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Abstract

The Choquet integral is a preference model used in Multiple Criteria Decision Aiding

(MCDA) to deal with interactions between criteria. The Stochastic Multiobjective Accept-

ability Analysis (SMAA) is an MCDA methodology used to take into account imprecision or

lack of data in the problem at hand. For example, SMAA permits to compute the frequency

that an alternative takes the k-th rank in the whole space of the admissible preference param-

eters, e.g. in case evaluations on the considered criteria are aggregated through the weighted

sum model, in the space of weights compatible with the preference information supplied by the

Decision Maker (DM). In this paper, we propose to integrate the SMAA methodology with the

Choquet integral preference model in order to get robust recommendations taking into account

the whole space of preference parameters compatible with the DM’s preference information. In

case the alternatives are evaluated by all the criteria on a common scale, the preference parame-

ters are given by the capacity expressing the non-additive weights, representing the importance

of criteria and their interaction. If the criteria are instead evaluated on different scales, besides

the capacity, preference parameters include the common scale on which the evaluations of cri-

teria have to be recoded to be compared. Our approach permits to explore the whole space of

preference parameters being capacities and common scales compatible with the DM’s preference

information.
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1 Introduction

In Multiple Criteria Decision Aiding (MCDA) (see [11] for a survey on MCDA), an alternative ak,

belonging to a finite set of l alternatives A = {a1, a2, . . . al}, is evaluated on the basis of a consistent

family of n criteria G = {g1, g2, . . . gn} where, gi : A → R is an interval scale of measurement. In this

paper, we shall consider also the case in which gi : A → I, where I = {[α, β] ⊆ R} and gi(ak) = [α, β]

meaning that the evaluation of alternative ak on criterion gi can be whichever value inside the interval

[α, β]. Obviously, if α = β, then the evaluation of ak on criterion gi is given in a precise way.

From here on, we will use the terms criterion gi or criterion i interchangeably (i = 1, 2, . . . , n) and,

without loss of generality, we will assume that all the criteria have to be maximized.

In case the evaluation on criterion i are precise, i.e. gi(ak) ∈ R for all k = 1, 2 . . . , l, we define a

marginal weak preference relation as follows:

ak is at least as good as ah with respect to criterion i ⇔ gi(ak) ≥ gi(ah).

To give a recommendation for the decision making problem at hand, evaluations of alternatives

on all criteria have to be aggregated. For this reason, three main approaches have been proposed:

• the Multi-Attribute Utility Theory (MAUT) [35],

• the outranking methods [46], among which the most well known are ELECTRE [47] and

PROMETHEE [5, 6],

• the decision rule approach based on induction of logical “if..., then...” decision rules through

Dominance-based Rough Set Approach (DRSA, see [22, 25, 50]).

In MAUT, an overall value function U : Rn → R with U(g1(ak), . . . , gn(ak)) = U(ak) is defined

such that:

• ak is indifferent to ah ⇔ U(ak) = U(ah),

• ak is preferred to ah ⇔ U(ak) > U(ah),

and the principal aggregation model of value function is the multiple attribute additive utility:

U(ak) = u1(g1(ak)) + u2(g2(ak)) + . . . + un(gn(ak)) with ak ∈ A,

where ui are non-decreasing marginal value functions for i = 1, 2, . . . , n.

Outranking methods are instead based on a binary relation S defined on A, where akSah means
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that “ak is at least as good as ah”. A preference, an indifference and for some methods also an

incomparability relation can be built on the basis of S.

A basic assumption of both MAUT and outranking methods is the absence of interaction (synergy

or redundancy) of criteria, which is very often an unrealistic assumption or a too strong simplifi-

cation. For example, in evaluating sport cars, a Decision Maker (DM) could consider criteria such

as maximum speed, acceleration and price. From one side, maximum speed and acceleration are

redundant criteria because, in general, speed cars also have a good acceleration. Therefore, even if

these two criteria can be very important for a DM liking sport cars, their comprehensive importance

is smaller than the sum of the importance of the two criteria considered separately. From the other

side, the two criteria maximum speed and price lead to a synergy effect because a speed car hav-

ing also a low price is very well appreciated. For such a reason, the comprehensive importance of

these two criteria should be greater than the sum of the importance of the two criteria considered

separately.

