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demand distribution for the downstream resources. We then discuss measures to define downstream
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1. Introduction

Due to an aging society and technological progress, the demand
for health care services is rising in industrialized countries (Hay,
2003; OECD Indicators, 2011). At the same time, cost cuts and
human resource shortages lead to increasing pressure on hospital
resources. Therefore, the importance of optimizing the usage of
scarce resources in hospitals is self-evident. The most expensive
resource in most hospitals is the operating room (OR) (Guerriero
& Guido, 2011). ORs are clearly connected with other “down-
stream” resources, for example, the post-anesthesia care unit
(PACU), the intensive care unit (ICU), and the general patient
wards, hereafter referred to as “wards”. Anderson, Price, Golden,
Jank, and Wasil (2011) show that a high level of utilization in hos-
pital wards leads to a higher discharge rate of patients, which
might reduce the quality of care. On days with high patient inflow
to the ICU the danger of readmissions (Baker, Pronovost, Morlock,
Geocadin, & Holzmueller, 2009) and the probability of rejected ICU
requests (McManus et al., 2003) strongly increases. Therefore,
downstream units should also be considered in surgery planning
for medical reasons. When planning the operating rooms and the
downstream units, decision makers face a trade-off between the
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high complexity of a holistic view and the danger of suboptimal
solutions resulting from focusing on isolated units (Vanberkel,
Boucherie, Hans, Hurink, & Litvak, 2010).

Many hospitals use a so-called block-booking system when
planning surgeries. In this system a medical specialty, e.g. urology,
is assigned to blocks denoting a specific amount of time, e.g. a day,
in one OR. These blocks can be combined into cyclical master sur-
gery schedules (MSS), where every block is repeated after a fixed
cycle, e.g. every two weeks. In planning and scheduling, problems
can be categorized according to levels of a decision hierarchy
(Hans, van Houdenhoven, & Hulshof, 2011): The strategic, tactical,
offline-operational (i.e. planning in advance) and the online-oper-
ational (i.e. reacting/monitoring) level. In block-booking systems,
decisions are made on all hierarchical levels. At the strategic level
the number of blocks assigned to the specialties during a MSS cycle
is determined. At the tactical level, OR-days are allocated to spe-
cialties in an MSS, such that the strategic allocation is met. At
the operational level, patients are scheduled (offline) and resched-
uled in case of emergencies or unexpected changes (online). An
overview of OR planning may be found in Hans and Vanberkel
(2011).

In the paper at hand, we discuss the tactical MSS problem,
concentrating on the effect the MSS has on the patient flow to
downstream inpatient care units. Surgeries performed in each
block of the MSS create a flow of patients through the ICU
to the ward, or directly from the OR to the wards, before they
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leave the hospital. As the PACU is part of the OR department
in many hospitals, we exclude this unit in our tactical
problem and denote the ICU and the ward as downstream
units. This paper concentrates on the inpatient flow because
outpatients leave the hospital the day of surgery and thus
require only OR capacities. We define a model to calculate
the distributions of recovering patients in the downstream
units expected from the MSS. Based on this, we propose an
approach for planning the MSS with the objective to minimize
downstream costs by leveling bed demand and reducing week-
end bed requests.

The remainder of this paper is organized as follows: Section 2
provides a brief overview of the relevant literature. Section 3 pre-
sents an algorithm for calculating the distribution of recovering
patients in the downstream units — ICU and multiple wards. Sec-
tion 4 offers a generic model to determine optimal MSSs and a dis-
cussion of relevant objective functions to determine downstream
costs. In Section 5 we present a branch-and-bound algorithm and
different heuristics to minimize these costs. We test the algorithms
in Section 6 in an experimental investigation using data from a
Dutch hospital. Finally, we discuss managerial implications, limita-
tions, and potential extensions of our study.

2. Literature review

Operating rooms are among the most expensive resources in
hospitals and is a focus of a large number of scheduling studies
(Cardoen, Demeulemeester, & Belién, 2010). For recent literature
reviews on OR scheduling, see Cardoen et al. (2010) and
Guerriero and Guido (2011). Articles about health care models that
include both the OR and downstream units are reviewed in
Vanberkel et al. (2010). In this section, we focus on articles that
combine OR scheduling with the effect on downstream units, such
as ICUs or wards.

Adan and Vissers (2002) present a deterministic integer pro-
gramming approach to schedule patients based on fixed capacities
in the OR, the ICU, and the ward. The ICU and ward capacities are
the number of beds available for each specialty, while the OR
capacity is the total available operating time per day. Additionally,
the capacity of the nursing staff is considered. Based on this, a daily
admission profile for different specialties that minimizes the
deviation from resource utilization targets is obtained. Gartner
and Kolisch (2014) propose a binary program which decides for
each patient what day the patient is admitted, what day each
clinical activity is undertaken and what day the patient is released.
The objective is to maximize the sum of the contribution margins
of all patients taking into account limited availability of clinical
resources. Santibanez, Belién, and Atkins (2007) discuss various
trade-offs in tactical OR planning. They also apply a deterministic
mixed-integer program and compare different objectives,
e.g. maximizing throughput of patients or leveling the bed
requests of downstream units. Their study differentiates between
beds and nursing levels as well as between ORs and surgeons. An
integer linear program (ILP) model to construct an MSS where
patient types are assigned to blocks is formulated by van
Oostrum et al. (2008). They seek to minimize the required OR
capacity and to level hospital bed requirements. To incorporate
the uncertainty of OR durations, they introduce probabilistic con-
straints. They solve the model in two steps. First, OR capacities
are optimized without consideration of hospital-beds using so-
called Operating Room Day Schedules (ORDSs), i.e. lists of surgery
types that are assigned to one OR day. Then, the ORDSs are
assigned to OR days in order to level hospital-bed demand. There-
fore, leveling hospital-bed demand is only possible using the pre-
computed set of ORDSs. All four aforementioned papers model

multiple downstream units with mainly deterministic approaches,
while our study employs a stochastic approach.

