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Abstract

In order to improve the robustness of a railway system in station areas, this
paper introduces an iterative approach to successively optimize the train
routing through station areas and to enhance this solution by applying some
changes to the timetable in a tabu search environment. We present our
vision on robustness and describe how this vision can be used in practice.
By introducing the spread of the trains in the objective function for the
route choice and timetabling module, we improve the robustness of a railway
system. Using a discrete event simulation model, the performance of our
algorithms is evaluated based on a case study for the Brussels’ area. The
computational results indicate an average improvement in robustness of 6.2%
together with a decrease in delay propagation of about 25%. Furthermore,
the effect of some measures like changing the train offer to further increase
the robustness is evaluated and compared.

Keywords: 'Transportation, Robustness, Railway Timetabling, Train
Routing, Bottleneck Scheduling, Mixed Integer Linear Programming

1. Introduction

Providing a good passenger service is an important task of a railway op-
erator and an infrastructure manager. One of their main concerns is to bring
all passengers from their origin to their destination in a travel time as close
as possible to the published travel time. Although the prescribed schedule
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is conflict-free, there are always unavoidable disturbances that cause con-
flicts; definitely around large cities or, more generally, in the neighborhood
of railway bottlenecks. In this paper, the timetable planning for and the
train routing through bottlenecks is considered. In general, the assignment
of routes through railway station areas happens after the timetable is cre-
ated. This timetable is constructed based on a macroscopic model, while the
routing of a train towards a platform is planned using a microscopic model
considering all tracks and switches in the station area. Accounting for ro-
bustness while designing an appropriate routing is only considered in a small
number of publications. Nevertheless, the impact of a robust routing solution
is large as is indicated in [2, 20]. The results in this paper confirm this state-
ment. Next to that, we show that applying our methodology outperforms
the approach of Caimi et al. [2] for the case study of Brussels.

In this paper, the focus lies on the planning phase in which the schedule is to
be improved. No real-time conflict resolution actions are considered. Start-
ing from a given timetable, the question we want to address is: How can we
improve the robustness around large railway stations? In order to answer this
question, an objective function that maximizes the time span between any
two trains is defined and the way trains are routed to the platforms is opti-
mized in the scope of this objective. In a next step, small modifications to
the timetable to further increase some time spans are considered. The results
in this paper indicate that exploring the interaction between the routing and
scheduling of trains in the surroundings of a bottleneck area, is promising
for achieving an improved robustness. Increasing time spans is a commonly
applied approach to make timetables more robust [2, 19]. However, large
time spans do not necessarily imply robustness. We define robustness as a
broader concept, as is explained in the discussion about robustness below.
Nevertheless, it is clear that increasing a time span between two trains helps
to avoid conflicts between these trains, which is beneficial for the robustness
of a system.

1.1. Case study

The performance of our algorithm is tested on the compact and highly
used network of the Brussels’ area, the heart of the Belgian railway system.
It has three major stations: South (19 through platforms), Central (6 plat-
forms), and North (12 platforms) which are lined up on a 6-track line, see
Figure 1 for a microscopic overview of the infrastructure. Next to the tracks
towards the Central station and a shunt yard, each of the outer stations has



four in- and outbound orientations. Trains coming from all over the country
run through Brussels and dwell at all three stations forming a crisscross of
lines with many merging and intersecting actions in the switch zones between
the stations as a consequence. In total there are 84 trains per hour during
rush hour making the capacity utilization nearly saturated. Passenger flows,
as computed in Sels et al. [31] or counted in 2009 [35], indicate that the Cen-
tral station is the busiest station in Belgium with an average of more than
70000 passengers each day. The South and North station are ranked as, re-
spectively, second and fourth most busiest stations of the country. Although
it is the busiest station, capacity limitations force the planned dwell time
in the Central station to be limited to one minute which is nearly always
insufficient in practice. This results in dwell delays of at least half a minute
on average.

Because of the high probability of delays and their large impact on the rest of
the network, a robust planning for the Brussels’ area is essential. In this pa-
per, we present some methods to improve the robustness in Brussels, or more
generally, in a complex and highly used station area. Therefore, we make the
assumption that changes to the local planning do not harm the feasibility on
the less occupied network outside the considered area or at other stations.
To improve the robustness of the railway system in Brussels even more, we
suggest some measures like changing the stopping pattern, a reduction of
the number of trains that runs through Brussels, or the creation of extra
platforms for the Central station. Using our approach, the impact of these
measures on robustness and the amount of knock-on delay can be estimated.
The presented work is conducted in cooperation with the Belgian railway
infrastructure manager Infrabel.

1.2. Definitions

Throughout this paper, we define the station area as the set of stations
that lie within this area, together with their platforms and the tracks and
switches connecting the incoming lines with the different platforms and the
outgoing lines. An overview of the station area of Brussels is given in Fig-
ure 1. The dashed line indicates what we call a route through the station
area. Next to the notion of a station area, we also define the minimal time
span, or just time span, between two trains as the smallest delay that causes
these trains to conflict in the station area. Trains ride from one block sec-
tion to another block section and occupy these block sections for a certain
(blocking) time. The interval during which a block section is idle between
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Figure 1: Microscopic overview of the railway infrastructure in —

Brussels. The dashed line represents a route through the station area

the passage of two trains is what we call a time span. The minimal time
span between two trains is then the minimum of all these time spans over all
common sections. We say that a routing solution or a train schedule is fea-
sible or conflict-free if all the minimal time spans between all pairs of trains
are nonnegative.

As mentioned above, two aspects of the planning within a station area are
considered in this paper. The train routing problem is about finding a route
for each train through the considered network, in our case a station area. In
what we call the timetabling problem, we keep the routing solution but allow
variations in arrival and departure times.

At last, the difference between the planned travel time and the (average)
(total) real travel time is clarified. As the name states, the planned travel
time is the duration a certain trip takes according to the planned timetable,
so under ideal circumstances. In reality, when this trip is made, there can be
a disturbance or conflict that extends the travel time. The (total) real travel
time is defined as the total duration needed to make the trip under these
disturbed circumstances, so from the moment of planned departure until the
effective arrival at the destination. Note that we start counting from the
planned departure time as we assume that passengers arrive at their station
of departure before that moment. Since the real travel time differs each time
a trip is made, we use the average real travel time instead but drop the term
average.

The structure of this paper is as follows. In the next section, an overview of
the related literature is given and the differences between our method and
other approaches are discussed. Section 3 is about our vision on robustness.



In Section 4, our algorithm and the simulation module are presented and in
Section 5, we provide the computational results. The paper ends with the
conclusions and thoughts for further research.