Within MCDA, the interaction of criteria has been dealt using non additive integrals the most

well known of which are the Choquet integral [8] and the Sugeno integral [52] (see [15, 19, 20] for

a comprehensive survey on the use of non-additive integrals in MCDA; see also [17, 18, 21, 27, 28]

for some recently proposed extensions of non additive integrals useful in MCDA). Referring to the

outranking methods, a notable contribution to deal with interaction of criteria has been given for

ELECTRE methods in [12]. The decision rule approach instead can represent interaction of criteria

in a natural way (see [24]).

One of the greatest drawbacks of the Choquet integral is the elicitation of the preference param-

eters. To deal with this issue, the DM can provide direct or indirect preference information [3, 39].

The direct preference information consists of providing all the values of parameters while the indi-

rect preference information (see e.g. [30]) is based on giving some preference information related to

preference among alternatives from which the parameters values are inferred.

Recently, an approach based on the determination of necessary and possible preference relations

within the so-called Robust Ordinal Regression (ROR) [13, 26, 29] has been presented in [4].

In this paper, we have widely extended the work presented from us [1] in which we have applied the

Stochastic Multiobjective Acceptability Analysis (SMAA) to explore the whole space of parameters

compatible with some preference information provided by the DM related to the importance of

criteria and to their interaction (for a survey on SMAA methods see [53]). In this paper, we have

integrated the Choquet integral and the SMAA methods considering also preference information

related to pairwise comparison of some reference alternatives. Moreover, we have also considered
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alternatives whose evaluations on considered criteria may be given in terms of intervals of possible

values.

Another drawback of the Choquet integral is that all evaluation criteria have to be defined on a

common scale in order to compare alternatives on different criteria. This is a strong requirement for

this methodology because, for example, in the car evaluation problem cited above, the DM should

be able to compare the speed of a car with its acceleration estimating, for example, if the maximum

speed of 200 km/h is as valuable as 35, 000 e.

This problem is quite well known in literature (see e.g. [40]). One solution has been proposed

in [3] where a common scale was searched for through Monte Carlo simulation. In this paper, we

shall show how SMAA permits to define a common scale on which one can compare evaluations on

different criteria. Moreover, since this common scale, in general, is not unique, we shall describe

how SMAA can explore the space of all compatible common scales and the corresponding preference

orders that are obtained passing from one common scale to another one. The whole methodology

permitting to define a common scale is another original contribution of this paper with respect to

[1].

The paper is organized as follows. In Section 2, we present the basic concepts relative to interaction

of criteria and to the Choquet integral. In Section 3, we briefly describe the SMAA methods. An

extension of the SMAA method to the Choquet integral preference model is introduced in Section 4

and illustrated by several different examples in Section 5. Some conclusions and future directions of

research are presented in Section 6.

2 The Choquet integral preference model

Let 2G denote the power set of G (i.e. the set of all subsets of G). A set function µ : 2G → [0, 1] is

called a capacity (fuzzy measure) on 2G if the following properties are satisfied:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ S ⊆ T ⊆ G, µ(S) ≤ µ(T ) (monotonicity condition).

A capacity is called additive if µ(S ∪ T ) = µ(S) + µ(T ), for any S, T ⊆ G such that S ∩ T = ∅.

If a capacity is additive, then it is uniquely determined by the value assigned to the singletons:

µ({1}), µ({2}) . . . , µ({n}). In such case ∀ T ⊆ G, it results:

µ(T ) =
∑

i∈T

µ({i}).
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Whenever the capacity is non additive, one needs a value µ(T ) for every subset T ⊆ G. More

precisely, we have to define 2|G| − 2 coefficients, since the values µ(∅) = 0 and µ(G) = 1 are already

known.

The Möbius representation of a capacity µ (see [45]) is a function m : 2G → R ([48]) defined as

follows:

µ(S) =
∑

T⊆S

m(T ).

