
Emergency Response in Natural Disaster Management:

Allocation and Scheduling of Rescue Units

Felix Wexa, Guido Schryenb,∗, Stefan Feuerriegela, Dirk Neumanna

aChair for Information Systems Research, University of Freiburg, Platz der Alten
Synagoge, 79098 Freiburg, Germany

bManagement Information Systems, University of Regensburg, Universitätsstr. 31, 93053
Regensburg, Germany

Abstract

Natural disasters, such as earthquakes, tsunamis and hurricanes, cause
tremendous harm each year. In order to reduce casualties and economic
losses during the response phase, rescue units must be allocated and sched-
uled efficiently. As this problem is one of the key issues in emergency response
and has been addressed only rarely in literature, this paper develops a corre-
sponding decision support model that minimizes the sum of completion times
of incidents weighted by their severity. The presented problem is a general-
ization of the parallel-machine scheduling problem with unrelated machines,
non-batch sequence-dependent setup times and a weighted sum of completion
times – thus, it is NP-hard. Using literature on scheduling and routing, we
propose and computationally compare several heuristics, including a Monte
Carlo-based heuristic, the joint application of 8 construction heuristics and 5
improvement heuristics, and GRASP metaheuristics. Our results show that
problem instances (with up to 40 incidents and 40 rescue units) can be solved
in less than a second, with results being at most 10.9 % up to 33.9 % higher
than optimal values. Compared to current best practice solutions, the overall
harm can be reduced by up to 81.8 %.

∗Corresponding author. Mail: guido.schryen@wiwi.uni-regensburg.de; Tel:
+49 941 9435634; Fax: +49 941 9435635.

Email addresses: felix.wex@is.uni-freiburg.de (Felix Wex),
guido.schryen@wiwi.uni-regensburg.de (Guido Schryen),
stefan.feuerriegel@is.uni-freiburg.de (Stefan Feuerriegel),
dirk.neumann@is.uni-freiburg.de (Dirk Neumann)

Preprint submitted to European Journal of Operational Research November 1, 2013

Keywords: Decision Support Systems, Natural Disaster Management
(NDM), Heuristics, Assignment, Scheduling

1. Introduction

Natural disasters, such as earthquakes, tsunamis, floods, hurricanes and
volcanic eruptions, have caused tremendous harm in the past and continue
to threaten infrastructure and millions of people each year. Of particular
importance for the reduction of casualties and economic losses is the re-
sponse phase in natural disaster management, during which a large number
of geographically-dispersed incidents, such as fires and collapsed buildings,
require immediate processing by rescue units in the presence of severe re-
source scarcities and time pressure. Thus, one of the most critical emergency
response tasks (Comfort et al., 2004) is the efficient allocation and scheduling
of rescue units. However, this challenge has been addressed in the literature
only very rarely.

In this paper, we propose a decision support model for emergency op-
erations centers that allocates available rescue units to emerging incidents
and schedules the processing time of these incidents. The model is for-
mulated as a binary quadratic optimization problem, where the objective
minimizes the sum of completion times of incidents weighted by their sever-
ity. We refer to this problem as the Rescue Unit Assignment and Scheduling
Problem (RUASP). Our decision problem is related to problems from both
routing and scheduling. We show that our problem can be modeled as a
(more complex) modification of both the Multiple Traveling Salesman Prob-
lem (mTSP) and the parallel-machine scheduling problem with unrelated
machines, non-batch sequence-dependent setup times and a weighted sum of
completion times as the objective function, classified as R/STSD/

∑
wjCj in

the scheduling literature. Using this relationship, we prove that our problem
is NP-hard.

However, the NP-hardness of the underlying problem opposes one of the
imposed requirements that decisions – even in complex emergency situations
– must be derived timely. Therefore, we propose, implement and computa-
tionally compare several heuristics for the allocation and scheduling of res-
cue units. More specifically, we use a Monte Carlo-based heuristic as well as
joint applications of 8 construction heuristics and 5 improvement heuristics.
In addition, we embed these combinations of construction and improvement

2

heuristics into GRASP metaheuristics. Thus, our work contributes not only
to the field of disaster management, but also to the optimization literature
in general.

The remainder of this paper is structured as follows. Section 2 exam-
ines and presents relevant literature and reveals the research gap that our
paper addresses. In Section 3, we suggest the RUASP problem and pro-
pose an appropriate optimization model. Because of the NP-hardness, Sec-
tion 4 proposes several solution heuristics. Our computational experiments
are presented in Section 5, which also discusses our results. We summarize
our results in Section 6, and conclude with an outlook on future research
directions.

2. Related Work

In the literature on disaster management, challenges and activities are
classified (Ajami & Fattahi, 2009; IFRC, 2012; Altay & Green III, 2006) into
the preparedness phase (period before the disaster), the response phase (pe-
riod during and shortly after the disaster) and the recovery phase (period long
time after the disaster). More specifically, the preparedness phase addresses
tasks related to planning, training, early warning (i. e. prediction) and the
establishment of necessary emergency services (UN/ISDR, 2005; Gasparini
et al., 2007; Svensson et al., 1996; Pollak et al., 2004; F. Nisha de Silva, 2001).
The primary aims during the response phase are both rescue from immediate
danger and stabilization of the condition of survivors. Tasks include relief,
emergency shelter and settlement, emergency health, water and sanitation
and tracing and restoring family links (IFRC, 2012). In the recovery phase,
tasks are related to person finding, (ex-post) data analysis, intelligent in-
frastructure repair and the provision of various emergency services as well
as resources in order to recover the most important infrastructure facilities
(GAO, 2006; Saleem et al., 2008; Sherali et al., 1991). According to Chen
et al. (2008), these phases are sometimes also arranged in a life cycle.

Regarding decision support, research streams (Airy et al., 2009; Comes
et al., 2010; Reijers et al., 2007; Lambert & Patterson, 2002; Tamura et al.,
2000) utilize methods from applied statistics and probability theory com-
bined with mathematical programming approaches to establish novel codes
of conduct and metrics that assist commanders in critical minutes of the
decision-making process. In a first research stream, competitive mechanisms
(e. g. auctions) and cooperative mechanisms (e. g. multi-criteria approaches)

3

are developed and, in this context, Fiedrich et al. (2000) introduce the usage
of optimization modeling. Second, another research direction follows guide-
lines from computational intelligence research (Leifler, 2008; van de Walle
& Turoff, 2008) to bridge the gap between information system design prin-
ciples and decision support process architectures. A third research stream
uses empirical investigations of past decision-making conclusions to estab-
lish innovative courses of action (Faraj & Xiao, 2006). Fourth, research also
focuses on the decision-making process based on either decentralized agents
(Airy et al., 2009; Falasca et al., 2009) or a centralized authority.

Researchers argue that distributed coordination (i. e. assignments and
schedules) remains independent of failures of a single emergency operations
center, communication bottlenecks evolve more seldom and loss minimization
is achieved more easily. Regarding the latter, Rolland et al. (2010) promote
centralized coordination by applying a mathematical programming model for
scheduling distributed rescue units and the assignments of incidents to these.
However, the suggested model uses time periods of fixed length, and does not
account for the fact that incidents may have different levels of severity. As a
remedy, Wex et al. (2011, 2012, 2013) suggest mathematical formulations and
a Monte Carlo-based heuristic for the centralized scheduling and allocation
of rescue units under certainty and under uncertainty, respectively.

This study focuses on decision support in operational management during
the response phase of natural disaster management. To augment existing
work, we develop and computationally validate a large set of heuristics for the
decision support problem of centralized coordination of rescue units in terms
of their schedules and assignments to incidents. We evaluate all heuristics
against two benchmarks: best practice solutions and lower bounds of optimal
solutions.

3. Optimization Model

This section introduces the problem of scheduling rescue units and as-
signing them to incidents optimally after the occurrence of a disaster. We
refer to this problem as the Rescue Unit Assignment and Scheduling Prob-
lem (RUASP).

3.1. Problem Specification

The problem size is determined by the number of available rescue units
m and the number of incidents n that needs to be processed. We consider

4

situations in which the number of available rescue units is smaller than or
equal to the number of incidents (m ≤ n) as this ratio is typical in natural
disasters. Furthermore, we account for the following properties1.

Property 1: Since not every rescue unit is able to process each incident, we
account for both specific requirements of incidents and different capabilities
of rescue units.

Property 2: Processing times are both incident-specific and unit-specific.

Property 3: Different rescue units need different travel times between the loca-
tions of incidents.

Property 4: The processing of an incident must not be interrupted (non-
preemption).

Property 5: Each incident is assigned a weighting factor accounting for both
casualties and damage induced over time. This weight is named factor of
destruction or severity level. The sum of weighted completion times regard-
ing the processing of incidents measures, as a proxy, the overall harm.

We illustrate the RUASP in Figure 1, which shows a feasible solution of a
problem instance with m = 5 units and n = 12 incidents. For each incident
j, the level of severity (i. e. factor of destruction) is given by wj ∈ {1, . . . , 5}.
The sample schedule considers the specific requirements (types) of incidents
and the capabilities of rescue units. Here, the variable capkj equals 1 if and
only if rescue unit k has the capability to process incident j.