2. Literature

2.1. Train routing problem

In general, the whole railway planning process consists of several steps [18,
23]. One of these is the timetabling step in which a timetable is created based
on a macroscopic representation of the infrastructure, so partially neglecting
capacity limitations at stations. In a next step, called the train routing or
platforming problem, the track layout at microscopic level is considered and
planners try to find conflict-free routes through station areas. An extensive
overview of the train routing problem at station level can be found in the
survey paper of Lusby et al. [23]. A classification of related contributions is
given based on the level of planning (strategic, tactical and operational) and
on the solution approach. Our paper, as well as the related papers [4, 24],
belongs to the class of tactical level planning for which we use a conflict
graph. Our approach distinguishes itself from the train platforming prob-
lem (TPP) [5] since for solving the train routing problem, we assume a rigid
platform allocation. The situation in which multiple stations are lined up is
studied in [6]. In that paper, an algorithm to come up with a conflict-free
schedule for a series of stations is presented, but no robustness related topics
or routing actions as we do are tackled. The radial structure of the British
network motivates the approach of scheduling corridors largely separated.
Conflicts between the network components are to be solved by iterations or
adjusting the schedules. As the structure of the Belgian network is more
or less radial with Brussels as midpoint, a similar approach is used in this
paper.

Some of the main contributors concerning the train routing problem on a
tactical level are Zwaneveld et al. In [42] and [41], the routing method that
is used within DONS, the planning tool used for the Dutch railway system,
is presented. First, all possible routes connecting the inbound track with a
platform and the outbound track are computed. Then, a preprocessing phase
is executed to reduce the number of candidate routes for each train. Finally,
the remaining train routing problem is modeled as an independent set prob-
lem. The objective is to find a conflict-free combination of routes such that
each train gets exactly one route assigned. This approach is enhanced with



some robustness features, using aggregated routes, by Kroon and Maroti [20].
The work of Caimi [2, 3, 4] has similarities with the Dutch approach. In [3],
a time index to enable small changes to the timetable is inserted in the
model. This increases the complexity of the model which is then solved with
a fixed point iteration heuristic [2]. The output consists of a routing for each
train and a (modified) timetable. In [4], the independent set approach is
replaced by a resource tree to enable computing feasible routings, eventually
for slightly modified timetables, in a few seconds.

A difference between our approach and the work of Zwaneveld et al. [42, 41] is
that we have included a robustness-oriented objective function in our model.
Also in [2], an objective function to improve the robustness is used. Although
the idea of their approach, maximizing the size of the minimal disturbance
that causes knock-on delays, is similar to ours, we show at the end of Sec-
tion 4.2 that only considering the smallest time spans as they do, is not
sufficient for obtaining a robust solution for our case study. That is why
we include all minimal time spans in the form of a weighted sum ranging
over all time spans. As a consequence, a mathematical model can be used
to efficiently compute the optimal routing solution. When only the small-
est minimal time slots are considered in the objective function, Caimi et
al. found that using a mathematical model becomes too time consuming.
Therefore, a fixed point iteration heuristic is used to come up with a routing
solution in which the smallest time slots are increased considerably in com-
parison to the initial solution [2].

In Zwaneveld et al. [42, 41], as well as in Caimi et al. [3, 4], small timetable
modifications are allowed to obtain a feasible train routing. We use a differ-
ent approach of alternating between routing and timetabling, both aiming to
increase the robustness.

2.2. Robust timetabling

As is indicated by Cacchiani and Toth in their survey on robust train
timetabling [1], there is a large set of papers about timetable robustness in
which each author captures the notion of robustness in their own way [19, 21,
22, 30]. Undoubtedly, providing a timetable with a certain amount of sup-
plements and buffers to avoid or absorb delays and to avoid knock-on delays,
respectively, helps to improve the robustness [19], but there is a limit to the
amount added; once a timetable becomes too slow, it will not be practical
anymore. Improving the scheduling of transfers whilst limiting or minimiz-
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ing the planned (passenger) travel time is also essential to obtain a robust
timetable [30, 37, 38]. However, it has little to no use to improve a transfer
that is not chosen by any passenger. Thinking about the passengers’ per-
spective, robustness should be about minimal delays, good transfers, short
planned travel times, shortly said, anything that can improve the passengers’
service [22, 31].

Considering passengers’ service, or passengers’ satisfaction as they call it, is
also done in [33]. But unlike we do, they consider robustness as opposed
to the passengers’ satisfaction because of the longer travel times the first
implies [33]. The proposed approach computes the required buffer times to
achieve the desired level of robustness, based on the stochastic behavior of
disturbances with respect to the possibility of delay propagation.

The concept of recoverable robustness [21] and recover to optimality [16]
considers restoring feasibility in case of disruptions. They aim at minimizing
the planned travel time plus a weighted delay cost (recoverable robustness)
or at minimizing the necessary changes to restore feasibility (recover to op-
timality). Liebchen et al. [21] include the planned travel time and possible
delays in the objective function, but the delay cost is purely based on the
worst case values.

Some techniques to obtain a robust timetable based on a nominal timetable
are compared in [14]. One of these techniques is the principle of Light Ro-
bustness [13]. The authors call their approach robustness training. The
idea is to allow a worsening in the objective function value of the nominal
timetable and to use this freedom to improve the robustness. This way, a
solution somewhere between a robust optimization solution and a timetable
resulting from stochastic programming is obtained.

In [28], four methods to improve the timetable robustness are presented:
these four are adding time supplements, decreasing capacity consumption by
adding buffer times to the headways, avoiding heterogeneity and decreasing
the average speed. All of these incur a certain price of robustness in the
sense that a higher level of robustness goes hand in hand with a larger travel
time. The robustness is measured using the total delay but no assessment
between the increase in planned travel time (the price of robustness) and the
gain in real travel time of having less delays is made. Although the effec-
tiveness of these methods in reducing the total delay is undoubtable, none
of these methods are applicable in our case study due to a hard requirement
of scheduling a given train set on an infrastructure with fixed capacity. We
show that by modifying the schedule and the routing of some of the trains
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in a better way, the performance can be improved in the considered area
without increasing the planned travel time.

The work of Vansteenwegen and Van Oudheusden [37, 38] is about investi-
gating optimal transfer planning for passengers while taking robustness into
account. By planning a running time supplement on the feeder train’s trip to-
wards the transfer station, it is shown that the overall passenger travel time
can be decreased. Based on the findings presented in [12], Sels et al. [32]
came up with an integer programming model to compute a robust railway
timetable for periodic trains in only a few hours. The way to deduce the
passenger flows is presented in [31].

Even if a timetable is robust, disturbances still can cause conflicts which
need to be solved in real-time. This real-time rescheduling belongs to the
operational level of planning and is gaining more and more attention. As
we focus in this paper on the tactical level planning, we restrict ourselves
to a short overview discussing the most related trends in operational plan-
ning. Results concerning delay management with a rolling horizon on a single
track network can be found in [27] and the references contained therein. Ex-
tending the network to lines between stations [7, 11] or considering real-time
rescheduling or rerouting in railway bottlenecks [8, 9, 10, 26] has also been
the subject of several studies.