Note that if S is a singleton, i.e. S = {i} with i = 1, 2, . . . , n, then µ({i}) = m({i}).

Moreover, if S is a couple (non-ordered pair) of criteria, i.e. S = {i, j}, then µ({i, j}) = m({i}) +

m({j}) + m({i, j}).

The Möbius representation m(S) can be obtained from µ(S) as follows:

m(S) =
∑

T⊆S

(−1)|S−T |µ(T ).

In terms of Möbius representation (see [7]), properties 1a) and 2a) are, respectively, restated as:

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} ,
∑

T⊆R

m(T ∪ {i}) ≥ 0.

In a multicriteria decision problem, the relevance of any criterion gi ∈ G can be analyzed consid-

ering gi either as a singleton or in combination with all other criteria. As a result, the importance of

a criterion gi ∈ G is evaluated not only by the capacity µ({i}), but also by considering µ(T ∪ {i}),

T ⊆ G \ {i}, i.e. when the criterion interacts with all other criteria.

Given ak ∈ A and µ a capacity µ on 2G, the Choquet integral [8] is defined as follows:

Cµ(ak) =
n

∑

i=1

[(

g(i)(ak)
)

−
(

g(i−1) (ak)
)]

µ (Ni) , (1)

where (·) stands for a permutation of the indices of criteria such that:

g(1) (ak) ≤ g(2) (ak) ≤ ... ≤ g(n) (ak) , with Ni = {(i), . . . , (n)}, i = 1, 2, . . . , n, and g(0) = 0.

In terms of Möbius representation [14], the Choquet integral may be reformulated as follows:

Cµ(ak) =
∑

T⊆G

m(T ) min
i∈T

gi (ak) . (2)
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Within a Choquet integral preference model, the main difficult task is to infer 2|G|−2 parameters,

giving to them an adequate meaning from a decisional point of view. With the aim of reducing the

number of parameters to be elicitated and of avoiding a too strict description of the interactions

among criteria, in [16] the concept of fuzzy k-additive capacity has been introduced.

A capacity is called k-additive if m(T ) = 0 for T ⊆ G such that |T | > k and there exists at least

one T ⊆ G, with |T | = k, such that m(T ) > 0. In particular, a 1-additive capacity is the standard

additive capacity.

Within an MCDA context, it is easier and more straightforward to consider 2-additive capacities

only, since in such case the DMs have to express a preference information on positive and negative

interactions between two criteria, neglecting possible interactions among three, four and generally n

criteria. Moreover, by considering 2-additive measures the computational issue of determining the

parameters is weakened since only n +
(

n

2

)

coefficients have to be assessed; specifically, in terms of

Möbius representation, a value m({i}) for every criterion i and a value m({i, j}) for every couple

of criteria {i, j}. For all these reasons, in the following we shall consider 2-additive capacities only.

However, the methodology we are presenting can be applied to generally non-additive capacities.

The value that a 2-additive capacity µ assigns to a set S ⊆ G can be expressed in terms of Möbius

representation as follows:

µ(S) =
∑

i∈S

m ({i}) +
∑

{i,j}⊆S

m ({i, j}) , ∀S ⊆ G. (3)

With regard to 2-additive capacities, properties 1b) and 2b) have, respectively, the following

expressions:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the Choquet integral of ak ∈ A is given by:

Cµ(ak) =
∑

{i}⊆G

m ({i}) (gi (ak)) +
∑

{i,j}⊆G

m ({i, j}) min{gi (ak) , gj (ak)}. (4)

Finally, we recall the definitions of the importance and interaction indices for a couple of criteria.
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The importance of criterion i ∈ G expressed by the Shapley value [49] in case of a 2-additive capacity

can be written as follows:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
. (5)

The interaction index [44] expressing the sign and the magnitude of the interaction in a couple of

criteria {i, j} ⊆ G, in case of a 2-additive capacity µ, is given by:

ϕ ({i, j}) = m ({i, j}) . (6)

3 SMAA

Stochastic Multiobjective Acceptability Analysis (SMAA) methods [36, 38] are a family of MCDA

methods aiming to get recommendations on the problem at hand taking into account uncertainty or

imprecision on the considered data and preference parameters. Several SMAA methods have been

developed to deal with different MCDA problems: SMAA-2 has been presented in [38] for ranking

problems, SMAA-O [37] has been introduced for multicriteria problems with ordinal criteria and

SMAA-TRI [54] for sorting problems. Other two recent contributions relating to SMAA and ROR

have been presented in [33] and [34]. For a detailed survey on SMAA methods see [53].

