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Abstract

The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals with
two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers
(backhaul) that send goods to the depot. In this paper, we propose a simple yet effective iterated local
search algorithm for the VRPB. Its main component is an oscillating local search heuristic that has two
main features. First, it explores a wide neighborhood structure at each iteration. This is efficiently
done using an additional data structure that stores information about the set of neighboring solutions.
Second, the heuristic performs constant transitions between feasible and infeasible regions of the solution
space. These transitions are regulated by a dynamic adjustment of the penalty applied to infeasible
solutions. An extensive statistical analysis was carried out in order to identify the most important
components of the algorithm and to properly tune the values of their parameters. The results of the
computational experiments carried out show that this algorithm is very competitive in comparison to
the best metaheuristic algorithms for the VRPB. Additionally, new best solutions have been found for
two instances in one of the benchmark sets. Through these results, the paper shows that by expanding
the exploration area and improving the efficiency of the local search heuristic, it is possible to develop
simpler and faster metaheuristic algorithms without compromising the quality of the solutions obtained.

1 Introduction

The Vehicle Routing Problem (VRP) was originally described by Dantzig and Ramser (1959) and considers
the delivery of goods from a central depot to a set of customers. The basic VRP involves determining a
set of routes for a fleet of vehicles, each one starting and ending at the depot, such that the demand of
every customer is satisfied and the total traveled distance is minimized. A solution to the VRP must satisfy
the following constraints: (I) every customer must be visited exactly once and (II) the amount of goods
delivered by each vehicle must not exceed the vehicle capacity. The VRP is one of the most frequently
studied combinatorial optimization problems in the literature. Its practical importance has encouraged the
operations research community to develop more complex variants that better model the scenarios found in
the real world. The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that deals
with two types of customers: the consumers (linehaul) that request goods from the depot and the suppliers
(backhaul) that send goods to the depot. The VRPB was formulated to model the distribution process of
companies that transport their final products to retailer stores, and supply their production center with
commodities from providers in the same area. However, applications of the VRPB can be found in many
scenarios that involve the return of goods to the distribution center (e.g. reverse logistics). A solution to
the VRPB must satisfy the following additional constraints: in each route, (I) the load of goods sent to
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the consumers and the load of goods received from the suppliers must not exceed the vehicle capacity, (II)
every vehicle must visit at least one consumer and (III) must serve the consumers before the suppliers. The
second constraint is due to the assumption that the delivery of goods to the consumers is the main profitable
activity. In such a scenario, a vehicle should only be used provided there is at least one consumer that
needs to be served. The third constraint is due to the assumption that the load cannot be rearranged at the
delivery or pick-up points. For an extensive classification of the VRP variants and the related literature, see
Eksioglu et al. (2009).

The VRPB is a generalization of the original VRP. Therefore, it is an NP-hard problem in the strong sense.
Even though there are exact algorithms that are able to find optimal solutions for instances with around a
hundred customers (Mingozzi et al., 1999), a heuristic approach is still necessary to solve larger instances.
Recent metaheuristic implementations have proven to be the most successful approach to solve the VRPB
in terms of computing time and solution quality (Brandão, 2006; Røpke and Pisinger, 2006; Gajpal and
Abad, 2009; Zachariadis and Kiranoudis, 2012). These algorithms usually have multiple components and
parameters that need to be tuned. Nevertheless, it is very unusual to find solid (statistical) studies about
the efficacy of each building block and the effect of the parameter values on the algorithm performance.
Such studies are of paramount importance in order to identify the reasons why an algorithm is effective; and
therefore, to identify its key components. In this way, the algorithms can be adapted in order to exploit
the building blocks that have proven to be effective, and disregard the unnecessary components. It is our
view that the use of more complex components or strategies should be justified by the value they add to the
algorithm performance, either in terms of solution quality or execution time.

In this paper, we propose a simple iterated local search (ILS) algorithm to solve the VRPB. The main compo-
nent of this algorithm is an oscillating local search (OLS) heuristic that allows the consideration of infeasible
solutions. The term “oscillating” to describe the heuristic is due to the constant transitions between feasible
and infeasible regions of the solution space. These transitions are regulated by a dynamic adjustment of
the penalty applied to infeasible solutions. Additionally, the OLS heuristic explores a rich neighborhood
structure (produced by four different neighborhood operators) at each iteration. This is efficiently done by
implementing an additional data structure that stores information about the set of neighboring solutions.
The execution time of the heuristic is considerably reduced by an appropriate update of this data structure
at each iteration. We discuss the results of an extensive computational experiment carried out with two
purposes: (I) to identify the key features of the algorithm and (II) to determine the set of parameter values
that produce the best algorithm performance. Finally, we compare the ILS algorithm to the best-performing
metaheuristic algorithms available in the literature.

The structure of the paper is as follows. A mathematical definition of the VRPB based on graph theory
and second-order logic is presented in Section 2. A brief overview of the literature is presented in Section 3.
The ILS algorithm is described in Section 4 and important features of its implementation are explained in
Section 5. The computational experiments carried out and their results are discussed in Section 6. The per-
formance of the ILS algorithm is compared to that shown by other metaheuristic algorithms for the VRPB
in Section 7. We present our final conclusions in Section 8.

