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Locating a single facility and a high-speed line
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Abstract

In this paper we study a facility location problem in the plane in which a single
point (facility) and a rapid transit line (highway) are simultaneously located in order
to minimize the total travel time from the clients to the facility, using the L1 or
Manhattan metric. The rapid transit line is given by a segment with any length and
orientation, and is an alternative transportation line that can be used by the clients
to reduce their travel time to the facility. We study the variant of the problem in
which clients can enter and exit the highway at any point. We provide an O(n3)-time
algorithm that solves this variant, where n is the number of clients. We also present
a detailed characterization of the solutions, which depends on the speed given in the
highway.

1 Introduction

Suppose we are given a set of clients represented as a set of points in the plane, and a
service facility represented as a point to which all clients have to move. Every client can
reach the facility directly, or use an alternative rapid transit line called highway in order
to reduce the travel time. The highway is a straight line segment of arbitrary orientation.
If a client moves directly to the facility, it moves at unit speed and the distance traveled is
the Manhattan or L1 distance to the facility. In the case where a client uses the highway,
it travels the L1 distance at unit speed to one point of the highway, traverses with a speed
v > 1 the Euclidean distance to other highway point, and finally travels the L1 distance
from that point to the facility at unit speed. All clients traverse the highway at the same
speed. The highway is used by a client point whenever it saves time to reach the facility.
Given the set of points representing the clients, the facility location problem consists in
determining at the same time the facility point and the highway in order to minimize the
total weighted travel time from the clients to the facility. The weighted travel time of a
client is its travel time multiplied by a weight representing the intensity of its demand.

Recent papers have dealt with geometric problems considering travelling distances as a
combination of planar and network distances. Carrizosa and Rodŕıguez-Ch́ıa [10] intro-
duced the p-facility min-sum location problem on the plane with a metric induced by a
gauge and a finite set of rapid transit lines giving the network distance. This problem was
further developed by Gugat and Pfeiffer [15], and Pfeiffer and Klamroth [21]. Brimberg et
al. [7, 8] studied the location of a new single facility considering given regions of distinct
distance measures. All these papers consider the well-known Weber problem under a new
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metric. Other papers can be found in the context of the combination of the L1 distance
with the network distance. Abellanas et al. [1] introduced the time metric model: Given
an underlying metric, the user can travel at speed ν(h) when moving along a highway
h or unit speed elsewhere. The particular case in which the underlying metric is the L1

metric and all highways are axis-parallel segments of the same speed, is called the city

metric [4]. In the scenario of setting up an optimal distance network that minimizes the
maximum travel time among a set of points, several problems have been recently investi-
gated in detail [3, 5, 9]. Other similar and more general models were studied by Korman
and Tokuyama [18]. See [17] and [13] for surveys on highway location and extensive facility
location problems, respectively.

A similar problem consisting in simultaneously locating a service facility point and a high-
speed line (i.e. highway) of fixed length was recently studied by Espejo and Rodŕıguez-
Ch́ıa [14] and Dı́az-Báñez et al. [12]. The authors considered that highway is a turn-

pike [18], that is, clients can enter and exit the highway only at the endpoints. A first
solution was introduced by Espejo and Rodŕıguez-Ch́ıa, and after that an improved so-
lution was given by Dı́az-Báñez et al. The problem aims to minimize the total weighted
travel time from the demand points to the facility service, and can be solved in O(n3)
time [12], where n is the number of clients. Dı́az-Báñez et al. [11] continued the study
of this variant by considering the min-max optimization criterion. They minimize the
maximum time distance from the clients to the facility point.

In this paper we study a related problem in which the length of the highway is variable,
that is, it is not fixed in advance as part of the input of the problem, and clients can
enter and exit the highway at any point. Due to the latter condition, highway is called
freeway [18]. Since both entering and leaving the highway are allowed at all its points,
then the structure (i.e. highway) is continuously integrated in the plane. We minimize the
total weighted transportation time from the demand points to the facility. The problem
of locating a min-max freeway of fixed length was solved by Dı́az-Báñez et al. [11] in
O(n log n) time.

The following notation is introduced in order to formulate the problem. Let S be the set
of n demand points, f be the service facility point, h be the highway, and v > 1 be the
speed in which demand points move along h. Given a demand point p, wp > 0 denotes the
weight of p. The travel time between a demand point p and the service facility f , denoted
by dh(p, f), is equal to:

min

{

‖p− f‖1,
minq1,q2∈h

{

‖p− q1‖1 + ‖q1−q2‖2
v

+ ‖q2 − f‖1
} (1)

The problem can be formulated as follows:

The Freeway and Facility Location problem (FFL-problem) Given a set S of n
demand points, the weight wp > 0 of each point p of S, and fixed speed v > 1, locate the
facility point f and the highway h in order to minimize the next function:

Φ(f, h) :=
∑

p∈S
wp · dh(p, f). (2)