Since in this paper we consider ranking problems, we only describe the SMAA-2 method.

In SMAA-2 the most commonly used utility function is the linear one:

u(ak, w) =
n

∑

i=1

wigi(ak).

In order to take into account imprecision or uncertainty, SMAA-2 considers two probability dis-

tributions fW (w) and fχ(ξ), respectively, on W and χ, where W = {(w1, . . . , wn) ∈ R
n : wi ≥

0 and
∑n

i=1wi = 1} and χ is the evaluation space.

First of all, SMAA-2 introduces a ranking function relative to the alternative ak:

rank(k, ξ, w) = 1 +
∑

h 6=k

ρ (u(ξh, w) > u(ξk, w)) ,

where ρ(false) = 0 and ρ(true) = 1.

Then, for each alternative ak, for each evaluations of alternatives ξ ∈ χ and for each rank r = 1, . . . , l,

SMAA-2 computes the set of weights of criteria for which alternative ak assumes rank r:
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W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r} .

SMAA-2 is based on the computation of three indices:

• The rank acceptability index measures for each alternative ak and for each rank r the variety

of different parameters compatible with the DM’s preference information giving to ak the rank

r and is given by:

brk =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ.

brk gives the probability that alternative ak has rank k and it is within the range [0, 1].

• The central weight vector describes the preferences of a typical DM giving to ak the best

position and is defined as follows:

wc
k =

1

b1k

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(ξ)

fW (w)w dw dξ;

• The confidence factor is defined as the frequency of an alternative to be the preferred one with

the preferences expressed by its central weight vector and is given by:

pck =

∫

ξ∈χ:u(ξk,w
c
k
)≥u(ξh,w

c
k
)

∀h=1,...,l

fχ(ξ) dξ.

In the following, we shall consider also the frequency that an alternative ah is preferred to an

alternative ak in the space of the preference parameters (weight vectors in case of SMAA-2), i.e.

p(ah, ak) =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξh,w)≥u(ξk,w)

fχ(ξ)dξ dw.

From a computational point of view, the considered indices are evaluated by the multidimensional

integrals approximated by using the Monte Carlo method.

After performing Monte Carlo simulations, the aforementioned indices are evaluated simultaneously

in order to help the DM to choose the best alternative of the decision problem under consideration.

4 An extension of the SMAA method to the Choquet inte-

gral preference model

In this section, we shall describe how integrate the SMAA methodology within the Choquet integral

preference model in three different cases:
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case 1) the evaluations on the criteria are on a common scale and are given in a precise way, that

is gi(ak) ∈ R for all i and for all k,

case 2) the evaluations on criteria are on a common scale, but they can be given in an imprecise

way, that is gi(ak) ∈ [αk
i , β

k
i ] and αk

i ≤ βk
i , for some i and for some k,

case 3) the evaluations on the criteria are on different scales and therefore a common scale has to

be constructed (for the sake of simplicity in this case we have supposed that evaluations of

alternatives on the considered criteria are given in a precise way).

In Section 2, we have observed that the use of the Choquet integral in terms of Möbius representation

with a 2-additive capacity involves the knowledge of n+
(

n

2

)

parameters. In order to get these param-

eters, the DM is therefore asked to provide some preference information in a direct or an indirect way.

