>>:
ð20Þ

The M-web value assigns to every successor (predecessor) of a
given management team the payoff equal to the worth of his full
successors (predecessors) set minus the worths of all full succes-
sors (predecessors) sets of his proper immediate successors (pre-
decessors) plus or minus appropriate multiples of the worths of
all full successors (predecessors) sets of any other of his successors
(predecessors) to correct for multiple overlaps of these sets. The M-
web value assigns to every manager of a given management team
the payoff equal to the worth of his full web minus the worths of
all full successors sets of his proper immediate successors plus or
minus appropriate multiples of the worths of all full successors
sets of any other of his successors and minus the worths of all full
predecessors sets of his proper immediate predecessors plus or
minus appropriate multiples of the worths of all full predecessors
sets of any other of his predecessors. In fact, each player receives
what he contributes when he joins his subordinates when we
count only the efficient feasible coalitions that are full webs for
the managers, full successors sets for the successors of the man-
agement team, and full predecessors sets for the predecessors of
the management team. Again, it is worth to notice that the right
hand sides of both formulas (19) and (20) being considered with
respect not to coalitional worths but to players in these coalitions
contain only player i when taking into account all weighted pluses
and minuses.
Example 11. Fig. 11 provides an example of the M-web value w(v,
C, M) for a 10-person game v with cycle-free digraph C depicted in
Fig. 1 and the management team M = {3,4,10}.

The M-web value not only meets MWE, MWFTE and MWFSE but
also these three efficiency properties alone uniquely define the M-
web value on the class GC

N .

Theorem 9. On the class of cycle-free digraph games GC
N the M-web

value w is the unique value that satisfies MWE, MWFTE and MWFSE.
1 In the next formulas we denote the value relevant to the case of sink
connectedness by s instead of w used in the general case.
Corollary 5. On the class of cycle-free digraph games GC
N MWE,

MWFTE and MWFSE together imply MWSE and MWPE.
Corollary 6. On the class of cycle-free digraph games GC
N the M-web

value meets the independence of inessential links.
For a cycle-free digraph game hv ;C;Mi 2 GC

N , we define the
M-web core CM(v, C, M) as the set of component efficient payoff
vectors that are not dominated by any M-web connected coalition,

CMðv ;C;MÞ ¼ x 2 RN jxðCÞ ¼ vðCÞ; 8C 2 N=C; xðSÞP vðSÞ; 8S 2 CC
MðNÞ

n o
:

Theorem 10. On the class of superadditive line-graph digraph games
the M-web value is an element of the M-web core.

We remark that for M-web stability of a superadditive digraph
game when the management team M is composed neither only by
sources nor only by sinks the requirement on the digraph to be a
line-graph is non-reducible.

A cycle-free digraph game hv ;C;Mi 2 GC
N is M-web-convex, if for

all M-web connected coalitions T;Q � CC
MðNÞ such that T is a full M-

web connected set, Q is a web, and T [ Q 2 CC
MðNÞ, it holds that

vðTÞ þ vðQÞ 6 vðT [ QÞ þ vðT \ QÞ: ð21Þ
Theorem 11. On the subclass of M-web-convex strongly cycle-free
digraph games GC

N the M-web value is component feasible.

If the management team of a cycle-free digraph C on N consists
of all sinks, web connectedness can be restated in terms of sink
connectedness, where a connected coalition S 2 CC(N) is sink con-
nected, or simply s-connected, if for every sink i 2 LC(S) it holds that
i R PC(j) for any other sink j 2 LC(S). In this case M-web efficiency
becomes maximal sink efficiency, M-web predecessor equivalence
predecessor equivalence, M-web efficiency together with M-web
full-sink efficiency provide full sink efficiency, the axioms of M-
web successor equivalence and M-web full-tree efficiency become
redundant, and the M-web core reduces to the s-core Cs(v, C) de-
fined as the set of component efficient payoff vectors that are not
dominated by any s-connected coalition,

Csðv;CÞ ¼ fx 2 RN jxðCÞ ¼ vðCÞ; 8C 2 N=C; xðSÞP vðSÞ; 8S

2 CC
s ðNÞg;

where CC
s ðNÞ denotes the set of all s-connected subcoalitions of N.