Our results. We first show that there exist optimal solutions of the FFL-problem in
which the highway h has infinite length and the facility point f is located on h. We then
consider only optimal solutions satisfying these properties. We second show that for all
demand points p the shortest path from p to the facility point f has one of three possible
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shapes: (a) p moves directly to f , (b) p first moves vertically to reach h and after that
moves along h to reach f , and (c) p first moves horizontally to reach h and after that
moves along h to reach f . For each demand point, the shape of its shortest time path
to f depends on both the speed v in which demand points moves along h and the slope
of h. This discretization on the shortest path shapes allows us to simplify the expression
of dh(p, f) and then to obtain a clear expression of the objective function Φ(f, h). Using
geometric obervations, we reduce the search space of the optimal solutions. This is done
by considering the grid G defined by all axis-parallel lines passing through the demand
points. We prove the existence of optimal solutions (f, h) that satisfy one of the following
two properties: (1) h passes through a demand point and f belongs to a line of grid G,
and (2) f is a vertex of G. The discretization of the search space permits us to obtain the
main result of this paper, a general O(n3)-time algorithm to solve the FFL-problem. Our
algorithm divides the search into two cases that correspond to the above two properties.

As a surprising result, we prove that when speed v is greater than 3
√
2

4
≈ 1.060660172 the

algorithm can avoid the search of optimal solutions satisfying property (2) because in that
case there always exists an optimal solution which holds property (1). This result simplifies
the algorithm when speed exceeds that bound. We finally present three examples, two of
them showing that when speed is increased and we keep the same configuration of demand
points the shapes of the shortest time paths can change. A third example shows that when

speed is less than 3
√
2

4
, there exist configurations in which the optimal solution satisfies

property (2).

Outline. The discretization on the shapes of the shortest paths from the demand points
to the facility is stated in Section 2. In Section 3 we show how the search space of optimal
solutions can be reduced. In Section 4 the algorithm to solve the FFL-problem is presented
and in Section 5 we give the refinement of it. In Section 6, the examples are presented.
Finally, in Section 7, we present the conclusions and further research.

2 Discretization of the shortest paths

Any solution to our problem will be encoded by a pair of elements (f, h), where f is the
facility point and h is the highway. Given f and h, we say that a demand point p does
not use h (or goes directly to f) if dh(p, f) is equal to ‖p − f‖1. Otherwise we say that p
uses h. Given any point u of the plane, let xu and yu denote the x− and y−coordinates
of u, respectively.

Claim 2.1 Let p1 and p2 be demand points using the highway h such that they move in

contrary directions along h. Let segments s1, s2 ⊆ h denote the portions of h traversed by

p1 and p2, respectively. Segments s1 and s2 have disjoint interiors.
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Proposition 2.2 There exists an optimal solution of the FFL-problem in which the facil-

ity point is located on the highway.

Proof. Let (f, h) denote an optimal solution of the FFL-problem and suppose that f does
not belong to h. Let h′ be a translation of h such that f belongs to h′. We select h′ so
that to satisfy a condition that will be stated later. Let p be a demand point. If p does
not use h then:

dh′(p, f) ≤ ‖p− f‖1 = dh(p, f). (3)

Otherwise, if p uses h, let q1, q2 ∈ h be points such that

dh(p, f) = ‖p− q1‖1 +
‖q1 − q2‖2

v
+ ‖q2 − f‖1.

Let q3 be the point f + (q1 − q2), which belongs to the line containing h′. Observe from
Claim 2.1 that we can select h′ so that point q3 belongs to h′ for every demand point p

using h. Then, by using the triangular inequality with the L1 metric, we obtain:

dh′(p, f) ≤ ‖p− q3‖1 +
‖q3 − f‖2

v

= ‖p− q1 + (q2 − f)‖1 +
‖q1 − q2‖2

v

≤ ‖p− q1‖1 +
‖q1 − q2‖2

v
+ ‖q2 − f‖1

= dh(p, f) (4)

From equations (7) and (4) we have Φ(f, h′) =
∑

p∈S wp · dh′(p, f) ≤∑p∈S wp · dh(p, f) =
Φ(f, h). Then the pair (f, h′) must be an optimal solution and the result thus follows. �

Results similar to Propostion 2.2, stating that the facility point belongs to the correspond-
ing highway, can be found in [11,14]. Observe from equations (2) and (7) that there always
exists an optimal solution (f, h) to the FFL-problem in which the length of h is infinite.
We then assume from this point forward that every solution satisfies that the highway is a
straight line and the facility point belongs to the highway. Observe that this assumption
does not have negative consequences, due to the fact that in practice a highway of infinite
length is not possible. In fact, if a solution (f, h) to the problem is such that h is a straight
line, then (f, h′′) is also an optimal solution, where h′′ ⊂ h is the segment of minimum
length such that every demand point both enter and exit h on a point of h′′.