In the context of the Choquet integral preference model, the direct preference information consists

of providing the capacity involved in the considered method while the indirect preference informa-

tion consists in asking the DM some preference information regarding comparisons of alternatives

or importance and interaction of criteria from which eliciting the capacity. Generally, the indirect

preference information requires less cognitive effort from the DM, and for this reason it is widely

used in MCDA (see for example [30, 31] if the preference model is a value function, [42, 43] if the

preference model is an outranking relation and [4] if the preference model is the Choquet integral).

Notice that the use of the indirect preference information is intrinsic in the decision rule approach

[22].

If the preference model is the Choquet integral, the DM can provide the preference information

presented in the following, together with its formulation in terms of linear constraints:

• Comparisons related to importance and interaction of criteria:

– criterion i is at least as important as j (i % j): ϕ({gi}) ≥ ϕ({gj});

– criterion i is more important than criterion j (i ≻ j): ϕ({gi}) > ϕ({gj});

– criteria i and j have the same importance (i ∼ j): ϕ({gi}) = ϕ({gj});

– criteria i and j are synergic: ϕ({gi, gj}) > 0;

– criteria i and j are redundant: ϕ({gi, gj}) < 0.

• Comparisons between couples or quadruples of alternatives:

9



– alternative ak is at least as good as alternative ah (ak % ah): Cµ(ak) ≥ Cµ(ah);

– alternative ak is preferred to alternative ah (ak ≻ ah): Cµ(ak) > Cµ(ah);

– alternative ak and ah are indifferent (ak ∼ ah): Cµ(ak) = Cµ(ah);

– alternative ak is preferred to alternative ah more than alternative as is preferred to alter-

native at ((ak, ah) ≻∗ (as, at)): Cµ(ak) − Cµ(ah) > Cµ(as) − Cµ(at);

– the difference of preference between ak and ah is the same of the difference of preference

between as and at ((ak, ah) ∼∗ (as, at)): Cµ(ak) − Cµ(ah) = Cµ(as) − Cµ(at).

For descriptive purposes, we distinguish three sets of constraints:

• Monotonicity and boundary constraints

m ({∅}) = 0,
∑

gi∈G

m ({gi}) +
∑

{gi,gj}⊆G

m ({gi, gj}) = 1,

m ({gi}) ≥ 0, ∀gi ∈ G,

m ({gi}) +
∑

gj∈T

m ({gi, gj}) ≥ 0, ∀gi ∈ G and ∀ T ⊆ G \ {gi} , T 6= ∅



























(EMB)

• Constraints related to importance and interaction of criteria:

ϕ({gi}) ≥ ϕ({gj}), if i % j,

ϕ({gi}) ≥ ϕ({gj}) + ε, if i ≻ j,

ϕ({gi}) = ϕ({gj}), if i ∼ j,

ϕ({gi, gj}) ≥ ε, if criteria i and j are synergic with i, j ∈ G,

ϕ({gi, gj}) ≤ −ε, if criteria i and j are redundant with i, j ∈ G,



















































(EC)

• Constraints related to comparisons between alternatives:

Cµ(ak) ≥ Cµ(ah), if ak % ah,

Cµ(ak) ≥ Cµ(ah) + ε, if ak ≻ ah,

Cµ(ak) = Cµ(ah) if ak ∼ ah,

Cµ(ak) − Cµ(ah) ≥ Cµ(as) − Cµ(at) + ε, if (ak, ah) ≻∗ (as, at),

Cµ(ak) − Cµ(ah) = Cµ(as) − Cµ(at), if (ak, ah) ∼∗ (as, at),



















































(EA)
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where the strict inequalities have been transformed in weak inequalities in EC and EA by adding an

auxiliary variable ε.

We shall call compatible model, a capacity whose Möbius representation satisfies the set of con-

straints EDM = EMB ∪ EC ∪ EA where EC or EA could be eventually empty if the DM does not

provide any information on importance and interaction of criteria, or comparison of alternatives,

respectively.

In order to check if there exists at least one compatible model, one has to solve the following linear

programming problem:

max ε = ε∗ s.t.

EDM .
(7)

If EDM is feasible and ε∗ > 0, then there exists at least one model compatible with the preference

information provided by the DM. If EDM is infeasible or ε∗ ≤ 0, then one can check which is the

minimum set of constraints causing the infeasibility using one of the techniques described in [41].

