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Abstract. Vehicle routing variants with multiple depots and mixed fleet present intricate 

combinatorial aspects related to sequencing choices, vehicle type choices, depot choices, 

and depots positioning. This paper introduces a dynamic programming methodology for 

efficiently evaluating compound neighborhoods combining sequence-based moves with 

an optimal choice of vehicle and depot, and an optimal determination of the first customer 

to be visited in the route, called rotation. The assignment choices, making the richness of 

the problem, are thus no more addressed in the solution structure, but implicitly 

determined during each move evaluation. Two meta-heuristics relying on these concepts, 

an iterated local search and a hybrid genetic algorithm are presented. Extensive 

computational experiments demonstrate the remarkable performance of these methods on 

classic benchmark instances for multi-depot vehicle routing problems with and without 

fleet mix, as well as the notable contribution of the implicit depot choice and positioning 

methods to the search performance. The proposed concepts are fairly general, and widely 

applicable to many other vehicle routing variants. 

 

Keywords: Vehicle routing, dynamic programming, local search, multi-depot, fleet mix. 
 

Acknowledgements. Partial funding for this project has been provided by the 

Champagne-Ardenne regional council, France, the Natural Sciences and Engineering 

Council of Canada (NSERC), through its Industrial Research Chair and Discovery Grant 

programs, and by the Fonds de recherche du Québec - Nature et technologies (FRQNT) 

through its Team Research Project program. This support is gratefully acknowledged. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 

_____________________________ 

* Corresponding author: Thibaut.Vidal@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                      Bibliothèque et Archives Canada, 2012 

© Copyright  Vidal, Crainic, Gendreau, Prins and CIRRELT, 2012 



1 Introduction

Vehicle Routing Problems (VRP) with combined assignment choices, such as multi-depot and
mixed-fleet settings, appear prominently in many applications related to transportation, pro-
duction planning, robotics, maintenance, health care or emergency relief. These combinatorial
optimization problems require two levels of decisions, related respectively to the sequencing of
visits to customers into routes, and the assignment of customers to some global resources, such
as depots or vehicle types. Heuristics and meta-heuristics that rely on separate optimization
procedures for addressing each aspect, e.g. separate families of local searches, large neighbor-
hoods or crossovers to work on the order of visits, the depot choices or the vehicle types, may
overlook a wide range of potential solution refinements involving joint changes in the sequenc-
ing and assignment decisions, e.g. swapping two customers and in the meantime changing the
vehicle or the depot assigned to the routes. Thus, most advanced meta-heuristics combine these
decisions within purposeful optimization procedures to achieve notable performance gains (see
Prins 2009b, for example), though the number of combined solution changes tends to become
computationally expensive to investigate.

To contribute towards addressing this challenge, this paper proposes a new bidirectional
dynamic programming approach to optimally manage the choices of vehicle, depot, and first
customer visited in a route, the so-called optimal rotation, directly at the level of route evalu-
ations in vehicle routing heuristics. We thus introduce a new Local Search (LS) in which the
neighborhoods are solely based on customer-visits relocations and arc exchanges, while dynamic
programming-based route evaluation functions produce optimal depot placements, choices and
rotations for each alternative route. Since several advanced meta-heuristics for vehicle rout-
ing problems requires a Split algorithm to optimally segment a solution represented as a giant
tour into several routes, we also derive an advanced Split algorithm with compound vehicle
assignments, depot choices and rotations. The proposed enhanced procedures work with the
same computational complexity as the classic ones from the literature. Thus, the additional
capability we introduce does not lead to any additional computational overhead.

As a proof of concept, these methodologies are integrated and tested within two meta-
heuristics: a simple multi-start Iterated Local Search (ILS) similar to the one of Prins (2009a)
for the capacitated VRP, and a more elaborate Hybrid Genetic Search with Advanced Diversity
Control (HGSADC) similar to the one of Vidal et al. (2012a,b, 2013). Two specific problems are
investigated, the multi-depot fleet mix problem requiring combined decisions on assignments
to vehicles types and depot along with sequencing choices, and the classic multi-depot VRP.
Extensive computational experiments, on small- and large-scale benchmark instances with up
to 960 customers demonstrate the remarkable performance of the proposed meta-heuristics, as
well as the notable contribution of the combined neighborhoods to the search performance.

To facilitate the presentation, we first introduce in Section 2 the problems, notations and
variants considered in our experiments. Sections 3 and 4 describe the proposed methodology for
optimally managing depot, vehicle choices and rotations within route evaluations, and presents
the advanced Split method. The integration of these procedures into a neighborhood-based and
a population-based meta-heuristic is discussed in Section 5. The computational experiments
are reported in Section 6, and Section 7 concludes.
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2 Vehicle routing problems and variants

Vehicle Routing Problems (VRP) aim to design least cost vehicle routes to service geographically
dispersed customers (Toth and Vigo 2002, Cordeau et al. 2007, Golden et al. 2008, Laporte
2009, Vidal et al. 2012c). Emphasis is still growing on this family of problems after 50 years of
research, mostly because of their major economic impact in many application fields, but also
because of the considerable amount of problem variants that must be dealt with to adequately
address practical settings. Practical applications, indeed, lead to a variety of problem attributes
that complement the classic VRP model, and seek to account for customer requirements (e.g.,
schedules, consistency), network and vehicle characteristics (mixed fleet, multiple depots), and
driver’s needs (working hour regulations, lunch breaks) among others.

Two attributes especially, mixed-fleet and multi-depot, are recurrent in many large-scale
logistics applications. The problem combining these attributes, known as the Multi-Depot
Vehicle Fleet Mix Problem (MDVFMP), can be defined as follows. Let G = (V, ℰ) with V =
VDEP∪VCST be a complete undirected graph, in which the d nodes vo ∈ VDEP represent depots
with infinite capacity, and the n nodes vi ∈ VCST stand for customers. Each customer vi is
characterized by a demand for a non-negative amount of product qi. The edges (i, j) ∈ ℰ
represent the possibility of traveling between customers vi and vj for a total travel distance
of cij . Finally, w types of vehicles are available in unlimited quantity, any vehicle k being
characterized by a base acquisition/depreciation cost ek, a per-distance-unit cost uk, and a
capacity Qk. As such, the minimum cost Φ(x, q) to perform a route with distance x and total
demand q is given in Equation (1).

Φ(x, q) = min
k∈{1,...,w}/q≤Qk

{ek + ukx} (1)

The MDVFMP aims to find a set of routes, as well as their assignment to vehicles and
depots, to service each customer once and minimize the total cost. Each route assigned to
any vehicle k shall start and end at the same depot location and carry less than qk of units of
products. A mathematical formulation is given in Equations (2-10). In this model, ℱ represents
a fleet containing a large number of vehicles of each type. The binary variable yio represents
the depot assignment decision, taking value 1 if and only if customer vi is assigned to depot
vo. The binary variable xijko takes value 1 if and only if customer vj is serviced immediately
after vi by vehicle k from depot o. The objective, presented in Equation (2), includes the base
cost of ek of any used vehicle k, and the distance-based cost ukcij . Equations (3-5) ensure that
exactly one depot is chosen for each customer. Equation (6) ensures the conservation of the
flow. Equation (7) enforces the capacity limits for the vehicles, and sub-tours are eliminated
by Equation (8).

Minimize
∑
k∈ℱ

∑
vo∈VDEP

(
∑
vi∈V

ekxoiko +
∑

(vi,vj)∈ℰ

ukcijxijko) (2)

Subject to:
∑

vo∈VDEP

yio = 1 vi ∈ VCST (3)

∑
vi∈V

∑
k∈ℱ

xijko − yio = 0 vj ∈ VCST ; vo ∈ VDEP (4)

∑
vj∈V

xojko′ = 0 vo ∈ VDEP ; vo′ ∈ VDEP ; vo ∕= vi ; k ∈ ℱ (5)
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∑
vj∈V

xjiko −
∑
vj∈V

xijko = 0 vi ∈ V ; vo ∈ VDEP ; k ∈ ℱ (6)

∑
vi∈V

∑
vj∈V

qixijko ≤ Qk vo ∈ VDEP ; k ∈ ℱ (7)

∑
vi∈S

∑
vj∈S

xijko ≤ ∣S∣ − 1 S ∈ VCST ; ∣S∣ ≥ 2 ; vo ∈ VDEP ; k ∈ ℱ (8)

xijko ∈ {0, 1} vi ∈ V; vj ∈ V ; vo ∈ VDEP ; k ∈ ℱ (9)

yiko ∈ {0, 1} vi ∈ V ; vo ∈ VDEP ; k ∈ ℱ (10)

The MDVFMP includes several prominent problems as special cases, such as the Vehicle
Fleet Mix Problem (VFMP) when d = 1, the Multi-Depot VRP (MDVRP) when w = 1, and
the Capacitated VRP (CVRP) when (w, d) = (1, 1). The MDVFMP is also NP-hard as a
generalization of the CVRP.

Contributions explicitly targeted on the MDVFMP are not frequent in the literature, and we
are currently aware of a single meta-heuristic from Salhi and Sari (1997). This neighborhood-
based method relies on the same concepts as the Variable Neighborhood Search, and proceeds
by changing the neighborhoods by increasing size whenever a local optimum is encountered.
Advanced moves that change both the assignment and the sequencing are used once several
simpler neighborhoods have been exhausted. The MDVFMP is also a sub-problem of the
settings encountered by Irnich (2000), Dondo and Cerdá (2007) and Goel and Gruhn (2008),
although a limited fleet has been considered in most cases along with some other problem
attributes.