The figure indicates that the problem to be solved is static and that all
incidents, available rescue units and their characteristics are known. How-
ever, the decision support system updates its assignments continuously2. As

1In order to provide decision support for realistic situations, we conducted interviews
with associates from the German Federal Agency for Technical Relief (THW). These as-
sociates provided us with profound information on on-site coordination in the upright
aftermath of the 2011 earthquake and tsunami in Japan.

2In practice, information is likely to be updated frequently so that assignment and
scheduling decisions have to be refreshed based on the status quo of available information.
We account for these dynamics by suggesting that the optimization model is applied in an
iterative manner: if the decision makers determine to update the current scheduling and
allocation plan based on new information, a new instance of the optimization problem with
updated information is created. When solving this new instance, one needs to account
for the fact that some of the known incidents have already been or are being processed.
Accordingly, rescue units may have been already assigned and sent to incidents. In this
case, it must be prohibited to assign busy rescue units until they will have finished their

5

t

Rescue Unit 1 w2=3, p2
1=6 w4=2, p4

1=2
w5=2,
p5

1=1
S0,2

1=3 S2,4
1=3 S4,5

1=2

Incident 2 Incident 4 Incident 5

Rescue Unit 2 w3=3, p3
2=3S1,3

2=3w1=5, p1
2=8S0,1

2=4

Incident 1 Incident 3

Rescue Unit 3 w7=4, p7
3=3

w6=3,
p6

3=1
w8=2, p8

3=5S0,7
3=4

S7,6
3=

1
S6,8

3=2

Incident 7 Incident 6 Incident 8

Rescue Unit 4 w11=2, p11
4=3S12,11

4=3w12=4, p12
4=8S0,12

4=2

Incident 12 Incident 11

Rescue Unit 5 w10=1, p10
5=3

S9,10
5

=1
w9=5, p9

5=8S0,9
5=5

Incident 9 Incident 10

wj: Factor of destruction of incident j
pj

k: Processing time of incident j when processed by k
sij

k: Travel time it takes rescue unit k to
move from (incident/depot) i to incident j

Incident j Rescue units possess required capabilities capkj:
cap1,2=cap1,4=cap1,5=1; cap2,1=cap2,3=1;

cap3,7=cap3,6=cap3,8=1; cap4,12=cap4,11=1;
cap5,9=cap5,10=1

Figure 1: Feasible solution for sample schedules and assignments with m = 5 units and
n = 12 incidents.

a consequence, it seems realistic to assume that each instance does not ex-
ceed a moderately large size (m,n ≤ 40), for which our heuristics can provide
feasible solutions in timely manner.

3.2. Relationship to Routing and Scheduling Problems

This section explores the relationship of RUASP to existing problems
from both routing and scheduling.

In the routing domain, our problem is related to the multiple Traveling
Salesman Problem (mTSP), which is a generalization of the TSP and a relax-
ation of the Vehicle Routing Problem (VRP) with the capacity restrictions
removed (Bektas, 2006). To prove the relationship to mTSP, one needs to
map rescue units to salesmen and incidents to cities/nodes while requiring
that rescue units need to return to a central depot (given by a fictitious in-
cident) with severity level 0. Furthermore, Property 1 (i. e. capabilities) is
modeled by setting the corresponding mTSP decision variables to 0. While
we can aggregate processing times and travel times in the RUASP to overall
travel times, Properties 2 and 3 also require travel times in the mTSP to be

jobs (non-preemption). To sum up, a sequence of instances is generated and solved during
the disaster response phase.

6

salesman-specific. These properties can be modeled by providing salesmen-
specific travel times between two cities. In addition to that, Property 4 (non
preemption) is inherently included in the mTSP. Altogether, this leads to
the problem mTSP with salesman-specific travel times.

With regard to modeling this problem, it seems straightforward to ex-
tend existing mTSP models. In the literature, different mTSP models are
suggested (Bektas, 2006). Among these models, only the flow based formu-
lation, which uses three-index decision variables (for two cities and one sales-
man), can be easily modified to account for salesman-specific travel times.
This extension requires leaving all constraints unchanged and substituting
only the objective function coefficients cij by ckij, with k being the index of
the salesman and i as well as j being the indices of the cities.

Finally, Property 5 addresses the objective to minimize the sum of
weighted completion times. However, a serious issue is caused by consid-
ering this property since the objective function in mTSP depends only on
the edges traveled, but not on the order in which they are traveled. Con-
sidering also Property 5 leads to a mTSP with salesman-specific travel times
under minimizing the sum of weighted visiting times. We are not aware of
related research where a problem of this structure is addressed.

In the same manner as the mTSP, the VRP shares the issue caused by
Property 5. Again, we are not aware of any VRP extension that allows
modeling our problem. To sum up, the RUASP is related to both the mTSP
and the more general VRP, but it is neither a specialization nor a relaxation
of any of these problems. Consequently, neither an exact mTSP algorithm
nor exact VRP can be regarded as an exact RUASP algorithm. However,
as the sets of constraints of the mTSP (in the flow based formulation) and
of the RUASP are equal, Section 4 adapts heuristics for the mTSP to the
RUASP.

The RUASP is also related to problems in the scheduling literature. If
we map rescue units to machines, incidents to jobs and travel times to
setup times, then the RUASP is similar to the parallel-machine schedul-
ing problem with unrelated machines, non-batch sequence-dependent setup
times, and a weighted sum of completion times as the objective, classified as
R/STSD/

∑
wjCj in the scheduling literature (Allahverdi et al., 2008). The

RUASP generalizes this scheduling problem which fulfills Properties 1, 2,
4, and 5 as the RUASP provides for machine-specific setup times between
two jobs, while, in the scheduling problem, times depend only on the jobs.
More precisely, the RUASP becomes a R/STSD/

∑
wjCj scheduling prob-

7

lem if setup times are machine-independent. Property 1 of the RUASP (i. e.
capabilities) can be modeled by setting the corresponding decision variables
to 0. With regard to the problem formulation of RUASP, any formulation
of the scheduling problem R/STSD/

∑
wjCj may be used and modified so

that Property 3 (different rescue units need different travel times between
the locations of the incidents) holds.

However, according to the review by Allahverdi et al. (2008), there is only
one publication adressing this scheduling problem (Weng et al., 2001). While
this paper suggests a recursive objective function, it specifies the constraints
at high level only. Thus, their model formulation is too generic for our
intention to suggest an optimization model. We suggest and computationally
compare several heuristics based on Weng et al. (2001), which can be adapted
to the RUASP (see Section 4).

3.3. Mathematical Model

In this section, we propose an optimization model to find optimal sched-
ules and assignments of rescue units to incidents. The model is presented in
a binary quadratic formulation3. The notation is given in Table 1.

3As noted in Section 3.2, problem formulations of the related mTSP and the
R/STSD/

∑
wjCj scheduling problem are available, but, eventually, turned out to be

not useful for modeling the RUASP. With regard to the mTSP, the RUASP requires an
objective function in which the order of processed incidents is considered. We suggest such
an objective function by introducing artificial decision variables that model predecessor
relationships. As these variables are appropriate for easily adding subtour elimination
constraints, we do not need to draw on the so-called MTZ-based subtour elimination
constraints in the flow-based formulation (Bektas, 2006, p. 215). The other constraints
included in the flow-based formulation are used in similar form.

8

Input Parameters
n Total number of incidents, with set I = {1, . . . , n}
m Total number of rescue units, with set K = {1, . . . ,m}
wj ∈ R≥0 Factor of destruction (severity level) of incident j
pkj ∈ R≥0 Time required by rescue unit k to process incident j; ∞ if rescue unit k

is incapable of addressing incident j
skij ∈ R≥0 Travel time required by rescue unit k to move from incident i to incident j;

if i = 0 then rescue unit k resides at its depot before traveling to incident
j

capki ∈ {0, 1} 1 if rescue unit k is capable of addressing incident i; 0 otherwise

Decision Variables
Xk

ij ∈ {0, 1} 1 if incident i is processed by rescue unit k immediately before processing
incident j; 0 otherwise

Y k
ij ∈ {0, 1} 1 if incident i is processed by rescue unit k (at any time) before processing

incident j; 0 otherwise

Table 1: Notation used in the mathematical model.