Let α always denote the non-negative angle of the highway with respect to the positive
direction of the x-axis. Unless otherwise specified, we assume 0 ≤ α ≤ π

4
. Observe that if

α > π
4
we can, by properties of L1 and L2 metrics, modify the coordinate system so that

angle α satisfies 0 ≤ α ≤ π
4
.

Given highway h and a demand point p, let p′ be the intersection point between h and
the vertical line passing through p. Similarly, let p′′ be the intersection point between h

and the horizontal line passing through p. Let hp′ denote the half-line contained in h that
emanates from p′ and does not contain p′′, and hp′′ denote the half-line contained in h

that emanates from p′′ and does not contain p′. Notice from the assumption 0 ≤ α ≤ π
4

that given h and a demand point p, p′ is the nearest point to p on h under the L1 metric.

The next lemma characterizes the way in which demand points move optimally to the

facility. Let ϕv = π
4
− arcsin

(√
2

2v

)

. Since v > 1 we have 0 < ϕv < π
4
.
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Lemma 2.3 Given the highway h and the facility point f located on h, the following holds

for all demand points p. If 0 ≤ α ≤ ϕv then p moves first to p′ and after that moves to f

using h. Otherwise, if ϕv < α ≤ π
4
, the next statements are true:

(a) If f ∈ hp′ then p moves first to p′ and after that moves to f using h.

(b) If f ∈ hp′′ then p moves first to p′′ and after that moves to f using h.

(c) If f ∈ h \ (hp′ ∪ hp′′) then p moves directly to f without using h.

Proof. Let p be a demand point and assume w.l.o.g. that p is below h. Consider the
function g(u) := ‖p − u‖1 + ‖u−f‖2

v
for all u ∈ h. Notice that g is convex because it is

a sum of two convex functions. Then any local minimum of g is a global minimum. Let
θ = π

4
− α.

Suppose 0 ≤ α ≤ ϕv . Given ε > 0 small enough, let u1 ∈ h \ hp′ and u2 ∈ hp′ be the
points such that ‖p − u1‖1 = ‖p − u2‖1 = ‖p − p′‖1 +

√
2ε. Refer to Fig. 1.

p

p′

p′′

h

θu1

u2

ε

α

Figure 1: Proof of Lemma 2.3. The boundary of the square represented with solid lines is the
set of points u such that ‖p− u‖1 = ‖p− p′‖1, and the perimeter of the square represented with
dotted lines is the set of points u such that ‖p− u‖1 = ‖p− p′‖1 +

√
2ε.

Then we have the following:

g(u1)− g(p′) =
√
2ε+

‖u1 − f‖2 − ‖p′ − f‖2
v

≥
√
2ε− ‖p′ − u1‖2

v

= ε

(√
2− 1

sin θ · v

)

≥ ε

(√
2− 1

sin(π
4
− ϕv) · v

)

= ε





√
2− 1

sin
(

arcsin
(√

2

2v

))

· v





= 0 (5)
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g(u2)− g(p′) =
√
2ε+

‖u2 − f‖2 − ‖p′ − f‖2
v

≥
√
2ε− ‖p′ − u2‖2

v

= ε

(√
2− 1

cos θ · v

)

≥
√
2ε

(

v − 1

v

)

> 0 (6)

From equations (5) and (6) we conclude that g(p′) is the minimum of g. Therefore we
have dh(p, f) = g(p′) and the first part of the lemma thus follows.

Suppose now ϕv < α ≤ π
4
. Then we have three cases:

Case 1: f ∈ hp′ . On one hand we have g(u) > g(p′) for all points u ∈ h\hp′ . On the other
hand, if ε > 0 is small enough and u2 ∈ hp′ is the point such that ‖p−u2‖1 = ‖p−p′‖1+

√
2ε,

then g(u2) − g(p′) = ε
(√

2− 1

cos θ·v
)

> 0. Therefore, dh(p, f) = g(p′) and statement (a)
follows.

Case 2: f ∈ hp′′ . Let ε > 0 be a small enough value. On one hand, if u1 ∈ hp′′ is the point
such that ‖p− u1‖1 = ‖p− p′′‖1 +

√
2ε, then g(u1)− g(p′′) = ε

(√
2− 1

cos θ·v
)

> 0. On the

other hand, if u2 ∈ h \ hp′′ is the point such that ‖p− u2‖1 = ‖p− p′′‖1 −
√
2ε, then

g(u2)− g(p′′) = ε

(

1

sin θ · v −
√
2

)

> ε

(

1

sin
(

π
4
− ϕv

)

· v −
√
2

)

= 0

Therefore, dh(p, f) = g(p′′) and statement (b) follows.