In contrast, the literature dedicated to its two immediate sub-problems, the MDVRP and the
VFMP, is much more furnished. An extensive survey of all methods for these two sub-problems
is outside the scope of this section, and we refer to Ombuki-Berman and Hanshar (2009), Vidal
et al. (2012c) and Subramanian et al. (2012) to that extent. Several meta-heuristics produce
solutions of remarkable quality. For the MDVRP, the current state of the art results are
produced by the Hybrid Genetic Search with Advanced Diversity Control (HGSADC) of Vidal
et al. (2012a), which relies on efficient crossover and LS-improvement procedures to create new
individuals. Of particular interest is the individual evaluation used in HGSADC, which relies
on both solution quality and contribution to the population diversity. High-quality solutions
have also been generated by the Adaptive Large Neighborhood Search (ALNS) of Pisinger and
Ropke (2007), the parallel iterated tabu search heuristic of Cordeau and Maischberger (2012)
and the hybrid iterated local search and integer programming approach of Subramanian (2012).

For the VFMP, state-of-the-art heuristics are based either on ILS and integer programming
(Subramanian et al. 2012, Subramanian 2012), tabu search (Brandão 2009), variable neighbor-
hood search (Imran et al. 2009), or hybrid genetic algorithms (Liu et al. 2009, Prins 2009b).
The previously-mentioned meta-heuristics enable to adequately address large scale problem
instances, while smaller-size instances may be manageable with exact methods. The integer
programming approach of Baldacci and Mingozzi (2009) especially, based on a set partitioning
formulation, has demonstrated its ability to solve most MDVRP and VFMP instances with up
to 100 customers.

It should finally be noted that most successful hybrid genetic algorithms for the previous
problems (Liu et al. 2009, Prins 2009b, Vidal et al. 2012a,b, 2013) rely on a solution representa-
tion as a giant tour without trip delimiters that does not consider the route segmentation. Such
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a representation reduces the search space and allows for the use of simple crossovers based on
permutations, but requires a Split algorithm to optimally segment the tour into routes when-
ever a full solution is needed (Prins 2004). This latter splitting problem is generally solved as
a shortest path problem on an acyclic auxiliary directed graph (Beasley 1983). For the CVRP,
the VFMP and the MDVRP, advanced Split algorithms with supplementary capabilities have
been proposed, in order to combine the segmentation choices with decisions on vehicle type-to-
customer assignments (Prins 2009b), depot selections (Kansou and Yassine 2010), or potential
route inversions or rotations (Prins et al. 2009). These enhanced procedures were shown to
contribute significantly to solution quality, however, although implicit depot choice and posi-
tioning has been studied in the context of Split algorithms, no such methodology has been to
this date proposed in the context of LS. The next section contributes to fill this gap in the state
of the art, by introducing a new dynamic programming-based approach to efficiently explore
compound LS neighborhoods with sequence changes, optimal vehicle, depot choices and route
rotations.

3 Compound neighborhoods with implicit depot positioning
and vehicle choices

When dealing with vehicle routing variants with combined assignment choices – for example to
depots, days, drivers or vehicle types –, the success of heuristics is often linked to their capacity
to tightly integrate decisions together. Any change in the routes, especially, may influence the
best way to assign these routes to vehicles, depots, or intervals in drivers schedules, or to rotate
the route, such that the exploration of compound neighborhoods is often a key to find new
combined choices that could otherwise look unfavorable when examined separately.

Figure 3 displays three euclidean problem instances where these situations arise. Customers
are represented with diamonds, while depots are represented by larger squares. For the VRP
instance illustrated on the right, the vehicle capacity is Q = 3 and any customer vi for i ∈
{3, . . . , 7} requests one unit of product. All solutions illustrated on the top of this figure are
not the global optimum of the problem, but in fact precisely the second best solution (we listed
all the solutions when generating the instances). The global optimum is presented below.

It is noteworthy that, even for these small problems with seven nodes, for situations I and II
the classical TSP neighborhoods such as 2-opt or Or-opt are insufficient to lead to an optimal
solution. The same happens in situation III with the 2-opt*, Relocate, Swap, Cross and
I-Cross VRP neighborhoods (see Vidal et al. 2012c for a review of these neighborhoods).
Nevertheless, by looking further at the solution changes required to attain the unique global
optimum of our instances, we observe that for cases I and II a simple Or-Opt move of customer
v1 or customers (v1, v6), combined with an optimal placement of the depot v0, i.e. rotation of
the route, resolves the situation. For the case III, the key is to relocate customer v6 with (v3, v4)
and change the depot assigned to the route in a compound way. There is no other manner to
attain this solution by local search without accepting deteriorating transitional moves.

Such multi-attribute compound neighborhoods open the way to critical solution refinements,
but may be computationally expensive to explore. To give an example, searching any classical
2-opt, 2-opt*, Relocate or Swap neighborhood with combined depot choices, vehicle assign-
ments and rotations would take O(dwn3) elementary operations when using a straightforward
approach that tests all combinations. This complexity is too high to address large problems
with meta-heuristics, which usually involve many LS runs.
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Figure 1: Solution improvements using compound moves

To address this challenge, we introduce a new efficient search procedure to explore compos-
ite VRP neighborhoods based on a bounded number of edge exchanges and node relocations
with an optimal choice of vehicle type, depot, and rotation. The proposed approach examines
classic VRP neighborhoods of size O(n2) to produce new alternative sequences of visits, and
relies on dynamic programming and incremental route evaluations to optimally determine the
other attribute decisions. It exploits the fact that any sequence-based neighborhood involving
a bounded number of edge exchanges and vertices relocations, can be assimilated to a recom-
bination of a bounded number of sequences of consecutive visits (Kindervater and Savelsbergh
1997, Vidal et al. 2011). Figure 2 (inspired from Vidal et al. 2011) illustrates this property on
a 2-opt* move, involving two edge exchanges, and on a Relocate move involving a vertex
relocation.

Figure 2: Moves assimilated to recombinations of sequences
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The proposed method requires pre-processing dynamic-programming information on the
O(n2) sub-sequences of each incumbent solution, in order to speed up the computations of
optimal depot positions for each route produced by the LS. The following values are processed
on each subsequence � of visits to customers : the distance C(�) of the sequence (no visit to the
depot is considered), the minimum distance supplement Ĉ(�) to also visit one depot between
the first and the last delivery, and the sum of customers’ demands Q(�). By convention, S(�0)
is set to +∞ if the sequence �0 is empty or restricted to a single customer. Propositions 1 and
2 enable to exploit this informations to perform efficient move evaluations.

Proposition 1. Let the distance supplement ĉij = minvo∈VDEP{cio+ coj− cij} be defined as the
additional distance required to visit the closest depot between customers vi and vj rather than
driving directly. The minimum distance to perform the sequence of visits with the best depot
choice and route rotation is then given by Z(�) = min{Ĉ(�)+c�2(∣�2∣)�1(1), C(�)+ ĉ�1(∣�1∣)�2(1)}.
Proposition 2. For a sequence �0 = (vi) containing a single vertex �0 = (vi), C(�0) = 0,
Ĉ(�0) = +∞, and Q(�) = qi. Furthermore, these values can be derived on larger sequences by
induction on the concatenation operation ⊕ using Equations (11-13):

C(�1 ⊕ �2) = C(�1) + c�1(∣�1∣)�2(1) + C(�2) (11)

Ĉ(�1 ⊕ �2) = min{Ĉ(�1), ĉ�1(∣�1∣)�2(1), Ĉ(�2)} (12)

Q(�1 ⊕ �2) = Q(�1) +Q(�2) (13)

Equations (11-13) can indeed be used in a pre-processing phase to derive characteristic
information on the subsequences of each new incumbent solution, by iteratively appending
single customers at the extremities. This pre-processing phase requires O(n2) calls to the
previous operations. Neighbor solutions, assimilated to recombinations of subsequences, are
then efficiently evaluated using these equations and the values developed on sequences. Because
any local-search move can be assimilated to a bounded number O(1) of concatenations, O(1)
calls to these equations lead to the cost for the new routes.

Any use of Equations (11-13) requires O(d) elementary operations in a case with multiple
depots, otherwise O(1). The factor d appears within the computation of ĉij values. Yet, the
ĉij values can be preprocessed at the beginning of the algorithm in O(dn2), and then be used
for all LS runs. Since for the wide majority of neighborhood-based heuristics the number of
successive LS is, by far, greater than the number of depots d, the amortized compound move
evaluation complexity also drops down from O(d) to O(1) in multi-depot settings.

This methodology thus enables to compute the route distances resulting from any compound
sequence-based move with a best choice of rotation and depot in O(1) amortized time. The
implicit rotation optimization is applicable to many VRP variants, and the additional implicit
choice of depot has to potential to strongly enhance the capacities of meta-heuristics for multi-
depot settings. Finally, in presence of a mixed fleet, the optimal vehicle type can also be chosen
in a compound way in O(w) time, and even O(1) once some cost tables of pseudo-polynomial
size are preprocessed (Prins 2009b).