The mathematical model can be written as

min
Xkij ,Y

k
ij

n∑
j=1

(
wj

n∑
i=0

m∑
k=1

[
pki Y

k
ij +

(
pkj + skij

)
Xk
ij + Y kij

(
n∑
l=0

Xk
lis

k
li

)])
(O)

s.t.

n∑
i=0

m∑
k=1

Xk
ij = 1, j = 1, . . . , n, (C1)

n+1∑
j=1

m∑
k=1

Xk
ij = 1, i = 1, . . . , n, (C2)

n+1∑
j=1

Xk
0j = 1, k = 1, . . . ,m, (C3)

n∑
i=0

Xk
i,n+1 = 1, k = 1, . . . ,m, (C4)

Y kil + Y klj − 1 ≤ Y kij , i = 0, . . . , n; j = 1, . . . , n+ 1; (C5)

k = 1, . . . ,m; l = 1, . . . , n,

n∑
i=0

Xk
il =

n+1∑
j=1

Xk
lj , l = 1, . . . n; k = 1, . . .m, (C6)

Xk
ij ≤ Y kij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C7)

Y kii = 0, i = 0, . . . , n+ 1; k = 1, . . . ,m, (C8)

Y kij ≤ capki, i = 1, . . . , n; j = 1 . . . n+ 1; k = 1, . . . ,m, (C9)

n+1∑
l=1

Xk
il ≥ Y kij , i = 0, . . . , n; j = 1 . . . n+ 1; k = 1, . . . ,m, (C10)

n∑
l=0

Xk
lj ≥ Y kij , i = 0, . . . , n; j = 1 . . . n+ 1; k = 1, . . . ,m, (C11)

Xk
ij , Y

k
ij ∈ {0, 1}, i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m. (C12)9

The objective function (O) of the model minimizes the weighted sum of
completion times over all incidents. In addition to the existing n incidents, we
add two fictitious incidents given by 0 as the starting point (named depot)
and n + 1 as the ending point. These require no processing time (pk0 =
pkn+1 = 0), but unit k needs a given setup time sk0j ≥ 0 to move from its
starting location to incident j. In addition to that, we set skj(n+1) = 0 for all
rescue units k. Let wj denote the so-called factor of destruction of incident
j. Consequently, the lower the factor of destruction, the less severe is the
incident.

Constraint (C1) ensures that there is exactly one incident that is pro-
cessed immediately before each of the n non-fictitious incidents. Similarly,
Constraint (C2) ensures there is exactly one incident that is processed im-
mediately after each of the n non-fictitious incidents. Constraints (C3) and
(C4) guarantee that each rescue unit starts processing the fictitious incident
0 (the depot) and each rescue unit ends processing the fictitious incident
n + 1. Constraint (C5) accounts for the transitivity in predecessor relation-
ships. If an immediate predecessor for a specific incident j exists, there has
to be a successor as given by Constraint (C6). Constraint (C7) indicates
that an immediate predecessor is also considered a general predecessor. Con-
straint (C8) prohibits a reflexive, direct or indirect predecessor relationship.
Constraint (C9) ensures that rescue unit k is not assigned to incident i if k
has not the capability to process i. Constraints (C10) and (C11) ensure that
Y k
ij is set to 0 if rescue unit k does not process incident i before incident j.

Constraint (C12) makes the model a binary program. Each feasible solution
of the minimization model represents valid schedules and assignments for all
rescue units.

The above RUASP formulation can benefit from removing some variables
and constraints depending on the particular problem instance. Using capki =
0, it follows that Xk

ij = Y k
ij = 0 for j = 1, . . . n+ 1. Thus, these variables can

be removed from the model. Additionally, those constraints of (C5) to (C9)
can be removed where capki = 0 ∨ capkj = 0 ∨ capkl = 0. Apparently, the
extent of model simplification depends on the number of capabilities rescue
units have. However, for the sake of clarity, we do not explicitly integrate
these simplifications in the above model.

With regard to computational complexity, it can be shown easily that the
RUSAP is computationally intractable and NP-hard. The proof is included
in the online appendix.

10

4. Heuristics for Solving the Rescue Unit Assignment and Schedul-
ing Problem

Beyond proving NP-hardness of the RUASP (see online appendix), we
used small up to moderately large instances with m,n ≤ 40 to evaluate prac-
tical runtimes. Using a mixed integer non-linear programming optimizer,
more precisely, the Simple Branch and Bound solver in GAMS, we found
that even small instances cannot be solved optimally in a practically rea-
sonable time. As confirmed in interviews with the German Federal Agency
of Technical Relief (THW), decision support in practice must be provided
in less than 30 min. Therefore, we suggest several heuristics for solving the
RUASP.

Greedy heuristic: This heuristic is applied in practice in emergency op-
erations centers, usually in a manually-operated and non-automated
decision-making process. We gained information on this heuristic
through interviews with the THW. As this heuristic processes incidents
in descending order of their level of severity, we refer to it as Greedy
heuristic.

Construction heuristics: We draw on the scheduling literature and
adapt seven heuristics (Weng et al., 2001) proposed for solving
the R/STSD/

∑
wjCj scheduling problem. We name the heuristics

Sched1 to Sched7.

Improvement heuristics: Based on the routing literature, we adapt the
classical 2-opt and 3-opt exchange procedure within a single rescue
unit (Lin, 1965; Lin & Kernighan, 1973) as well as multi-unit 2-opt
and 3-opt, resulting in four heuristics. Furthermore, we suggest a load
balancing heuristic.

GRASP metaheuristics: We integrate the previously mentioned con-
struction and improvements heuristics into GRASP metaheuristics.

Monte Carlo-based heuristic: We propose a Monte Carlo-based heuristic
in order to account for randomness in the search process.

With the exception of the Monte Carlo-based heuristic, the overall set of
suggested heuristics can be divided into the set of 8 construction heuristics,
which generate initial feasible solutions of RUASP instances, and 5 improve-
ment heuristics, which iteratively generate new feasible solutions and test
them for local optimality. Combining each of the construction heuristics with

11

each of the improvement heuristics, we finally yield 40 composed heuristics,
all of which are considered in our computational experiments.

In the remaining part of this section, we first describe the construction
heuristics. Then, we suggest improvement heuristics before we illustrate
GRASP metaheuristics and the Monte Carlo-based heuristic. We use the
notations as introduced in Table 1.

4.1. Construction Heuristics

The group of construction heuristics consists of the Greedy approach
used in practice and a set of construction heuristics originating from schedul-
ing literature. Let τk denote the total processing and setup time for unit k
in the corresponding iteration. The assignment αk stores the last incident
processed by unit k in the current iteration. The variable p̃i gives the aver-
age processing time needed for processing incident i by those units that are
capable of i. Then, each heuristic returns σ = (σ1, . . . σm), which is a list of
schedules for all m units.

4.1.1. Greedy Heuristic

The Greedy heuristic, which models best practice in emergency oper-
ations centers today, follows the idea that incidents are assigned to rescue
units in descending order of the factor of destruction. Here, each incident j
is assigned to a rescue unit k that is capable of processing incident j imme-
diately while considering assignment history and updated travel times. The
pseudocode of the Greedy algorithm is described below.

1: Sort incidents in decreasing order of severity, w1 ≥ w2 ≥ . . . ≥ wn, and set C ←
{w1, . . . , wn}.

2: Initialize the current completion time of each rescue unit, rescue units to start at the
depot, the ordered list of incidents assigned to unit, i. e.
ck ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
4: Select incident i← ι to be processed.
5: K∗ ← {k ∈ K | capki = 1} are all units capable of processing incident.
6: if K∗ 6= ∅ then
7: unit← arg min

k∈K∗
τk + skαk,i chooses unit with lowest start time.

8: else
9: return unsuccessfully (no feasible assignment possible).

10: end if
11: Update τunit ← τunit + sunitαunit,i

+ puniti , αunit ← i, σunit ← σunit ∪ {i}.
12: end for

12

13: return σ ← (σ1, . . . , σm) being the list of schedules.

Obviously, the greedy algorithm ignores the eventuality that it may not
be optimal to process the most severe incidents first since processing times
may also play a crucial role in the decision-making process.

Although the Greedy heuristic proceeds dynamically through updating
the availability and travel times of rescue units, it acts myopically in regard
to the selection of the incident that is assigned next. For example, it may be
sub-optimal regarding the overall harm (cmp. objective function (O)) to first
assign to rescue unit k the most severe incident that has a comparably long
processing time and, then, to assign to unit k the incident with the second
largest factor of destruction and with a comparably short processing time.
Apparently, the Greedy heuristic may easily fail in providing good solutions
to an instance of the RUASP. However, because of its simplicity, it provides
solutions quickly and is applicable in practice even without computational
support for small instances.

4.1.2. Scheduling Heuristics

To consider a trade-off between severity and processing time, we adapt
7 heuristics for the scheduling problem R/STSD/

∑
wjCj as suggested by

Weng et al. (2001).
The first heuristic differs from the greedy algorithm in two ways: (1) jobs

are ordered based on the ratio of their processing time averaged over all units
to the severity level. (2) The criterion for assigning incidents to units does
not only consider the time required to travel to the location of the respective
incident but also the time required to process the incident. In more detail,
the algorithm named Sched1 proceeds as follows.

1: Sort incidents by

p̃1
w1
≥ p̃2
w2
≥ . . . ≥ p̃n

wn
with p̃i ←

1

m

∑
k∈{κ | capκi=1}

pki

being the average processing time of incident i, and set C ←
{
p̃1
w1
, . . . , p̃nwn

}
.