Models for creating MSSs with leveled bed occupancy in down-
stream units are presented in Belién and Demeulemeester (2007).
Contrary to the articles presented above, both the number of
patients and the length of stay in the hospital are assumed to be
stochastic. A multinomial distribution is used to model the length
of stay. The authors aim to minimize the expected bed shortage
and employ a mixed-integer programming and a simulated anneal-
ing approach. The approach of Belién and Demeulemeester (2007)
differs from our approach in only allowing one downstream
resource (ward), while we model the patient flow including the
ICU and wards and thus consider multiple downstream units.

Min and Yih (2010) propose operational scheduling of elective
surgeries that considers both uncertainty and downstream capac-
ity constraints. They formulate a stochastic surgery scheduling
problem minimizing the sum of costs directly related to patients
and expected overtime costs. The downstream capacities are mod-
eled as constraints. In contrast to their approach, which considers
the operational surgery planning level, we focus on the tactical
level.

Our study is based on the approach of Vanberkel et al. (2011b)
where binomial distributions and discrete convolutions are used
to calculate the exact distribution of recovering patients in the
ward resulting from a given MSS. Vanberkel et al. (2011b) pro-
pose a set of equations to determine the distributions of ward
occupancy, patient admissions, patient discharges, and the num-
ber of patients on each day of their recovery period. A case study
where the algorithm is implemented in a Dutch hospital is pre-
sented in Vanberkel et al. (2011a). The authors use their approach
to construct several MSSs and to choose one with a favorable
ward occupancy pattern. We build upon their study by extending
it in the following ways: First, Vanberkel et al. (2011b) only
include one ward as a single downstream unit. As the ICU is an
important bottleneck in hospitals (Litvak, van Rijsbergen,
Boucherie, & Houdenhoven, 2008), we incorporate ICU bed
requests as well as multiple wards in our model as a valuable
extension. Second, Vanberkel et al. (2011b) do not determine
the costs resulting from an MSS. As different downstream costs
exist, e.g. costs for providing fixed capacities or costs for weekend
staffing, we develop an approach to assign costs to specific MSSs.
Third, we introduce several exact and heuristic algorithms to
minimize these downstream costs.

To the best of our knowledge, the current study presents the
first exact stochastic MSS approach to calculating patient occu-
pancy distributions in the ICU and multiple wards. In addition,
we present exact and heuristic algorithms to minimize costs
resulting from patients in downstream units.

3. Recovering patients in downstream units

In this section, we describe a model that calculates the exact
distribution of post-operative inpatients in the ICU and multiple
wards resulting from a given MSS cycle. We do not further distin-
guish between different ICUs in this study. However, the presented
approach can be extended to include several ICUs. We now present
the general underlying assumptions regarding the process, the
required data, and the detailed model.

After an operation several patient paths exist. In most cases,
patients are admitted to a ward. In more severe cases, patients
are sent to the ICU. Alternatively, patients might be discharged
without being sent to a ward (e.g. due to mortality). Patients in
the wards will be transferred to the ICU if their condition becomes
unstable. Most patients leave the system only after recovering in a
ward, but they might also leave the hospital directly from the ICU
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(e.g. in case of death or if transferred to another hospital). The
patient paths are outlined in Fig. 1.

In studying data from a large University Hospital in Munich,
Germany, we found that more than 98% of inpatients follow one
of three paths. The vast majority (92%) follow the path OR — ward
— discharge. About 5% follow OR — ICU — ward — discharge. Just
above 1% follow the path OR — ICU — discharge, i.e. the previous
path with a zero day stay in the ward. It is very rare for patients to
return to the ICU after being transferred from the ICU to a ward
(just above 1%). Based on this data we simplified the modeled
patient pathway as depicted in Fig. 2.

The number of patients sent to the ICU or the wards after one
surgery block is modeled by a discrete empirical distribution. This
distribution may also include emergency patients who were oper-
ated on during this block. A stay in the ICU is denoted by “I”, a stay
in a ward of a patient who directly came from the operating room
by “WO0”, and a stay in a ward of a patient who was transferred
from the ICU by “WI”. The lengths of stay (in days) in the ICU or
a ward, after being transferred from the OR or from the ICU, are
also modeled by discrete empirical distributions. Such distribu-
tions are easily obtained from historical records.

The main sets and indices used in the following model are
shown in Table 1. The index n is used to determine days after sur-
gery, where 1 denotes the day of surgery. Days after a transfer to a
ward from the ICU will be denoted by u. We differentiate between
multiple wards h € H. Each specialty j corresponds to one specific
ward, whereas each ward may accommodate more than one spe-
cialty. The set of specialties accommodated by ward h is denoted
by J.. Required historical or estimated data for every specialty
j € J are as follows:

a;(p) represents the probability that p € {0, ..., P;} patients are
operated on during a surgery block of specialty j.

e b; represents the probability that a patient of specialty j is
admitted to the ICU immediately after surgery. 1 —b; is the
probability that the patient is admitted to the ward.

cj(n) represents the probability that a patient from surgery of

specialty j stays n € {1, . ,NJ’-} days in the ICU after surgery.

c]‘."’o(n) represents the probability that a patient from surgery of
specialty j staysn € {1, e ,N}WO} days in the ward after surgery.

¢/'(u) represents the probability that a patient from surgery of
specialty j stays u {O, e ,NJW’} days in the ward after being

released from the ICU. A stay of zero days implies a direct
release from the ICU.