4 Split algorithm with vehicle choices, depot assignments and
rotations

Before going further with meta-heuristics implementations relying on these concepts, we detail
another methodological result which follows from the previous property: an advanced Split
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algorithm which has the ability to optimally segment the giant tour, choose the vehicles and
the depots, and rotate the routes.
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Figure 3: Advanced Split requirements

Consider the example illustrated in Figure 3. Let �i be the itℎ customer in the giant
tour. The proposed algorithm computes an optimal compound segmentation in three routes
corresponding to three sequences of customers (�1,�2), (�3,. . . ,�6) and (�7,�8), with the best
depot and vehicle choices. Also, notice that for the sequence (�3,. . . ,�6) it is advantageous not
to visit the depot between the sequence extremities �3 and �6, as it would be in a classic Split
procedure, but rather between �3 and �4. The compound detection of these rotations is also
managed by the method.

As in Beasley (1983) and subsequent works, our advanced Split assimilates the problem of
optimally segmenting a giant tour to a shortest path problem on a directed acyclic auxiliary
graph ℋ = (V,A), where V contains n+ 1 nodes indexed from 0 to n. Each arc (i, j) ∈ A with
i < j represents a potential trip visiting the subsequence of customers �i+1 to �j . The cost
ℎij of arc (i,j) corresponds to the cost to serve the associated subsequence of customers. The
proposed approach accounts for rotations and assignments within this cost definition, and thus
ℎij stands for the best cost to service the sequence of customers �i+1 to �j , considered as cyclic
(�j is followed by �i+1) while optimally choosing the depot, vehicle type, and rotation. Section
3 gives the methods to compute all these values on subsequences in O(n2) time.

Once all the costs are determined, applying the Bellman algorithm for undirected acyclic
graphs (see Cormen et al. 2001) on ℋ leads to the best compound segmentation with vehicle
types, depot choices and positioning within the routes. The overall splitting algorithm, given in
Algorithm 1, works in O(n2) time. This complexity of O(n2) is the same as for the basic version
of Split (Beasley 1983, Prins 2004) without depot choices and rotations. In this algorithm, Qmax
denotes the capacity of the largest vehicle type. For the sake of simplicity, we separated the
algorithm into a cost computation phase (equivalent to generating the graph ℋ), and a shortest
path resolution. These two phases could be done simultaneously to avoid storing the costs, but
without impact on the theoretical complexity.

This advanced Split procedure can thus be viewed as a byproduct of advanced subsequence
evaluation procedures. The same observation arose in Vidal et al. (2012b), where different
operators for sequence evaluations were shown to provide the keys to design splitting algorithms
for a wide family of VRP variants. We believe that Split algorithms and local searches with pre-
computations on subsequences take their roots on the same dynamic programming concepts,
and that as we progress in our understanding of these procedures, these common fundamentals
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Algorithm 1 Split with vehicle choice, depot choice and positioning (rotations)

1: //Compute the costs ℎij for 0 ≤ i < j ≤ n in the auxiliary graph ℋ
2: for i = 1 to n do
3: //Single node case
4: � = {�i}, C(�) = 0, Ĉ(�) = +∞, Q(�) = qi and ℎi−1,i = Φ(ĉ�i�i , qi)
5: //Append customers to compute costs on larger routes
6: for each j = i+ 1 to n do
7: if Q(�) + q�j ≤ Qmax then
8: C(�) = C(�) + c�j−1�j

9: Ĉ(�) = min{Ĉ(�), ĉ�j−1�j}
10: Q(�) = Q(�) + q�j
11: ℎi−1,j = Φ(min{Ĉ(�) + c�j�i , C(�) + ĉ�j�i}, Q(�))
12: Solve the shortest path problem on ℋ with costs ℎij , using Bellman algorithm
13: Return the set of routes associated to the set of arcs of the shortest path

become more apparent.

5 Two meta-heuristic applications

The previous move evaluations and Split methodologies have been tested within two types of
methods, a multi-start ILS following the guidelines of Prins (2009b), representing perhaps one of
the simplest alternative for a neighborhood-based meta-heuristic, and an elaborate population-
based meta-heuristic such as HGSADC of Vidal et al. (2012a,b, 2013).

5.1 An iterated local search application

The ILS framework is based on the iterative application of shaking operators and LS-improvement
procedures on an incumbent solution to obtain new –hopefully better– solutions. This process
is repeated until a maximum number of iterations without improvement nIt-ILS is attained.
In addition, as recommended by Prins (2009a), three enhancements have been added to the
method. Firstly, nC solutions are generated at each iteration instead of one, the best solution
being kept for the next iteration. This variant of ILS is sometimes called evolutionary local
search (Wolf and Merz 2007). Secondly, the overall method is started nR times from different
initial solutions. Finally, two alternative search spaces are considered, a giant-tour solution
representation being used during the shaking phases, while a complete solution representation
is used during LS-improvement procedures. We thus rely on the advanced Split procedure of
Section 4 to pass from a giant-tour solution representation to a complete solution while effi-
ciently managing assignment choices and rotations. The general structure of the meta-heuristic
is presented in Algorithm 2. The algorithm starts from a random solution (random permuta-
tion of the giant-tour), and terminates when all nR restarts have been exhausted, or when a
maximum time limit Tmax is attained.

In addition, several studies highlighted the benefits of using intermediate penalized infeasible
solutions with respect to route constraints (Cordeau et al. 1997, Glover and Hao 2011, Vidal
et al. 2012a,b, 2013). Hence, both load and distance constraints are relaxed in our ILS, the cost
Φ(x, q) of a route with distance x and total demand q begin given in Equation (14), where !D
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Algorithm 2 Iterated local search framework
1: sbest-ever ← ø
2: for iR = 1 to nR do
3: sbest ← ø ; iILS = 0
4: (sfeas, sinfeas)←InitializeRandom()
5: while iILS < nIt-ILS and Time() < Tmax do
6: Schildren ← ø
7: for s = sfeas and sinfeas do
8: for iC = 1 to nC do
9: if iILS = k × nR with k ∈ N ∗+ then scurr ← sbest else scurr ← s

10: scurr ←Shaking(s)
11: scurr ←AdvancedSplit(scurr)
12: scurr ←LocalSearch(scurr)
13: Schildren ← scurr
14: if Infeasible(scurr) then Schildren ←Repair(scurr)
15: sfeas ←BestFeasible(Schildren)
16: sinfeas ←BestInFeasible(Schildren)
17: if Cost(sfeas) < Cost(sbest) then sbest ← sfeas ; iILS = 0
18: else iILS = iILS + 1
19: AdaptPenaltyCoefficients()
20: if Cost(sbest) < Cost(sbest-ever) then sbest-ever ← sbest
21: return sbest-ever

and !Q stand for the unit penalties for distance and load excess, respectively. These penalty
coefficients are adapted as in Vidal et al. (2012a,b, 2013) relatively to the proportion of feasible
solutions generated by the LS.

Φ(x, q) = min
k∈{1,...,w}

{ek + ukx+ !D max{0, x−D)}+ !Q max{0, q −Qk}} (14)

The structure of the method has been slightly changed to account for infeasible solutions.
First, it is straightforward to extend the Split algorithm to include penalized infeasibility by
modifying the subsequence evaluations, and examining subsequences � with a total demand
smaller than two times the maximum capacity (Q(�) + q�j ≤ 2×Qmax – Line 7 of Algorithm
1). In addition, two incumbent solutions are used in the ILS, one feasible, and one infeasible.
At each iteration of the ILS, each solution is used to produce nC child solutions. In the event
that no feasible solution is currently known, then only the infeasible incumbent solution is
used. Furthermore, any infeasible solution undergoes a Repair procedure, where the penalty
coefficients are multiplied by a factor of 10, and the LS-improvement procedure is applied to
focus the search towards feasible solutions. A last attempt with a factor of 100 is performed if
the infeasibility remains. The resulting repaired solution is included in the set of offspring.

The LS-improvement procedure is based on 2-opt, 2-opt*, Cross and I-Cross neighbor-
hoods restricted of sequences of less than two vertices. The optimal depot choice and position,
and vehicle type choice is determined in a compound way using the approach of Section 3. A
granularity threshold (Toth and Vigo 2003) is set to limit the neighborhood size, the moves
being tested only between a vertex vi and one of its Γ closest neighbors. Moves are explored in
a random order, any improving move being directly applied.
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Shaking is done by swapping two couples of random customers within the giant tour. Finally,
experimental analyses that adding a probability of Recall, that is, jumping back to the current
best solution, enhances the search performance by letting the method focus further on elite
solution characteristics. We thus included this procedure, and after every nR successive solution
generations without improvement, consider the best solution as starting point for the next
shaking and LS.

5.2 A hybrid genetic search application

To further investigate the contribution of the proposed strategies in the context of a population-
based method, we derived an extension of the HGSADC framework of Vidal et al. (2012a,b,
2013) using the implicit depot management during LS and Split. The method relies on the
following main elements:
∙ An hybridization between genetic algorithms and efficient local-improvement procedures.

The same LS as in Section 5.1 is used.
∙ A solution representation as a giant tour without trip delimiters. It should be noted that

since the depot choice and management is done implicitly by the LS and Split algorithm of
Section 4, there is no need to separate the solution representation among different depots.
∙ A two sub-population scheme to manage feasible and penalized infeasible solutions w.r.t.

route constraints.
∙ A bi-criteria evaluation of individuals, driven by both solution quality and contribution

to the population diversity. This evaluation is used for parent selections and survivors
selections when the population size becomes too large.