2: Initialize the current completion time of each rescue unit, rescue units to start at the
depot, the ordered list of incidents assigned to unit, i. e.
ck ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
4: Select incident i← ι to be processed.
5: K∗ ← {k ∈ K | capki = 1} are all units capable of processing incident.

13

6: if K∗ 6= ∅ then
7: unit← arg min

k∈K∗
τk + skαk,i chooses unit with start time.

8: else
9: return unsuccessfully (no feasible assignment possible).

10: end if
11: Update τunit ← τunit + sunitαunit,i

+ puniti , αunit ← i, σunit ← σunit ∪ {i}.
12: end for
13: return σ ← (σ1, . . . , σm) being the list of schedules.

The second scheduling heuristic, namely Sched2, differs from heuristic
Sched1 by assigning an incident to that rescue unit which has the lowest
processing time. Thus, Step 7 is replaced as follows.

7: unit← arg min
k∈K∗

pki chooses unit with lowest average processing time.

Furthermore, the following algorithm Sched3 considers processing times
and travel times but ignores history. Hence, Step 7 looks as follows.

7: unit ← arg min
k∈K∗

sunitαunit,i
+ pki chooses unit with lowest sum of travel and average pro-

cessing time.

Further heuristics named Sched4, Sched5 and Sched6 are exactly the
same as heuristics Sched1, Sched2 and Sched3, respectively, except that,
in Step 1, incidents are renumbered using their minimum processing time
rather than using the average processing time:

1: Sort incidents by

p̃1
w1
≥ p̃2
w2
≥ . . . ≥ p̃n

wn
with p̃i ← min

k∈{κ | capκi=1}
pki

being the minimum processing time of incident i and set C ←
{
p̃1
w1
, . . . , p̃nwn

}
.

This step requires that a minimum exists always. If a minimum does not
exist, then the respective incident cannot be processed by any of the units
and the instance has, thus, no feasible solution. In order to avoid drawbacks
induced by pre-ordering incidents (as in algorithms Sched1 to Sched6), the
following algorithm Sched7 selects both incident and unit in the same step.

1: Initialize the current completion time of each rescue unit, rescue units to start at the
depot, the ordered list of incidents assigned to unit, i. e.

14

ck ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.
2: Initialize list of incidents I ← {1, . . . , n}.

3: Set C ←
{
τk+s

k
αk,i

+pki
wi

∣∣∣∣ i ∈ I, k ∈ K} and c← min
i∈I,k∈K

τk+s
k
αk,i

+pki
wi

.

4: for ι = 1 to n do
5: Select incident i∗ ∈ I and unit k∗ ∈ K corresponding to c, i. e. here is the ratio of

completion time to severity level minimal. If no minimum exists, stop unsuccess-
fully (no feasible assignment possible).

6: Update I ← I \ {i∗}, τk∗ ← τk∗ + sk
∗

αk∗ ,i∗
+ pk

∗

i∗ , αk∗ ← i, σk∗ ← σk∗ ∪ {i∗}.

7: Update C ←
{
τk+s

k
αk,i

+pki
wi

∣∣∣∣ i ∈ I, k ∈ K} and c← min
i∈I,k∈K

τk+s
k
αk,i

+pki
wi

.

8: end for
9: return σ ← (σ1, . . . , σm) being the list of schedules.

4.2. Improvement Heuristics

We consider heuristics for k-opt node exchanges originating from routing
literature as well as load balancing as improvement heuristics.

4.2.1. Routing Heuristics

In the routing literature, k-opt exchange procedures constitute improve-
ment heuristics for solving the Traveling Salesman Problem (Lin, 1965; Lin &
Kernighan, 1973), where in each iteration a k-opt exchange is applied until
no further k-opt exchange leads to an improvement of the objective value
(local optimum is reached). However, in our setting the exchange of 2 or 3
edges across units leads to infeasible solutions when (sequences of) incidents
are assigned to units which are not capable of processing these incidents.
Thus, we do not exchange edges but nodes (i. e. incidents) and refer to these
moves as 2-nodes and 3-nodes exchange respectively. We apply these ex-
change procedures in two ways. First, a k-node exchange is applied inside
the schedule of each rescue unit individually (named 2nsu with k = 2 and
3nsu with k = 3 respectively). Second, exchanges are applied across sched-
ules of multiple rescue units (named 2nmu with k = 2 and 3nmu with k = 3
respectively). The procedures of the resulting four heuristics are shown in
Figures 2 and 3.

4.2.2. Load Balancing Heuristic

When queues of rescue units tend to get long in large-scale disaster sce-
narios, incidents at the end of the queue need to wait comparably long until

15

Before 2‐nodes exchange

After 2‐nodes exchange

Before 3‐nodes exchange

After 3‐nodes exchange

Incident

A B

B A

A B C

B C A

Figure 2: Illustration of 2-nodes and 3-nodes exchange steps in a single unit.

Before 2‐nodes exchange

After 2‐nodes exchange

Before 3‐nodes exchange

After 3‐nodes exchange

Incident

Unit k1

Unit k2

Unit k1

Unit k2

Unit k3

A

B

Unit k1

Unit k2

B

A

A

B

C

Unit k1

Unit k2

Unit k3

B

C

A

Figure 3: Illustration of 2-nodes and 3-nodes exchange steps across units.

16

being processed. This can result in excessively large harm (in terms of objec-
tive value). In order to avoid an extremely severe impact, we suggest a load
balancing heuristic LoadBal that aims at improving a current solution by
reassigning the last incidents in a queue to the end of another queue. Let ik
be the last incident in the (ordered) list σk. Then, the LoadBal heuristic
proceeds as follows.

1: Initialize harm(σk)←
∑
ς∈σk

wς

(
ς∑
ι=1

skι−1,ι + pkι

)
to be the harm related to unit k ∈ K.

2: repeat
3: k∗ ← arg max

k∈K
harm(σk) selects the unit k∗ with the highest harm.

4: Select the unit k′ for which the processing of incident ik∗ as the last incident of the
queue results in the lowest additional harm, i. e.

k′ ← arg min
k∈{κ∈K | capκ,ik∗=1}

harm(σk ∪ {ik∗})− harm(σk).

5: Determine the reduction and the increase of harm caused by moving incident ik∗

from the queue of unit k∗ to k′, i. e.

∆harmk∗ ← harm(σk∗)− harm(σk∗ \ {ik∗}),
∆harmk′ ← harm(σk′ ∪ {ik∗})− harm(σk′}).

6: if ∆harmk∗ −∆harmk′ > 0 then
7: Create new solution with less harm by setting

σk∗ ← σk∗ \ {ik∗}, harm(σk∗)← harm(σk∗)−∆harmk∗ ,

σk′ ← σk′ ∪ {ik∗}, harm(σk′)← harm(σk′) + ∆harmk′ .

8: end if
9: until ∆harmk∗ −∆harmk′ ≤ 0

4.3. GRASP Metaheuristics

Construction heuristics suffer from a shortcoming, i. e. they follow the
same search path over and over. As a remedy, GRASP (greedy random-
ized adaptive search procedure) offers a possibility to diversify the solutions
generated by the construction heuristic (Feo & Resende, 1995; Pitsoulis &
Resende, 2002; Resende & Ribeiro, 2003). More precisely, GRASP is a multi-
start metaheuristic for combinatorial problems in which each iteration con-
sists of two phases: construction and local search. The construction phase
uses a construction heuristic to create feasible solutions, whose neighborhood

17

is searched with an improvement heuristic until a local minimum is found.
The best overall solution is kept as the result. GRASP variants of algorithms
Greedy and Sched1 to Sched7 as construction heuristics are given by the
following pseudocode.

1: Initialize S ← ∅.
2: for iter = 1 to N (max. iterations) do
3: Perform greedy randomized construction by initializing candidate set C, i. e. per-

form initial steps in algorithms Greedy and Sched1 to Sched7 respectively.
4: for ι = 1 to n do
5: Compute cmin ← min {c | c ∈ C} and cmax ← max {c | c ∈ C}.
6: RCL← {c ∈ C | c ≤ cmin + α(cmax − cmin)}.
7: Select randomly a value c ∈ RCL and let i be the corresponding incident.
8: Perform steps inside the loop in algorithms Greedy or Sched1 to Sched7

without reassigning i.
9: Update C ← C \ {i}.

10: end for
11: Set σ ← (σ1, . . . , σm) being the list of schedules.
12: Perform local search upon σ by one of the improvement heuristics giving σ′. Update

list of solution by S ← S ∪ {σ′}.
13: end for
14: return solution minS.

4.4. Monte Carlo-Based Heuristic

At last, we design a Monte Carlo-based heuristic to solve our problem
for the following reasons. First, Monte Carlo simulation is flexible with
regard to future extensions of the optimization model, such as co-allocation
of rescue units and the consideration of informational uncertainty. Second,
the complexity of the RUASP is high because of the many constraints and
we assume that a Monte Carlo-based heuristic will not easily get stuck in
a local optimum. In more complex scenarios, “evaluation procedures rely a
great deal on trial and error” (Buxey, 1979, p. 566). In contrast, a Monte
Carlo method overcomes this shortcoming.