Each compatible model restores all the information provided by the DM but, generally, gives dif-

ferent recommendations regarding the alternatives that are not provided as example by the DM. For

this reason, the choice of only one compatible model could be considered arbitrary and meaningless.

The SMAA methodology can then be applied in order to take into account the whole set of models

compatible with the preference information provided by the DM computing the above recalled indices

i.e. the rank acceptability indices, central weight vectors and frequency of the preference. Notice

that within the Choquet integral preference model we do not work with weights but with capacities

expressed in terms of Möbius representations; for this reason, the Möbius representation of the cen-

tral capacity will be the equivalent of the central weight vector in SMAA. Also ROR [13, 29], and

Non-Additive ROR (NAROR) in case the evaluations on criteria gi from G are aggregated through

the Choquet integral [4], take into account the whole set of compatible models. More precisely within

NAROR, and, more generally, within ROR, two preference relations are taken in consideration: for

all ah, ak ∈ A

• necessary preference, which holds whenever alternative ah is preferred to alternative ak for all

compatible models,

• possible preference, which holds whenever alternative ah is preferred to alternative ak for at

least one compatible model.
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Observe that because the computation of the necessary and possible preference relations involve

to solve two linear programming problems for each pair of alternatives in A, we could use the SMAA

methodology to approximate the two preference relations. In fact:

• if ah is necessarily preferred to ak, then the sum of the frequencies of the preference of ah over

ak and of the indifference between ah and ak is 100%,

• if the frequency of the preference of ah over ak is greater than zero, then ah is possibly preferred

to ak.

The vice versa of these statements are not true because, from one side, even if the frequency of

the preference of ah over ak is 100%, then there could exist one non-sampled compatible model for

which ak is preferred to ah; from the other side, even if ah is possibly preferred to ak, it is possible

that for all sampled compatible models ak is at least as good as ah and therefore the frequency of

the preference of ah over ak is 0%. Observe that the larger is the sample of compatible models,

the better the approximation of the necessary and the possible preference relations obtained with

SMAA, such that, in case of an enough large sample of compatible models, one can reasonably

accept the approximations of SMAA as results of the ROR approach. Another result of ROR that

can be approximated through SMAA is the interval of ranking positions of an alternative given by

the extreme ranking analysis [32]. Also in this case, the larger the set of compatible models, the

more accurate is the approximation.

Now, we shall describe how the SMAA methodology can be integrated with the Choquet integral

in each of the three cases above considered.

case 1) Since the evaluations on considered criteria are on a common scale, they are given in a precise

way, and the preference information provided by the DM are related only to the importance

and interaction of criteria defined by the linear constraints in EDM , we apply the Hit-and-Run

method [51, 55] in order to sample some compatible models.

The Hit-And-Run sampling starts from the choice of one point (the Möbius representation of

one capacity) inside the polytope EDM delimited by the constraints translating the DM’s pref-

erence information. At each iteration, a random direction is sampled from the unit hypersphere

that, with the considered position, generates a line. Finally, one point inside the segment whose

extremes are the intersection of the line with its boundaries and the current point is sampled.

At each iteration of the Hit-and-Run method, one can store the sampled compatible model.

Then the Choquet integral of every considered alternative is evaluated with respect to the stored
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compatible model, such that at each iteration a complete ranking of alternatives is obtained.

In this way, at the end of all the iterations, on the basis of the obtained rankings of the con-

sidered alternatives, one can compute the frequency of the preference and of the indifference

between two alternatives, the Möbius representation of the central capacity for each alternative

that arrived first at least once and also the rank acceptability index of each alternative with

respect to all the possible ranking positions.

case 2) In this case, the criteria evaluations may be given as intervals of possible values, that is,

gi(ak) can be whichever value inside the interval
[

αk
i , β

k
i

]

for some i and some k.