2.8. Robustness evaluation

A robustness definition has to be practical in the sense that railway com-
panies are willing to use it. This means that striving for robustness should
not make the timetable too slow, and a robustness definition has to be prac-
tical to work with such that the robustness can be assessed and compared.
Thus, besides a definition of robustness, an appropriate way to measure and
compare timetable robustness is needed [28]. As dividing delay in primary
delay and knock-on delay is still a very difficult exercise, it is hard to use
anything related to this to measure robustness. Also the percentage of main-
tained transfers has shortcomings as this does not account for the delays
arising due to, for example, synchronization actions.

An interesting method to evaluate robustness is described in [17]. Using the
theory of max-plus algebra, delay propagation computations can be done
easily. Next to that, the stability (existence of timetable slack), realizability
and recoverability (resilience) can be evaluated. The robustness of a schedule
is measured using the amount of propagated delay. Although this technique
has led to the development of a simulation package called PETER, the ab-
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sence of the ability to incorporate stochastic influences in the model forms a
restriction for the use of this approach.

In [36], Monte Carlo simulation is used to estimate the robustness of a sched-
ule. To evaluate the robustness, the authors measure the sensitivity to delays
of the passenger disutility which is influenced by the travel time, congestion
rate, number of transfers, and the waiting time. The used approach is tested
by comparing the robustness of two schedules: a reference and an (ad hoc)
improved one. Just like [36] and [22] with passengers’ service, we share the
same vision on robustness and apply a similar technique to measure it as is
explained in the next section.

3. Robustness

The definition we have presented in [12], also in joint cooperation with the
Belgian railway infrastructure manager Infrabel, removes the discrepancy be-
tween the existing definitions: the inclusion of timetable slack is assessed by
considering its marginal effect, passenger streams are used as weights such
that, e.g., important transfers can be detected, and the total passengers’
travel time including delays, transfer times and necessary waiting is being
used to measure the quality of the passengers’ service. A good quality of
this passengers’ service, even under disturbed circumstances, is what robust-
ness is about [34]. That is why we, together with Infrabel, define railway
robustness as follows: A railway system that is robust minimizes the total
weighted real travel time of the passengers, in case of frequently occurring,
small disturbances.

Since the total real travel time of a passenger, as defined in Section 1, is eas-
ily measured, we have a constructive definition for robustness. Weights are
added to represent the passengers’ perception of wasted travel time. Wasted
travel time can be seen as anything that prolongs the journey time unneces-
sarily: delays (weight 3), supplements that result in extra unnecessary dwell
time (weight 2) and transfers. For transfers this goes in the form of waiting
on the platform until the connecting train arrives and is weighted by a factor
2. The size of the weights originates from extensive studies about the value
of (waiting) time in public transportation [25, 40].

The total weighted real travel time for all passengers is computed using the
weights as described above. In Section 5.2, we compare different measures
with different nominal travel times, e.g., due to changes in the stopping pat-
tern. For the fairness of comparison, we normalize the total weighted real



travel time by subtracting the nominal travel time of all passengers from it
and dividing this result by the same nominal travel time. This ratio gives a
measure for the weighted travel time extension (WTTE). The weighted travel
time extension equals

WTTE — total weighted real tr'avel time —.nominal travel time.
nominal travel time

To evaluate the robustness of system X, it is hard to know when the maxi-

mum level of robustness is achieved. Hence in this paper, robustness related

results are presented in comparison to a reference situation (REF’) such that

the gain in robustness can be computed. Therefore the following formula is

used:
WTTERgr — WITEx

1 . 1
T WTTERrgr (1)

If (1) results in a value of, e.g., 1.10 or 110%, this means that railway system
X is 10% more robust than the reference system according to our definition
of robustness.

Note that the visions on robustness as formulated in [19, 21, 22, 30] are all
captured in our definition.

4. Algorithms

In this section, the route choice module to solve the train routing problem,
the timetabling module, and the simulation module to evaluate the perfor-
mance at a railway bottleneck are introduced. Since both the timetabling
module and the route choice module affect the minimal time span between
two trains, defined as the minimal delay that causes these trains to conflict,
an iterative procedure is used to combine both modules. Starting from an
initial timetable, the route choice module is solved and based on its results
the timetabling algorithm is run. This procedure is repeated as long as im-
provements are obtained.

4.1. Objective function

The objective function of the route choice module and the timetabling
module is similar to the objective function from Caimi et al [2]. In their
paper, the authors try to maximize the weighted sum of the four smallest
minimal time spans between any two trains, while in this paper, we sum
over all minimal time spans. Unlike the weights in the objective function of
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Caimi et al. [2], our weights are non-linear and provide a natural assessment
of the costs and benefits of altering some time spans. In the next section,
we compare both approaches and show that ours is more appropriate for the
Brussels’ area.

In the following, we use the term trainroute to indicate the combination
of a train (¢) and its route through the station area (ry), e.g., (t,7;) is a
trainroute. The minimal time span between two trains depends on both
aspects of a trainroute: the train and its route. Let B ) t'.r,) (from Buffer
time) be the minimal time span between trains ¢ and ¢ with their routes r;
and ry, respectively, and let the weight corresponding to a time span be

15 if B(¢r,),tr,) = 0 (conflicting),
Wit waew) = VBerowrs i Baro, @) < B™ minutes, (2)
0 otherwise,

with B™* a model parameter denoting the shortest duration of a time span
that is considered insensitive to conflicts. The weight corresponding to a
conflict is set equal to 15 because we use a time discretization of 0.1 minutes
causing W ;) (#,r,) to be smaller than 15 if Bty (1m0 > 0. Wis used as
weight (cost) in our spreading objective function:

min Z W(tmt),(t’,rt/)- (3)

In this way, a smaller time separation corresponds to a higher cost and the
marginal effect of increasing a time span is decreasing. Another advantage
is that, when increasing a time span, the objective function weighs up the
increased and decreased time spans in a natural way.