The key idea of generating a feasible solution in our Monte Carlo-based
heuristic is that incidents are iteratively scheduled in two stages. In stage
one, an incident is assigned randomly to one of the D most appropriate
rescue units where appropriateness is defined based on processing times. The
motivation of this procedure is based on avoiding both (a) assignments of
incidents to units that require an extremely long time for processing (thus, a
parameter D ∈ [0 %, 100 %] is used), and (b) myopic assignments of incidents

18

to units that require the shortest processing time among all units (thus,
randomness is included). In a second stage, the incident is inserted into
the incident queue of the previously selected rescue unit. The criterion for
determining the position of the new incident in the queue is based on a
weighted ratio of the severity of incident wi and the time pk

∗
i it takes the

selected rescue unit to process this incident. Each queue lists its incidents in
descending order of wi/p

k∗
i .

The Monte Carlo-based heuristic runs a fixed number of iterations with
the Monte Carlo-based heuristic being the one with the lowest value found in
all iterations. The Monte Carlo-based heuristic requires two input parame-
ters: D and N . D ∈ [0 %, 100 %] is used for the selection of rescue units. The
variable N is the number of feasible solutions generated; we set D = 90 %
and N = 500,000 based on the results of pre-tests.4 In more detail, the
Monte Carlo-based heuristic MC proceeds as follows.

1: for iter = 1 to N (max. iterations) do
2: Initialize the cumulative processing time of each rescue unit, rescue units to start

at the depot, the ordered list of incidents assigned to unit, i. e.
curr process time(k)← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: while I 6= ∅ do
4: Select next incident i ∈ I and update I ← I \ {i}.
5: K∗ ← {k ∈ K | capki = 1} are all units capable of processing incident i.
6: if K∗ = ∅ then
7: return unsuccessfully (no feasible assignment possible).
8: end if
9: Sort K∗ in ascending order of curr process time and select randomly a rescue

unit k∗ with one of the D lowest values of curr process time of all rescue units
in K∗.

10: Update τk∗ ← τk∗ + sk
∗

αkast,i
+ pk

∗

i , αunit ← i.

11: Set curr process time(k∗)← curr process time(k∗) + pk
∗

i .
12: Set σk∗ ← σk∗ ∪ {i} and order σk∗ in descending order of wi/p

k∗

i .
13: end while
14: end for
15: return σ = (σ1, . . . , σm) being the list of schedules.

4In our simulations we did not find evidence that an increase in the number of iterations
substantially improves the quality of solutions.

19

5. Computational Experiments

In our computational experiments, we evaluate the suggested heuristics
against two benchmarks: (1) we compare the solutions of the heuristics with
a lower bound of the optimal solution. We need to draw on lower bounds as
finding optimal solutions even for moderately small instances turned out to be
computationally infeasible. A gap between a solution found with a heuristic
and the lower bound is an upper bound of the gap between the heuristic
solution and the optimal solution. Thus, the determined gap underestimates
the quality of the heuristic solutions. (2) We evaluate the solutions of all
suggested heuristics regarding their improvement over the Greedy heuristic,
which represents best practice behavior of emergency operations centers, and,
thus, it acts as a suitable benchmark. We first present our procedure to find
an appropriate RUASP relaxation in order estimate lower bounds. Then, we
explain the data generation for our experiments. Subsequently, we present
and discuss results as well as runtimes.

5.1. Relaxation of the RUASP

We tried to find optimal solutions for the binary quadratic programming
formulation of our problem using the Simple Branch and Bound solver (SBB)
inside the software package GAMS. Even for small instances with 40 incidents
and 40 rescue units, we are not able to find optimal solutions because of
the NP-hardness of the RUASP. As a consequence, we derive appropriate
relaxations of RUASP.

The computation of the lower bound is achieved by relaxing the binary
constraints within the optimization model to Xk

ij ∈ [0, 1]. We found this
constraint relaxation most suitable because of the following reason: we ex-
amined and computationally tested each possibility to relax a constraint (for
a scenario with 10 rescue units and 20 incidents) regarding its consequence
for the mathematical model, the generation of schedules, the runtimes and
the gap between the optimal solution of the original problem instance and
the optimal solution of the relaxed problem instance. The relaxation of all
but the binary constraints led to (a) unrealistic model extensions such as
circular assignments or fragmentations of rescue units, (b) no significant en-
hancements concerning runtimes, and/or (c) an increase in the complexity
of the whole model in terms of an exploding solution space or in terms of
runtimes. The only suitable relaxation option was Constraint (C12), which
has been found adequate for the calculation of lower bounds. The relaxation

20

of the binary constraints of a model is a common method. Its application
reduced runtimes substantially, while the gap between the optimal solution
values of the problem with relaxation and the original problem turns out be
low.

We used the CONOPT solver inside GAMS to solve this relaxed binary
quadratic programming formulation of the optimization model. Runtimes for
the largest instances (40 incidents and 40 rescue units) varied between 11 h
and 22 h, which results in an average runtime of 15.6 h. Even the calculation
of the smallest scenarios with 10 incidents and 10 units took at least 2 s
with an average of 207 s. The runtimes also indicate an exponential increase
dependening on the number of units and incidents. We also found that
runtimes increase exponentially with both the number of units and incidents
(significance of the overall model at the 0.1 % level), with the number of
incidents having a stronger impact.

5.2. Data Generation

We designed the computational experiments based on interviews with as-
sociates of the THW. These associates were in direct contact to first search
and rescue teams after the major earthquake in Japan in 2011. Hence, the
generation of values for input parameters is given by Table 2. For our com-
putational evaluation, we generated ten different instances for each scenario
size. We limit the number of incidents and the number of rescue units to a
maximum of 40 for three reasons: (1) our interviewees at the THW moti-
vated these upper bounds to reflect practice given that a single rescue unit
may consist of several members. (2) If a new situation makes it necessary to
update old schedules and assignments, we assume that the new instance is
unlikely to exceed these limits since some rescue units may have be assigned
to a number of incidents already. (3) For implausible instances that consist
of more than 40 rescue units and incidents, the available computing power
was not sufficiently powerful to determine lower bounds of optimal solution
values in reasonable times.

Looking at the situation after the 2011 disaster in Japan, we find that in
urban areas where most of the incidents occur, travel times between incident
locations are low compared to processing times. For example, it takes much
more time to extinguish a house on fire or to stabilize a collapsed building
than it takes a rescue unit to travel there. We consider this relationship by
the mean values of the normal distributions for generating processing times
and travel and setup times. Furthermore, the factor of destruction of an

21

Input Parameter Value, Range or Distribution

Number of rescue units m ∈ {10, 20, 30, 40}
Number of incidents n ∈ {10, 20, 30, 40}
Number of instances 10
Processing times pkj ∼ N(20, 10)

Travel times skij ∼ N(1, 0.3)

Factors of destruction wj ∈ {1, 2, 3, 4, 5}
Capabilities of rescue units Ak ∼ U(1, 1, 4), k ∈ K

Capabilities required by incidents Rj ∼ U(1, 1, 4), j ∈ I, capki =

{
1, if Ak = Ri;

0, else

Number of iterations 500,000

Table 2: Settings in randomly generated scenarios. Here, U(α, β, γ) is the discrete uniform
distribution between α and β with step size γ.

incident indicates the level of severity, as introduced by the U.S. Department
of Homeland Security (2008): low (1), guarded (2), elevated (3), high (4),
and severe (5) harm. Hence, we select a discrete uniform distribution for the
severity levels.

The number of capabilities of rescue units was set to five. These account
for policemen, fire brigades, paramedics, search and rescue units, and special
casualty access teams. This discrete distinction of units’ types and skills
is based on and yet extending the classification of The New South Wales
Government (2007). Incidents require exactly one of these differently skilled
rescue units. The ratio of capabilities and the personnel required at an
incident is generated randomly using a discrete uniform distribution.

The selection of the above parametric distributions has several reasons:
(a) we found that real-world scenarios match such settings and (b) because of
the individual variance of the selected distributions, the proposed heuristics
are tested under unfavorable conditions. Other ranges of parameter values
and distributions did not result in significant deviations neither in the gen-
erated schedules nor in the assignments.

5.3. Data Evaluation

We now evaluate the results of the suggested heuristics. We used the
numerical computing environment MATLAB for implementation and simu-
lation. We consider scenarios consisting of 10, 20, 30 and 40 incidents and
units, with the number of units being lower than or equal to the number of
incidents. For each problem instance, ten instances are randomly generated
and solved by all heuristics. For each instance size and heuristic, we average

22

the ratios of the heuristic solutionHi to the lower bound LB yielding averaged
ratios µ

(
Hi

LB

)
. Thus, the smaller the ratio, the closer is the heuristic solution

to the lower bound. In addition, we calculate the respective averages when
applying the Greedy heuristic without any improvement heuristic, which
represents current best practice. All results are shown in Table 3. The best
practice results are given in the top row and originate from the Greedy
algorithm along with no improvement heuristic. The evaluation of Table 3
suggests the following findings5:

(1) All compositions of construction and improvement heuristic improve best
practice results given by the Greedy algorithm for each of the instance
sizes. All results are significant at the .01 level (p-value of t-test).