Algorithm 3 HGSADC framework

1: SPop = (SFeas, SInf)← InitializePopulation()
2: sbest ← ø ; iHGS = 0 ; iHGS-TOT = 0
3: while iHGS < nIT-HGS and Time() < Tmax do
4: sP1 ← BinTournamentSelection(SPop)
5: sP2 ← BinTournamentSelection(SPop)
6: sOff ← Crossover (sP1, sP2)
7: sOff ← AdvancedSplit(sOff)
8: sOff ← LocalSearch(sOff)
9: SPop ← sOff

10: if Infeasible(sOff) and Alea() < PRep then sOff ← Repair(sOff) ; SPop ← sOff

11: iHGS-TOT = iHGS-TOT + 1
12: if Cost(sOff) < Cost(sbest) then sbest ← sOff ; iHGS = 0
13: else iHGS = iHGS + 1
14: if TooLarge(SFeas) then SelectSurvivors(SFeas)
15: if TooLarge(SInf) then SelectSurvivors(SInf)
16: if iHGS = k × Itdiv with k ∈ N ∗ then Diversification(SPop)
17: if iHGS-TOT = k × Itdec with k ∈ N ∗ then DecompositionPhase()
18: AdaptPenaltyCoefficients()
19: return sbest

The structure of the method is described in Algorithm 3. Initial individuals are first ran-
domly generated and inserted in the appropriate sub-population relatively to their feasibility.
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HGSADC then iteratively selects two individuals by binary tournament in the merged sub-
populations to serve as input the ordered crossover (OX) operator (see Prins 2004), yielding a
single offspring sOff. This offspring undergoes the advanced Split procedure to optimally delimit
and rotate its routes, assign vehicles and depots. Then, sOff undergoes the LS-improvement
procedure of Section 5.1 and is inserted in the population. In case of infeasibility, it is repaired
with probability PRep and added again to the population.

Each sub-population is monitored separately, a survivor selection phase being triggered
whenever a maximum size is attained. In addition, diversification and decomposition procedures
(Vidal et al. 2013) are regularly used to enhance exploration and intensify the search around elite
solution characteristics. The best found solution is returned once nIT-HGS successive iterations
without improvement have been performed or when a time limit Tmax is attained.

6 Computational experiments

Extensive computational experiments are conducted to analyze the contribution of the com-
pound neighborhoods within the ILS and HGSADC metaheuristics, and compare these methods
with state-of-the-art algorithms from the literature. Three main VRP variants are considered:
the CVRP and the MDVRP, two seminal problems covered by a huge literature, and the multi-
depot vehicle fleet mix problem (MDVFMP), a good example of rich problem with compound
attributes. The goal, with the ILS experiments, is not to put forward a new champion method,
but rather to test the impact of the new compound neighborhoods on a simple LS-based meta-
heuristic.

Five sets of benchmark instances are used for the tests. For the CVRP, we rely on the
classic benchmark instances of Christofides et al. (1979) (Set A) and Golden et al. (1998) (Set
B). Set A includes ten instances with uniformly geographically distributed customers, and four
instances with clustered customers. Set B ranges from 200 to 483 customers and displays
geometric symmetries.

Three sets of instances (Sets C-E) are used for multi-depot settings. These instances present
a mix of uniformly distributed customers and clustered customers. Sets C and D of Cordeau
et al. (1997) include 33 MDVRP instances with 50 to 360 customers and two to nine depots. The
last Set E, of fourteen large-scale instances, has been introduced in Vidal et al. (2013) for the
MDVRP with time windows, and is used for the MDVRP by removing time-window constraints.
This set involves 360 to 960 customers and four to twelve depots. MDVFMP instances were
also derived, as in Salhi and Sari (1997), by keeping the same customer locations and demands,
and generating five types of vehicles vk such that Qk = (0.4 + 0.2k) ∗ Q̂, ek = 70 + 10k and
uk = 0.7 + 0.1k for k ∈ {1, . . . , 5}, Q̂ standing for the vehicle capacity in the original instance.
An unlimited fleet is considered in all experiments.

The run time limit for the methods has been set to Tmax = 20 min on the medium-scale
instance sets (Sets A to D) and Tmax = 5 ℎ for the larger instances (Set E). The parameter
setting of HGSADC is kept the same as in Vidal et al. (2012a,b, 2013), since an extensive
parameter calibration had already been conducted for multi-depot settings. The termination
criteria of ILS has been set to nIt-ILS = 25000/nC, so as to generate 25000 non-improving
children before stopping, and the number of restarts is set to nR = 5 to compare with HGSADC
and other authors using similar computational effort. The two remaining free parameters, nC
and nR were simultaneously calibrated. Several possible values of each parameter were selected,
and the method was run 30 times for each configuration on a subset of instances, using different
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random seeds. For each parameter configuration, the gap to the Best Known Solutions (BKS)
in the literature, averaged on all test instances, is reported in Figure 4.
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nR 1 2 5 10 20 50 100 200 500 1000

2 0.887 0.778 0.781 0.872 0.874 0.861 1.052 1.100 1.309 1.551
4 0.949 0.826 0.815 0.752 0.705 0.698 0.720 0.801 0.842 0.908
10 0.976 0.872 0.791 0.602 0.572 0.489 0.501 0.433 0.449 0.492
20 0.870 0.702 0.673 0.573 0.521 0.519 0.624 0.508 0.528 0.577
40 1.042 0.699 0.598 0.629 0.624 0.578 0.585 0.599 0.622 0.624
100 1.011 0.740 0.631 0.639 0.598 0.594 0.626 0.579 0.575 0.612
200 0.896 0.632 0.710 0.678 0.568 0.665 0.523 0.519 0.747 0.700

Figure 4: ILS performance – Avg Gap to BKS (%) – with different parameter settings

As observed in Figure 4, the combination of parameters (nC, nR) = (10, 200) yields the
solutions of highest quality. These values were kept for all computational experiments. The
algorithm has been coded in C++, compiled with “g++ -O3”, and run on an Opteron 250 2.4
GHz CPU for the medium-scale instances (Sets A to D), and an Opteron 275 2.2 GHz CPU for
large-scale instances (Set E).

6.1 Impact of compound neighborhoods

The impact of the new compound neighborhoods, within LS and Split, is assessed by means of
comparative analyses of several variants of the proposed meta-heuristics, in which the compound
optimization of some aspects – rotations, depot choices – has been activated or not. The
methods with compound neighborhoods are notated ILS+ and HGSADC+ in the following.

The ILS variant without compound rotation optimization is referred to as ILS-noR. Not
using both implicit rotations and assignments leads a variant called ILS-noRD. In the latter
case, customer-to-depots assignments are explicitly managed within the solution representation,
using one giant-tour per depot, and applying independently the classic Split procedure on the
different giant-tours. The local search of Section 5.1 is used on each separate subset of customers
associated to a different depot to perform route improvements (RI), and an additional LS-
neighborhood based on customer-to-depot re-assignments is considered during an assignment
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improvement (AI) phase. These phases are called in the sequence AI-RI-AI-RI.
In the case of HGSADC, deactivating the compound rotations leads to a variant called

HGSADC-noR. Coming back to an explicit management of the depots means using the orig-
inal algorithm of Vidal et al. (2012a) on the MDVRP instances with unlimited fleet, notated
HGSADC-noRD. In this case, the solutions are represented as one giant tour per depot, the
PIX crossover of Vidal et al. (2012a) is applied to impact both assignment and sequencing de-
cisions, and the LS-improvement procedure is again separated between route- and assignment-
improvement moves.

Tables 1 and 2 report the results of the two meta-heuristics with and without implicit
rotations on CVRP instances. The quality of the solutions is compared to those of the best
previous methods in the literature: the original HGSADC of Vidal et al. (2012a) (VCGLR12),
the HGA with edge-assembly crossover of Nagata and Bräysy (2009) (NB09), and the parallel
record-to-record and set covering algorithm of Groër et al. (2011) (GGW11). In these tables, the
first three columns display the instances names and characteristics, then the average solution
values for the different methods are reported, and finally, the Best Known Solution (BKS) ever
found, in previous literature and in our experiments. Best solution values are indicated in
boldface for each problem, and new BKS are underlined. The last lines of the tables display
the average gap of each method w.r.t. the BKS on each instance set, the average time per run
for the methods, and the type of processor used.

In a similar fashion, Tables 3 and 4 report the results of the two meta-heuristics with and
without implicit rotations and assignment choices on the MDVRP instances. A comparison
of solution quality is done with the best current MDVRP algorithms: the ALNS of Pisinger
and Ropke (2007) (PR07), the ILS of Subramanian (2012) (S12) and the original HGSADC of
Vidal et al. (2012a) (VCGLR12). Some BKS, indicated with a “∗” are known to be optimal
(Baldacci and Mingozzi 2009). Results are reported for these three methods in presence of a
fleet size limit. Still, as indicated by Cordeau et al. (1997), in many cases the maximum fleet
size is large and does not impact the optimal solution value. Problems for which the fleet size
limit appears to have an incidence are indicated in italics.

These results first highlight the notable contribution of implicit depot assignment, which
lead to average MDVRP solutions of better quality for both ILS (0.781% for ILS-noR compared
to 2.585% for ILS-noRD) and HGSADC (0.100% compared to 0.252%) with similar run time.
This contribution is higher on large-scale problems, for which larger solution improvements
were still achievable. The impact of the implicit depot management is very large for the
ILS approach, which seems to have difficulties to achieve high-quality solutions on large-scale
benchmarks without compound sequencing and assignment moves. For these problems, a more
thorough exploration of assignment alternatives appear to be necessary, and the compound
moves contribute to fulfill this goal.