At each iteration, one samples an evaluation matrix M whose element Mki, k = 1, . . . , l and

i = 1, . . . , n is taken in a random way inside the interval
[

αk
i , β

k
i

]

. Then, one samples a model

compatible with the preference information provided by the DM. Observe that the constraints

related to preference information in terms of importance and interaction of criteria, i.e. the

constraints EC , are not dependent from the sampled evaluations. Instead, the constraints

related to preference information in terms of pairwise comparisons between alternatives, i.e.

the constraints in EA, are dependent from the sampled evaluations. Thus, we distinguish two

hypothesis: EA = ∅ or EA 6= ∅.

In the first hypothesis (EA = ∅), the DM is not able or does not want to provide any preference

information on comparisons of alternatives. Therefore, the compatible model sampled at each

iteration is independent from the sampled evaluation matrix. For this reason, in order to

sample models compatible with the preference information provided by the DM, one can use

the Hit-and-Run method as done in case 1). The only difference with respect to the first case,

is that the Choquet integral of each alternative does not depend only from the compatible

model sampled in that iteration, but it depends also from the evaluation matrix that has been

sampled at the beginning of that iteration.

In the second hypothesis (EA 6= ∅), the DM is able to provide some preference information on

comparisons of alternatives. For this reason, one cannot use the Hit-and-Run method because

the set EA depends from the sampled evaluation matrix and therefore at each iteration one has

to sample a compatible model from a different set of constraints EDM . Due to the change of the

constraints in EDM at each iteration, it is possible that for certain sampled evaluation matrices

there is no model compatible with the DM’s preference information. For this reason, at each

iteration, before sampling a compatible model, one needs to check if the set of constraints
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EDM is feasible. In this case, one can sample a compatible model and consequently obtain

the complete ranking of the considered alternatives by applying the Choquet integral with the

sampled evaluation matrix and the sampled compatible model.

In both these hypotheses, after all the iterations, one can compute the frequency of the pref-

erence or indifference in each couple of alternatives, the Möbius representation of the central

capacity and the rank acceptability index for each alternative. The only difference between the

two hypotheses is that, in the second one, to compute the frequency of the preference for each

couple of alternatives, one has to consider only those iterations in which, the set of constraints

EDM corresponding to the sampled evaluation matrix is feasible.

case 3) In the third case, we suppose that the evaluations with respect to considered criteria are

on heterogeneous scales. For example, in evaluating a sport car, one can consider criteria such

as maximum speed, acceleration, price, comfort etc. and each of them has a different scale. In

this case, one can not apply directly the Choquet integral to aggregate the preferences of the

DM because, a requisite of the method is that all considered criteria have a common scale.

In order to deal with this drawback, we propose to construct at each iteration a common scale with

a procedure having the following steps for each criterion gi:

• sampling uniformly from the interval [0, 1], l′ different real numbers x1, . . . , xl′ supposing that

the different evaluations on gi are l′, with l′ ≤ l,

• ordering the l′ numbers in an increasing way, xi(1) < . . . < xi(l′),

• assigning xi(h) to the alternatives having the h-th evaluation, in an increasing order, on gi.

Supposing to deal with the aforementioned car evaluation problem, and looking at the evaluations

of the considered cars on criterion acceleration shown in Table 1, we proceed as follows:

• Because the evaluations of the 10 alternatives on criterion acceleration are all different, we

sample 10 different real numbers from the interval [0, 1]. For example, x1 = 0.81, x2 = 0.90,

x3 = 0.12, x4 = 0.91, x5 = 0.63, x6 = 0.09, x7 = 0.27, x8 = 0.54, x9 = 0.95, x10 = 0.96.

• We order the 10 numbers in an increasing way: x(1) = 0.09 < x(2) = 0.12 < x(3) = 0.27 < x(4) =

0.54 < x(5) = 0.63 < x(6) = 0.81 < x(7) = 0.90 < x(8) = 0.91 < x(9) = 0.95 < x(10) = 0.96.