(2) Results of the Greedy algorithm are improved by each of the improving
heuristic for each of the instance sizes (.01 level of significance).

(3) Choosing Sched7 as construction heuristic in combination with any of
the improvment heuristics leads to superior results compared to other
combinations of construction and improvement heuristics. We found
statistical evidence at the .05 level with the exception of only a few
comparisons.

(4) Mean ratios of all except Greedy-based composite heuristics tend to
be well below 1.5. Results in terms of ratios become worse with large
problem scenarios. Compositions consisting of the Greedy heuristic
lead to mean outcomes of between 1.268 and 4.515.

(5) The relative performance of the MC heuristic (bottom row) is highly
volatile. It seems to be a good choice when scenarios are of small size,
whereas results become worse with increasing size of the solution space.
Another observation is that, for all instance sizes, MC dominates (at the
.01 level) both the Greedy heuristic and the joint application of the
Greedy heuristic and any of the heuristics 2NSU, 2NMU and 3NSU.

(6) In general, we identify composite heuristics using 3nmu performing best.
In 247 out of 320 statistical comparisons, 3nmu-based algorithms per-
formed better (at the .05 level) than composite heuristics without 3nmu.

(7) Improvement heuristics are able to improve the solutions provided by
any construction heuristic. This holds for 1532 out of 3200 comparisons
(at the 0.1 level).

5We applied the one-sided t-test for comparing ratios (of ten instances) of two heuristics.

23

(8) The application of the GRASP metaheuristics showed mixed results (cf.
online appendix). Compared to the classical counterparts, which apply
the same combination of construction and improvement heuristic, results
are better in only some cases.

(9) Depending on the instance size, the best solution values achieved by the
heuristics are at most 10.9 % up to 33.9 % higher than the lower bound,
with the best results often provided by combinations which use Sched7.

5.4. Runtimes

As solutions of RUASP instances need to be found within minutes in
real natural disasters, acceptably low runtimes of the suggested heuristics
are crucial for their practical usage. Runtimes of all heuristics, except those
involving the 3nmu heuristic or the MC heuristic, were below one second for
all instances of all sizes. The 3nmu heuristic required up to 20 s in instances
of largest size (40 incidents and 40 rescue units) and is thus applicable in
practice, too.

In contrast, runtimes of the MC are linear in the number of iterations
and, as our results show, also depend on the instance size. Using 500,000
iterations in each of the runs, we found statistical evidence that the runtimes
of the MC heuristic grow linearly with both rescue units and incidents, while
the number of incidents has a slightly stronger impact. A detailed analysis
is given in the online appendix. As average runtimes vary between 3.45 min
for small instances (10 units and 10 incidents) and 18.26 minutes for large
instances (40 units and 40 rescue units), the applicability of the MC heuristic
depends on the instance size, on the number of iterations, rescue units and
incidents, and on the available computing resources.

As shown above, GRASP metaheuristics show a possible path to improve
solutions of both construction and improvement heuristics. These meta-
heuristics diversify the search paths and, consequently, require significantly
more computation time. The average runtimes account for 38.03 s, but can
get as high as 25.89 min. When integrating 3nmu inside GRASP in partic-
ular, average runtimes even rise to 187.63 s across all instances. Increasing
the number of iterations inside GRASP also boosts runtimes, but without
improving solutions.

5.5. Discussion

Our results show that the current best practice behavior in emergency
response situations can be substantially improved by applying heuristics. As

24

ConstructionImprovementN 10 20 30 40
heuristic heuristic K 10 10 20 10 20 30 10 20 30 40

Greedy — 2.631 2.125 3.283 2.547 2.714 3.993 2.926 3.104 3.734 4.515

2nsu 2.629 2.042 3.28 2.399 2.71 3.991 2.662 3.066 3.729 4.513

2nmu 2.629 2.038 3.28 2.373 2.71 3.991 2.619 3.064 3.729 4.513

3nsu 2.631 2.08 3.281 2.379 2.71 3.993 2.623 3.069 3.731 4.515

3nmu 1.439 1.268 ∗ 1.407 ∗ 1.317 ∗∗ 1.283 ∗∗ 1.388 ∗∗ 1.479 ∗∗ 1.368 ∗ 1.347 ∗∗ 1.465 ∗∗

LoadBal 2.255 2.072 2.637 2.505 2.427 2.748 2.916 2.842 2.94 3.137

Sched1 — 1.176 ∗∗ 1.276 ∗ 1.252 ∗ 1.376 ∗∗ 1.24 ∗∗ 1.259 ∗∗ 1.591 ∗∗ 1.306 ∗∗ 1.25 ∗∗ 1.32 ∗∗

2nsu 1.134 ∗∗ 1.223 ∗ 1.222 ∗ 1.318 ∗∗ 1.202 ∗∗ 1.225 ∗∗ 1.499 ∗∗ 1.231 ∗∗ 1.211 ∗∗ 1.279 ∗∗

2nmu 1.134 ∗∗ 1.217 ∗ 1.219 ∗ 1.31 ∗∗ 1.202 ∗∗ 1.224 ∗∗ 1.474 ∗∗ 1.225 ∗∗ 1.209 ∗∗ 1.279 ∗∗

3nsu 1.158 ∗∗ 1.227 ∗ 1.239 ∗∗ 1.313 ∗∗ 1.222 ∗∗ 1.246 ∗∗ 1.476 ∗∗ 1.252 ∗∗ 1.233 ∗∗ 1.315 ∗∗

3nmu 1.124 ∗∗∗ 1.161 ∗∗ 1.203 ∗∗ 1.232 ∗∗ 1.145 ∗∗∗ 1.203 ∗∗∗ 1.362 ∗∗ 1.173 ∗∗∗ 1.178 ∗∗∗ 1.251 ∗∗

LoadBal 1.176 ∗∗ 1.276 ∗ 1.252 ∗ 1.376 ∗∗ 1.24 ∗∗ 1.259 ∗∗ 1.591 ∗∗ 1.306 ∗∗ 1.25 ∗∗ 1.32 ∗∗

Sched2 — 1.326 1.434 1.411 ∗ 1.467 1.35 ∗ 1.385 1.733 1.451 ∗ 1.378 ∗ 1.397 ∗

2nsu 1.251 1.356 1.335 ∗ 1.394 1.281 ∗∗ 1.309 ∗ 1.639 1.358 ∗ 1.31 ∗∗ 1.327 ∗∗

2nmu 1.24 1.344 1.312 ∗∗ 1.362 ∗ 1.266 ∗∗ 1.298 ∗ 1.588 1.327 ∗ 1.292 ∗∗ 1.321 ∗∗

3nsu 1.254 1.345 1.324 ∗∗ 1.363 ∗ 1.28 ∗∗ 1.326 ∗ 1.59 1.331 ∗ 1.299 ∗∗ 1.329 ∗∗

3nmu 1.232 1.302 1.3 ∗∗ 1.326 ∗ 1.25 ∗∗ 1.29 ∗ 1.516 1.273 ∗∗ 1.278 ∗∗ 1.313 ∗∗

LoadBal 1.285 1.359 1.341 ∗ 1.405 1.276 ∗∗ 1.311 ∗ 1.686 1.357 ∗ 1.292 ∗∗ 1.331 ∗∗

Sched3 — 1.284 1.432 1.413 ∗ 1.493 1.347 ∗∗ 1.374 1.76 1.422 ∗ 1.354 ∗ 1.406 ∗∗

2nsu 1.232 1.359 1.331 ∗ 1.426 ∗ 1.278 ∗∗ 1.296 ∗ 1.667 1.329 ∗ 1.285 ∗∗ 1.328 ∗∗

2nmu 1.232 1.348 1.306 ∗∗ 1.395 ∗ 1.259 ∗∗ 1.291 ∗ 1.613 1.302 ∗ 1.272 ∗∗ 1.318 ∗∗

3nsu 1.246 1.35 1.321 ∗∗ 1.394 ∗ 1.272 ∗∗ 1.316 ∗ 1.613 1.312 ∗ 1.282 ∗∗ 1.333 ∗∗

3nmu 1.229 ∗ 1.307 1.294 ∗∗ 1.344 ∗ 1.241 ∗∗ 1.286 ∗ 1.532 1.261 ∗ 1.259 ∗∗ 1.311 ∗∗∗

LoadBal 1.252 ∗ 1.353 1.345 ∗ 1.421 ∗ 1.27 ∗∗ 1.314 ∗ 1.714 1.336 ∗ 1.29 ∗∗ 1.335 ∗∗