Case 3: f ∈ h \ (hp′ ∪ hp′′). If θ = 0 then f is one of the nearest points to p on h by

considering the L1 metric. Thus g(u) = ‖p− u‖1 + ‖u−f‖2
v

≥ ‖p− u‖1 ≥ ‖p− f‖1 = g(f).
Otherwise, if θ > 0, we proceed as follows. On one hand we have g(u) > g(f) for all points
u ∈ h to the left of f . On the other hand, if ε > 0 is small enough and u2 ∈ h is the nearest
point to f satisfying ‖p− u2‖1 = ‖p− f‖ −

√
2ε, then g(u2)− g(f) = ε

(

1

sin θ·v −
√
2
)

> 0.
Therefore, dh(p, f) = g(f) and statement (c) follows. �

Fig. 2 illustrates Lemma 2.3. Because of Lemma 2.3, the travel time dh(p, f) between a

h
f

f

h

a) b)

Figure 2: a) If 0 ≤ α ≤ ϕv then all points move vertically to h. b) if ϕv < α ≤ π

4
then some

points move vertically to h, some other points move horizontally, and the rest of the points move
directly to f .
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demand point p and facility f simplifies to:

min











‖p − f‖1,
‖p − p′‖1 + ‖p′−f‖2

v
,

‖p − p′′‖1 + ‖p′′−f‖2
v

(7)

Given a solution (f, h) to the FFL-problem, we can always partition the set S of demand
points into there sets S1 := S1(f, h), S2 := S2(f, h), and S3 := S3(f, h) as follows. Set S1

contains the points p ∈ S such that xp ≤ xf and yp ≥ yf and the points q ∈ S such that
xq ≥ xf and yq ≤ yf . Set S2 contains the points p ∈ S such that xp < xf and p is either
on or below h, and the points q ∈ S such that xq > xf and q is either on or above h. Set
S3 is equal to S \ (S1 ∪ S2). It is straightforward to obtain what follows (refer to Fig. 3).

f

h

α

p1

p2

p3

xp2

yp3

f

h

α

p1

p2

p3

xp2

yq

xp1

xp3

a) b)

Figure 3: Points p1, p2, and p3 belong to S1, S2, and S3, respectively. In case a) we have
0 ≤ α ≤ ϕv. In case b) we have ϕv < α ≤ π

4
.

If 0 ≤ α ≤ ϕv then dh(p, f) is equal to:










|yp − yf |+ |xp − xf | tanα+
|xp−xf |
cosα·v if p ∈ S1

|yp − yf | − |xp − xf | tanα+
|xp−xf |
cosα·v if p ∈ S2

−|yp − yf |+ |xp − xf | tanα+
|xp−xf |
cosα·v if p ∈ S3

and the objective function Φ(f, h) equals:
∑

p∈S1

wp|yp − yf |+
∑

p∈S2

wp|yp − yf | −
∑

p∈S3

wp|yp − yf |+

tanα





∑

p∈S1

wp|xp − xf | −
∑

p∈S2

wp|xp − xf |+
∑

p∈S3

wp|xp − xf |



+

1

cosα · v
∑

p∈S
wp|xp − xf | (8)

Otherwise, if ϕv < α ≤ π
4
, then dh(p, f) is equal to:











|xp − xf |+ |yp − yf | if p ∈ S1

|yp − yf | − |xp − xf | tanα+
|xp−xf |
cosα·v if p ∈ S2

|xp − xf | − |yp − yf | cotα+
|yp−yf |
sinα·v if p ∈ S3

and Φ(f, h) equals:
∑

p∈S1

wp (|xp − xf |+ |yp − yf |) +
∑

p∈S2

wp|yp − yf |+
∑

p∈S3

wp|xp − xf |+
(

1

cosα · v − tanα

)

∑

p∈S2

wp|xp − xf |+
(

1

sinα · v − cotα

)

∑

p∈S3

wp|yp − yf | (9)
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3 Reducing the search space

Let G be the grid defined by the set of all axis-parallel lines passing through the elements
of S.

h

h

ff
a) b)

Figure 4: a) Lemma 3.1 (a). b) Lemma 3.1 (b)

Lemma 3.1 There always exists an optimal solution (f, h) to the FFL-problem satisfying

one of the next statements: (a) h contains a point of S and f is on a line of grid G, and

(b) f is a vertex of grid G. Refer to Fig. 4.

Proof. Let (f, h) be an optimal solution of the FFL-problem satisfying neither condition
(a) nor condition (b). Using local linear perturbations, we will transform (f, h) into other
optimal solution that satisfies at least one of these conditions.

Assume first the case where ϕv < α ≤ π
4
. Let δ1 ≥ 0 (resp. δ2 ≥ 0) be the smallest value

such that if we translate both f and h with vector (−δ1, 0) (resp. (δ2, 0)) then f belongs
to a vertical line of G or h contains a point of S. Given ε ∈ [−δ1, δ2], let fε and hε be f

and h translated with vector (ε, 0), respectively. Using Lemma 2.3, we partition S into
four sets Z1, Z2, Z3, and Z4 as follows. Set Z1 (resp. Z2) contains the demand points
doing a rightwards (resp. leftwards) movement to reach h. Set Z3 (resp. Z4) contains the
demand points doing only a downwards (resp. upwards) movement to reach h. Observe
that:

dhε
(p, fε)− dh(p, f) =















ε if p ∈ Z1

−ε if p ∈ Z2

ε · cα if p ∈ Z3

−ε · cα if p ∈ Z4

where cα = tanα − 1

cosα·v . Let Wi denote
∑

p∈Zi
wp, (i = 1, 2, 3, 4). Thus, for any

ε ∈ [−δ1, δ2], the variation of objective function when we translate both f and h with
vector (ε, 0) is the following:

Φ(fε, hε)−Φ(f, h) =
∑

p∈S
wp · (dhε

(p, fε)− dh(p, f))

=
∑

p∈Z1

wpε+
∑

p∈Z2

wp(−ε) +

∑

p∈Z3

wp(εcα) +
∑

p∈Z4

wp (−εcα)

= ε (W1 −W2 + cα(W3 −W4))

Since (f, h) is optimal we must have Φ(fε, hε)−Φ(f, h) ≥ 0 for all ε ∈ [−δ1, δ2]. It implies
W1 −W2 + cα(W3 −W4) = 0 and Φ(fε, hε) = Φ(f, h) for all ε ∈ [−δ1, δ2]. Therefore, by
translating both f and h with vector either (−δ1, 0) or (δ2, 0), we ensure that f is on a
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vertical line of G or h passes through a point of S, or both conditions. If it holds only that
f is on a vertical line of G, then we repeat the same operation in the vertical direction in
order to ensure that f is on a horizontal line of G or h passes through a point of S, and
condition (a) or condition (b) holds. Otherwise, if it holds only that h passes through a
point of S, then it is straightforward to prove, by using similar arguments, that f can be
translated along h in order to ensure that f belongs to a line of G, that is either vertical or
horizontal, and condition (a) holds. In fact, for some demand point p of S, f will coincide
with the point in which p enters h, that is, p′ or p′′.

In the case where 0 ≤ α ≤ ϕv every demand point p moves vertically to h (Lemma 2.3),
and we can proceed as follows by using arguments similar to the above ones. We first
translate vertically both f and h with the same vector in order to ensure that h contains
a point of S. After that, f is translated along h if necessary in order to f belongs to a
vertical line of G and condition (a) holds. The lemma thus follows. �

Corollary 3.2 If α ≤ ϕv then there is an optimal solution satisfying Lemma 3.1 (a).

4 The algorithm to solve the FFL-problem

Theorem 4.1 The FFL-problem can be solved in O(n3) time.

Proof. We find an optimal solution by solving two cases separately. The first case is
when solution satisfies Lemma 3.1 (a), and the second case is when solution satisfies
Lemma 3.1 (b).

In order to solve the first case we find for each demand point p and each line ℓ of G an
optimal angle α such that Φ(fα, hα) is minimized, where hα is the line passing through
p whose angle with respect to the positive direction of the x-axis is equal to α, and fα
is the intersection point between ℓ and hα. Assume w.l.o.g. that ℓ is vertical and p is
located to the left of ℓ. It is easy to observe from equations (8) and (9) that for any
α ∈ [0, π

4
] the expression of Φ(fα, hα) has the form b1 + b2 tanα + b3 cotα + b4

cosα
+ b5

sinα
,

where b1, b2, b3, b4, b5 are constants. Furthermore, if we progressively increase the value of
α from 0 to π

4
, that expression changes whenever sets S1, S2, and S3 change, that is, when

hα crosses a demand point, fα crosses a horizontal line of G, or α = ϕv . Then consider
the sequence 0 = α0 < α1 < · · · < αm = π

4
of m+ 1 = O(n) angles, where each angle αi

(1 ≤ i < m) is such that either hαi
contains a demand point, fαi

belongs to a horizontal
line of grid G, or αi = ϕv. Notice then that the expression of Φ(fα, hα) is the same for all
α ∈ [αi, αi+1] (0 ≤ i < m). If we preprocess the demand points S by constructing the dual
arrangement of S [20], such a sequence can be obtained in O(n) time by using both the
Zone Theorem [20] and the order of the demand points with respect to the y-coordinate.
Observe that if for a value of i we know the expression of Φ(fα, hα) in the interval [αi, αi+1],
then Φ(fα, hα) can be minimized in constant time in that interval. Furthermore, if hαi+1

contains a demand point or fαi+1
belongs to a horizontal line of G, then the expression of

Φ(fα, hα) in the interval [αi+1, αi+2] can be obtained in constant time from the expression
of Φ(fα, hα) in the interval [αi, αi+1]. It is easy to see now that Φ(fα, hα), 0 ≤ α ≤ π

4
, can

be minimized in O(n) time by minimizing Φ(fα, hα) in [αi, αi+1] for i = 0, 1, . . . ,m − 1.
Since there are n demand points and G has 2n lines, then an overall O(n3)-time algorithm
is obtained.