Besides, formulas (18)–(20) that provide representations of the M-
web value reduce correspondingly to1
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siðv ;CÞ ¼ vðPCðiÞÞ �
X

j2PCðiÞ

jC
ji vðPCðjÞÞ; for all i 2 N; ð22Þ

siðv ;CÞ ¼ vðPCðiÞÞ �
X

j2P̂C
� ðiÞ

vðPCðjÞÞ

þ
X

j2PC ðiÞ
dC

i
ðjÞ>1

qC
ji � 1�

XqC
ji

h¼~qC
ji
þ1

jC
ji ðCCð~Phðj; iÞÞÞ

0B@
1CAvðPCðjÞÞ;

for all i 2 N; ð23Þ

and

siðv ;CÞ ¼ vðPCðiÞÞ �
X

j2P̂CðiÞ

vðPCðjÞÞ; for all i 2 N: ð24Þ

For sink forest digraph games defined by sink forest digraph
structures that are strongly cycle-free, the value given by (24) coin-
cides with the sink value introduced in Khmelnitskaya (2010). We
refer to the value s given by (22), or equivalently by (23), as the sink
tree value, or simply the sink value, for cycle-free digraph games.

Theorem 12. On the subclass of superadditive sink forest digraph
games the sink value belongs to the s-core.
6. The average web value

In this section we introduce the average web value for cycle-
free directed graphs. This value only depends on a given TU game
and digraph. By taking the average web value we equalize the play-
ers’ control assuming that every player may become a manager
and that every possible management team is equally likely to
occur.

For any cycle-free digraph game hv ;Ci 2 GC
N , the average web va-

lue (AW-value) is defined as the average of M-web values over the
set MðCÞ of all management teams in the digraph C,

AWðv;CÞ ¼ 1
jMðCÞj

X
M2MðCÞ

wðv;C;MÞ:

It is not difficult to see that the AW-value inherits the indepen-
dence of inessential links property from M-web values. Moreover,
since convexity of a digraph game hv ;Ci 2 GC

N is stronger than
M-web-convexity with respect to any management team
M 2 MðCÞ, we obtain from Theorem 11 the next theorem.

Theorem 13. On the class of convex strongly cycle-free digraph
games GC

N the AW-value is component feasible.
The average tree solution (AT solution) for undirected cycle-free

graph games, introduced in Herings et al. (2008), assigns to any
undirected cycle-free graph game hv, Ci to player i 2 N the average
of his tree value payoffs in all rooted spanning trees2 in the sub-
graph hðN=CÞi;CjðN=CÞi i:

ATiðv ;CÞ ¼
1

jðN=CÞij
X

j2ðN=CÞi

tiðv jðN=CÞi ; TðjÞÞ; for all i 2 N;

where, for j 2 (N/C)i, T(j) is the rooted tree on (N/C)i with j as root
and composed of all links of hðN=CÞi;CjðN=CÞi i with orientation direc-
ted away from the root and t is the tree value given by (8).

With any digraph C on N we associate the undirected graph eC
on N defined aseC ¼ ffi; jgji; j 2 N; fði; jÞ; ðj; iÞg \ C–;g:
2 Given an undirected graph C on N, a rooted tree C0 on N is a spanning tree of C if
for every (i, j) 2 C0 it holds that {i, j} 2 C.
Theorem 14. The AW-value for a strongly cycle-free digraph game

hv ;Ci 2 GC

N coincides with the AT solution for the corresponding
undirected graph game hv ; eCi, i.e.,

AWðv ;CÞ ¼ ATðv ; eCÞ; ð25Þ

if and only if C is a line-graph.
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Proof. Let hv ;Ci 2 GC
N be a strongly cycle-free digraph game for

which equality (25) holds. From Theorem 7 it follows that for
any management team M 2 MðCÞ; wðv;C;MÞ ¼ tðv ;CMÞ. Besides,
for any management team M 2 MðCÞ the undirected graphs corre-

sponding to C and CM coincide, i.e., eC ¼gCM . Whence and due to
the arbitrary choice of the game v in GN it follows that for equality
(25) to hold all management teams M 2 MðCÞ need to be single-
tons. To complete the proof it is enough to notice that the condition
of a strongly cycle-free digraph to be a line-graph is a necessary
and sufficient condition for all management teams of the digraph
to be singletons, and moreover, in a line-graph C on N the total
number of management teams in C is equal to n, i.e.,
jMðCÞj ¼ n. h

In Herings et al. (2008) it is shown that the AT solution defined
on the class of superadditive undirected cycle-free graph games is
stable, and that on the entire class of undirected cycle-free graph
games the AT solution is characterized via component efficiency
and component fairness, see also Béal et al. (2010).

A value n on the class of graph games is component fair (CF) if,
for any cycle-free graph game hv, Ci, for every link {i, j} 2 C, it
holds that

1
jðN=C n fi; jgÞij

X
t2ðN=Cnfi;jgÞi

ðntðv;CÞ � ntðv ;C n fi; jgÞ

¼ 1
jðN=C n fi; jgÞjj

X
t2ðN=Cnfi;jgÞj

ðntðv;CÞ � ntðv;C n fi; jgÞ:

From Theorem 14 and the axiomatization and properties of the AT
solution we obtain the next corollary.