Our objective function is similar to the SSHR measure (sum of the shortest
headway reciprocals) that is introduced in [39]. In that paper, the impact
of heterogeneity on the reliability of a railway system is investigated. Using
the sum of the reciprocals, one is able to account for speed differences since
these lead to different time spans at the beginning and end of a common
section. Where the applicability of the SSHR measure is restricted to track
sections between stations, we also consider the stations itself and use (3) as
the objective function instead of a reliability measure only as is done in [39].
Function (3) is used as the objective function in the route choice module as
well as in the timetabling phase. It is important to notice that, although
we use (3) to improve the robustness, this is not how the robustness itself is
measured (see Section 3).
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4.2. Route choice module

The train routing problem [23] is about finding a path for each train
through the considered network, in our case a station area. More precisely,
given a set T' of trains and the set R of all possible routes through a sta-
tion, a solution of the train routing problem is an allocation of exactly one
route r € R to each train ¢t € T in a conflict-free way. In this step, we
assume that the arrival and departure time of each train are unchangeable
and throughout the entire algorithm we keep the assigned platforms fixed.
Often, the train routing problem is solved only for feasibility [3, 42], leaving
several opportunities unconsidered. In this paper, feasibility is not enough
since robustness is our goal. Including robustness in the objective function
would result in a complicated model since delay propagation computations
are required to evaluate the robustness as is explained in Section 3. That is
why the spreading of trains is used here to indirectly improve the robustness.
The impact on the robustness is measured afterwards using the simulation
model from Section 4.4. To solve the train routing problem, our route choice
module consists of three steps.

Step 1: In the first step, the set R of all possible routes is determined.
With a route, we mean a sequence of (platform-)tracks from one end of the
station area to the other end. An example of a route is highlighted in Figure 1.
Each route connects the three stations and alternative routes (between the
same platforms) exist. Comparing the routes connecting the same entry or
exit point with the same platform, some routes can already be pruned. This
is explained as follows. Denote with NNV, the set of switches along route r € R.
If N, C N,» with r and ' two routes between the same in-/outbound track
and a platform, then route 7’ can be removed from R since replacing r’ by r
in any solution of the train routing problem will result in a better routing; all
the switches on route r are also part of route 7 which might have some extra
switches, causing the minimal time span between a train following r and any
other train to be at least as large as when route " would be followed. Notice
that it is assumed that no overtaking of trains takes place in a station area.

Step 2: The second step of the route choice module starts with assigning
to each train all possible, remaining routes connecting that train’s inbound
or outbound track with its platform. Name this set R; (t € T'). Now each
r € R, connects that train’s platform in the North station with the platform
in the South station and passes along the assigned platform of the Central
station. Regarding the infrastructure of the Brussels’ area (Figure 1), it can
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be seen that in general R; consists of multiple routes.

When the set R; for each t € T is created, a preprocessing phase follows to
reduce the number of candidate routes per train. Where in the previous step,
routes could only be pruned based on their set of switches, now timetable
information can be used to compute B,y ), with trainroutes (t,r) €
T x Ry and (t',r") € T x Ry. When trainroute (¢, r) conflicts with trainroute
(¢',7"), the minimal time span between these two, is set to 0. For all routes of
train t € T, say r,7" € Ry, holds that By ), = 0 since each train can only
have one assigned route. In [42], some dominance rules are used to prune
candidate trainroutes based on their set of conflicting trainroutes. If for a
certain trainroute (¢, r), the set of its conflicting trainroutes contains that of
another route for the same train, say (¢, '), then according to Zwaneveld [42],
(t,r) is dominated by (¢,7') and can be pruned. Unlike in [42], we are not
satisfied with feasibility, i.e., the ability to assign a route to each train in a
conflict-free way, thus some modifications to the dominance rules are needed.
A trainroute (¢, 7) can only be dominated by another trainroute for the same
train, say (t,7’), if the minimal time span with each other trainroute is at
least as large using (t,7') as when (t,7) is used. Therefore, define the set
Ky as follows:

I R—
Kum =<3 U, r)ET x Ry : L) =5 }
() {( ) "V, 7)€ T X Ry : By ir) < B ), @)-

(1)
Thus all (¢',r") € K, conflict with (¢,7) and the minimal time span between
(¢',r") and any other trainroute is at least as large as the minimal time span
between (t,7) and that other trainroute. In the following lemma, it is shown
that trainroute (¢,7) can be pruned, i.e., removed from 7" x R;, whenever
K is not empty.

Lemma: If K,y # () for a trainroute (t,7) € T' x Ry, then (¢,r) is domi-
nated by each element of K,y or (¢,7) can never be part of a feasible routing
solution.

proof: Take an arbitrary (¢',7') € Ky,. If t = t' such that 7" € Ry,
then from (4), it follows that if (¢,7’) conflicts with a (¢,7) € T x Ry, then
(t,r) also conflicts with that trainroute. Moreover, the weights in the spread-
ing objective function (2) for any feasible solution using (¢,r) will never be
smaller than when using route 7’ instead of r for train ¢. This means that
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Table 1: Minimal time span and the set K for each trainroute

| (t,r) (Bt (fa,ra)  (t2,7h)

(t1,71) - 0 2 3
(t17/r/1) 0 - 3 3
(t277n2) 2 3 - 0
(tQ,T’/Q) 3 3 0 -

K [ {tt,r)}y 0 {{tarp)}) 0

(t,r) is dominated by (¢,7') since the latter always gives at least as good
solutions. If ¢ # t' then for all 7 € Ry holds that B ;) 7 < By ,w.5 = 0.
This means that (¢, ) conflicts with all possible routes for train ¢, thus (¢, r)
can never be part of a feasible solution. O

An example will illustrate this lemma. Let ¢; and t5 be two trains, r1,7] € Ry,
and 79,75, € R;,. The minimal time span between any two of these train-
routes and the sets K are given in Table 1. From this table, we see that the
minimal time span between (t1,71) and (¢1,7]) is 0 since both are trainroutes
of the same train, and that By ), (tairy) = 3. For each of the trainroutes, the
set K can be computed using (4). As K, ,,) and K, ,,) are nonempty, these
trainroutes are dominated and can be removed from the set of trainroutes.
If (t1,71) is pruned first, then the corresponding row and column in Table 1
must be removed causing K, ,4) to become nonempty. As a consequence
(ta,r2) and (t,ry) dominate each other. In this case, only one of the two is
pruned causing the other to become non-dominated.
This example shows that a set of trainroutes has no unique maximal subset
of non-dominated trainroutes. Analogous to the discussion in [42], it can be
shown that the cardinality of a maximal subset of non-dominated trainroutes
is independent of the dominance order. One can also show that the dom-
inance rule is transitive and that pruning a dominated trainroute does not
affect the dominance of another distinct trainroute.
During test runs, an average of 85% of all the trainroutes were pruned using
this lemma. In total, the pruning in step 1 and the dominance rule of this
lemma, reduced the number of trainroutes with 95%. As a result, only 141
trainroutes remained for an instance with 84 trains.

Step 3: The last step of the route choice module is to solve the train
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routing problem on the set of non-dominated trainroutes. Therefore, define
for all trainroutes (¢,r) € T X R;

S 1 if route r is selected for train t,
(&) 0 otherwise.