2 Problem definition

The VRPB can be defined using graph theory and second-order logic. Consider a complete undirected
graph G = (C,A) where C = D ∪ L ∪ B is a set of 1 + l + b vertices composed of the disjoint subsets
D = {0}, L = {1, . . . , l} and B = {l + 1, . . . , l + b} that represent the depot, the linehaul customers and
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the backhaul customers, respectively. The set A = {(i, j)|(i, j) ∈ C × C, i 6= j} is the set of arcs that
connect the customers. A nonnegative cost ci,j that is associated with every arc (i, j) ∈ A represents the
distance between customers i and j. An amount of goods qi is associated with every customer i ∈ L ∪ B
that represents the amount requested from or delivered to the depot, depending on whether the customer
is linehaul (i ∈ L) or backhaul (i ∈ B). There are m identical vehicles in the depot, each with capacity Q.
It is assumed that m ≥ max(mL,mB), where mL and mB are the minimum numbers of vehicles needed to
separately serve all linehaul and backhaul customers, respectively. A solution to the VRPB comprises a set
of m routes. Each route r is defined as a chain of sr vertices 〈vr1, vr2, . . . , vrsr 〉, that satisfies the following
constraints:

1. Every route starts and finishes at the depot.

∀ r : 1 ≤ r ≤ m | vr1 = vrsr = 0 (1)

2. Every vehicle visits at least one linehaul customer.

∀ r : 1 ≤ r ≤ m | (sr > 2) ∧ (∃ i : 1 < i < sr | vri ∈ L) (2)

3. Every customer is visited exactly once.

∀ i : i ∈ L ∪B | (∃ r, k : 1 ≤ r ≤ m ∧ 1 < k < sr | vrk = i) ∧ (3)

¬(∃ r′, k′ : 1 ≤ r′ ≤ m ∧ 1 < k′ < sr′ | vr
′

k′ = i ∧ ¬( r′ = r ∧ k′ = k))

4. None of the vehicles performs an intermediate stop at the depot.

∀ r : 1 ≤ r ≤ m | (∀ i : 1 < i < sr | vri 6= 0) (4)

5. In every route, neither the load of goods sent to the linehaul customers nor the load of goods received
from the backhaul customers exceeds the vehicle capacity.

∀ r : 1 ≤ r ≤ m | ((Σ i : 1 < i < sr ∧ i ∈ L | qvr
i
) ≤ Q) ∧ (5)

((Σ i : 1 < i < sr ∧ i ∈ B | qvr
i
) ≤ Q)

6. In every route, the linehaul customers are served before the backhaul customers.

∀ r : 1 ≤ r ≤ m | (∀ i, j : 1 ≤ i < j ≤ sr | (vrj ∈ L⇒ vri ∈ L ∪D) ∧ (vri ∈ B ⇒ vrj ∈ B ∪D)) (6)

The objective of the VRPB is to find a set of routes that minimizes the sum of the distances traveled by the
vehicles. The objective function can be written as:

Σ r : 1 ≤ r ≤ m | (Σ i : 1 ≤ i < sr | cvr
i ,v

r
i+1

) (7)

3 Literature review

Several exact and heuristic algorithms are available in the literature to solve the VRPB. Exact algorithms
perform a systematic search over the solution space and guarantee to find the best possible solution. However,
since the execution time of these algorithms increases at an exponential rate, they are only useful to solve
small instances. The first exact algorithm for the VRPB was proposed by Yano et al. (1987). They develop
a branch and bound framework based on a set covering approach for a retail chain. Toth and Vigo (1997)
propose a branch and bound algorithm in which a lower bound is obtained from the Lagrangian relaxation
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of some constraints of the underlying linear programming model. The lower bound is then progressively
strengthened in a cutting plane fashion. Mingozzi et al. (1999) propose a new VRPB linear programming
model and develop a branch and bound algorithm. This algorithm computes a lower bound by combining
different heuristic methods for solving the dual LP-relaxation of the exact formulation.

Heuristic algorithms have been shown to be able to overcome the limitations of exact approaches. These
algorithms are generally able to find solutions within an acceptable computing time for instances that are
not tractable by exact algorithms. However, the solutions obtained cannot be guaranteed to be optimal. The
first heuristic algorithm for the VRPB was proposed by Deif and Bodin (1984). They develop an extension of
the Clarke and Wright heuristic (Clarke and Wright, 1964) for the VRPB. Jacobs-Blecha and Goetschalckx
(1989) develop a two-phase heuristic based on a space-filling curves approach. Jacobs-Blecha and Goetschal-
ckx (1992) later introduce an extension of the generalized assignment heuristic for the VRP proposed by
Fisher and Jaikumar (1981). Toth and Vigo (1999) propose a “cluster first, route second” algorithm. It uses
a clustering method that exploits the information contained within a solution obtained from a Lagrangian
relaxation of the VRPB.

More recently, the most successful strategies that have been applied in heuristic algorithms have converged
to more general frameworks called metaheuristics. A metaheuristic is a high-level problem-independent algo-
rithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms
(Sörensen and Glover, to appear). There exist several metaheuristic implementations for the VRPB. Os-
man and Wassan (2002) propose a reactive tabu search in which the tabu tenure is dynamically modified
during the search process. Brandão (2006) develops a new multi-phase tabu search procedure in which the
initial solution is obtained from the formulation of the VRPB as a minimum cost K-tree problem. Røpke
and Pisinger (2006) propose an unified model that can handle many VRP variants and is solved by a large
neighborhood search. Wassan (2007) develops a hybrid algorithm combining a reactive tabu search with
adaptive memory programming. Gajpal and Abad (2009) propose an ant colony system with two types of
ants: the first type is used to assign customers to vehicles and the second type is used to construct the
routes. Zachariadis and Kiranoudis (2012) propose a local search heuristic that diversifies the exploration
by incorporating the concept of promises when evaluating a tentative move. This diversification strategy
is inspired by the memory structure characteristic of the tabu search metaheuristic. At each iteration, se-
quences of customers that appear in the solution explored are tagged with a promise value that is equal to
the cost of the solution. These promise values are used to discard lower-quality moves that involve the same
sequences of customers.