Sched4 — 1.172 ∗ 1.266 ∗ 1.216 ∗∗ 1.362 ∗∗ 1.212 ∗∗ 1.234 ∗∗ 1.623 1.279 ∗∗ 1.264 ∗ 1.269 ∗∗

2nsu 1.154 ∗∗ 1.231 ∗ 1.203 ∗∗ 1.328 ∗∗ 1.192 ∗∗ 1.215 ∗∗ 1.536 1.238 ∗∗ 1.239 ∗ 1.263 ∗∗∗

2nmu 1.154 ∗∗ 1.225 ∗ 1.204 ∗∗ 1.323 ∗∗ 1.192 ∗∗ 1.215 ∗∗ 1.517 1.236 ∗∗ 1.24 ∗ 1.263 ∗∗∗

3nsu 1.172 ∗ 1.234 ∗ 1.206 ∗∗ 1.33 ∗∗ 1.201 ∗∗ 1.226 ∗∗ 1.517 1.256 ∗∗ 1.252 ∗ 1.268 ∗∗

3nmu 1.137 ∗∗ 1.162 ∗∗ 1.195 ∗∗ 1.226 ∗∗ 1.159 ∗∗ 1.2 ∗∗∗ 1.364 ∗∗ 1.161 ∗∗∗ 1.19 ∗∗ 1.251 ∗∗∗

LoadBal 1.172 ∗ 1.266 ∗ 1.216 ∗∗ 1.362 ∗∗ 1.212 ∗∗ 1.234 ∗∗ 1.623 1.279 ∗∗ 1.264 ∗ 1.269 ∗∗

Sched5 — 1.272 1.474 1.427 ∗ 1.466 1.355 ∗ 1.425 1.825 1.446 1.382 ∗ 1.435 ∗

2nsu 1.24 1.357 1.317 ∗ 1.384 ∗ 1.277 ∗∗ 1.318 ∗ 1.671 1.347 ∗ 1.297 ∗∗ 1.327 ∗∗

2nmu 1.24 1.343 1.311 ∗∗ 1.362 ∗ 1.266 ∗∗ 1.298 ∗ 1.592 1.324 ∗ 1.292 ∗∗ 1.318 ∗∗

3nsu 1.248 1.357 1.348 ∗ 1.384 ∗ 1.275 ∗∗ 1.328 ∗ 1.587 1.331 ∗ 1.3 ∗∗ 1.357 ∗∗

3nmu 1.232 1.302 1.296 ∗∗ 1.325 ∗ 1.25 ∗∗ 1.29 ∗ 1.519 1.275 ∗∗ 1.278 ∗∗ 1.313 ∗∗

LoadBal 1.235 1.368 1.321 ∗∗ 1.395 ∗ 1.285 ∗ 1.309 ∗ 1.778 1.329 ∗ 1.256 ∗∗ 1.333 ∗

Sched6 — 1.327 1.504 1.422 ∗ 1.486 1.344 ∗ 1.392 1.816 1.406 1.372 ∗ 1.398 ∗∗

2nsu 1.269 1.383 1.312 ∗ 1.401 ∗ 1.274 ∗∗ 1.294 ∗ 1.671 1.312 ∗ 1.288 ∗∗ 1.307 ∗∗∗

2nmu 1.268 1.362 1.306 ∗∗ 1.382 ∗ 1.264 ∗∗ 1.281 ∗∗ 1.593 1.293 ∗ 1.278 ∗∗ 1.301 ∗∗∗

3nsu 1.276 1.376 1.343 ∗∗ 1.402 ∗ 1.271 ∗∗ 1.312 ∗ 1.588 1.295 ∗ 1.284 ∗∗ 1.329 ∗∗

3nmu 1.249 1.327 1.291 ∗∗ 1.333 ∗ 1.251 ∗∗ 1.275 ∗∗ 1.523 1.274 ∗ 1.256 ∗∗ 1.298 ∗∗∗

LoadBal 1.236 1.382 1.317 ∗∗ 1.415 ∗ 1.279 ∗ 1.3 ∗ 1.777 1.298 ∗ 1.262 ∗∗ 1.307 ∗∗

Sched7 — 1.119 ∗∗∗ 1.185 ∗ 1.181 ∗∗ 1.236 ∗∗ 1.141 ∗∗∗ 1.198 ∗∗∗ 1.387 ∗∗ 1.162 ∗∗ 1.185 ∗∗∗ 1.229 ∗∗∗

2nsu 1.119 ∗∗∗ 1.184 ∗ 1.18 ∗∗ 1.228 ∗∗ 1.138 ∗∗∗ 1.197 ∗∗∗ 1.371 ∗∗ 1.158 ∗∗ 1.182 ∗∗∗ 1.229 ∗∗∗

2nmu 1.119 ∗∗∗ 1.184 ∗ 1.18 ∗∗ 1.227 ∗∗ 1.138 ∗∗∗ 1.196 ∗∗∗ 1.367 ∗∗ 1.157 ∗∗ 1.182 ∗∗∗ 1.229 ∗∗∗

3nsu 1.119 ∗∗∗ 1.184 ∗ 1.18 ∗∗ 1.227 ∗∗ 1.138 ∗∗∗ 1.196 ∗∗∗ 1.367 ∗∗ 1.157 ∗∗ 1.182 ∗∗∗ 1.229 ∗∗∗

3nmu 1.109 ∗∗∗ 1.143 ∗∗ 1.175 ∗∗ 1.212 ∗∗ 1.124 ∗∗∗ 1.193 ∗∗∗ 1.339 ∗∗ 1.147 ∗∗ 1.169 ∗∗∗ 1.228 ∗∗∗

LoadBal 1.119 ∗∗∗ 1.185 ∗ 1.181 ∗∗ 1.236 ∗∗ 1.141 ∗∗∗ 1.198 ∗∗∗ 1.387 ∗∗ 1.162 ∗∗ 1.185 ∗∗∗ 1.229 ∗∗∗

MC — 1.118 1.41 1.926 1.683 2.092 2.681 1.92 2.378 2.971 3.453

Table 3: Mean results of composed heuristics in relation to lower bound solutions, i. e.
µ
(
Hi
LB

)
. Cells are colored according to this ratio (the brighter, the closer is the computed

solution to the lower bound), whereas stars denote coefficient of variations (CV) with ∗∗∗

0.03, ∗∗ 0.06, ∗ 0.09.

25

most improvements can be achieved in less than a second (only in a few cases,
the computation time spans several minutes), our heuristics are well appli-
cable in practice. As the RUASP generalizes the parallel-machine scheduling
problem with unrelated machines, non-batch sequence-dependent setup times
and a weighted sum of completion times as the objective, our algorithms can
also be applied to this well-known class of scheduling problems.

Although our tested instances do not have more than 40 incidents and
40 rescue units, this limitation in size is of no substantial practical relevance
for two reasons: first, our algorithms are likely to process instances of much
larger size than 40 incidents and 40 rescue units in less than a minute. The
limitation of size in our computations is rooted in the high computation
times required to determine good bounds. Furthermore, additional comput-
ing power can be used to solve larger instances. Second, as we argued above,
larger instance sizes of the RUASP are unlikely to occur as instances are
generated and solved iteratively.

The benefit of having an optimization model and automated decision sup-
port available is obvious: the proposed decision support provides assistance to
the decision makers in situations characterized by a high level of complexity
and high time pressure. However, we would like to stress that the applica-
tion of any of the proposed heuristics is intended to enhance human-based
decision making and to offer decision support timely to decision makers; it
is not intended to substitute the actual decisions of practitioners.

6. Conclusion and Outlook

In this paper, we address the Rescue Unit Scheduling and Assignment
Problem (RUASP), which is a key issue in emergency response management.
Our contributions are as follows. We derive a binary quadratic optimiza-
tion model of the problem. Considering literature on scheduling and routing,
we propose a Monte Carlo-based heuristic, eight construction heuristics, five
improvement heuristics and GRASP metaheuristics. Then, we computation-
ally evaluate and compare these heuristics. In addition to that, we evaluate
the heuristics against the current best practice behavior and against lower
bounds of optimal solutions. We found that the RUASP can be solved for
instances with up to 40 incidents and 40 rescue units in less than a second,
with the solution values being at most 10.9 % up to 33.9 % larger than the
optimal value. While comparing heuristic solution values with lower bounds
is particularly relevant for theoretical analysis, comparing heuristic solution

26

values with the values found by the Greedy heuristic is relevant for the
disaster management domain because the Greedy heuristic represents cur-
rent best practice behavior. According to our results, our algorithms are
capable of generating schedules which reduce the overall harm caused by the
Greedy heuristic to at least 42.0 % and to at most 81.8 %. This level of
harm reduction is considerably large. This can help decrease casualties and
economic losses substantially.