We also define the continuous variable y .y ), bounded by 0 and 1, as
the variable that is 1 if both z(,) and x( ,) = 1. Now, the train routing
problem can be solved with a linear mathematical model.

Minimizez Z Z Z Wity ) * Yt ) (5)

telT t'eTreRyr'eRy

subject to

Yo (o) — Tty — Ty = =1 V(1) € TRy, (7)€ Tx Ry, (6)

Z T(tr) = 1 vVteT, (7)
reR
T(er) + > ey <1 Y(t,r)€ Tx Ryt € T\{t}, (8)

{T’ S Rt’ :
By, 1y =0

0< Y(tr), ) <1 \V/(t, T) < TXRt, (t,, T/) e Tx Rt/, (9)
ten €{0,1}  W(t,r)€ TR, (10)

The spreading objective function (5) uses the weights from (2) and mini-
mizes the sum of all the weights. Due to the decreasing impact of larger time
spans, priority is given to avoiding small time spans. Constraint set (6) gives
a lower bound on the continuous decision variable y and keeps the model lin-
ear. Since the objective is to minimize a nonnegative cost times the variable
y, there is an incentive to set y ) ) = 0. When both z(;,) and z(y ,+) equal
1, constraint set (6) forces y ) ) to be larger than or equal to 1. In (7)
we make sure that all trains get exactly one route assigned. For each con-
flicting couple of trainroutes a clique constraint of the form )y + ) < 1
should be inserted. In our model, these clique inequalities are replaced by
the stronger clique inequalities (8) which all are generated a priori. We refer
to Zwaneveld et al. [41] for more details about this constraint. Finally, (9)
and (10) give the bounds on the variables.
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Running this model on the set of 141 non-dominated trainroutes (i.e. com-
binations of a train and a candidate route for that particular train) for the
test case of step 2 resulted in about 20000 decision variables and more than
31000 constraints. Note that the solver is able to prune many variables and
constraints right away because of the scarcity of the conflict matrix. As a
result, solving this model required only 5 seconds on a DELL Optiplex 760
with Intel(R) Core(TM) 2 Duo 3.00 GHz, 4.00 GB RAM, 64-bit operating
system running Cplex 12.4. Note that without the preprocessing phase, the
solution for this instance cannot be found within one hour.

The mathematical model (5)-(10) can be adapted to cope with the objec-
tive of Caimi et al. [2] to maximize the four smallest minimal time spans.
Using the same assumption as before, no timetable changes are allowed and
the whole set of minimal time spans can be computed in advance, the adapted
model can be solved for our case study using Cplex. Although the prepro-
cessing rules from step 1 and step 2 still apply and building the model does
not require significantly more computational effort, the computation time the
solver needs to find the optimal solution increases considerably from 5 sec-
onds to more than 1400 seconds. The largest portion of this is spent on
finding an initial solution or due to an (extra) internal preprocessing step of
Cplex.

Due to the nearly saturated infrastructure and the fact that the cost of a
time span in our objective function is inversely proportional to its size, no
improvement in the size of the smallest minimal time spans could be obtained
using the objective of [2] instead of (3). Furthermore, our objective function
tries to increase all time spans, thus also the time spans between one of the
trains that forms the smallest minimal time span and any other train. As
a consequence, the propagation of delay will, in general, be smaller for our
solution than for the solution of Caimi et al. This allows us to conclude that
our objective function (3) outperforms the one of Caimi et al. [2] for the case
study of Brussels.

The outcome of the mathematical model (5)-(10) gives us the optimal rout-
ing for the current timetable. For a modified timetable, however, this routing
can become suboptimal. That is why, in our methodology, the route choice
module alternates with the timetabling module.
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Algorithm 1 Outline of the tabu search algorithm of the timetabling module
while number of consecutive globally non-improving moves < iter™** do
1. Build up the restricted candidate list using
2. Perform a full neighborhood search of the shift neighborhood
3. if improving move found do update tabu list and make the move
else
¥ 4= U + Egtep
if ¥ > B™** do perform a smallest ascent move and v < 0

4.83. Timetabling module

In this step, we want to improve the timetable using the same objective
function as in the route choice module. The same time discretization of 0.1
minutes is used. Since using a mathematical model to solve the timetabling
problem requires the inclusion of all the minimal time span computations,
which would result in a large and complex model, we chose a heuristic to
improve the timetable. As a consequence, no optimal timetable for a certain
routing solution is known. The timetable from the previous iteration is used
as start solution in a tabu search heuristic [15] that, one by one, tries to
increase the smallest minimal time span by shifting some trains in time.
If this is not possible or would result in an increase in objective function
value (3), the second smallest minimal time span is considered. Notice that
the arrival and departure times for all trains are bounded by a time window.
During our computations, we required that all trains had their planned arrival
and departure between 7 and 8 AM. This choice is motivated by the fact that
the considered timetable is periodic with a period of one hour. A smaller
time window can be implied for each train individually. For example, the
time window for an international high speed train can be chosen such that
no timetable deviations are allowed for this train.

Our algorithm has one neighborhood operator: shifting one or more trains
in time. During test runs, the need for a better guiding of the heuristic
became clear as frequently the algorithm got stuck due to cycling. That is
why we opted for a tabu search heuristic. An outline of the tabu search
algorithm is given in Algorithm 1. The idea is as follows. As long as the
maximum number of consecutive globally non-improving moves (iter™) is
not reached the algorithm executes the following steps. First it constructs a
restricted candidate list (RCL) which is a list of train pairs whose minimal
time span By lies within the interval that is bounded from below by the
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overall minimal time span plus ¥ and has egep as width, with egep, a model
parameter.

RCL = {(t, tYeT xT : By € |min B;; + 9, min By + 9 + 5Step> } .
it it

Notice that since each train has a unique route in the timetabling module, we
can simplify the notation of the time spans by dropping the routing indices.
In the following, we assume ¢ precedes t' when denoting (t,t).

In the second step, a shift move is considered for each RCL-candidate and
the best found move is selected as candidate move. A shift move consists of
the shift of one or more trains in time with §; = —™®*, —§f™>* 41 ... —1 or
op = 1,2,...,0™**, Since we assume that ¢ precedes t’, a shift move increases
By y. If the shift (¢,0;) (analogous for (¢/,0y) or any other train that gets
shifted) would incur a conflict with another train, say ¢, or make B;y, < By,
t also gets shifted with 6,. Notice that we only allow one of the two trains
(t or t') to be shifted and that shifts that are tabu are not considered except
when they are globally improving (aspiration).