We can proceed similarly in order to solve the second case. We find an optimal solution
(u, h) for each vertex u of the grid G as follows. Let u be a vertex of G. Given an angle
α, let hα be the line passing through u, whose angle with respect to the positive direction

9



of the x-axis is equal to α. Then, by Corollary 3.2, we look for an angle α ∈ (ϕv ,
π
4
]

such that the objective function Φ(u, hα) is minimized. It follows from equation (9) that
the expression of Φ(u, hα) has the form c1 + c2 tanα + c3 cotα + c4

cosα
+ c5

sinα
for any

α ∈ (ϕv,
π
4
], where c1, . . . , c5 are constants. If we progressively increase α from ϕv to π

4

the expression of Φ(u, hα) keeps unchanged as long as hα does not cross a demand point.
The sorted sequence of values of α in which it happens can be obtained in linear time
by using duality [20]. That sequence of values induces a partition of the interval (ϕv ,

π
4
]

into intervals where in each of them the expression of Φ(u, hα) is constant. We can now
continue as was done above to solve the first case. Since G has O(n2) vertices then an
overall O(n3)-time algorithm is thus obtained. The result thus follows. �

5 A refinement of the algorithm

Theorem 4.1 shows an algorithm that solves the FFL-problem by dividing the search of
optimal solutions into two steps. It first looks in O(n3) time for an optimal solution that
satisfies Lemma 3.1 (a), and after that looks within the same time complexity for an
optimal solution satisfying Lemma 3.1 (b). In the following we show that for “reasonable”
values of speed v we can simplify the algorithm of Theorem 4.1 by finding only optimal
solutions that hold Lemma 3.1 (a). We will use the next technical lemma.

Lemma 5.1 Let a, b, c, and v > 3
√
2

4
be non-negative constants and F : (0, π

2
) → R be a

function so that

F (x) = a

(

1− v sinx

cos x

)

+ b

(

1− v cos x

sinx

)

+ c

for all x ∈ (0, π
2
). Then next statements are true:

(a) If a = 0 and b = 0 then F is constant.

(b) If a > 0 and b = 0 then F is monotone decreasing.

(c) If a = 0 and b > 0 then F is monotone increasing.

(d) If a > 0 and b > 0 then F has no minima.

Proof. Statement (a) is immediate. Let F ′ be the first derivative of F and observe that:

F ′(x) = a

(

sinx− v

cos2 x

)

+ b

(

v − cos x

sin2 x

)

If a > 0 and b = 0 then limx→0+ F (x) = a, limx→π
2

− F (x) = −∞, and equation F ′(x) = 0

has no solution in (0, π
2
) because v > 1. Therefore, F (x) is a monotone decreasing function

and statement (b) thus holds.

If a = 0 and b > 0 then limx→0+ F (x) = −∞, limx→π
2

− F (x) = b, and equation F ′(x) = 0

has no solution in (0, π
2
) because v > 1. Therefore, F (x) is a monotone increasing function

and statement (c) thus holds.

Consider a > 0 and b > 0. Since limx→0+ F (x) = limx→π
2

− F (x) = −∞ it suffices to prove

that equation F ′(x) = 0 has only one solution which must be a global maximum of F .
Equation F ′(x) = 0 is equivalent to equation

G(x) :=
sin2 x(v − sinx)

cos2 x(v − cos x)
=

b

a

10



We will prove that equation G′(x) = 0 has no solution in (0, π
2
), which implies that

equation G(x) = b
a
has a unique solution in (0, π

2
) because limx→0+ G(x) = 0 < b

a
<

+∞ = limx→π
2

− G(x). This will complete the proof.

It is straightforward to see that equation G′(x) = 0 is equivalent to equation H(x) := 0,
where H(x) is equal to:

2(v − sinx)(v − cos x) + sinx cos x(1− v(sin x+ cos x))

Consider the function I : (0, π
2
) → R so that

I(x) = 2(v − sinx)(v − cos x) + sinx cos x(1−
√
2v)

for all x ∈ (0, π
2
). Since sinx+ cos x ≤

√
2 and sinx cos x > 0 for all x ∈ (0, π

2
), we have

H(x) ≥ I(x) for all x ∈ (0, π
2
). We now show that the minimum of I(x) in (0, π

2
) is greater

than zero, implying equation H(x) = 0 has no solution.

I ′(x) = 2(− cos x(v − cos x) + sinx(v − sinx)) +

(1−
√
2v)(cos2 x− sin2 x)

= 2(cos x− sinx)(cos x+ sinx− v) +

(1−
√
2v)(cos x− sinx)(cos x+ sinx)

= (cos x− sinx)
(

(3−
√
2v)(sinx+ cos x)− 2v

)

If 3 −
√
2v < 0 then there is no x ∈ (0, π

2
) such that (3 −

√
2v)(sinx + cos x) − 2v = 0

because sinx+ cos x is positive for all x ∈ (0, π
2
). Suppose 3−

√
2v ≥ 0. Then we have:

(3−
√
2v)(sinx+ cos x)− 2v ≤ (3−

√
2v)

√
2− 2v

= 3
√
2− 4v

< 0

and thus there is no x ∈ (0, π
2
) such that (3 −

√
2v)(sin x + cos x) − 2v = 0. Therefore,

I ′(x) = 0 if and only if cos x− sinx = 0, that is, x = π
4
. Let us prove that I(π

4
) > 0.