The use of implicit rotations enhances the solution quality for both ILS and HGSADC,
on both CVRP and MDVRP experiments. The largest improvement is again observed on the
MDVRP with ILS, with an average gap decrease from 0.781% to 0.515%. No impact on the
computational time is observed on MDVRP experiments for both ILS and HGSADC, and thus
the effort spent in evaluating compound moves is paid off in terms of convergence speed. For the
CVRP, the computational time increases by a factor of two. However, the current HGSADC+
implementation was derived from an existing code, and “skips” depots when evaluating routes
using IF instructions. A complete new implementation without any mention of depots may
run much faster. Implicit rotation management also lead to LS simplifications, by enabling to
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Table 1: Impact of implicit rotations within ILS – CVRP instances
Inst n VCGLR12 NB09 GGW11 ILS-noR ILS+ BKS

Avg 10 Avg 10 Best 5 Avg 10 Best 10 T(min) Avg 10 Best 10 T(min)
A-p01 50 524.61 524.61 524.61 524.61 524.61 0.89 524.61 524.61 1.90 524.61
A-p02 75 835.26 835.61 835.26 836.16 835.32 2.25 835.67 835.26 4.56 835.26
A-p03 100 826.14 826.14 826.14 826.78 826.14 4.27 826.26 826.14 9.30 826.14
A-p04 150 1028.42 1028.42 1028.42 1034.18 1031.96 8.11 1033.39 1031.29 16.87 1028.42
A-p05 199 1294.06 1291.84 1291.50 1315.50 1306.95 11.55 1313.98 1303.45 24.89 1291.29
A-p06 50 555.43 555.43 555.43 555.43 555.43 1.16 555.43 555.43 1.91 555.43
A-p07 75 909.68 910.41 909.68 909.68 909.68 3.18 909.68 909.68 3.47 909.68
A-p08 100 865.94 865.94 865.94 865.94 865.94 3.76 865.94 865.94 6.29 865.94
A-p09 150 1162.55 1162.56 1162.55 1166.28 1165.44 9.82 1166.70 1164.11 15.60 1162.55
A-p10 199 1400.23 1398.30 1399.91 1418.05 1416.58 14.60 1416.41 1412.91 24.79 1395.85
A-p11 120 1042.11 1042.11 1042.11 1042.11 1042.11 5.15 1042.11 1042.11 11.62 1042.11
A-p12 100 819.56 819.56 819.56 819.56 819.56 2.19 819.56 819.56 4.52 819.56
A-p13 120 1543.07 1542.99 1542.36 1549.56 1545.96 7.24 1549.90 1547.81 12.19 1541.14
A-p14 100 866.37 866.37 866.37 866.37 866.37 2.86 866.37 866.37 4.84 866.37
B-pr01 240 5627.00 5632.05 5636.96 5647.13 5644.44 22.89 5648.59 5644.42 46.95 5623.47
B-pr02 320 8446.65 8440.25 8447.92 8458.11 8452.72 39.27 8460.78 8451.05 85.09 8404.61
B-pr03 400 11036.22 11036.22 11036.22 11056.98 11041.02 59.85 11056.85 11043.41 120.78 11036.22
B-pr04 480 13624.53 13618.55 13624.52 13646.49 13632.39 85.03 13660.90 13642.33 165.73 13592.88
B-pr05 200 6460.98 6460.98 6460.98 6460.98 6460.98 13.19 6460.98 6460.98 28.19 6460.98
B-pr06 280 8412.90 8413.41 8412.90 8413.46 8413.36 24.33 8413.78 8413.36 58.46 8400.33
B-pr07 360 10157.63 10186.93 10195.59 10201.16 10195.59 44.44 10204.74 10195.59 103.81 10102.68
B-pr08 440 11646.58 11691.54 11691.76 11814.54 11734.96 66.48 11847.72 11743.37 142.68 11635.34
B-pr09 255 581.79 581.46 581.92 594.23 593.01 19.61 594.81 592.63 36.12 579.71
B-pr10 323 739.86 739.56 739.82 758.47 757.27 25.85 757.93 756.25 77.97 736.26
B-pr11 399 916.44 916.27 916.14 940.97 936.87 39.64 941.03 936.98 105.76 912.84
B-pr12 483 1106.73 1108.21 1112.73 1141.83 1139.49 62.55 1140.38 1136.28 144.35 1102.69
B-pr13 252 859.64 858.42 858.45 880.25 878.14 16.77 877.55 875.82 32.21 857.19
B-pr14 320 1082.41 1080.84 1080.55 1112.22 1110.56 23.42 1106.18 1102.59 55.75 1080.55
B-pr15 396 1343.52 1344.32 1341.41 1380.38 1377.45 40.30 1375.84 1374.52 78.75 1337.92
B-pr16 480 1621.02 1622.26 1619.45 1672.93 1668.66 58.34 1666.15 1663.46 114.03 1612.50
B-pr17 240 708.09 707.78 707.79 713.98 712.70 16.49 713.45 712.24 32.10 707.76
B-pr18 300 998.44 995.91 997.25 1019.51 1016.16 24.17 1017.44 1012.10 46.92 995.13
B-pr19 360 1367.83 1366.70 1366.26 1395.49 1392.94 36.62 1394.29 1390.17 81.92 1365.60
B-pr20 420 1822.02 1821.65 1820.88 1871.64 1863.90 56.16 1872.68 1869.40 106.13 1818.32
Gap Set-A 0.047% 0.033% 0.028% 0.363% 0.258% 0.336% 0.215%
Gap Set-B 0.267% 0.273% 0.296% 1.873% 1.665% 1.795% 1.552%

Gap All 0.176% 0.174% 0.186% 1.251% 1.086% 1.194% 1.002%
T(min) 21.57 21.51 8×3.92 25.07 53.13
CPU Opt 2.4G Opt 2.4G Xeon 2.3G Opt 2.4G Opt 2.4G
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Table 2: Impact of implicit rotations within HGSADC – CVRP instances
Inst n VCGLR12 NB09 GGW11 HGSADC-noR HGSADC+ BKS

Avg 10 Avg 10 Best 5 Avg 10 Best 10 T(min) Avg 10 Best 10 T(min)
A-p01 50 524.61 524.61 524.61 524.61 524.61 1.13 524.61 524.61 2.33 524.61
A-p02 75 835.26 835.61 835.26 835.26 835.26 1.83 835.26 835.26 3.32 835.26
A-p03 100 826.14 826.14 826.14 826.14 826.14 3.23 826.14 826.14 7.02 826.14
A-p04 150 1028.42 1028.42 1028.42 1028.56 1028.42 5.91 1028.42 1028.42 12.40 1028.42
A-p05 199 1294.06 1291.84 1291.50 1293.88 1291.45 10.38 1292.17 1291.45 22.11 1291.29
A-p06 50 555.43 555.43 555.43 555.43 555.43 1.29 555.43 555.43 2.26 555.43
A-p07 75 909.68 910.41 909.68 909.68 909.68 2.29 909.68 909.68 3.41 909.68
A-p08 100 865.94 865.94 865.94 865.94 865.94 3.75 865.94 865.94 6.67 865.94
A-p09 150 1162.55 1162.56 1162.55 1162.55 1162.55 6.60 1162.55 1162.55 11.46 1162.55
A-p10 199 1400.23 1398.30 1399.91 1399.62 1396.54 17.17 1398.12 1395.85 28.33 1395.85
A-p11 120 1042.11 1042.11 1042.11 1042.11 1042.11 4.29 1042.11 1042.11 10.34 1042.11
A-p12 100 819.56 819.56 819.56 819.56 819.56 2.41 819.56 819.56 5.20 819.56
A-p13 120 1543.07 1542.99 1542.36 1542.86 1542.86 5.79 1542.52 1541.14 10.17 1541.14
A-p14 100 866.37 866.37 866.37 866.37 866.37 3.41 866.37 866.37 5.83 866.37
B-pr01 240 5627.00 5632.05 5636.96 5625.75 5623.47 25.65 5625.22 5623.47 62.00 5623.47
B-pr02 320 8446.65 8440.25 8447.92 8447.92 8447.92 39.04 8444.29 8413.82 103.07 8404.61
B-pr03 400 11036.22 11036.22 11036.22 11051.23 11036.22 64.80 11036.22 11036.22 151.02 11036.22
B-pr04 480 13624.53 13618.55 13624.52 13645.38 13624.53 93.06 13645.38 13624.53 174.19 13592.88
B-pr05 200 6460.98 6460.98 6460.98 6460.98 6460.98 16.39 6460.98 6460.98 34.00 6460.98
B-pr06 280 8412.90 8413.41 8412.90 8412.90 8412.90 29.32 8412.90 8412.90 62.69 8400.33
B-pr07 360 10157.63 10186.93 10195.59 10182.45 10115.58 54.07 10168.95 10141.06 130.77 10102.68
B-pr08 440 11646.58 11691.54 11691.76 11649.45 11635.34 78.31 11640.99 11635.34 161.10 11635.34
B-pr09 255 581.79 581.46 581.92 581.86 579.71 28.70 581.93 580.50 91.74 579.71
B-pr10 323 739.86 739.56 739.82 739.01 737.43 81.40 739.78 737.65 151.96 736.26
B-pr11 399 916.44 916.27 916.14 915.41 913.69 111.23 915.87 913.15 230.69 912.84
B-pr12 483 1106.73 1108.21 1112.73 1107.36 1104.96 177.02 1106.99 1105.24 267.33 1102.69
B-pr13 252 859.64 858.42 858.45 859.74 857.19 20.11 859.99 858.39 52.81 857.19
B-pr14 320 1082.41 1080.84 1080.55 1082.33 1080.55 29.25 1081.68 1080.55 55.16 1080.55
B-pr15 396 1343.52 1344.32 1341.41 1343.87 1340.62 60.73 1341.68 1339.75 159.65 1337.92
B-pr16 480 1621.02 1622.26 1619.45 1619.53 1616.09 98.69 1618.65 1616.43 226.49 1612.50
B-pr17 240 708.09 707.78 707.79 707.95 707.79 15.98 707.93 707.79 35.04 707.76
B-pr18 300 998.44 995.91 997.25 997.26 995.13 35.10 998.32 997.25 66.46 995.13
B-pr19 360 1367.83 1366.70 1366.26 1367.20 1366.48 52.51 1366.95 1366.40 100.58 1365.60
B-pr20 420 1822.02 1821.65 1820.88 1821.09 1819.59 87.84 1821.88 1820.45 173.46 1818.32
Gap Set-A 0.047% 0.033% 0.028% 0.043% 0.012% 0.023% 0.001%
Gap Set-B 0.267% 0.273% 0.296% 0.272% 0.102% 0.253% 0.119%