In step 3, the result from the shift operator is evaluated. If the best found
move was improving and not tabu (or tabu but globally improving), the move
is made, ¥ is set back to 0, and the tabu lists are updated. This means that,
for all shifted trains, a reverse shift becomes forbidden for a fixed number of
iterations equal to tabutime. If the best found move was not improving, the
variable ¥ is increased with €4, which affects the RCL in the next iteration.
If ¥ > B™** with B™ the smallest size for a time span to be considered
insensitive to conflicts, no improvements will be found by increasing ¥ and a
smallest ascent move is made. This means that the solution which is the best
found, non-tabu solution over the last iterations, is selected as next solution
to continue the algorithm.

To determine the optimal values of the parameters, a large set of experiments
are conducted in which the value of the parameters could vary and based on
the objective function value (primary concern) and the computation time
(secondary importance) the following values are selected. B™** = 15 min-
utes, meaning that two trains that have a minimal time span of 15 min-
utes or larger are considered to be insensitive to propagate delay to one
another. The width of the RCL-interval (gep) is set to 0.5 minutes and the
tabutime = 10 iterations. The maximum shift size (0™**) equals 5 minutes
and the parameter determining the stop criterion (iter™) gets 200.

18



Note that we do not explicitly consider changes in train ordering and that a
single shift move does not allow them. Due to the iterative procedure of the
route choice module and the timetabling module, however, order changes
can be possible as a result of multiple consecutive changes in routing and
timetable. Nevertheless, we assume that this does not lead to problems on
the outside of the considered area. The same holds for any change in event
times. The structure of the underlying timetable will be similar to the refer-
ence timetable that serves as input for our algorithm. The reference timetable
was used for many years in practice and was improved step by step over the
years. As a consequence, we assume that no change in event times will cause
large problems outside the considered area.

Since the shift operator is created in such a way that a timetable shift to
increase the time span B,y will never cause other time spans to become
smaller than B;y, no conflicts can arise by applying timetable shifts. This
means that the routing solution of iteration ¢ remains feasible throughout
the whole tabu search. This allows us to use the objective function value
obtained by the timetabling module as an upper bound for solving the train
routing problem in iteration ¢ + 1. If a (local) optimum is reached for both
the route choice module and the timetabling, computations are stopped. For
all test cases, a local optimum was reached in less than five iterations. Once
this happened, we consider the planning of trains in the station area to be
optimized and the new system can be evaluated in detail by the simulation
model, described in the next section.

4.4. Simulation module

To assess the robustness of the new train system in the station area, a
discrete event simulation model is developed. Our simulation model utilizes
detailed infrastructure data and real-time rescheduling or rerouting is not
considered. The results are computed based on 10000 simulation runs. Next
to the average knock-on delay and the percentage of delayed trains, the ro-
bustness value of the system is computed.

Delays are allocated to some of the trains to represent an initial disturbance.
Together with the route choice solution, the timetabling solution and the
infrastructure details, this serves as input for the simulation module. Two
types of delays are considered: delays upon arrival at the border of the con-
sidered area and dwell delays at any of the three stations. We denote the
input delay with a four-tuple representing the delay upon arrival, the dwell
delay at the South, Central and North station, respectively. Each of these
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delays is drawn from the exponential distribution with the —for that train—
measured real average delay (D) as parameter or is equal to a predetermined
value. The former we denote with F from exponential, the latter with P®1%¢)

from predetermined. In both cases, the number of delayed trains is added as

index. Let n be the number of trains, then (En /2,0, Pé(/)';), O) means that half
of the trains gets a delay upon arrival which is drawn from the exponential
distribution and half of the trains gets a dwell delay at the Central station
which is equal to 0.5 minutes for all these trains.

If two trains request the same infrastructure simultaneously, priority rules
based on the real practice are applied to resolve this. According to these
rules, priority is given to trains based on their commercial type, e.g., inter-
national trains are handled before local trains. If applicable, we restrict the
number of trains within the bottleneck area by prioritizing trains that are
about to leave the system compared to trains that want to enter the bot-
tleneck area and are waiting in a —so called— buffer or compensation zone.
Based on the observation that a delayed train can be overtaken by another
train outside the considered area, e.g., at a previous station, we allow devi-
ations for the planned arrival sequence at the border of the system.

In [29], it is argued that no connections are scheduled in the bottleneck area
of Schiphol in the Netherlands. Doing so, synchronization actions that slow
down the traffic through the bottleneck are avoided. In Brussels, there is a
high frequency of trains in each direction such that the extra waiting time
caused by a missed transfer remains limited. As a consequence, no transfers
are scheduled and no transfer data for the Brussels’ area is recorded. For
our case study, we use the same principle and do not consider connections
in the timetabling and the simulation module. It should be noted, however,
that a list of guaranteed transfers could easily be taken into account in the
timetabling module. If one of the two trains involved in a transfer is con-
sidered for a shift that would make this transfer infeasible, the other train
involved in the transfer should also be shifted.

5. Experimental results

5.1. Impact of the route choice module and timetabling module

In Table 2 and 3, the most relevant results are given for two different de-
lay scenarios. In both delay scenarios, half of the trains gets an exponential
delay upon arrival. To obtain the results from Table 2, also a dwell delay at
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the Central station of half a minute is given to half of the trains. In delay
scenario (En/g, Ey 2,0, En/g) (Table 3), this dwell delay is replaced by an
exponential dwell delay at the two outer stations.

The rows in the tables correspond to the instances solved. The row refer-
ence corresponds to the results obtained for the formerly used routing and
timetable for which spreading was not an issue. This timetable, which is used
as input timetable for the route choice module and the timetabling module,
is used as benchmark. The impact of only applying the route choice module
(timetabling module), so without the timetable (route choice) optimization,
is summarized in the row route choice (timetable). The iterative row contains
the results obtained after the iterative procedure of the route choice module
and the timetabling module has reached a local optimum. This happened
after three iterations of the route choice module and timetabling module. At
the end 48 out of 84 trains were shifted with 2 minutes on average.

The first two columns present the values of the spreading objective func-
tion (3) and the computation time (in seconds) needed to compute the spec-
ified timetable and routing. The algorithm is run on a DELL Optiplex 760
with Intel(R) Core(TM) 2 Duo 3.00 GHz, 4.00 GB RAM, 64-bit operating
system running Cplex 12.4 and is coded in C++. The percentages in the
first column are relative with respect to the reference situation which is set
equal to 100%. Since these values are independent of the delay scenario,
these columns are the same in Table 2 and 3. Next, the results for the ro-
bustness (1) and the average weighted real travel time per passenger, see
Section 3, are given. The entry in the first row of the column travel time is
the average weighted real travel time per passenger, the other rows contain
relative values. Further, the average amount of knock-on delay per hour is
shown. The entry in the reference row represents the size of the total knock-
on delay in this situation. The 93.6% in the row route choice in Table 2
corresponds to 57.4 (= 93.6% of 61.3) minutes of knock-on delay. Finally,
the percentage of trains that are confronted with knock-on delay during their
passage through Brussels (extra delayed) are presented. Each value in this
column must be interpreted as an absolute term.