The approach works in three steps (see Fig. 3). First, we calcu-
late for a single surgery block the distributions of recovering
patients in the ICU and the specific ward. This step is carried out
for each surgical specialty. In the next step we calculate the distri-
butions for a single cyclical block. It is important to note that we
assume the MSS to be cyclical. Therefore, each block will be
repeated for each new MSS cycle. In the third step we combine
all blocks from a cyclical MSS to calculate the occupancy levels
for the ICU and each ward h € H. The first two steps do not depend

on the specific MSS, we only need information about the definition
of surgery blocks (e.g. length of a block) and the length of the MSS
cycle. Therefore, these steps can be calculated during preprocess-
ing. Due to the structure of the problem, the third step has to be
calculated for each MSS we want to evaluate.

3.1. Calculation of the distributions of patients resulting from a single
OR block (Step 1)

In the following, we present the algorithm to derive the distri-
butions of number of patients resulting from a single OR block.
First, using the probability of an ICU admission and the empirical
length of stay distributions, we analyze the pathway of a single
patient through the hospital (see Fig. 4). After surgery, a patient
of specialty j can be admitted either to the ICU or to the specific
ward h. On each day n, a patient in the ICU may either stay or be
transferred to this ward. A patient in the ward may either stay or
be released from the hospital. We assume that the probability for
a patient to be discharged from the ward after being transferred
from the ICU only depends on the time since the transfer from
the ICU.

Eq. (1) calculates the conditional probability d]'-v,1 for a patient of
specialty j in the ICU to be transferred to the ward on day n, given
that he was not released before. Analogously, Eq. (2) calculates the
probability dﬂo that a patient who is in the ward n days after sur-
gery is discharged on that day. Eq. (3) calculates the probability dﬂ’
for a discharge u days after the transfer from the ICU to the ward.
Patients who leave the hospital after staying in the ICU are mod-
eled to have a stay of zero days in the ward. Calculations (1)-(3)
follow the logic of Vanberkel et al. (2011b).

cl(n)

di,=——— jeg, ne{l,.. N}, (1)
Sl (k)
cM(n
T T TS (T N
Zk]:n C]"NO (k)
cMu
=W jeg uefo. N} (3)
Sl (k)

We denote the latest possible day with a positive probability of
a patient staying in the ICU and in the ward as N} and

N} = max (NJWO,N]" + N]W’), respectively. Now, we calculate in Eq.

(4) for all specialties j € 7 and each day n {1, e ,Nj’.} the proba-
bilities e}_n that a patient of specialty j who had surgery on day 1 is
in the ICU. Accordingly, the same is done for patients staying in the
ward (e}‘.f‘,’.l forn e {1, . ,N]W}). For the probability that a patient of
specialty j is in the ICU on day n we get

b;, n=1
=1 (1-di)er ne{2.. N} (4)
0, otherwise.
ICU
— OR t 4 Discharge
Ward

Fig. 1. Patient paths.
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ICU
— OR b Discharge
Ward
Fig. 2. Simplified patient paths.
Table 1 probability that the patient came directly from the OR and is in
Sets and indices. the ward on day n is denoted by e/}, whereas the probability that
Description Index ¢ set the patient is in the ward on day n after staying m days in the ICU is
wi
Wards hen € mn-
Operating rooms (ORs) ieZ 1-b 1
Surgery specialties jeg — Dy, n=
Surgery specialties connected to ward h jeTn wo _ ( _ qWo ) wo { WO}
Patients pe{0.....P;} Ein 1 dJ‘”*l Cin-1 NME 2N, (%)
Days in the ICU after surgery ne {1 N(} 0, otherwise.
""" J
Days in a ward after surgery ne {] Nwo}
A Nj
Days in a ward after ICU ue{O,...,NJWI} (17d%l>d1’-imej’-‘m, me{l...Nj’.},n:m+l
Days in the MSS cycle lel e — ( W ) wi { 1} { WI}
Weekdays in the MSS cycle qeQ S 1 dj-"f'"4 €imn-10 ME 1 "'Nj ne m+27“‘7m+Nj
Weekend days in the MSS cycle teLl\Q 0, otherwise.
(6)
The calculation of e/} in Eq. (5) is analogous to e} .. To calculate %! |

Preprocessing

Step 1: Single OR Block
Patient distribution from single OR block

|

Step 2: Cyclical OR Block
Patient distribution from cyclical schedule of
one OR block
I
v
Step 3: Cyclical MSS
Patient distribution from cyclical MSS

Fig. 3. Process steps.

On day 1, this probability equals b;, i.e. the probability that the
patient is directly transferred to the ICU after surgery. For the fol-
lowing days, the probability decreases as patients might be trans-
ferred to the ward. In order to calculate ej‘.’_‘,’v we differentiate
between patients who were directly transferred to the ward after
leaving the OR and those who were transferred via the ICU. The

Day 1 Day 2

in Eq. (6), the different transfer times from the ICU are taken into
account. After staying m days in the ICU (n=m+ 1), eV equals

» Vjmn

the product of (a) the probability (1 _djV_(V)’) that the patient did

not leave the hospital immediately, (b) the probability d}_m that he
was transferred to the ward that day, and (c) the probability e}".m
that the patient was in the ICU on day m. Therefore, the probability
em that a patient is in the ward on day n is calculated in Eq. (7) by
adding the probability e}fﬁo that he came directly from the OR and
the probabilities em_n that he stayed m days in the ICU before for
all possible number of days m < n.

Wwo _
e, n=1
w -1 w
el = { eWo s iew - ne {27...,1\1]. } (7)
0, otherwise.

Now, we calculate for each day n the probability distribution for
the number of patients in the lCU.jj.{n (p), in Eq. (8) and in the ward,
jY,‘{ (p), in Eq. (9). The probability that out of k patients who had
surgery, p patients are in the ICU or the ward on day n can be deter-
mined using a binomial distribution (Vanberkel et al., 2011b).