Most of the metaheuristic algorithms for the VRPB include, or are based upon, a local search (LS) heuristic1.
However, the algorithms differ in the diversification mechanism they use. For instance, the ant colony system
(Gajpal and Abad, 2009) uses a random-proportional rule at each iteration of the construction phase. This
rule is influenced by the solutions previously explored via the update of the pheromone trail. The algorithms
based upon the tabu search metaheuristic (Osman and Wassan, 2002; Brandão, 2006; Wassan, 2007) prevent
the return to solutions already explored by using a memory structure. This structure is updated using a
strategy that is particular to each algorithm. Brandão (2006) uses a static strategy, while Osman and Wassan
(2002) and Wassan (2007) use a strategy that is adapted according to the effectiveness of the exploration.
The local search proposed by Zachariadis and Kiranoudis (2012) follows a similar strategy to prevent the
cycling phenomenon, although its implementation requires more memory. The algorithm stores sequences
of consecutive customers that have appeared in solutions already explored. Local search moves that involve
the stored sequences are only performed if the solution cost of the new solution is lower than the cost of
the solution previously explored. The implementation of these diversification mechanisms involve additional

1It is our opinion that the large neighborhood search proposed by Røpke and Pisinger (2006) cannot be considered as a
traditional LS heuristic. Instead, it is an algorithm that combines several insertion and removal heuristics to explore a larger
portion of the solution space. This strategy is different from the conventional LS, which uses simpler neighborhood operators.

4



building blocks and data structures that increase the complexity of the algorithms. Since the LS heuristic is
common to most of the existing algorithms, it is reasonable to think that it is the key component to solve
the VRPB. We strongly believe that, in order to achieve a better performance, this is the component that
should receive most of the attention. By expanding the exploration area and improving the performance of
the LS heuristic, it is possible to implement metaheuristics that apply simpler diversification mechanisms
without compromising the quality of the solutions obtained. The development of an algorithm with these
characteristics is the main goal of this paper.

4 Iterated local search algorithm

The ILS algorithm is a metaheuristic that involves the iterative application of a LS heuristic and the use
of a perturbation as a diversification mechanism. At each iteration, a new initial solution is generated and
used by the LS heuristic as a starting point for the search. This initial solution is generated by randomly
performing a small modification, called perturbation, to a good locally optimal solution previously found.
Instead of generating a new initial solution from scratch, the perturbation mechanism generates a promising
initial solution by retaining part of the structure that made the original solution a good solution. Despite its
simplicity, the ILS algorithm has proven to be a very successful approach to solve combinatorial optimization
problems (Stützle, 2006; Voudouris and Tsang, 1999; Vansteenwegen et al., 2009). A detailed explanation
of the ILS metaheuristic can be found in Lourenço et al. (2003).

The pseudocode of the ILS algorithm that we implemented is shown in Algorithm 1. At each iteration,
the perturbation is applied to the best feasible solution found so far. The execution of the algorithm is
stopped when a maximum number of iterations is reached. In the following sections, we describe the main
components of the algorithm: the procedure used to generate the first initial solution, the OLS heuristic and
the perturbation.

Algorithm 1: Iterated local search pseudocode

Input: An initial solution S0

1 Sbest ← OLS(S0)
2 for i← 1 to num it do
3 Spert ← perturb(Sbest)
4 Spert ← OLS(Spert)
5 if traveled distance(Spert) < traveled distance(Sbest) then
6 Sbest ← Spert

7 return Sbest

4.1 Initial solution

We implemented two alternative procedures for the construction of the initial solution. The first procedure
randomly inserts the customers in the solution without considering the capacity constraint of the problem.
The resulting initial solution might or might not violate this constraint. The second procedure is a modified
version of the greedy insertion heuristic discussed by Potvin and Rousseau (1993). This algorithm iteratively
inserts the customer at the position that produces the smallest increase of the solution cost. In order to
satisfy the constraint of non-empty routes, the algorithm inserts a randomly selected linehaul customer in
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every route as an initialization step. This initial random selection allows the algorithm to generate different
initial solutions for the same problem instance. The capacity constraint is verified every time a customer is
considered for insertion. However, this verification is stopped if no feasible insertion can be found for any of
the remaining customers to be inserted. This leads the insertion heuristic to produce feasible solutions, or
slightly infeasible ones when the order of insertions does not allow to generate a feasible solution.

The capacity constraint is the only constraint that is relaxed during the ILS algorithm. Only solutions that
comply with every other VRPB restriction are considered. This relaxation is particularly helpful when gen-
erating initial solutions for instances that are very restricted, and for which finding a feasible initial solution
is very difficult. In that case, the responsibility of finding a feasible solution is delegated to the OLS heuristic.

4.2 Oscillating local search heuristic

We developed a new OLS heuristic for the VRPB. This heuristic allows the consideration of solutions that
violate the capacity constraint of the problem. The idea of considering infeasible solutions during the search
process is not a new concept in the VRP literature (for instance, see Nagata and Bräysy (2009); Toth and
Vigo (2003)). The objective of this approach is to allow temporary excursions to an infeasible region of the
solution space and help the algorithm to reach new promising feasible regions. The mechanism that guides
these excursions is a dynamic adjustment of the penalty applied to the cost of infeasible solutions.