Comparing the first rows in Table 2 and 3, it can be seen that the route
choice module alone as well as the timetabling module alone improves the
current situation but that the impact on the results is limited. By combining
the route choice module with the timetabling module in an iterative way,
better results are achieved. For all criteria, the entries in the iterative row
are better than those in the route choice or timetable row and considerably
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P(o.5) O)

Table 2: Simulation results for delay scenario (En 2,0, P, /2

spreading time (s) robustness travel time knock-on extra delayed
reference 100% - 100% 11.6 min  61.3 min 45.2%
route choice  79.4% 4.7 101.1% 99.4% 93.6% 41%
timetable 63.2% 6.4 101.3% 99.3% 92.1% 40.8%
iterative 38.7% 30 105.8% 97% 75.1% 33.6%

Table 3: Simulation results for delay scenario (En /2> Eny2,0, By, /2)

spreading time (s) robustness travel time knock-on extra delayed
reference 100% - 100% 12.4 min  68.3 min 47.6%
route choice  79.4% 4.7 101% 99.5% 93.8% 43.1%
timetable 63.2% 6.4 100.7% 99.6% 94.5% 44.1%
iterative 38.7% 30 105.3% 97.1% 75.7% 35.8%

Table 4: Summary of the robustness results for different delay scenarios

scenario  (B,ya.0,P7.0)  (Enp2.0.P0)).0) (Ej2:0, Eypo,0) (Enya: 0, PL7).0) (Enj2.0.P}),1.0) (Ew/2:0. E34,0)
robustness 105.8% 106.8% 106.8% 106.4% 107.4% 107.3%
scenario By 0.P50.0) (B0, P90.0)  (Egs0.P4).0) (Enjs:0.P}1),.0) (Enj2:0.P})),.0) Eioa:0, PA2),00)
robustness 106.5% 105.8% 105.4% 108.6% 107.4% 106.1%
scenario (P20.P90,0) (P20, P9D0) (A0 P00 (P20, B0 (P).0,E0,0) (A0, Bupos0
robustness 106.6% 105.5% 104.5% 107.7%% 106.1% 104.8%
scenario (Erx/'3~Elz,’2‘0- En/z) (En/Z: Enyas U~En/2) (E3n/’4- 2,0, En/Z) (En/l!‘ Enyzs Enys, En/‘s) (En/m Eyy3, Enys, En/li) (EL571/4= Ey 3, Enys, En/li)
robustness 106.3% 105.3% 104.3% 107.1% 105.9% 105.4%

Table 5: The amount of knock-on delay (in minutes) for each subarea in delay scenario

(En /2.0, PO 0)
North North-Central Central Central-South South total
reference 15.5 6 18.5 11.2 10.1 61.3
route choice 15.4 4.3 18.3 9.2 10.1  57.3
timetable 15.6 5.3 15.7 9.8 10 56.4
iterative 13.5 3.4 13.4 7 8.7 46

improve the results of the reference situation. The improvement of more than
60% in the spreading objective value is remarkable. Also the effect on the
robustness of using the algorithms from Section 4 is significant. Next, the
results indicate that the total weighted real travel time decreases with about
3%; the amount of knock-on delay has decreased with nearly 25%; while the
number of extra delayed trains is reduced with 25.7% (=1 — 33.6/45.2) and
24.8%, respectively.
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In Table 4, the obtained robustness values for the iterative timetable are
given for different delay scenarios. In the delay scenarios on the top row,
half of the trains gets an exponential delay upon arrival while different dwell
delays are considered. The two rows in the middle of the table contain delay
scenarios with different numbers of trains that get an exponential or pre-
determined delay upon arrival at the system’s border, and the lowest part
considers the impact of dwell delays at the outer stations. From the results
in Table 4, we see that the average gain in robustness is about 6.2% with a
standard deviation of 1%. Considering the fact that neither the timetabling,
nor the route choice module uses passenger flows or optimizes with respect
to delays directly, which both are criteria that determine the robustness, the
strength of these methods is even more striking.

Another important conclusion based on the evaluation of all these delay sce-
narios is that the obtained results are very similar. The standard deviation of
1.04% supports the conclusion that the performance of the obtained iterative
timetable, measured through the robustness, is rather stable and indepen-
dent of the delay scenario.

In Table 5, the amount of knock-on delay that emerges due to conflicts in
a station or on the switch zones between two stations is given for the same
delay scenario as in Table 2. Based on the infrastructure from Figure 1, five
subareas are identified: the three stations (North, Central, and South) and
the two switch zones connecting these. Fach entry is the amount of knock-
on delay, in minutes, that emerges in each of the corresponding zones. The
entries for each subarea sum to the total amount of knock-on delay per hour.
The largest numbers in Table 5 correspond to the stations. For the two outer
stations, North and South, this is because the merging of the incoming paths
happens there. The knock-on delay that arises normally on the incoming
lines is now added to the outer stations since this is where the trains first
meet in our case study. It is not surprising that the Central station is a large
source of knock-on delay as the available capacity is nearly saturated there.
Although the amount of knock-on delay is smaller for the switch zones, their
impact should not be underestimated. A large number of merging and in-
tersecting actions takes place in these switch zones and thus there is a large
threat on conflicts.

The results in Table 5 confirm the reasoning that only changing the rout-
ing of trains through a station does not directly help to avoid conflicts in
that station, but it does help to reduce the amount of knock-on delay in the
switch zones: A reduction of 27.7% and 18.2% for the zones North-Central
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and Central-South, respectively, is achieved. Although the timetabling mod-
ule only alters the arrival and departure times in the stations, the usage of
the spreading objective function (3) ensures improvement in nearly all zones.
Comparing the reference and iterative rows, it can be seen that, due to the
iterative procedure of the algorithms from Section 4, the combination of the
route choice and timetabling module helps to reduce the effect of conflicts in
each of the zones considerably.

5.2. Improvement measures to evaluate

The Belgian railway infrastructure manager Infrabel requested us to sug-
gest some potential measures to improve the robustness. That is why, next
to improving the current situation with the algorithms from Section 4, three
specific measures to further enforce the robustness are investigated. One of
the major problems in the Brussels’ area is that nearly all trains that run
through Brussels dwell at one of the six platforms of the Central station. The
three measures we suggest are chosen because each of them helps to decrease
the capacity usage or to increase the available capacity in the Central station.
After the measures are taken, our algorithm is used to reschedule (improve)
the system. The idea is to make a “what if "-study by estimating the impact
of this measure. We do not make claims about optimality, e.g., whether the
number and the selection of removed trains (measure 1) is the best possible
or not.