Gap All 0.176% 0.174% 0.186% 0.178% 0.065% 0.158% 0.070%
T(min) 21.57 21.51 8×3.92 37.31 77.09
CPU Opt 2.4G Opt 2.4G Xeon 2.3G Opt 2.4G Opt 2.4G
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Table 3: Impact of implicit rotations and depot choices within ILS – MDVRP instances.
Inst n d PR07 VCGLR12 S12 ILS-noRD ILS-noR ILS+ BKS

Avg 10 Avg 10 Avg 10 Avg 10 Best 10 T(min) Avg 10 Best 10 T(min) Avg 10 Best 10 T(min)
C-p01 50 4 576.87 576.87 576.87 576.87 576.87 0.53 576.87 576.87 0.50 576.87 576.87 0.49 576.87∗

C-p02 50 4 473.53 473.53 473.53 473.53 473.53 0.81 473.67 473.53 1.21 473.63 473.53 1.41 473.53∗

C-p03 75 2 641.19 641.19 641.19 641.19 641.19 0.96 641.08 640.65 0.99 641.08 640.65 1.00 640.65∗

C-p04 100 2 1006.09 1001.24 1001.04 1001.84 999.21 2.57 1002.12 999.21 1.88 1000.01 999.21 1.81 999.21∗

C-p05 100 2 752.34 750.03 750.21 750.03 750.03 2.09 750.92 750.03 2.84 750.72 750.03 2.81 750.03
C-p06 100 3 883.01 876.50 876.50 878.65 876.50 2.06 879.82 876.50 1.63 877.43 876.50 1.60 876.50∗

C-p07 100 4 889.36 882.24 881.97 886.85 884.66 2.29 886.72 881.97 1.72 885.71 881.97 1.71 881.97∗

C-p08 249 2 4421.03 4397.71 4393.70 4426.63 4401.79 19.65 4424.72 4401.17 15.54 4392.96 4382.91 14.85 4372.78
C-p09 249 3 3892.50 3863.45 3864.22 3903.12 3891.91 19.30 3899.90 3882.66 14.69 3889.82 3878.25 12.75 3858.66
C-p10 249 4 3666.85 3634.03 3634.72 3679.20 3660.30 19.92 3657.40 3635.52 14.43 3651.73 3635.71 12.45 3631.11
C-p11 249 5 3573.23 3546.95 3546.15 3588.35 3560.27 19.52 3586.44 3565.95 14.73 3574.43 3557.57 12.94 3546.06
C-p12 80 2 1319.13 1318.95 1318.95 1318.95 1318.95 1.09 1318.95 1318.95 1.35 1318.95 1318.95 1.51 1318.95∗

C-p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 0.98 1318.95 1318.95 1.24 1318.95 1318.95 1.23 1318.95
C-p14 80 2 1360.12 1360.12 1360.12 1360.12 1360.12 0.98 1360.12 1360.12 1.34 1360.12 1360.12 1.17 1360.12
C-p15 160 4 2519.64 2505.42 2505.42 2505.42 2505.42 4.18 2507.46 2505.42 3.82 2505.42 2505.42 3.25 2505.42
C-p16 160 4 2573.95 2572.23 2572.23 2572.23 2572.23 3.32 2572.23 2572.23 3.15 2572.23 2572.23 3.17 2572.23
C-p17 160 4 2709.09 2709.09 2710.21 2716.89 2709.09 3.43 2711.32 2709.09 3.48 2710.21 2709.09 3.03 2709.09
C-p18 240 6 3736.53 3702.85 3702.85 3713.02 3702.85 13.98 3731.55 3714.56 9.82 3711.32 3702.85 10.32 3702.85
C-p19 240 6 3838.76 3827.06 3827.55 3828.29 3827.06 7.95 3834.44 3827.06 7.06 3831.98 3827.06 7.32 3827.06
C-p20 240 6 4064.76 4058.07 4058.07 4064.76 4058.07 9.26 4088.92 4058.07 8.70 4069.80 4058.07 8.02 4058.07
C-p21 360 9 5501.58 5474.84 5474.84 5525.93 5490.11 20.00 5540.82 5506.26 32.59 5530.58 5496.40 20.00 5474.84
C-p22 360 9 5722.19 5702.16 5705.84 5719.73 5702.16 19.66 5724.26 5714.46 19.99 5717.64 5702.16 18.63 5702.16
C-p23 360 9 6092.66 6078.75 6078.75 6118.29 6078.75 20.00 6129.08 6112.46 30.04 6124.99 6112.46 20.00 6078.75
D-pr01 48 4 861.32 861.32 861.32 861.32 861.32 1.02 861.32 861.32 1.18 861.32 861.32 1.12 861.32
D-pr02 96 4 1308.17 1307.34 1308.53 1299.08 1297.44 3.96 1296.25 1296.25 3.03 1296.25 1296.25 2.82 1296.25
D-pr03 144 4 1810.66 1803.80 1804.09 1804.55 1803.80 6.61 1803.81 1803.80 5.79 1803.81 1803.80 5.66 1803.80
D-pr04 192 4 2073.16 2058.31 2060.93 2054.15 2042.45 11.41 2047.99 2042.45 8.13 2044.26 2042.45 8.09 2042.45
D-pr05 240 4 2350.31 2335.81 2338.12 2377.66 2342.77 20.00 2333.43 2326.50 12.77 2330.19 2326.35 11.41 2324.12
D-pr06 288 4 2695.74 2680.95 2685.23 2684.11 2675.71 20.00 2679.96 2673.00 18.72 2670.77 2668.76 18.06 2663.56
D-pr07 72 6 1089.56 1089.56 1089.56 1075.53 1075.12 1.85 1075.12 1075.12 1.64 1075.12 1075.12 1.55 1075.12
D-pr08 144 6 1675.74 1664.99 1665.08 1667.48 1660.16 6.44 1660.21 1658.71 4.32 1658.68 1658.23 4.30 1658.23
D-pr09 216 6 2144.84 2133.52 2135.37 2159.27 2147.68 18.88 2144.57 2136.67 8.88 2139.08 2131.70 8.85 2131.70
D-pr10 288 6 2905.43 2885.39 2882.41 2861.08 2826.91 20.00 2819.33 2812.39 20.38 2815.00 2810.25 17.96 2805.53
E-pr11 360 4 – – – 5144.80 5096.71 164.31 5071.03 5029.61 70.36 5026.89 4999.04 72.89 4994.67
E-pr12 480 4 – – – 6593.86 6522.94 281.29 6446.22 6424.10 149.53 6418.54 6391.48 168.58 6367.67
E-pr13 600 4 – – – 8100.34 8054.60 300.02 7791.39 7746.68 261.83 7743.51 7689.19 293.95 7645.29
E-pr14 720 4 – – – 9681.79 9588.94 300.03 9279.51 9211.41 300.02 9239.96 9184.68 300.06 9101.67
E-pr15 840 4 – – – 11390.61 11235.84 300.03 10817.77 10782.85 300.02 10762.94 10726.17 300.03 10598.70
E-pr16 960 4 – – – 13025.41 12720.01 300.04 12196.66 12143.63 300.03 12128.21 12062.69 300.02 11919.71
E-pr17 360 6 – – – 4901.09 4880.87 172.32 4817.03 4797.91 68.73 4792.53 4772.62 80.47 4761.70
E-pr18 520 6 – – – 6869.04 6770.66 300.02 6585.97 6536.84 186.31 6562.69 6531.79 176.90 6504.36
E-pr19 700 6 – – – 9362.54 9170.60 300.03 8804.79 8770.25 300.02 8775.67 8736.22 300.01 8639.44
E-pr20 880 6 – – – 10730.24 10553.01 300.03 10040.07 10000.46 300.02 9980.76 9946.18 300.03 9825.50
E-pr21 420 12 – – – 4839.75 4712.22 295.36 4632.10 4613.14 99.47 4605.51 4596.09 109.73 4582.62
E-pr22 600 12 – – – 6651.39 6466.61 300.03 6230.97 6193.52 283.34 6207.59 6181.67 264.14 6141.63
E-pr23 780 12 – – – 9041.86 8778.31 300.04 8176.64 8119.01 300.01 8128.24 8078.99 300.02 8014.10
E-pr24 960 12 – – – 11547.32 11020.10 300.06 10134.47 10067.97 300.03 10054.52 10040.63 300.04 9909.49
Gap/T Set-C 0.413% 0.049% 0.049% 0.378% 0.148% 8.46 0.429% 0.157% 8.38 0.268% 0.093% 7.02
Gap/T Set-D 1.171% 0.747% 0.795% 0.778% 0.298% 11.02 0.250% 0.096% 8.48 0.133% 0.046% 7.98
Gap/T Set-E – – – 7.501% 5.495% 279.54 1.740% 1.193% 229.98 1.194% 0.745% 233.35
Gap/T All – – – 2.585% 1.772% 89.75 0.781% 0.453% 74.41 0.515% 0.277% 74.64