The pseudocode of the OLS heuristic is shown in Algorithm 2. The neighborhood structure considered is
generated by the well known operators (Kinderwater and Savelsbergh, 1997): I) Intra-route and inter-route
customer relocation, II) Intra-route and inter-route customers exchange, III) Inter-route crossover and IV)
Intra-route 2-opt. At each iteration of the OLS, all four neighborhoods are explored and the solution with
the lowest cost is selected to continue the search. The mechanism that allows the efficient generation and
update of the set of neighboring solutions is outlined in Section 5. The cost function used to evaluate the
quality of a solution is the one described by Brandão (2006):

cost(S) = traveled distance(S) + α
∑

1≤r≤m

[lh excess load(r) + bh excess load(r)] (8)

The first term of the expression is the total distance traveled by the vehicles. The second term is the sum of
the excess load (both the load requested by the linehaul customers and the load supplied by the backhaul
customers) transported by each vehicle, multiplied by a penalty α. If every vehicle of the solution satisfies
the capacity constraint, this term is equal to zero. The penalty α defines the influence of the capacity
constraint violation on the overall solution cost. This penalty is initialized to a value α0 and multiplied by
a factor β > 1 when the exploration process cannot find a better solution. When a locally optimal feasible
solution is found during the execution, the algorithm verifies whether the new solution is better than the
best feasible solution found so far. If so, the penalty factor is set back to α0 and another complete cycle
of the algorithm is executed. Otherwise, the best feasible solution found is returned. The application of
this strategy gives an oscillating pattern to the search performed by the OLS heuristic. This pattern can
be observed in the values of the excess load transported by the vehicles in the solutions explored during the
execution of the algorithm. Figure 1 shows the oscillating excess loads for each iteration of the algorithm,
along with the values of the total distance traveled by the vehicles2. Note the start of a new oscillation every
time a better feasible solution is found (when the excess load is equal to zero). Furthermore, note that, when
the oscillation starts and the penalty α is low, the heuristic is able to explore solutions with a lower traveled

2Figure 1 was obtained by applying the OLS heuristic to solve instance N1 of the benchmark set JBG. See Section 6 for
more information about the set of benchmark instances used in this paper.
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distance due to the relaxation of the capacity constraint. When the penalty α is increased at the end of the
oscillation, the capacity constraint is forced and the total traveled distance of the solutions tend to increase.

Algorithm 2: Oscillating local search heuristic

Input: An initial solution S0

1 Sbest ← S0

2 Sact ← S0

3 α← α0

4 while true do
5 while neighbors with better cost(Sact, α) 6= ∅ do
6 Sact ← best neighbor(Sact, α)

7 if is feasible(Sact) then
8 if traveled distance(Sact) < traveled distance(Sbest) then
9 Sbest ← Sact

10 α← α0

11 else
12 return Sbest

13 else
14 α← β × α

The initial value α0 (of the parameter α) and the parameter β define the execution of the OLS heuristic.
The value α0 determines the ability of the heuristic to explore infeasible regions of the solution space. In
other words, it determines the maximum excess load in the oscillations shown in Figure 1. The larger the
α0 value, the smaller the ability of the heuristic to explore infeasible solutions. Similarly, the parameter β
determines the speed of the transition from the infeasible to the feasible region of the solution space. It
defines the length of the oscillations shown in Figure 1. The larger the β value, the faster the penalization
to infeasible solutions is increased and the faster the search is oriented toward feasible solutions. The effect
of both parameters on the performance of the ILS algorithm is studied in Section 6.1.

Other oscillating heuristics that have been previously proposed apply a different strategy to update the
penalty factor α. The usual approach is to update α according to the region of the solution space that is
being explored (Toth and Vigo, 2003; Brandão, 2006). If the heuristic has explored a feasible region for an
arbitrary number of iterations, α is decreased in order to stimulate the exploration of infeasible solutions.
Similarly, if the heuristic has explored an infeasible region for a given number of iterations, α is increased
in order to guide the exploration to a feasible region. In contrast to this strategy, we propose to update the
penalty factor according to the effectiveness of the exploration. The penalty α is increased only if the OLS
heuristic gets trapped in a locally optimal solution. The α value is set back to α0 when a new best feasible
solution is found and another complete oscillation is performed.

4.3 Perturbation

The perturbation mechanism iteratively relocates customers in the solution. At each iteration, the operator
removes a randomly selected customer, and inserts it back in a different randomly selected position. Similar
to the generation of the initial solution, the insertions of the customers are performed without considering
the capacity constraint of the problem. This leads the perturbation to produce solutions that are usually
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infeasible. However, the feasibility of these solutions is restored by the application of the OLS heuristic. The
number of customers relocated is the parameter that defines the size of the perturbation. This is a key factor
of the ILS algorithm because it determines the portion of the locally optimal solution that is modified. If
the perturbation is too small, the ILS algorithm will tend to get trapped in a locally optimal solution. On
the other hand, if the perturbation is too large, the information contained within the good locally optimal
solution is lost and the ILS algorithm behaves as if a random initial solution were used at each iteration.
The effect of the size of the perturbation on the performance of the ILS algorithm is also studied in Section 6.1.
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Figure 1: Search pattern of the OLS heuristic in terms of the excess load and the cost of the solutions
explored at each iteration.

5 Implementation details

In this section, we describe two important features of the implementation of the ILS algorithm: the data
structure used to represent a VRPB solution, and the calculation process of the neighboring solutions gen-
erated during the OLS heuristic. This is because a wise choice of these features results in a substantial
reduction of the computation time.

A solution to the VRPB is represented using a modified version of the data structure proposed by Kytöjoki
et al. (2007). This structure combines the versatility of a linked list and the fast manipulation of static
arrays. The calculation of the neighboring solutions is the most time-consuming step of the OLS heuristic,
since all four neighborhoods are explored at each iteration. Taking into account the fact that the neigh-
borhood operators involve one or two routes, the generation of the entire set of neighboring solutions has a
quadratic time complexity Θ((l+ b)2). This complete generation of the neighborhoods is performed only at
the first iteration of the OLS heuristic. For each neighboring solution, the following information is stored in
an additional data structure: the operator that produces the solution, the routes and the customers involved
in the application of the operator, the difference in the traveled distance and the difference in the excess
load transported. In the following iterations of the OLS, only the neighboring solutions that involve the
routes previously modified (by the application of a neighborhood operator) are updated. Assuming that the
customers are (approximately) uniformly distributed over the different routes, the time complexity of the
update procedure can be expressed as Θ((l+ b)/m). This linearisation of the time complexity accomplished
by the update procedure (in comparison to the full generation) substantially reduces the execution time of
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the OLS heuristic.