Day 3

—> ICU

ICU

ICU

OR

Ward Hj Ward i Dis-
' charge

Ward Ward
A Fﬁ

kr—ﬁ Ward }T i

——>{ Ward |—>{ Ward }—r»{ Ward }T—H Ward }—‘

Fig. 4. Patient paths.
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Next, we have to sum these probabilities weighted by a;(k) for all
possible k (number of patients that had surgery) that could lead
to p patients on day n.

" » k—p . [
-Eln(p):’2<p><ejln) (l_ejl’,n) Clj(k) JjeJ, nG{l,...,Nj}. (8)

k=p

P

,KY(D):ZC;)(eﬂ)p(l—ejvv{,)k*paj(k) jeg. ne{1. .N¥}(9)

k=p

3.2. Calculation of the distributions of patients resulting from a cyclical
OR block (Step 2)

As the MSS schedule is cyclical, each block will be repeated in
every cycle. For example, consider a weekly cycle in which a uro-
logical block on Monday takes place on every Monday. As the max-
imum recovery time of patients usually exceeds the cycle time,
patients having their surgery in different cycles might be recover-
ing at the same time. The number of overlapping cycles depends on

the cycle length L = |£| and the maximum length of stay N} for

patients in the ICU and Nj‘-’v for patients in the wards. To obtain
the distributions of patients on the days of one cycle, we perform
discrete convolutions, see (10) and (11), of the patient distributions
of all overlapping cycles for the ICU and the specific ward, respec-

tively. We use the symbol « for the discrete convolution. FJ’-_[ (F}’}’)

represents the distribution on the /th day of a cycle of the number
of recovering patients of specialty j in the ICU (ward) which results
from a cyclical surgery block on day 1 of all previous cycles includ-
ing the current cycle.

1 1 fl 1 ;

Fj-f :f:l[ * jl+L R *f.;-erL(N;*/)/LJL Je j7 tel (10)
w W FW w :

Fiy = £ *J’-Hl*"'*CzM(N]WJ)/LJL jed, Ltel (11)

3.3. Calculation of the distributions of patients resulting from a cyclical
MSS (Step 3)

To calculate a cyclical MSS, we obtain the patient distributions
coming from each block (i, q), where i denotes the operating room
and q the day of the cycle. We assume that surgery blocks are only
provided on weekdays. For a given MSS, x is set and each x;4; has a
value of 1 if specialty j is assigned to block (i,q) and a value of O
otherwise. F| , in (12) (F}¥;,, in (13)) is the distribution of the num-
ber of recovering patients in the ICU (ward h) on day ¢ of the MSS
cycle coming from surgery in OR i on day q of the MSS cycle.

|
_ { YjerFieqXiajs
q.l I .
YicrFicqiiiiXiais otherwise.

_ { >
F q ieZ, qeQ,

(12)
_ o Bl giiXiai >4
FhWiqé: ZJ&J;,JVCqH iqj ' heH, ieT, qeQ, (el
ngthj_Fwa,-,q_j? otherwise.
(13)

Now we have to convolve the distributions of all blocks to
obtain the patient distribution resulting from the MSS. F! in (14)
(F,‘f‘_’[ in (15)) denotes the distribution of recovering patients in the
ICU (ward h) on day ¢ of the MSS cycle. sup{Z} denotes the last
operating room, sup{Q} the last weekday with an active surgery
slot.

I _ 7l i ol
Fo=F i, xFi,, % xF

sup(zpsup(are £ €L (14)

lel,

Foy =F g« Fig e Fop supiary MEMLEL (15)

The steps presented in this section calculate for a given MSS the
distribution of patients for every day ¢ in the MSS cycle for the ICU
and every ward h € H. Note that x;4; is assumed to be set for now
but will become a variable when we are searching for a good MSS.
In the next sections we present methods to minimize downstream
costs of an MSS using these distributions.

4. Generic model and discussion of objectives

In Section 4.1 we present a generic model that minimizes
downstream costs using a general assignment problem. We then
discuss different downstream cost functions for this model in
Section 4.2.

4.1. Generic model

We define a generic assignment problem that minimizes the
downstream costs c(x). c(x) is a function of the distribution of
patients in the downstream units calculated in Steps 1-3 in the pre-
vious section resulting from the MSS x, i.e. the assignment of all
blocks (i,q) to a specialty j.

Min c(x) (16)
s.t.
dXgi<1 i€, qeQ (17)
jeg
szi.qj = dj jeJg (18)
i€Z qeQ
in,qj <Sg  qeQ, jeJ (19)
ieT
Xigj €{0,1} i€eIqeQ, jeJ. (20)

Eqs. (17) and (18) are the assignment problem constraints. Eq. (17)
ensures that at most one specialty is assigned to each block, while
(18) ensures that the number of blocks assigned to each specialty
at least equals the number of required blocks d; obtained from stra-
tegic planning. The maximum number of blocks s assigned to each
specialty per day is modeled in (19). Eq. (16) represents a generic
objective function. This model can easily be adjusted to deal with
specific constraints, e.g. some specialties have to operate in specific
ORs.

4.2. Discussion of downstream cost functions

Discussions with operating room managers indicated that there
are four cost components that drive downstream costs: fixed costs,
overcapacity costs, staffing costs, and additional weekend staffing
costs.