T(min) Set-CD 3.95 5.18 10.45 – – 9.23 – – 8.41 – – 7.31
CPU P-IV 3G Opt 2.4G I7 2.9G Opt 2.2 & Opt 2.4G Opt 2.2 & Opt 2.4G Opt 2.2 & Opt 2.4G
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Table 4: Impact of implicit rotations and depot choices within HGSADC – MDVRP instances.
Inst n d PR07 VCGLR12 S12 HGSADC-noRD HGSADC-noR HGSADC+ BKS

Avg 10 Avg 10 Avg 10 Avg 10 Best 10 T(min) Avg 10 Best 10 T(min) Avg 10 Best 10 T(min)
C-p01 50 4 576.87 576.87 576.87 576.87 576.87 0.65 576.87 576.87 1.10 576.87 576.87 1.09 576.87∗

C-p02 50 4 473.53 473.53 473.53 473.53 473.53 0.90 473.53 473.53 1.77 473.53 473.53 1.69 473.53∗

C-p03 75 2 641.19 641.19 641.19 640.92 640.65 1.47 640.65 640.65 2.56 640.65 640.65 2.53 640.65∗

C-p04 100 2 1006.09 1001.24 1001.04 1000.18 999.21 3.48 1001.04 1001.04 3.59 1000.66 999.21 3.43 999.21∗

C-p05 100 2 752.34 750.03 750.21 750.03 750.03 2.84 750.03 750.03 5.12 750.03 750.03 4.89 750.03
C-p06 100 3 883.01 876.50 876.50 876.50 876.50 1.99 876.50 876.50 3.31 876.50 876.50 3.02 876.50∗

C-p07 100 4 889.36 882.24 881.97 883.83 881.97 3.02 881.97 881.97 3.75 881.97 881.97 3.75 881.97∗

C-p08 249 2 4421.03 4397.71 4393.70 4386.59 4384.15 17.83 4382.51 4375.49 26.36 4383.63 4375.49 19.93 4372.78
C-p09 249 3 3892.50 3863.45 3864.22 3864.85 3859.17 16.48 3865.11 3859.76 27.73 3860.77 3859.17 19.51 3858.66
C-p10 249 4 3666.85 3634.03 3634.72 3639.61 3631.11 18.43 3631.71 3631.11 23.54 3631.71 3631.11 17.71 3631.11
C-p11 249 5 3573.23 3546.95 3546.15 3553.28 3546.06 13.13 3547.47 3546.06 17.31 3547.37 3546.06 17.14 3546.06
C-p12 80 2 1319.13 1318.95 1318.95 1318.95 1318.95 1.57 1318.95 1318.95 2.77 1318.95 1318.95 2.85 1318.95∗

C-p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1.91 1318.95 1318.95 2.94 1318.95 1318.95 2.85 1318.95
C-p14 80 2 1360.12 1360.12 1360.12 1360.12 1360.12 1.88 1360.12 1360.12 2.38 1360.12 1360.12 2.53 1360.12
C-p15 160 4 2519.64 2505.42 2505.42 2505.42 2505.42 4.42 2505.42 2505.42 7.66 2505.42 2505.42 7.79 2505.42
C-p16 160 4 2573.95 2572.23 2572.23 2572.23 2572.23 5.28 2572.23 2572.23 7.71 2572.23 2572.23 7.75 2572.23
C-p17 160 4 2709.09 2709.09 2710.21 2709.09 2709.09 5.27 2709.09 2709.09 8.29 2709.09 2709.09 8.31 2709.09
C-p18 240 6 3736.53 3702.85 3702.85 3702.85 3702.85 8.81 3702.85 3702.85 13.48 3702.85 3702.85 14.01 3702.85
C-p19 240 6 3838.76 3827.06 3827.55 3827.06 3827.06 9.90 3827.06 3827.06 15.34 3827.06 3827.06 15.11 3827.06
C-p20 240 6 4064.76 4058.07 4058.07 4058.07 4058.07 9.55 4058.07 4058.07 16.55 4058.07 4058.07 16.20 4058.07
C-p21 360 9 5501.58 5474.84 5474.84 5476.36 5474.84 19.83 5474.84 5474.84 29.18 5474.84 5474.84 20.07 5474.84
C-p22 360 9 5722.19 5702.16 5705.84 5702.16 5702.16 19.94 5702.16 5702.16 33.19 5702.16 5702.16 20.00 5702.16
C-p23 360 9 6092.66 6078.75 6078.75 6078.75 6078.75 19.97 6078.75 6078.75 38.69 6080.43 6078.75 20.00 6078.75
D-pr01 48 4 861.32 861.32 861.32 861.32 861.32 1.12 861.32 861.32 2.10 861.32 861.32 2.05 861.32
D-pr02 96 4 1308.17 1307.34 1308.53 1296.25 1296.25 2.70 1296.25 1296.25 4.74 1296.25 1296.25 4.67 1296.25
D-pr03 144 4 1810.66 1803.80 1804.09 1803.80 1803.80 4.93 1803.80 1803.80 8.54 1803.80 1803.80 8.84 1803.80
D-pr04 192 4 2073.16 2058.31 2060.93 2043.09 2042.45 10.99 2042.45 2042.45 13.24 2042.45 2042.45 12.84 2042.45
D-pr05 240 4 2350.31 2335.81 2338.12 2325.91 2324.12 16.40 2326.30 2324.12 25.88 2325.09 2324.12 19.51 2324.12
D-pr06 288 4 2695.74 2680.95 2685.23 2664.85 2663.56 19.26 2663.88 2663.56 34.66 2664.57 2663.56 20.00 2663.56
D-pr07 72 6 1089.56 1089.56 1089.56 1075.12 1075.12 1.78 1075.12 1075.12 3.01 1075.12 1075.12 3.04 1075.12
D-pr08 144 6 1675.74 1664.99 1665.08 1658.52 1658.23 6.36 1658.23 1658.23 7.73 1658.23 1658.23 7.85 1658.23
D-pr09 216 6 2144.84 2133.52 2135.37 2132.70 2131.70 10.39 2132.96 2131.70 17.23 2132.95 2131.70 15.65 2131.70
D-pr10 288 6 2905.43 2885.39 2882.41 2809.72 2807.17 18.60 2808.19 2805.53 38.64 2808.63 2807.11 20.00 2805.53
E-pr11 360 4 – – – 5018.62 4994.67 73.02 5001.94 4994.67 88.13 5004.67 4994.67 81.90 4994.67
E-pr12 480 4 – – – 6396.26 6371.96 127.92 6392.27 6367.67 109.81 6389.08 6375.87 139.18 6367.67
E-pr13 600 4 – – – 7683.73 7651.43 250.91 7668.48 7645.29 215.08 7668.70 7648.71 175.03 7645.29
E-pr14 720 4 – – – 9185.56 9163.63 293.97 9136.79 9106.37 294.81 9129.58 9101.67 296.51 9101.67
E-pr15 840 4 – – – 10682.96 10614.31 300.44 10627.80 10607.65 300.11 10638.93 10598.70 296.53 10598.70
E-pr16 960 4 – – – 12071.44 12016.08 301.22 11948.52 11919.71 300.38 11948.39 11921.00 300.32 11919.71
E-pr17 360 6 – – – 4772.85 4761.70 77.00 4765.72 4762.19 73.01 4766.29 4761.70 73.10 4761.70
E-pr18 520 6 – – – 6539.55 6504.81 158.53 6518.19 6504.72 192.22 6517.60 6504.62 162.11 6504.36
E-pr19 700 6 – – – 8707.25 8667.11 290.42 8669.38 8641.05 296.36 8669.61 8639.44 296.34 8639.44
E-pr20 880 6 – – – 9883.17 9834.39 300.74 9845.57 9826.77 300.28 9845.52 9825.50 300.26 9825.50
E-pr21 420 12 – – – 4603.04 4583.67 75.69 4595.10 4582.62 88.00 4596.54 4586.41 88.90 4582.62
E-pr22 600 12 – – – 6183.22 6154.31 198.82 6162.68 6147.01 207.01 6157.81 6141.63 233.83 6141.63
E-pr23 780 12 – – – 8101.79 8050.99 289.35 8037.81 8021.97 283.35 8032.95 8014.10 294.29 8014.10
E-pr24 960 12 – – – 10049.78 10004.94 300.01 9938.18 9909.49 300.48 9926.27 9910.02 300.57 9909.49
Gap/T Set-C 0.413% 0.049% 0.049% 0.056% 0.012% 8.20 0.027% 0.012% 12.80 0.023% 0.003% 10.09
Gap/T Set-D 1.171% 0.747% 0.795% 0.037% 0.006% 9.25 0.026% 0.000% 15.58 0.025% 0.006% 11.45
Gap/T Set-E – – – 0.729% 0.275% 217.00 0.270% 0.026% 217.79 0.257% 0.020% 217.06
Gap/T All – – – 0.252% 0.089% 70.62 0.100% 0.014% 74.45 0.093% 0.009% 72.03