Corollary 7. On the subclass of line-graph games hv ;Ci 2 GC
N the AW-

value is characterized by CE and CF and, moreover, on the subclass of
superadditive line-graph games hv ;Ci 2 GC

N the AW-value belongs to
the core of the undirected graph game hv ; eCi.

7. Sharing a river with multiple sources, a delta and possible
islands

Ambec and Sprumont (2002) approach the problem of optimal
water allocation for a given river with certain capacity over the
agents (cities, countries) located along the river from the game the-
oretic point of view. Their model assumes that between each pair
of neighboring agents there is an additional inflow of water. Each
agent, in principal, can use all the inflow between itself and its up-
stream neighbor, however, this allocation in general is not optimal
in respect to total welfare. To obtain a more profitable allocation it
is allowed to allocate more water to downstream agents which in
turn can compensate the extra water obtained by side-payments to
upstream ones. The problem of optimal water allocation is ap-
proached as the problem of optimal welfare distribution. Brink
et al. (2007) show that the Ambec-Sprumont river game model
can be naturally embedded into the framework of a graph game
with line-graph cooperation structure. In Khmelnitskaya (2010)
the line-graph river model is extended to the rooted tree and sink
tree digraph model of a river with a delta or with multiple sources,
respectively. We extend the line-graph, rooted tree or sink tree
model of a river to the cycle-free digraph model of a river with



Fig. 12. A river with multiple sources, a delta, and several islands along the river bed.
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both multiple sources and a delta, and also possible islands along
the river bed as well.

Let N be a set of players (users of water) located along the river
from upstream to downstream. Let eki P 0, i 2 N, k 2 bPCðiÞ, be the
inflow of water in front of the most upstream player(s) when
k = 0, or the inflow of water entering the river between neighboring
players when player k is in front of player i. Fig. 12 provides a sche-
matic representation of the model.

Following Ambec and Sprumont (2002) it is assumed that each
player i 2 N has a quasi-linear utility function given by ui(xi, ti) =
bi(xi) + ti where ti is a monetary compensation to player i, xi is the
amount of water allocated to player i, and bi

:¼ Rþ ! R is a contin-
uous nondecreasing function providing benefit bi(xi) to player i
when he consumes the amount xi of water. Moreover, it is also as-
sumed that if a splitting of the river into branches happens to occur
after a certain player, then this player takes, besides his own quota,
also the responsibility to split the rest of the water flow to the
branches such to guarantee the realization of the water distribu-
tion plan to his successors.

A light modification of the introduced under the same assump-
tions in Khmelnitskaya (2010) superadditive river game for a river
with multiple sources or a delta given by v 2 GN defined as:

for any S 2 CCðNÞ; vðSÞ ¼
P

i2S bi xS
i

� �
, where xS 2 RS solves

max
x2RS

þ

X
i2S

biðxiÞ s:t:
X

i2PCðTÞ

xi 6
X

i2PCðTÞ

X
j2P̂CjT ðiÞ

eji; for all T 2 CCðSÞ;

and for any other S � N; vðSÞ ¼
P

T2S=C vðTÞ, suits to the case of a
river with both multiple sources and a delta, and also possible
islands.

To solve the digraph river game with the digraph representing
the river flow, we may apply one of the values for cycle-free di-
graph games developed in the paper. In some situations a subcoali-
tion of users of the river water can be chosen to be responsible for
the regulation of the total water distribution. This, for example,
might happen due to the strong economical power and influence
of this subcoalition members. In such cases, if the selected subco-
alition satisfies the conditions of being a management team, we
may apply the corresponding M-web value. It is worth to remark
that when management team M is a singleton, the M-web value
provides an efficient solution of the digraph river game. The single-
ton management team happens, in particular, when the manager is
located in the middle part of the river between possible islands, or
if the river has no multiple sources or no delta and the only man-
ager is located at the top or correspondingly at the bottom of the
given digraph river structure. In these latter cases as solution we
use the tree or sink value respectively. Otherwise, if no manage-
ment team is selected, we may apply the AW-value. For the AW-
value we can guarantee its efficiency only for the line-graph river
structure. But if the river game appears to be convex and the river
digraph is strongly cycle-free, i.e., there are no islands along the
river bed, the AW-value is feasible. The distribution of water based
on the application of the M-web value introduced via its properties
formulated in terms of the axioms MWE, MWSE, and MWPE, which
can be also equivalently characterized by MWE, MWFTE, and
MEFSE, does not contradict both the Absolute Territorial Sover-
eignity (ATS) and the Absolute Territorial Integrity (ATI) legal prin-
ciples. Due to efficiency properties MWE, MWSE, and MWPE, the
M-web value of a superadditive river game provides individually
rational payoffs to the players and therefore fully agrees with the
ATS principle. At the same time the deletion link properties
MWFTE and MWFSE to some extent reflects the ATI principle.
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