Fixed costs. We consider the costs for creating and maintaining
fixed capacities. We define ¢’/ and ¢} as the costs for creating and
maintaining the capacity for one patient in the ICU and ward h per
cycle, respectively. An example of fixed costs is the costs associated
with an ICU bed. The model determines the required capacity of
these resources to ensure certain service levels o/ and of¥. We
denote Q}(o/) as the o/-quantile of the distribution F} of the num-
ber of patients in the ICU on day ¢ Q' (") is the o-quantile

for the distribution F}", of patients in ward h. For example, Q(.99)

denotes the capacity that will not be exceeded with a probability
of 99%. The number of beds we need to provide in the ICU

and in each ward h are therefore cap'(a') = max., (Qi(a’)) and
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capy (o) = maxee, (QXV[ (oc,‘;")) respectively. We obtain total fixed
costs of

cost! = dcap'(a

)+ > M eapy ( (21)
heH
Overcapacity costs. Overcapacity costs are costs that incur due to
requiring capacity beyond cap' and cap}’. This situation occurs, for
example, when patients must be transferred to ICUs or wards in
other hospitals, or to a “wrong” ICU or ward, as capacity limits
(depending on the service levels of and o¥) are reached. We assign
costs of ¢® and ¢ for each patient above existing capacities per
day. The expected number of these patients per day is

zzglnglmplepFl(p) in the ICU and exc}/(a)¥)=

Z/ 1Zp cap (o) +1th/
on the number of patients that request a bed in the ICU and ward h,
respectively. A simple upper bound is the product of the number of
overlapping cycles and the maximum number of patients per cycle.
We obtain overcapacity costs of

)+ Y cnexcy ( (22)

hen

exc! (o)

in ward h. UB' and UB}" is an upper bound

cost® = c®exc!(

Both, the fixed costs and the overcapacity costs depend on the
service levels of and oV. The higher the service level is, the higher
the fixed costs and the lower the overcapacity costs are. Setting the
appropriate service levels of and ¢} should be done on a strategic
level and is therefore outside the scope of this study.

Staffing costs. Staffing costs are dependent on the number of
patients, i.e. occupied beds. The staffing decision for every bed is
made in advance. Therefore, we assume a service level of ' and
By’ for staffing beds. For example, a hospital might staff the .75
quantile of demand to be understaffed no more than 25% of the
time. For simplicity, we assume the costs for staffing one bed per
day are constant with ¢/ for the ICU and ¢" for the wards. The
total number of beds to be staffed during one cycle in the ICU
and in ward h are therefore sta'($")=3Y,.,.Ql(f") and

sta (BY) = 3,..Qr, (BY), respectively. The staffing costs, cost’,

assuming constant wages, are

cost® = c'sta' () + Y _c;"stay! (By). (23)
heH

Weekend staffing costs. Usually, there are additional costs for
staffing beds on weekends. The additional costs for one bed per
day are ¢*¢' and CZVE'W. The total number of beds to be staffed
on the weekends of one cycle in the ICU and in ward h are therefore

sta™*!(p') = Zéeﬁ\QQf"( #') and Stawew( hW) = ZéeL\QQm (ﬂ}‘:v)‘ respec-

tively. The additional costs on weekends are

cost"e = Cwel weI + che WStahweW ﬂh ) (24)
heH

Many combinations of downstream costs are possible. In our
case study, we employ downstream costs of c(x) = cost’ + cost"®.
The resulting objective function is

Min d'cap’ + > ;¥ eapy! + c*Ista™e! + > "W stay”. (25)

heH heH

5. Solution approaches

The generic model presented in the previous section is a classi-
cal assignment problem. Although the generalized assignment
problem is well-known to be NP-hard, there are efficient proce-
dures, such as branch-and-bound (Ross & Soland, 1975), to solve
even large instances to optimality. However, the calculation of

the objective function value is, due to the convolution of distribu-
tions, quite extensive. Hence, in addition to an optimal branch-
and-bound procedure, we discuss the following two heuristic strat-
egies to solve the master surgery scheduling problem:

1. Exact objective function and heuristic solution method.
2. Approximated objective function and exact solution method.

For strategy 1, we apply an incremental improvement heuristic,
a 2-0Opt heuristic, and simulated annealing. For strategy 2, we con-
sider two approximated objective functions: the first uses expected
values only, while the second employs a combination of expected
values and variances. The last two approaches show some similar-
ities to Belién and Demeulemeester (2007), who minimize
expected shortage of ward beds by linearization of their model.

5.1. Straightforward branch-and-bound

The straightforward branch-and-bound (SBB) algorithm is
based on complete enumeration but avoids redundant solutions.
These redundant solutions could be caused by having different
combinations of the same specialties on the same day in different
ORs. The algorithm fills up block after block of the MSS using a
depth-first search. It assigns all blocks, i.e. combinations of days
g and operating rooms i, to specialties j starting with the specialty
with the lowest index. After each block of a day is assigned to a
specialty, the next day is started. To avoid redundant solutions,
remaining blocks on the same day will only be filled with special-
ties with the same or a higher index. An example for the solutions
is presented in Fig. 5. Here, we show for 5 blocks (1 day with 1 OR,
2 days with 2 ORs) and 3 specialties (specialty 1 and 2 with 2
blocks each, specialty 3 with one block) all 11 possible non-redun-
dant solutions (compared to a total of 5, = 30 solutions to assign
these 3 specialties to 5 blocks). As an example, the solution 3
assigns the two required blocks of specialty 1 to OR 1 on days 1
and 3. The two required blocks of specialty 2 are assigned to oper-
ating rooms 1 and 2 on day 2, and the block of specialty 3 is
assigned to operating room 2 on day 3.

After assigning a specialty to a block, the algorithm updates the
distributions of patients in the ICU and the wards. A lower bound
of the objective function is calculated by considering all blocks
already planned leaving all blocks not yet planned empty. An upper
bound is the best feasible solution obtained so far. A good first
upper bound may be obtained by simulated annealing, as detailed
in the following section. A partial solution is fathomed as soon as
its lower bound is not strictly smaller than the upper bound. If a
new feasible solution is obtained that is below the current upper
bound, the upper bound is updated. We present the example of
Fig. 5 with upper and lower bounds, fathoming of non-optimal
solutions and the optimal solution (dark nodes with white num-
bers) in Fig. 6. While this method is exact, it may only be applied
to small problem instances due to high computation times.