Some future research directions may enhance the applicability of our op-
timization model: (1) The integration of performance degradation and pre-
emptive scheduling can be beneficial. Performance degradation becomes ap-
parent when rescue units lose some of their vigor caused by the duration of
their deployment and the constant pressure to save lives over time. (2) Time
windows during which incidents need to be processed seem also adequate
in emergency response settings. For example, time windows are of particu-
lar importance when humans are buried alive and need to be saved quickly.
(3) Another interesting stream would be to analyze collaboration between res-
cue units and the coordination of autonomous agents. (4) We admit that a
deterministic model in the envisaged application in disaster relief is question-
able when information on incidents, including the level of severity, processing
times and travel times, are not precisely known. While some information may
be modeled stochastically based on historical data, other information is often
described and assessed by humans, where linguistic estimations are common.
In such cases, fuzzy set theory is a useful approach to model uncertainty.
Future research needs to clarify when to use which type of uncertainty, how
distribution functions and fuzzy membership functions can be modeled and
how resulting models can be solved.

Acknowledgments

We are grateful to the editor and the anonymous reviewers, who all pro-
vided many valuable comments which helped improve the paper.

References

Airy, G., Mullen, T., & Yen, J. (2009). Market Based Adaptive Resource
Allocation for Distributed Rescue Teams. In J. Landgren, & S. Jul (Eds.),
Proceedings of the 6th Conference on Information Systems for Crisis Re-
sponse and Management (ISCRAM 2009). Gothenburg and Sweden.

27

Ajami, S., & Fattahi, M. (2009). The role of earthquake information man-
agement systems (EIMSs) in reducing destruction: A comparative study
of Japan, Turkey and Iran. Disaster Prevention and Management , 18 ,
150–161.

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey
of scheduling problems with setup times or costs. European Journal of
Operational Research, 187 , 985–1032.

Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations
management. European Journal of Operational Research, 175 , 475–493.

Bektas, T. (2006). The multiple traveling salesman problem: an overview of
formulations and solution procedures. Omega, 34 , 209–219.

Buxey, G. M. (1979). The Vehicle Scheduling Problem and Monte Carlo
Simulation. The Journal of the Operational Research Society , 30 , 563–
573.

Chen, R., Sharman, R., Rao, H. R., & Upadhyaya, S. J. (2008). Coordination
in emergency response management. Communications of the ACM , 51 ,
66–73.

Comes, T., Conrado, C., Hiete, M., Kamermans, M., Pavlin, G., & Wijn-
gaards, N. (2010). An intelligent decision support system for decision mak-
ing under uncertainty in distributed reasoning frameworks. In S. French,
B. Tomaszewski, & C. Zobel (Eds.), Proceedings of the 7th International
Conference on Information Systems for Crisis Response and Management
(ISCRAM 2010). Seattle and USA.

Comfort, L. K., Ko, K., & Zagorecki, A. (2004). Coordination in Rapidly
Evolving Disaster Response Systems The Role of Information. American
Behavioral Scientist , 48 , 295–313.

F. Nisha de Silva (2001). Providing spatial decision support for evacuation
planning: a challenge in integrating technologies. Disaster Prevention and
Management , 10 , 11–20.

Falasca, M., Zobel, C. W., & Fetter, G. M. (2009). An optimization model
for humanitarian relief volunteer management. In J. Landgren, & S. Jul

28

(Eds.), Proceedings of the 6th Conference on Information Systems for Cri-
sis Response and Management (ISCRAM 2009). Gothenburg and Sweden.

Faraj, S., & Xiao, Y. (2006). Coordination in fast-response organizations.
Management Science, 52 , 1155–1169.

Feo, T. A., & Resende, M. G. C. (1995). Greedy Randomized Adaptive
Search Procedures. Journal of Global Optimization, 6 , 109–133.

Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allo-
cation for emergency response after earthquake disasters. Safety Science,
35 , 41–57.

GAO (2006). Disaster Relief: Governmentwide Framework Needed to Collect
and Consolidate Information to Report on Billions in Federal Funding for
the 2005 Gulf Coast Hurricanes: GAO-06-834.

Gasparini, P., Manfredi, G., & Zschau, J. (Eds.) (2007). Earthquake Early
Warning Systems . Berlin and Heidelberg: Springer.

IFRC (2012). Disaster management – IFRC.

Lambert, J. H., & Patterson, C. E. (2002). Prioritization of Schedule De-
pendencies in Hurricane Recovery of Transportation Agency. Journal of
Infrastructure Systems , 8 , 103–111.

Leifler, O. (2008). Combining Technical and Human-Centered Strategies for
Decision Support in Command and Control: The ComPlan Approach. In
F. Fiedrich, & B. van de Walle (Eds.), Proceedings of the 5th Conference
on Information Systems for Crisis Response and Management (ISCRAM
2008) (pp. 504–515). Washington and DC.

Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem. Bell
System Technical Journal , 44 , 2245–2269.

Lin, S., & Kernighan, B. (1973). An effective Heuristic Algorithm for the
Traveling Salesman Problem. Operations Research, 21 , 498–516.

Pitsoulis, L., & Resende, M. G. C. (2002). Greedy randomized adaptive
search procedures. In P. M. Pardalos, & M. G. C. Resende (Eds.), Hand-
book of Applied Optimization (pp. 168–181). New York: Oxford University
Press.

29

Pollak, E., Falash, M., Ingraham, L., & Gottesman, V. (2004). Operational
analysis framework for emergency operations center preparedness training.
In R. G. Ingalls, & M. D. Rossetti (Eds.), Proceedings of the 36th Con-
ference on Winter Simulation (WSC) (pp. 839–848). Piscataway and NJ:
IEEE.

Reijers, H. A., Jansen-Vullers, M. H., Zur Muehlen, M., & Appl, W.
(2007). Workflow management systems + swarm intelligence = dynamic
task assignment for emergency management applications. In G. Alonso,
P. Dadam, & M. Rosemann (Eds.), Proceedings of the 5th International
Conference on Business Process Management (BPM 2007) (pp. 125–140).
Berlin and New York: Springer volume 4714 of Lecture Notes in Computer
Science.

Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy Randomized Adaptive
Search Procedures. In F. Glover, & G. A. Kochenberger (Eds.), Hand-
book of Metaheuristics (pp. 219–249). Boston: Springer US volume 57 of
International Series in Operations Research & Management Science.

Rolland, E., Patterson, R., Ward, K., & Dodin, B. (2010). Decision support
for disaster management. Operations Management Research, 3 , 68–79.

Saleem, K., Luis, S., Deng, Y., Chen, S.-C., Hristidis, V., & Li, T. (2008).
Towards a business continuity information network for rapid disaster recov-
ery. In S. A. Chun, M. Janssen, & J. R. Gil-Garćıa (Eds.), Proceedings of
the 2008 International Conference on Digital Government Research ACM
International Conference Proceeding Series (pp. 107–116).

Sherali, H. D., Carter, T. B., & Hobeika, A. G. (1991). A location-allocation
model and algorithm for evacuation planning under hurricane/flood con-
ditions. Transportation Research Part B: Methodological , 25 , 439–452.

Svensson, A., Holst, J., Lindquist, R., & Lindgren, G. (1996). Optimal Pre-
diction of Catastrophes in autoregressive moving-average processes. Jour-
nal of Time Series Analysis , 17 , 511–531.

Tamura, H., Yamamoto, K., Tomiyama, S., & Hatono, I. (2000). Modeling
and analysis of decision making problem for mitigating natural disaster
risks. European Journal of Operational Research, 122 , 461–468.

30

UN/ISDR (2005). Hyogo Framework for Action: Building the resilience of
nations and communities to disasters.

U.S. Department of Homeland Security (2008). Homeland Security Advisory
System–Guidance for Federal Departments and Agencies.

van de Walle, B., & Turoff, M. (2008). Decision Support for Emergency
Situations. In F. Burstein, & C. Holsapple (Eds.), Handbook on Decision
Support Systems 2 International Handbooks on Information Systems (pp.
39–63). Berlin and Heidelberg: Springer.

Weng, M. X., Lu, J., & Ren, H. (2001). Unrelated parallel machine scheduling
with setup consideration and a total weighted completion time objective.
International Journal of Production Economics , 70 , 215–226.

Wex, F., Schryen, G., & Neumann, D. (2011). Intelligent Decision Support
for Centralized Coordination during Emergency Response. In M. A. San-
tos, L. Sousa, & E. Portela (Eds.), Proceedings of the 8th International
Conference on Information Systems for Crisis Response and Management
(ISCRAM 2011).

Wex, F., Schryen, G., & Neumann, D. (2012). Operational Emergency Re-
sponse under Informational Uncertainty: A Fuzzy Optimization Model for
Scheduling and Allocating Rescue Units. In L. Rothkrantz, J. Ristvej, &
Z. Franco (Eds.), Proceedings of the 9th International Conference on In-
formation Systems for Crisis Response and Management (ISCRAM 2012).

Wex, F., Schryen, G., & Neumann, D. (2013). Decision Modeling for As-
signments of Collaborative Rescue Units during Emergency Response. In
Proceedings of the 46th Hawaii International Conference on System Sci-
ence. Wailea and HI and USA: IEEE Computer Society Press.

31