The first measure consists of removing some trains from the system. In
our timetable, 84 trains run through Brussels between 7 and 8 AM. With
this measure, we want to estimate the impact of reducing the train offer by
4 (measure 1,), 6 (1,) and 8 (1.) trains. The removed trains are selected
based on their (low) occupation rate and the passengers on any of these
trains are, without an extra cost, assigned to alternative trains.

The second measure keeps the number of trains constant but adapts the stop-
ping pattern. More specific, the trains that are supposed to dwell at platform
1 and 2 in the Central station become non-stopping. We assume that harmed
passengers transfer to other trains that do stop at the Central station and
experience a travel time extension of 3 minutes. The other passengers on
a non-stopping train gain one minute in travel time because of the avoided
stop. Changing the stopping pattern in this way results in a gain in the size
of the total headway buffer for platform 1 and 2.

The third measure focuses on the infrastructure in the Central station. The
idea is to increase the number of platforms from 6 to 10 by doubling the
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Table 6: Simulation results for delay scenario (En /250, Pi??? O)

spreading time (s) robustness travel time knock-on extra delayed

iterative 38.7% 30 105.8% 97% 75.1% 33.6%
measure 1,  32.3% 26.4 108.9% 95.5% 63.6% 30%
measure 1, 28.9% 27.1 112.1% 93.8% 55.3% 27.2%
measure 1, 27.3% 19.4 113.1% 93.2% 51.7% 26.1%
measure 2 37.5% 19 103.3% 101.6% 74% 32.5%
measure 3 35.7% 23.5 108.2% 95.8% 68.5% 31.1%

Table 7: Simulation results for delay scenario (En /2> Eny2,0, By, /2)

spreading time (s) robustness travel time knock-on extra delayed

iterative 38.7% 30 105.3% 97.1% 75.7% 35.8%
measure 1,  32.3% 26.4 108.7% 95.3% 63.7% 32.1%
measure 1, 28.9% 27.1 110.4% 94.4% 56.4% 29.3%
measure 1. 27.3% 19.4 111.3% 93.7% 51.7% 28%
measure 2 37.5% 19 103.6% 101.3% 74.7% 34.7%
measure 3 35.7% 23.5 106.5% 96.5% 72.7% 34%

Table 8: The amount of knock-on delay (in minutes) for each subarea in delay scenario
(0.5)
(En/27 0, Pn/g ; O)
North North-Central Central Central-South South total

iterative 13.5 3.4 13.4 7 8.7 46
measure 1, 12.3 3 11.1 5.7 6.9 38.9
measure 1, 11.5 2.7 10 4.5 5.2 33.9
measure 1, 10.9 2.4 8.8 4.4 5.2 31.7
measure 2 14.9 3.6 11.8 6.5 8.6 45.3
measure 3 15.1 4.3 6.5 7.2 8.7 41.9

two outer platforms at each side. As a consequence, a train that is currently
planned to dwell at platform 1, can now be assigned to platform 1 or 1’. If
the trains are ordered chronologically, the odd numbered trains get assigned
to the old platform and the even numbered ones to the new platform. No
other changes than the ones specified are being made for any of the three
measures and the methodology for Section 4 is used to improve the timeta-
bles after the changes due to the measures are applied.

The impact of these measures is shown in Table 6 and 7. The results are ob-
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tained using the methodology of Section 4 applied on the reference timetable
that is modified by the measure itself. Since removing some trains from the
system leads to a decrease in capacity usage for the whole area while the
other two measures only affect the Central station, it is not surprising that
the first measure outperforms the others. Table 8 clearly confirms this, where
measure 1 reduces the amount of knock-on delay for each subarea, the other
two measures perform more or less similar to the iterative timetable, except
for the Central station where measure 3 outperforms the other two measures.
Since measure 3 affects four of the six tracks in the Central station and mea-
sure 2 only two, it is not surprising that the third measure leads to (locally)
better results than measure 2.

Dividing the knock-on delay per hour by the number of trains, the average
amount of knock-on delay per train per hour is obtained. Doing this for
the results in Table 6, we get that for the iterative situation the average
knock-on delay per train per hour equals 0.89%(= 75.1%/84) of the total
delay in the reference situation while for measure 1 (a, b and ¢) this becomes
0.80%(= 63.6%/80), 0.71%, and 0.68%, respectively. Thus, having fewer
trains not only leads to less knock-on delay in total and thus also a smaller
weighted real travel time, but also causes less knock-on delay per train. We
emphasize once more that we do not claim to have found the optimal set of
trains or its size, but just use this measure to show that removing some trains
from the system helps to improve the robustness. The decreasing marginal
impact of going from 4 to 6 or from 6 to 8 removed trains, however, shows
that this improvement is limited.

In contrast with the other rows, the weighted real travel time has increased
for measure 2. This is due to an increase in nominal travel time as a con-
sequence of the required transfers for the passengers that want to end up
in the Central station. Thus the advantage for the passengers who gain by
avoiding the stop is smaller than the disadvantage for the passengers with the
Central station as destination. However, considering the other performance
indicators, we see that the gain in buffer time due to this measure affects
the amount of knock-on delay and the percentage of extra delayed trains
positively. Thus, we can conclude that this measure turns out to be good for
the punctuality of the trains but not when considering the passengers’ real
travel time.
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6. Conclusion

In this paper, a new way to improve the robustness in railway bottlenecks
is introduced. Based on a route choice module for solving the train routing
problem and a timetabling module, we significantly increase the minimal
time span between any two trains in a station area. As the modifications
suggested by the presented algorithm require only timetable changes and
route changes within the station, the cost for the railway operator and the
railway infrastructure manager is very small. Moreover, this paper presents
a way to improve the perception of the passengers’ real travel time, which
is an important quality measure. Computational results for the Brussels’
area, the largest bottleneck in the Belgian railway network, predict that by
using the iterative procedure of the route choice module and the timetabling
module an average gain in robustness of 6.2% (with a standard deviation of
1.04%) can be achieved. This improvement is due to a decrease in knock-on
delay of about 25% for some delay scenarios and a reduction in the number
of trains that are hindered during their passage through the Brussels’ area
of, again, 25%.

The methodology that is introduced in this paper is also used to assess the
impact of three possible measures. From our study, we can conclude that
applying our algorithm to the system with a slightly reduced train offer,
results in an increased level of robustness up to 13.1%, a remarkable decrease
in knock-on delay of nearly 50%, and a reduction in the number of extra
delayed trains of more than 70%.

Some thoughts for further research are: including the passenger flows and
potential delays in the route choice module and the timetabling module to
further increase the performance of the algorithms considering robustness.
Some other ideas are to allow platform changes or small modifications to the
timetable during the route choice module or to explicitly incorporate changes
in the order of trains during the timetable optimization phase without losing
feasibility.
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