I
(π

4

)

= 2

(

v −
√
2

2

)2

+
1

2

(

1−
√
2v
)

= 2v2 − 5
√
2

2
v +

3

2

The roots of polynomial P (x) := 2x2 − 5
√
2

2
x+ 3

2
are respectively equal to 1

4

(

5
√
2

2
−

√
2

2

)

and 1

4

(

5
√
2

2
+

√
2

2

)

= 3
√
2

4
. Then we conclude that P (v) = I

(

π
4

)

> 0 because the main

coefficient of P (x) is positive, 3
√
2

4
is the greatest root of P (x), and v > 3

√
2

4
. Since

limx→0+ I(x) = limx→π
2

− I(x) = 2v(v − 1) > 0 and I(x) > 0 at the unique extreme point

x = π
4
, then I(x) > 0 for all x ∈ (0, π

2
). Therefore, H(x) > 0 for all x ∈ (0, π

2
), equation

G′(x) has no solution in (0, π
2
), and then F (x) has only one extreme point in (0, π

2
) which

is a global maximum. The lemma follows. �

Lemma 5.2 If speed v is greater than 3
√
2

4
≈ 1.060660172, then there always exists an

optimal solution (f, h) to the FFL-problem satisfying Lemma 3.1 (a), that is, h contains

a point of S and f is on a line of grid G.
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Proof. It suffices to show that for every solution (f, h), there exists another solution
(f ′, h′) satisfying Lemma 3.1 (a) and Φ(f ′, h′) ≤ Φ(f, h). The proof is as follows.

Let (f, h) be a solution of the FFL-problem so that h contains no demand point. Assume
here angle α satisfies 0 ≤ α < π

2
. If α is such that 0 ≤ α ≤ ϕv, then the result follows

from Corollary 3.2. Therefore, assume ϕv < α ≤ π
2
. We proceed to prove that there exists

another solution (f ′, h′) such that h′ contains a demand point and Φ(f ′, h′) ≤ Φ(f, h).
Consider the sets S2 = S2(f, h) and S3 = S3(f, h) as defined before.

Given an angle β ∈ [ϕv ,
π
2
), let hβ be the line passing through f so that the angle between

hβ and the positive direction of the x-axis is equal to β. Observe then by equation (9)
that Φ(f, h) is equal to:

Φ(f, hα) = a

(

1− v sinα

cosα

)

+ b

(

1− v cosα

sinα

)

+ c

where a, b, and c are non-negative constants that depend on the coordinates of the demand
points and the speed v. Then we can argue what follows by both noting that a > 0 (resp.
b > 0) if and only if S2 (resp. S3) is not empty and using Lemma 5.1.

We can rotate h with center f by either increasing or decreasing α to the value α′ ∈
[ϕv ,

π
2
) in such a way solution (f, hα′) is obtained, where either α′ = ϕv or hα′ contains a

demand point of S2 ∪ S3, and Φ(f, hα′) ≤ Φ(f, h). If α′ = ϕv then the result follows from
Corollary 3.2. Otherwise, if hα′ contains a demand point of S2∪S3, then (f ′, h′) = (f, hα′)
is the desired solution, and to finalize the proof, we translate f ′ along h′, if necessary, as
was done in the proof of Lemma 3.1, in order to ensure f ′ belongs to a line of grid G. The
result thus follows. �

6 Examples

In Fig. 5 and Fig. 6 we show the same example, consisting of nine demand points p1, p2, . . . , p9.
Each demand point is represented by a solid dot, and labeled with a triple, the first two
components are the coordinates and the third component is its weight. Facility point
f is represented by a cross. In both examples optimal solutions satisfy Lemma 3.1 (a),
that is, highway contains a demand point and facility point belongs to a line of grid G.
As expected, when we increase the highway’s speed from the example in Fig. 5 to the
one in Fig. 6, the shortest paths to the facility point change according to the claims of
Lemma 2.3.

p2 = (−9,−2, 8)

p1 = (−11,−0.8, 6)

p4 = (−4, 0.5, 4)

p6 = (1,−2, 26)

p5 = (−1, 3, 19)

p7 = (4,−1.2, 5)

p8 = (8, 5, 8)

p9 = (12, 2.5, 4)

x

y

f

h

p3 = (−8,−3, 12)

Figure 5: The highway contains a demand point and facility point belongs to a line of grid G.
Some points perform an horizontal movement to reach the highway.
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p2 = (−9,−2, 8)

p1 = (−11,−0.8, 6)

p4 = (−4, 0.5, 4)

p6 = (1,−2, 26)

p5 = (−1, 3, 19)

p7 = (4,−1.2, 5)

p8 = (8, 5, 8)

p9 = (12, 2.5, 4)

x

y

f

h

p3 = (−8,−3, 12)

Figure 6: The highway contains a demand point and facility point belongs to a line of grid G. All
points perform only a vertical movement to reach the highway.