This approach to reduce the time to compute the neighboring solutions is similar in spirit to the one proposed
by Zachariadis and Kiranoudis (2010). The information stored for each neighboring solution is equivalent
to the concept of “static move descriptor” that they propose. The main difference lies in the fact that they
do not consider the exploration of infeasible solutions. In our implementation, since the cost of a solution
involves the excess load carried by the vehicles, it is necessary to store the difference of this value. Moreover,
the excess load of a vehicle is dependent on the entire set of customers that are served along the route.
For that reason, it is not possible to apply the rules to update the set of neighbouring solutions that they
describe. Instead, it is necessary to update all neighbouring solutions that involve the routes that have been
modified in the previous iteration. The cost of a solution also depends on the value of the penalty factor α.
Since this value is dynamically modified during the execution of the OLS heuristic, it is necessary to explore
the entire set in order to find the neighboring solution with the lowest cost. For all these reasons, the update
rule that we apply requires more calculations than that used by Zachariadis and Kiranoudis (2010); however,
our approach is a generalization that is able to handle the relaxation of constraints imposed on the routes.
Other constraints like tour length, time windows or driving hours, can be easily included and handled by
our approach.

6 Computational experiments

A set of numerical experiments were performed using two benchmark sets of instances available in the liter-
ature. The first set (set JBG) was proposed by Jacobs-Blecha and Goetschalckx (1989) and consists of 62
instances where the total number of customers ranges from 25 to 150. The second set (set TV ) was proposed
by Toth and Vigo (1997) and consists of 33 instances where the total number of customers ranges from 21
to 100. This set was generated based on 11 VRP instances proposed by Eilon et al. (1971). Each of these
VRP instances was used to construct three new VRPB instances by considering 33%, 50% and 66% of the
total number of customers as linehaul customers. The algorithms described in the previous sections were
coded in C++ and all the experiments were executed on a 2.93 GHz. Intel Core i7 processor. It is important
to point out that the distance between each pair of customers is calculated in different ways for each bench-
mark set: for the set GJB, the distances are calculated using double precision; while for the set TV, they are
rounded to the nearest integer. This is a convention used by most of the algorithms available in the literature.
We stick to it in order to obtain solution costs that can be compared with those obtained by other algorithms.

6.1 Statistical Analysis

In this section, we describe the statistical analysis carried out to better understand the behaviour of the
ILS algorithm. The main purpose of this analysis is to identify the key components of the algorithm and
to determine the set of parameter values that yields the best performance. The following parameters were
studied using a full factorial experiment:

• The procedure to generate the first initial solution (ini sol), i.e. the random generation (random) or
the greedy insertion algorithm (greedy).

• The size of the perturbation (pert size).

• The initial penalty (α0).

• The multiplicative factor used to increase the penalty (β).
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Note that the number of iterations executed by the algorithm is not in the list of parameters studied. This is
because it is reasonable to expect that the larger the number of iterations executed, the larger the execution
time of the algorithm and the better the quality of the solutions obtained. For that reason and in order
to reduce the size of the experiment, we fixed the number of iterations to 400. Still, the impact of this
parameter on the performance of the algorithm is analyzed separately in Section 6.2.

The different values for the parameters studied are shown in Table 1. Note that the values of the perturbation
size (pert size) are expressed as a percentage of the total number of customers (l+ b) in an instance. Also,
note that the first value tested for the initial penalty (α0) is zero. When α0 = 0, the OLS heuristic is able to
explore infeasible regions of the solution space without any restriction. In this case, when the penalty factor
needs to be increased for the first time, it is assigned the value one. Additionally, note that when α0 = 100,
the capacity of the OLS heuristic to explore infeasible regions is very limited.

Parameter Levels

ini sol random, greedy
pert size 10%, 20%, 30%, 40%, 50%
α0 0, 1, 2 ,5, 10, 100
β 1.10, 2, 5

Table 1: Parameters and levels tested.

The algorithm was executed 10 times using each combination of parameter values to solve every instance
of the benchmark set JBG, resulting in 2 × 3 × 5 × 6 × 62 × 10 = 111600 executions. For each set of 10
executions, three performance measures were determined for each problem instance: the cost of the best
solution found (out of the 10 executions), the average solution cost and the average execution time. For each
of these measures, a mixed-effects analysis of variance (ANOVA) model was estimated using the statistical
package JMP. Each model uses a random effect for the instance of the benchmark set in order to indicate
that all the measurements for the same instance are correlated. Table 2 shows the p-values of the F -tests
that indicate the significance of each parameter or interaction in the ANOVA models. Bold p-values indicate
parameters or interactions that have a significant impact on the corresponding measure.

Factor Best solution cost Avg. solution cost Execution time

ini sol 0.3701 0.1799 0.7466
pert size 0.0006 < 0.0001 < 0.0001
α0 0.0007 < 0.0001 < 0.0001
β 0.6327 0.6830 0.1115
ini sol × pert size 0.9990 0.5237 0.8955
ini sol ×α0 0.9303 0.9992 0.9604
ini sol ×β 0.2811 0.7479 0.8960
pert size ×α0 < 0.0001 < 0.0001 < 0.0001
pert size ×β 0.9788 0.9799 0.6874
α0 × β 0.9440 0.9951 0.6379

Table 2: p-values of the F -tests to determine the significance of each term in the ANOVA models for the
best solution, the average solution and the execution time.