T(min) Set-CD 3.95 5.18 10.45 – – 8.52 – – 13.64 – – 10.50
CPU P-IV 3G Opt 2.4G I7 2.9G Opt 2.2 & Opt 2.4G Opt 2.2 & Opt 2.4G Opt 2.2 & Opt 2.4G
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Table 5: Performance of HGSADC – MDVFMP instances

Inst n d SS97 HGSADC+ BKS
– Avg 10 Best 10 T(min)

C-p01 50 4 1526.7 1477.73 1477.73 1.87 1477.73
C-p02 50 4 992.8 957.73 957.73 2.44 957.73
C-p03 75 2 1611.1 1569.67 1569.67 3.37 1569.67
C-p04 100 2 2361.9 2292.64 2292.64 4.64 2292.64
C-p05 100 2 1498.4 1453.64 1453.64 7.42 1453.64
C-p06 100 3 2277.5 2208.66 2208.66 5.34 2208.66
C-p07 100 4 2297.1 2198.91 2198.91 5.19 2198.91
C-p08 249 2 6718.6 6448.26 6441.36 20.00 6441.36
C-p09 249 3 6211.4 6021.41 5998.70 20.00 5998.70
C-p10 249 4 6018.7 5817.81 5807.53 20.00 5807.53
C-p11 249 5 6030.8 5773.28 5770.42 19.74 5770.42
C-p12 80 2 2108.2 2072.18 2072.18 3.60 2072.18
C-p13 80 2 2126.8 2096.39 2096.39 3.56 2096.39
C-p14 80 2 2160.1 2160.12 2160.12 4.18 2160.12
C-p15 160 4 4116.2 3973.47 3973.47 9.61 3973.47
C-p16 160 4 4178.9 4119.76 4119.76 9.93 4119.76
C-p17 160 4 4344.1 4323.09 4309.09 13.95 4309.09
C-p18 240 6 6217.0 5887.43 5887.43 19.80 5887.43
C-p19 240 6 6233.6 6130.36 6130.36 19.47 6130.36
C-p20 240 6 6493.1 6481.23 6469.21 20.00 6469.21
C-p21 360 9 9184.6 8710.75 8709.26 20.00 8709.26
C-p22 360 9 9332.0 9164.65 9151.64 20.00 9151.64
C-p23 360 9 9706.6 9728.87 9714.41 20.00 9714.41
D-pr01 48 4 – 1181.47 1181.47 2.09 1181.47
D-pr02 96 4 – 1901.39 1901.39 6.81 1901.39
D-pr03 144 4 – 2712.71 2712.71 9.97 2712.71
D-pr04 192 4 – 3371.35 3370.85 24.15 3370.85
D-pr05 240 4 – 4068.98 4066.52 28.20 4066.52
D-pr06 288 4 – 4677.35 4669.16 62.08 4669.16
D-pr07 72 6 – 1550.87 1550.87 3.56 1550.87
D-pr08 144 6 – 2705.46 2705.46 10.73 2705.46
D-pr09 216 6 – 3642.57 3637.39 28.84 3637.39
D-pr10 288 6 – 4980.33 4973.74 48.63 4973.74
E-pr11 360 4 – 7342.40 7323.10 150.65 7323.10
E-pr12 480 4 – 9472.47 9436.13 251.09 9436.13
E-pr13 600 4 – 11567.96 11526.27 291.36 11526.27
E-pr14 720 4 – 13824.41 13778.18 300.01 13778.18
E-pr15 840 4 – 16393.71 16352.74 301.06 16352.74
E-pr16 960 4 – 18509.70 18471.52 300.46 18471.52
E-pr17 360 6 – 7048.26 7025.01 168.08 7025.01
E-pr18 520 6 – 9810.34 9775.42 245.35 9775.42
E-pr19 700 6 – 13312.76 13280.04 301.52 13280.04
E-pr20 880 6 – 15683.36 15631.64 301.52 15631.64
E-pr21 420 12 – 7087.02 7072.79 170.80 7072.79
E-pr22 600 12 – 9804.69 9776.65 288.99 9776.65
E-pr23 780 12 – 12878.26 12840.99 301.05 12840.99
E-pr24 960 12 – 16360.55 16343.33 300.02 16343.33
Gap/T Set-C 2.769% 0.067% 0.000% 11.92
Gap/T Set-D – 0.053% 0.000% 22.51
Gap/T Set-E – 0.282% 0.000% 262.28
Gap/T All – 0.128% 0.000% 88.75

T(min) Set-C 4.10 – – 11.92
CPU VAX 4000 Opt 2.2 & Opt 2.4G
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define moves only between sequences of visits to customers, thus avoiding to deal with special
cases related to depots.

These experiments finally illustrate the good performance of the proposed HGSADC+ meta-
heuristic, which matches or outperforms other current state-of-the-art CVRP and MDVRP
with an average gap to BKS of 0.158% for the CVRP, and 0.093% for the MDVRP. In all
cases, HGSADC variants produce solutions of better quality than ILS. As a counterpart, ILS
is simpler and in general faster. All known optimal solutions have been retrieved. Run times
remains moderate on medium-scale instances, of a magnitude comparable to those of other
methods in the literature. The standard deviation of solution costs from HGSADC+ is small
(0.069%, 0.071% for the CVRP and MDVRP), thus showing that high-quality solutions are
produced in a consistent manner.

6.2 Addressing a rich problem – the MDVFMP

A second set of experiments has been conducted to investigate the performance of the proposed
HGSADC+ on a rich vehicle routing variant, the MDVFMP. The literature is scarce on this
particular problem. We compare the proposed method to the variable neighborhood heuristic
of Salhi and Sari (1997) (SS97) and to the best known solution founds during multiple runs.
Table 5 reports the results of the methods on the modified MDVRP instances, using the same
format as previously.

As highlighted in Table 5, major solution improvements were still achievable on these in-
stances. The average gap obtained with HGSADC+ is 0.067%, compared to 2.769% for SS97.
Still, it should be noted that SS97 was executed on an old system and processor, and that
extended runs on modern computers may lead to decreased gaps. Nevertheless, HGSADC+
demonstrate its ability to find the best known solutions in a consistent manner on this difficult
problem: for 14/23 instances of set C with 50 to 240 customers the best known solution has
been reached on all 10 runs, and the overall standard deviation of solution costs remains very
small (0.089%).

7 Conclusions

In this paper, an efficient dynamic programming methodology was introduced for managing
compound customer-to-depots assignments, rotations and vehicles choices within neighbor-
hood searches for vehicle routing. Two meta-heuristics based on these concepts, an ILS and a
HGSADC, have been proposed. These approaches produce solutions of remarkable quality on
classic CVRP, MDVRP and MDVFMP benchmark instances with unlimited fleet. Extensive
experiments demonstrate the notable contribution of the proposed implicit depot management
to the search performance. The implicit rotations have a smaller but noticeable impact, and
may simplify several aspects of LS implementations. The proposed methodology is general, and
broadly applicable to many VRP variants.

Promising avenues of research involves generalizing the approach to other multi-attribute
VRPs, possibly with limited fleet. Finally, this research is part of a general effort aiming to
identify efficiently manageable subproblems to reduce the size of solution spaces, and simi-
lar subproblems and management methods may be investigated on other VRP variants and
combinatorial optimization settings.

19

Implicit Depot Assignments and Rotations in Vehicle Routing Heuristics

CIRRELT-2012-60



Acknowledgments

Partial funding for this project has been provided by the Champagne-Ardenne regional council,
France, the Natural Sciences and Engineering Council of Canada (NSERC) through its Indus-
trial Research Chair and Discovery Grant programs, and by the Fonds québécois de la recherche
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Subramanian, A., P.H.V. Penna, E. Uchoa, L.S. Ochi. 2012. A Hybrid Algorithm for the Heterogeneous
Fleet Vehicle Routing Problem. European Journal of Operational Research 221(2) 285–295.

Toth, P., D. Vigo, eds. 2002. The vehicle routing problem. SIAM Monographs on Discrete Mathematics
and Applications, Society for Industrial Mathematics, Philadelphia, PA, USA.

Toth, P., D. Vigo. 2003. The Granular Tabu Search and Its Application to the Vehicle-Routing Problem.
INFORMS Journal on Computing 15(4) 333–346.

Vidal, T., T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei. 2012a. A Hybrid Genetic Algorithm for
Multi-Depot and Periodic Vehicle Routing Problems. Operations Research 60(3) 611–624.

Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2011. A Unifying View on Timing Problems and
Algorithms. Tech. rep., CIRRELT.

Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2012b. A Unified Solution Framework for Multi-
Attribute Vehicle Routing Problems. Tech. rep., CIRRELT.

Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2012c. Heuristics for Multi-Attribute Vehicle Routing
Problems : A Survey and Synthesis. Tech. rep., CIRRELT.

Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2013. A hybrid genetic algorithm with adaptive diver-
sity management for a large class of vehicle routing problems with time-windows. Computers &
Operations Research 40(1) 475–489.

Wolf, S., P. Merz. 2007. Evolutionary local search for the super-peer selection problem and the p-
hub median problem. T. Bartz-Beielstein, M.J. Belsa Aguilera, C. Blum, B. Naujoks, A. Roli,
G. Rudolph, M. Sampels, eds., Hybrid Metaheuristics, LNCS , vol. 4771. Springer Berlin Heidelberg,
1–15.

21

Implicit Depot Assignments and Rotations in Vehicle Routing Heuristics

CIRRELT-2012-60


	CIRRELT-2012-60
	CIRRELT-2012-60pp
	CIRRELT-2012-60-abstract