In Fig. 5 speed v is equal to 1.2 and highway h of the optimal solution contains point
p3, facility point f = (−1,−0.14335) is on the vertical line passing through p5, and there
are some demand points moving horizontally to reach facility point f . The value of the
objective function Φ(f, h) is equal to 525.83.

In Fig. 6 speed v is equal to 1.5, highway h of the optimal solution contains point p2,
facility f = (−1,−0.7758) is on the vertical line containing p5, and all demand points
move vertically only to reach the highway. Since speed is greater than speed in Fig. 5, the
value of the objective function Φ(f, h) reduces to 471.55.

In Fig. 7 we present a different example consisting of nine demand points p1, . . . , p9, with
the aim of showing the existence of configurations for which optimal solutions satisfy only

Lemma 3.1 (b). In this example speed v is equal to 1.04 < 3
√
2

4
. Highway h of the optimal

solution contains no demand point and facility f = (0, 0) is on a vertex of grid G, in fact,
it is located on both the horizontal line through p7 and the vertical line through p6. The
value of Φ(f, h) is equal to 336.2.

p1 = (−12, 1, 6)

x

y

f

h

p2 = (−9,−2, 2)

p3 = (−5, 3, 4)

p4 = (−4,−5, 1)

p5 = (−2, 5, 19)

p6 = (0,−1, 26)

p7 = (3, 0, 5)

p8 = (6, 8, 1)

p9 = (7, 3, 2)

Figure 7: The highway contains no demand point and facility point is a vertex of grid G.

7 Conclusions and further research

We have solved in O(n3) time the problem of locating at the same time a facility point and
a freeway of variable length, among a set of demand points, in order to minimize the total
weighted travel time from the demand points to the facility. Some examples are presented
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to show that there exist optimal solutions corresponding to each type of solutions that our
algorithm considers.

A natural restriction to be considered in further research of this problem is to upper
bound the length of the highway, that is, to consider that highway has fixed length. In
this case, there also exist optimal solutions in which the facility point belongs to the
highway. This was in fact showed in Proposition 2.2 because in the proof we did not
change the lenght of the highway. It is not hard to see that when the highway’s length is
fixed, the shortest paths from the demand points to the facility point can be discretized
as follows. If 0 ≤ α ≤ ϕv , then we distinguish three regions R1, R2, and R3 as depicted
in Fig. 8 a). Points belonging to R1 ∪ R3 move to the nearest endpoint of h, and points
of R2 move vertically to h. Otherwise, if ϕv < α ≤ π

4
, then eight regions R1, . . . , R8 can

be identified as shown in Fig. 8 b). Points of R1 ∪R2 move to the nearest endpoint of h,
points of R3 ∪R4 move directly to f , points of R5∪R6 move horizontally to h, and points
of R7 ∪R8 move vertically to h.

R1 R2 R3

f

h
f

h

R1

R2R3

R4

R5

R6

R7

R8

a) b)

Figure 8: Discretization when the highway’s length is fixed.

We believe that with the above discretization, the search space of optimal solutions can
be simplified by using a similar (and more detailed) statement as Lemma 3.1. This will
permit to obtain an algorithm similar to the one presented in Theorem 4.1.

Other variant to be considered in further research is the problem of locating at the same
time the facility point and a turnpike of variable length. This will extend [12,14].
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Authors Dı́az-Báñez and Ventura were partially supported by project FEDER MEC
MTM2009-08652 and ESF EUROCORES programme EuroGIGA - ComPoSe IP04 - MICINN
Project EUI-EURC-2011-4306. Korman had the support of the Secretary for Universities
and Research of the Ministry of Economy and Knowledge of the Government of Catalonia
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[14] I. Espejo and A. M. Rodŕıguez-Ch́ıa. Simultaneous location of a service facility and a rapid
transit line. Comput. Oper. Res., 38:525–538, 2011.

[15] M. Gugat and B. Pfeiffer. Weber problems with mixed distances and regional demand. Math-

ematical Methods of Operations Research, 66(3):419–449, 2007.

[16] P-H. Huang, Y. T. Tsai, and C. Y. Tang. A fast algorithm for the alpha-connected two-center
decision problem. Inf. Process. Lett., 85:205–210, 2003.

[17] M. Korman. Theory and Applications of Geometric Optimization Problems in Rectilinear

Metric Spaces. PhD thesis, Tohoku University, 2009. Committee: T. Nishizeki, A. Shinohara,
A. Shioura and T. Tokuyama.

[18] M. Korman and T. Tokuyama. Optimal insertion of a segment highway in a city metric. In
Proc. 14th annual international conference on Computing and Combinatorics, COCOON’08,
pages 611–620, Berlin, Heidelberg, 2008.
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