The size of the perturbation (pert size) and the initial penalty (α0) are the important parameters of the
algorithm. Observe that both parameters, as well as their interaction, are statistically significant for all the
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performance measures. This shows that the ability of the OLS heuristic to oscillate between feasible and
infeasible regions of the solution space, and the degree of diversification provided by the perturbation, are
the key aspects of the algorithm. Unexpectedly, neither the initial solution (ini sol) nor the multiplica-
tive factor (β) have a significant impact on any of the performance measures. This shows that the search
performed by the algorithm is robust enough to be insensitive to the initial solution. Additionally, the OLS
heuristic is also insensitive to the transition speed from the infeasible to the feasible region of the solution
space. What it is important is the ability to explore infeasible solutions, not the way in which the exploration
is oriented to a feasible region.

The average execution time for each combination of parameters pert size and α0 is shown in Figure 2.
Observe that the execution time of the algorithm increases proportionally with the perturbation size and
the ability of the OLS algorithm to explore infeasible solutions (hence, the execution time is inversely pro-
portional to α0). In other words, the larger the portion of the solution space that can be explored by the
OLS heuristic, the longer the time consumed by the search process. Similarly, the larger the portion of the
solution that is modified by the perturbation, the longer the time that is needed by the OLS heuristic to
find a locally optimal solution.
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Figure 2: Influence of the perturbation size (pert size) and the initial penalty (α0) on the average execution
time.

The average solution cost and the average cost of the best solutions found for each combination of parameters
pert size and α0 are shown in Figure 3 and 4, respectively. Observe that the perturbation size that produces
the best algorithm performance is 30%. Figure 3 shows that this perturbation size minimizes the average cost
of the solutions obtained. Additionally, Figure 4 shows that the average cost of the best solutions found is
minimized when the perturbation is between 20% and 30%. Smaller perturbations do not allow the algorithm
to escape from locally optimal solutions. Larger perturbations lead to a loss of information about the lo-
cally optimal solutions that prevents the algorithm from properly exploring their surrounding solution space.

The large impact of the exploration of infeasible solutions on the algorithm performance deserves a more
careful analysis. In Figure 3, it can be observed that the more capable the algorithm is to explore infeasible
regions of the solution space (the lower the initial penalty α0), the lower the average cost of the solutions
found. This shows that the robustness of the algorithm increases as a result of this ability. A similar trend
can be observed in Figure 4 for the average cost of the best solutions found. However, when the perturbation
size is between 20% and 30%, this performance measure seems to be insensitive to low values of α0 (between
0 and 10). In contrast, when α0 = 100, the quality of the best solutions found goes down to a considerable
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extent. Provided the algorithm can be executed at least 10 times and the perturbation size is equal to 30%,
low values of the initial penalty α0 do not decrease the ability of the algorithm to find good solutions. Nev-
ertheless, high values of α0 limit the ability to explore infeasible solutions and have a considerably negative
impact on the solution quality.
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Figure 3: Influence of the perturbation size (pert size) and the initial penalty (α0) on the average cost of
the solutions found.
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Figure 4: Influence of the perturbation size (pert size) and the initial penalty (α0) on the average cost of
the best solutions found.

6.2 Effect of the number of iterations on the algorithm performance

In this section, we analyze the effect of the number of iterations on the performance of the ILS algorithm.
We study the trade-off between the execution time of the algorithm and the quality of the solutions ob-
tained. To this end, we executed the algorithm 10 times using five different numbers of iterations to solve
the instances in both benchmark sets. The values used for the other parameters are shown in Table 3. The
results obtained for both benchmark sets are shown in Table 4. The second column shows the number of
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best known solutions found by the ILS algorithm. The next pairs of columns show the average solution cost
and the average ratio ((solution cost/best known solution cost) × 100) for the best solution found and the
average solution, respectively. The final column shows the average execution time of the algorithm. Observe
that the algorithm finds very good solutions, even within a very short execution time. A number of iterations
equal to 400 seems to suffice to find the best known solutions for the vast majority of the instances in the
benchmark sets. Larger number of iterations mainly increase the robustness of the algorithm by decreasing
the average cost of the solutions obtained.

Parameter Level

ini sol random

pert size 30%
α0 0
β 5

Table 3: Parameters and final values used.

Best solution Average solution

Iter. Num. best sols. Avg. cost Avg. ratio Avg. cost Avg. ratio Avg. time (s)

Set JBG
100 50/62 290683.81 100.03 292520.09 100.61 4.25
200 56/62 290623.19 100.01 291748.59 100.36 8.23
400 58/62 290593.84 100.00 291332.41 100.23 14.31
800 61/62 290582.86 100.00 291229.25 100.19 20.12
1000 62/62 290576.21 100.00 291170.16 100.17 22.89

Set TV
100 28/33 701.19 100.07 706.91 100.80 1.43
200 29/33 701.06 100.05 704.87 100.52 2.68
400 32/33 700.72 100.02 704.42 100.46 3.76
800 33/33 700.64 100.00 703.85 100.38 6.21
1000 33/33 700.64 100.00 703.52 100.33 7.35

Table 4: Effect of the number of iterations on the solution quality and the average execution time.

The ILS algorithm found new best solutions for two instances in benchmark set TV (instance Eil B101 66
and Eil A101 80) when executing 400 iterations or more. When executing 1000 iterations, the ILS algorithm
is able to find the best known solutions to all the instances in both benchmark sets. The solutions obtained
by the ILS algorithm (when executing 1000 iterations) are shown in Appendix A. A bold value for the cost
of the solution indicates that it is lower than the cost of the previous best solution known for the instance.