5.2. Exact objective function and heuristic solution method

Incremental improvement heuristic.c The incremental
improvement heuristic (IIH) is motivated by the way MSSs are
altered in practice. Usually, an MSS already exists and the hospital
is not willing to allow many changes, since the MSS affects many
departments such as outpatient clinics. The proposed heuristic will
seek the best option if only one swap of two blocks is allowed.
Therefore, it will realize the swap with the maximum incremental
improvement. This method may be used to show improvements
for a defined maximum number of swaps.

2-0Opt heuristic. We repeat the incremental improvement
heuristic until no further improvement of the objective function
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Fig. 5. All non-redundant solutions for an example with 5 blocks and 3 specialties.

q i
1 1
2 1
2 2
3 1
3 2

# Solution 1 2 3 4
Upper bound 8 8 8 8

Lower bound 8 9 8 9

8 7 7 7 7 7

9 7 8 9 8 8

Fig. 6. Optimal solution for an example with 5 blocks and 3 specialties.

is observed. In this case it is equivalent to the 2-Opt (20H)
approach known from the traveling salesman literature (Lin &
Kernighan, 1973).

Simulated annealing. IIH and 20H presented above are likely
to get stuck in a local optimum and the quality of the obtained
solution is sensitive to the starting solution. To overcome this
weakness we propose a simulated annealing approach (SA)
(Aarts, Korst, & Michiels, 2005) with the same neighborhood as
IIH and 20H. In contrast to IIH, proximity to the given initial solu-
tion cannot be controlled with SA. SA will accept every move,
i.e. swap of two blocks, that improves the objective function. A
swap causing an increase in the objective function will be accepted
with a probability which decreases over time. We implement the
SA using a geometric cooling schedule with t, = cf - t;_;, where cf
denotes the cooling factor and t, the temperature level in round
k. The lower the cooling factor is, the faster the cool down occurs
and thus the faster the SA terminates. More details of the algorithm
are given in Section 6.

5.3. Approximated objective function and exact solution method

The following two solution approaches approximate the objec-
tive function, such that it can be solved with standard optimization
software.

Approximated objective function based on expected values.

We approximate the quantiles Q) and Q,‘:’i used in the exact objec-
tive function by their expected values, E(F]'vy,) for the ICU and
E (F,,WJI) for ward h, multiplied with parameters a’ and a}¥ for fixed

capacities and b' and th for weekend staffing, respectively. We

calculate these parameters as the average quotient of the quantiles
Q(-) and the expected values E(-) of the given initial solution.
Table 2 states the approximated quantiles. We denote the heuristic
using expected values as EV.

As defined in the previous section, the objective function is

Min 'cap' + > ;" cap)! + c*Istae! +> " cprestay”. (26)
heH heH

where cap' and cap}’ denote the capacity levels, sta”*' and sta;]“’e'w

the cumulated beds to be staffed on weekends during one MSS cycle
for the ICU and ward h, respectively. For the approximation of the
objective function, Constraints (27)-(29) need to be added to the
generic model presented in Section 4.1. We only show the con-
straints for the ICU, the ones for each ward h are formulated
analogously.

E(Fi) = ZZi:E<F;.£—q+l )Xivq-j + Zz EL: E<Fj".[fq+l+L)xi-QJ teL (27)

i€ jeJ q=1 €7 jeJ q=t+1
a’E(Fﬂ) <cap' (el (28)
>~ D'E(F)) =sta"! (29)

eL\Q

In (27), the values for the expected number of patients in the ICU
are determined for each day. In (28) the required capacity for the
ICU is calculated. Finally, in (29) the number of patients per week-
end day relevant for staffing is determined.

Approximated objective based on expected values and vari-
ances. The algorithm EV neglects the distribution of patients as it
only considers the expected values. With the approximated objec-
tive function based on expected values and variances (EVV), we
assume the distributions of patients to be normally distributed
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weekend staffing
Patients in the ward h relevant for
weekend staffing

Table 2
Approximations for EV heuristic.
Quantile Exact EV
model heuristic
Patients in the ICU relevant for fixed capacities ! o) aIE(F?)
Patients m the ward h relevant for fixed QhW/(xxv) G;T/E(Fm)
capacities
Patients in the ICU relevant for weekend staffing ! (4! bIE(Fi)
Patients in the ward h relevant for weekend QY (/j};") thE(Fm)
staffing
Table 3
Approximations for EVV heuristic.
Quantile Exact EVV heuristic
model
Patients m the ICU relevant for fixed Q! (o E(Ff‘) 4+ ZeapIsp (Fi)
capacities
Patients in the ward h relevant for fixed Qm(“m E(Fm) T Z;ap,WSD (FK’/)
capacities
Patients in the ICU relevant for Ql(sh E(F'f) 4+ Ztalsp (F',)

Qi (s)  E(FR) +z"sp(Fi,)

and approximate the quantiles using the expected value and the
approximated standard deviation. To avoid a square root function,

the standard deviations SD (FL) and SD (Fm) are approximated by a
linear function of the variance V(FJ’J) for the ICU and V(F)‘f‘f) for

the ward. We employ one linear factor for the ICU, sr! in Constraint
(31), and one for each ward h, sr}’. We use the factors that mini-
mize the squared errors for the variances of the given initial solu-
tions. The z-values for the quantiles are z°! and z™®" for the

capacity levels and z™*! and zif”’w for the weekend staffing levels.
Table 3 states the approximated quantiles.