7 ILS vs. State of the art metaheuristic algorithms

In this section, we compare the performance of the ILS to the performance of other state-of-the-art meta-
heuristics for solving the VRPB. The algorithms compared are BTS: Brandão (2006) tabu search, LNS:
Røpke and Pisinger (2006) large neighborhood search, RTS-AMP: Wassan (2007) reactive adaptative mem-
ory programming search , MACS: Gajpal and Abad (2009) multi-ant colony system, RPA: Zachariadis and
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Kiranoudis (2012) route promise algorithm and ILS: the proposed iterated local search.

For a fair comparison, we only take into account results reported for experiments carried out under the
following conditions:

• A limited number of runs are executed by the algorithm for each instance in the benchmark sets.

• The execution time is bounded.

• The parameters of the algorithm are fixed or the way they are calculated remains the same for every
execution.

The paper corresponding to the MACS algorithm additionally reports the best solutions (for the instances
in the benchmark sets) found during the overall research activity. However, since neither the conditions
under which the algorithm was tested nor the values of the parameters are specified, this results will not
be considered for comparison. Instead, results obtained with experiments carried out under the conditions
stated above are considered. Other papers report results corresponding to several versions of the algorithm.
In this sense, the BTS results compared here are the ones reported for the K tree r version of the algorithm.
Similarly, the LNS results are the ones reported for the 6R-no learning configuration and the ILS results
are those obtained by the execution of 400 iterations (ILS-400) and 1000 iterations (ILS-1000) with the
parameter values shown in Table 3. Additionally, each paper reports the solutions obtained using different
conditions for their experiments. The conditions for each algorithm are the following:

• RTS-AMP: reports the best solution out of 5 runs and the corresponding execution time.

• LNS: reports the best solution out of 10 runs and the average execution time.

• BTS: reports the best solution out of 5 runs and the corresponding execution time.

• MACS: reports the best solution out of 8 runs and the average execution time.

• RPA: reports the best solution out of 10 runs and the average execution time (until the best known
solution is found by the algorithm).

For our ILS algorithm, the best solution is reported out of 10 executions along with the average execution
time of the algorithm.

The computing time comparison is not straightforward due to the different computers used to execute the
different algorithms. A rough performance comparison can be done using the Mflops (millions of floating-
point operations per second) measured for each computer (Gajpal and Abad, 2009). Table 5 shows the
specifications of the computers used in each paper along with the corresponding Mflops values reported by
Dongarra (2006). Since the 2.93 GHz. Intel Core i7 is not included in Dongarra (2006), we executed the
same benchmark program to estimate the number of Mflops3. The largest number of Mflops obtained was
1598 Mflops. Therefore, this is the value used to perform the comparison. The same situation took place for
the 1.66 GHz. Intel Core 2 Duo used by Zachariadis and Kiranoudis (2012). Since we did not have access to
the same computer, we executed the benchmark set on a 2.13 GHz. Intel Core 2 Duo and scaled the number
of Mflops relative to the speed of both processors. The last column in Table 5 contains the time scaling
factors for all the computers relative to the 1598 Mflops reached by our computer.

A performance comparison of the algorithms is shown in Table 6. The metrics used for comparison are the
number of best known solutions found, the average cost of the best solutions found and the average cost of

3The program executed was the Netlib C version of the LINPACK benchmark program that estimates the number of Mflops
by solving a 100 × 100 system of equations. This code is available at http://www.netlibe.org/benchmark.

14



Algorithm Processor Mflops Time factor

RTS-AMP 50 MHz. Sun Sparc1000 10 0.006
BTS 500 MHz. Pentium III 72.5 0.045
LNS 1.5 GHz. Pentium IV 326 0.204

MACS 2.4 GHz. Intel Xeon 884 0.553
RPA 1.66 GHz. Intel Core 2 Duo 857 0.536
ILS 2.93 GHz. Intel Core i7 1598 1

Table 5: Processors used to execute the algorithms along with the time scaling factor according to the 1598
Mflops reached by the 2.93 GHz. Intel Core i7 processor.

the solutions. The scaled execution time is also shown for each algorithm; this scaled value represents the
approximate time that would have been consumed if the 2.93 GHz. Intel Core i7 had executed the algorithm.
The bold values correspond to the best value for each performance metric. It can be observed that the
proposed ILS algorithm is very competitive in comparison to the other algorithms. The ILS-400 shows a
better performance (with respect to two out of three performance metrics) than that shown by most of the
algorithms. It finds a larger number of best known solutions and has a lower average cost of the best solutions
found than the other algorithms, except for the RPA. The MACS algorithm shows a better performance
in terms of the average cost of all the solutions obtained. However, its execution time its considerably
larger than the one consumed by the ILS-400. For the set JBG, both ILS-1000 and RPA are able to find
the best known solutions to all the instances in the benchmark set. However, the ILS-1000 shows a better
performance in terms of the average cost of all the solutions obtained and requires a considerably shorter
execution time. The other algorithms here compared are considerably more complex than the ILS algorithm
proposed. This is a major argument in favour of the ILS algorithm; the main concept behind it is simple
and yet very effective. This suggests that the published algorithms are unnecessarily complex.

Algorithm Num. Best sol. Avg. best sol. cost Avg. sol. cost Avg. scaled time (s)

Set JBG
RTS-AMP 40/62 290981.80 - 11.01
BTS 39/62 291160.00 291305.70 36.67
LNS 50/62 291014.70 291823.34 14.48
MACS 46/62 290655.29 290920.90 37.35
RPA 62/62 290576.06 291927.72 35.08
ILS-400 58/62 290593.84 291332.41 14.31
ILS-1000 62/62 290576.21 291170.16 22.89

Set TV
RTS-AMP 21/33 706.40 - 4.33
BTS 25/33 702.20 702.50 13.36
LNS 26/33 701.18 704.50 8.54
MACS 27/33 701.48 702.30 14.17
RPA4 - - - -
ILS-400 32/33 700.72 704.42 3.83
ILS-1000 33/33 700.64 703.52 7.35

Table 6: Performance comparison of the algorithms and their scaled execution times.

4The performance of the RPA is not tested using the benchmark set TV.
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8 Conclusions

In this paper, we introduce a simple iterated local search algorithm to solve the VRPB. The main component
of this algorithm is an oscillating local search heuristic that has two important features. The first feature
is the ability to explore a wide neighborhood structure (composed of four different neighborhoods) at each
iteration. We implement a mechanism for an efficient update of the set of neighboring solutions that substan-
tially reduces the execution time of the algorithm. The second feature is the ability to explore solutions that
violate the capacity constraint of the problem. The OLS heuristic embedded in the ILS algorithm performs
constant transitions between feasible and infeasible portions of the solution space. These transitions are
regulated by a dynamic adjustment of a penalty applied to the cost of infeasible solutions. The development
of efficient mechanisms to handle the violation of other constraints through the penalization of the cost
function would be a useful path for future research.

We carried out an extensive statistical study of the ILS algorithm. The results obtained show that there are
two important components: the ability of the OLS heuristic to oscillate between feasible and infeasible por-
tions of the solution space and the size of the perturbation. The results obtained also allowed us to identify
the values of the parameters that yield the best algorithm performance. We compare the ILS algorithm to the
best performing algorithms in the literature using two benchmark sets of instances. Despite the fact that the
ILS is considerably simpler than the other algorithms compared, it shows a very competitive performance.
The ILS algorithm is able to find the best known solutions to all the instances in both benchmark sets in
a considerably shorter execution time. Additionally, new best solutions have been found for two instances
in one of the benchmark sets. We have shown that, by improving the performance of the LS heuristic, it
is possible to develop faster algorithms with simpler components without compromising the quality of the
solutions obtained.
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A Appendix: Cost of the solutions obtained by the ILS for each
benchmark set.

Instance Best known Obtained Instance Best known Obtained
sol. cost sol. cost sol. cost sol. cost

A1 229885.65 229885.65 H4 250220.77 250220.77
A2 180119.21 180119.21 H5 246121.31 246121.31
A3 163405.38 163405.38 H6 249135.32 249135.32
A4 155796.41 155796.41 I1 350245.28 350245.28
B1 239080.16 239080.16 I2 309943.84 309943.84
B2 198047.77 198047.77 I3 294507.38 294507.38
B3 169372.29 169372.29 I4 295988.45 295988.45
C1 250556.77 250556.77 I5 301236.01 301236.01
C2 215020.23 215020.23 J1 335006.68 335006.68
C3 199345.96 199345.96 J2 310417.21 310417.21
C4 195366.63 195366.63 J3 279219.21 279219.21
D1 322530.13 322530.13 J4 296533.16 296533.16
D2 316708.86 316708.86 K1 394071.16 394071.17
D3 239478.63 239478.63 K2 362130.00 362130.00
D4 205831.94 205831.94 K3 365694.08 365694.08
E1 238879.58 238879.58 K4 348949.39 348949.39
E2 212263.11 212263.11 L1 417896.72 417896.72
E3 206659.17 206659.17 L2 401228.81 401228.80
F1 263173.96 263173.96 L3 402677.72 402677.72
F2 265214.16 265214.16 L4 384636.33 384636.33
F3 241120.78 241120.78 L5 387564.55 387564.55
F4 233861.85 233861.85 M1 398593.19 398593.19
G1 306305.40 306305.40 M2 396916.97 396916.97
G2 245440.99 245440.99 M3 375695.41 375695.42
G3 229507.48 229507.48 M4 348140.16 348140.16
G4 232521.25 232521.25 N1 408100.62 408100.62
G5 221730.35 221730.35 N2 408065.44 408065.44
G6 213457.45 213457.45 N3 394337.86 394337.86
H1 268933.06 268933.06 N4 394788.37 394788.36
H2 253365.50 253365.50 N5 373476.31 373476.30
H3 247449.04 247449.04 N6 373758.65 373758.65

Table 7: Cost of the solutions obtained for instances in set GJB by the ILS algorithm with 1000 iterations.

Instance Best known Obtained Instance Best known Obtained
sol. cost sol. cost sol. cost sol. cost

Eil 22 50 371 371 Eil A76 80 781 781
Eil 22 66 366 366 Eil B76 50 801 801
Eil 22 80 375 375 Eil B76 66 873 873
Eil 23 50 682 682 Eil B76 80 919 919
Eil 23 66 649 649 Eil C76 50 713 713
Eil 23 80 623 623 Eil C76 66 734 734
Eil 30 50 501 501 Eil C76 80 733 733
Eil 30 66 537 537 Eil D76 50 690 690
Eil 30 80 514 514 Eil D76 66 715 715
Eil 33 50 738 738 Eil D76 80 694 694
Eil 33 66 750 750 Eil A101 50 831 831
Eil 33 80 736 736 Eil A101 66 846 846
Eil 51 50 559 559 Eil A101 80 857 856
Eil 51 66 548 548 Eil B101 50 923 923
Eil 51 80 565 565 Eil B101 66 988 983

Eil A76 50 739 739 Eil B101 80 1008 1008
Eil A76 66 768 768

Table 8: Cost of the solutions obtained for instances in set TV by the ILS algorithm with 1000 iterations.
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