The objective function (26), the assignment problem con-
straints (17)-(20), and the constraints to determine the expected
values (27) stay unchanged. Constraints to determine the
variances (30) and the approximated standard deviations (31)
need to be added. The constraints determining the capacities
(32) and the beds to be staffed at weekends (33) have to be chan-
ged. The approximation of the square root function to determine
the standard deviation in (31) can be carried out in many ways.
The most simple one is to use a linear function. To account for
differences in the variances, a piecewise linear function as
described in van Essen, Bosch, and van der Veen (2011) may also
be applied. Again, we only present the constraints for the ICU
(30)-(33), the constraints for each ward h are formulated
analogously.

4 L
V(F)) = ZZZV(F}_HH)X,»@ JEY S N VI, g )Xigs (L (30)

ieT jeJ g-1 ieZ jeg g—(+1

stV (F) =sD(F,) tec (31)
E(F)) +27IsD(F}) <cap' teL (32)
> E(F}) +2ISD(F}) = sta"! (33)

leL\Q

6. Numerical study

We tested all solution approaches for three scenarios with an
MSS cycle of two weeks, seven specialties, one ICU and two wards.

The results of these numerical experiments are described in this
section. The starting point for the data collection was the data
employed in Vanberkel et al. (2011b), which considers the OR
and a single ward only. In order to acquire the missing data for
the ICU and a second ward, we proceeded as follows. We inter-
viewed a Dutch hospital manager responsible for patient logistics.
The required values for ICU probability and the length of stay
distributions for the ICU and the wards after a stay in the ICU
were derived from data locally available in the ICUs and wards,
respectively. We cross-checked the values with data from a
German hospital with similar specialties. A summary of the data
for each specialty can be found in Table 4. The downstream costs
to be minimized are the fixed costs cost’ and the additional
weekend staffing costs cost"¢. As a result of discussions with the
Dutch hospital manager, we set the values of the cost parameters
as presented in Table 5.

The downstream units in the case study are one ICU and two
wards. The specialties Hyperthermic Intraperitoneal Chemother-
apy (HIPEC), General Surgery and Breast Surgery share one ward,
the remaining specialties share the other ward. There is no limit
on the number of blocks of any specialty on any given day other
than the number of ORs. To test the performance of our solution
approaches on instances of varying size, we build three scenarios.
In building these scenarios, we scale the MSS the hospital currently
uses. By doing this, we keep the percentage of required blocks per
specialty approximately constant for all three scenarios. We denote
these MSSs as “hospital MSS”. We distinguish the following three
examples in our case study:

e A small MSS with only one OR on every weekday of the two
weeks and a second OR on Wednesdays. The number of OR
blocks is therefore 12.

e A medium MSS with three ORs available during weekdays (30
blocks).

e A large MSS with nine ORs available during weekdays (90
blocks).

As a starting solution, we use the hospital MSS for all scenarios,
Fig. 7 shows the hospital MSS for the medium scenario.

As we cannot compute the optimal solution for the medium and
the large scenario, we use the hospital MSS as a reference point.
We compare the simple branch-and-bound (SBB), the incremental
improvement heuristic (IIH), the 2-Opt heuristic (20H), simulated
annealing (SA), the approximated objective function based on
expected values (EV), and the approximated objective based on
expected values and variances (EVV). For the IIH we continue
swapping blocks until a maximum of one third of all blocks are
swapped. For the simulated annealing (SA), a cooling factor of
¢f = 0.9 is chosen as proposed by Aarts et al. (2005). The number
of iterations for each temperature level is 5 times the number of
OR blocks for each case. The initial temperature is to = 9,000,
and the SA stops when the temperature falls below t = 1,000. EV
and EVV are solved using CPLEX solver employing a branch-and-
cut algorithm using IBM ILOG CPLEX Optimization Studio Version
12.2. All remaining heuristics and SBB were solved with MATLAB
R2013a. All computations were run on a Windows-based Intel(R)
Core 2 Duo CPU with 3.16 gigahertz. For each scenario we compare
computation time, total cost, relative improvement of the starting
solution, and the percentage of changed blocks. In order to analyze
the sensitivity of computation times with respect to the cost
parameter settings, we set up a ceteris paribus experimental
design to evaluate variations in cost parameters. As a result we
found computation times varying only slightly for realistic changes
in the parameter settings.

A summary of the results of the 12 block example is provided in
Table 6. In this example the IIH consists of swapping four blocks
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Table 4
Specialty j, expected number of patients per OR day E, (p), probability for ICU b;,
expected LoS ICU E, (n), ward (after OR) E.wo (1) and ward (after ICU) E.w (n).

] J J

Specialty j Eq(p) b;(%) EC], (n) Ecjwo(n) Eclvw(n)
Urology 3.2 5 54 3.7 6.4
HIPEC 1.0 100 203 11.2 213
Gynecology 4.3 3 35 2.7 4.4
General surgery 43 18 8.0 5.0 9.0
Breast surgery 5.5 3 2.5 2.2 3.5
Orthopedics 4.1 5 6.1 4.0 7.1
Plastic surgery 4.2 2 3.4 2.7 4.4

Table 5

Input parameters.
Description Notation Value
Service level for fixed capacities o, o 0.99
Fixed costs ICU bed/two weeks ol €5,000
Fixed costs ward bed/two weeks CJ;I-W €500
Service level for staffing B, Y 0.75
Additional costs staffing ICU bed at weekends/day cwel €700
Additional costs staffing ward bed at weekends/day ChWevW €120

and results in an improvement of 2.9% compared to the hospital
MSS. 20H swaps half the blocks and achieves an improvement of
3.8%. The SA takes nearly twice the computing time, changes nearly
every block, but obtains a much better solution than the 20H (8.2%
instead of 3.8% in cost savings are gained). The two heuristics using
an approximated objective function are very fast (around 1 sec-
ond), but achieve quite different results. EV suffers from a poor
approximation and only yields improvements of about 2%, while
EVV achieves the highest improvement of more than 9%. EV uses
242 variables and 119 constraints, EVV 328 variables and 205 con-
straints. The optimal SBB demonstrates that a maximum improve-
ment of 10.3% is possible.

Table 7 provides the results for the example with 30 blocks
where all heuristics achieve comparable improvements between
6% and 7%. We stopped the optimal SBB after 25,000 seconds and
achieved a comparably low improvement of 3.6%. EV and EVV
are much faster than the other heuristics; EV uses 340 variables
and 133 constraints, EVV 426 variables and 219 constraints. How-
ever, they change 90% and 67% of the blocks of the initial MSS.

The results of the large example with 90 blocks (see Table 8)
show large computing times. EV, which employs an optimal

235
Table 6
Results small scenario.
Algorithm Computation time Total Improvement  Changed
(seconds) costs (%) blocks (%)
Hospital 68,420
MSS
SBB 19,816 61,400 103 92
IH 8 66,420 29 33
20H 15 65,800 3.8 50
SA 26 62,780 8.2 92
EV 1 67,400 1.5 83
EVV 1 61,780 9.7 92
Table 7
Results medium scenario.
Algorithm Computation time Total Improvement  Changed
(seconds) costs (%) blocks (%)
Hospital 130,860
MSS
SBB 25,000 126,120 3.6 70
IH 187 123,000 6.0 33
20H 336 121,800 6.9 50
SA 299 122,420 6.4 80
EV 7 122,600 6.3 90
EVV 5 122,360 6.5 67
Table 8
Results large scenario.
Algorithm Computation time Total Improvement  Changed
(seconds) costs (%) blocks (%)
Hospital 341,020
MSS
SBB 25,000 341,020 0.0 0
IH 10,490 322,780 5.3 18
20H 10,490 322,780 5.3 18
SA 2,827 315,740 74 81
EV 12,242 309,480 9.2 84
EVV 2,987 313,260 8.1 86

solution approach, shows the highest computational times.
However, at the same time it achieves the greatest improvements.
IIH and 20H suffer from the large problem size as well, since for
each swap all possibilities have to be calculated. In fact, in this

Week 1

OR 1 1 4 2 1 1
1 |Urolo

OR 2 6 4 3 1 3 o

HIPEC
OR 3 5 7 5 6 7

Gynecology

Mon Tue Wed Thu Fri Sat Sun General Surgery

OR 1 1 4 D 1 1 5 |Breast Surgery

E Orthopedics
OR 2 6 4 3 3 3

Plastic Surgery
OR3 6 4 5 6 7

Tue Wed Thu Fri Sat Sun

Week2 Mon

Fig. 7. Starting solution medium MSS.
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example for each iteration more than 4,000 swaps have to be eval-
uated. Still, IIH and 20H show the lowest improvement of only
5.3%. SA and EVV show similar computation times of less than
one hour, with improvements of 7.5% and 8.1%, respectively. EV
uses 929 variables and 217 constraints, EVV 1,014 variables and
303 constraints. SBB was unable to find a solution that improves
the starting solution within the time limit of 25,000 seconds.

With regard to these results three conclusions can be drawn.
First, the heuristics achieve improvements of around 6-9% in the
three examples. Second, while IIH and 20H achieve moderate
improvements by maintaining most parts of the current schedule,
they are outperformed by the SA, the EV and the EVV heuristics in
most cases. Third, a majority of the approaches discussed in this
paper require long computation times for the large example. Only
the SA and the EVV require computation times of less than one
hour. EV and EVV could be run using a time limit. Even if the opti-
mal solution of the approximated objective function might not
been found within the time limit, good results can be achieved
after a relatively short time period. However, as we are discussing
a tactical problem, relatively high computation times of up to a few
hours can be reasonably tolerated in practical settings.

7. Conclusion

In this paper we presented an algorithm for calculating the
exact distributions of patients both in the ICU and the wards
resulting from a given cyclical MSS. We further discussed measures
as fixed capacities and staffing levels to estimate the downstream
costs of an MSS and proposed algorithms to find an MSS with the
objective to minimize costs. We considered several heuristics.
Two simple heuristics that swap MSS blocks, a simulated annealing
algorithm that finds good solutions in a reasonable period of time,
and a simple branch-and-bound, that can only be applied for small
problems. We further tested solution methods approximating the
objective function and solving the resulting model to optimality
by using off-the-shelf solver. These showed excellent results for
medium and large instances, but required long computation times
for large instances.

For large instances there is further room for research on heuris-
tics. For example, one could investigate on a combination of the
approximated objective function, such as EV or EVV, with a non-
optimal solution method to gain satisfactory results within short
time. Furthermore, there are many possible modeling extensions.
Upstream units like the outpatient clinic can be incorporated as
surgeons work there too, so scheduling in both departments could
be coordinated. Effects on the post-anesthesia care unit could also
be incorporated. Operations on weekends (for emergency patients
only) as well as pre-operative stays in ICUs and wards or patients
with no surgery could be included. Moreover, for practice, relevant
constraints such as differently equipped ORs and minimum time
between blocks of the same specialty may be considered. The algo-
rithms and heuristics proposed in this paper can be adapted to
these extensions.

Summarizing our findings, we conclude there is significant
potential in cost savings and quality improvements in considering
downstream units when designing tactical operating room

schedules. Accounting for weekend staffing and leveling bed
requests may further contribute to employee satisfaction and
decrease negative medical effects (Baker et al., 2009).
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