• We assign value x(1) = 0.09 to PEUGEOT 208 1.6 8V, value x(2) = 0.12 to FIAT 500 0.9 and

so on (see the third column of Table 1).
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Table 1: Car evaluation with respect to the criterion acceleration and the corresponding scale

Cars Acceleration Scale value

PEUGEOT 208 1.6 8V 10.9 0.09

Citroen C3 13.5 0.90

FIAT 500 0.9 11 0.12

SKODA Fabia 1.2 14.2 0.95

LANCIA Ypsilon 5p 11.4 0.54

RENAULT Clio 1.5 dCi 90 11.3 0.27

SEAT Ibiza ST 1.2 14.6 0.96

ALFA ROMEO MiTo 1.3 12.9 0.81

TOYOTA Yaris 1.5 11.8 0.63

VOLKSWAGEN Polo 1.2 13.9 0.91

The values xi(r), i = 1, . . . , n and r = 1, . . . , l′, become the evaluations of the considered alter-

natives on the different criteria. In this way, evaluations on all criteria are expressed on the same

common scale and therefore, having the Möbius representation of a capacity compatible with the

DM’s preferences, one can compute the Choquet integral of all alternatives.

As described in case 2), the sampling of the scale will influence the sampling of compatible models

only if the DM will provide some preference information on the comparison of alternatives. For this

reason, one can distinguish, again, between EA = ∅ and EA 6= ∅.

If the DM does not provide any preference information in terms of comparisons between alternatives

(EA = ∅), then one can proceed exactly as done in case of imprecise evaluations, that is using the

Hit-and-Run for sampling compatible models and obtaining at each iteration a complete ranking of

the considered alternatives by applying the Choquet integral with the sampled common scale and

the sampled compatible model.

If the DM provides some preference information in terms of pairwise comparisons of alternatives

(EA 6= ∅), then the sampling of a model compatible with the DM’s preference information depends

from the sampled common scale. For this reason, at each iteration one can sample a common scale

and a model compatible with it. In this case, different options are possible:

• After all iterations, compute the rank acceptability indices, the Möbius representation of the

central capacity for each alternative and the preference matrix. This is analogous to the case

of imprecise evaluations presented previously because the sampling of a common scale at the

beginning of each iteration is conceptually analogous to the sampling of an evaluation matrix.
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• Sampling a certain number of possible common scales S1, . . . , Siter, considering the correspond-

ing feasible sets of constraints EDM
1 , . . . , EDM

iter and denoted by ε1, . . . , εiter, the solutions of the

linear programming problems

max ε s.t.

EDM
1











, . . . . . . . . . . . . ,
max ε s.t.

EDM
iter











(8)

we can present to the DM the scale Sk such that εk = max {ε1, . . . , εiter}, that is the most

discriminant one admitting a representation of DM’s preference information in terms of the

Choquet integral preference model.

After obtaining the most discriminant common scale, the decision aiding process can continue in

one of the following ways:

- asking the capacities directly to the DM,

- inducing one capacity compatible with the preference information given by the DM [39],

- considering the whole set of capacities compatible with the preference information provided by the

DM taking into account necessary and possible preference relations using NAROR [4],

- applying the SMAA methodology as in case the evaluations of alternatives on considered criteria

are given on a common scale from the beginning.

5 Some examples

The whole methodology presented in the previous section will be illustrated by several didactic exam-

ples. In the following, where not differently stated, we shall consider uniform probability distributions

fW and fχ, respectively, on W and χ.

5.1 An example with all criteria expressed on the same common scale

Let us consider a set of 18 alternatives evaluated on the basis of 4 criteria: G = {g1, g2, g3, g4}. The

criteria are on a [0, 20] scale and the scores of every alternative are reported in Table 2.

Firstly, the DM expresses his/her preference information on the importance and interaction of

criteria that can be synthesized as follows:
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Table 2: Evaluation matrix

Alternatives

Criteria a1 a2 a3 a4 a5 a6 a7 a8 a9

g1 15 7 18 9 12 8 14 8 3

g2 12 8 8 16 5 3 20 13 17

g3 10 14 4 4 14 7 5 15 2

g4 7 16 12 16 14 20 10 6 14

Criteria a10 a11 a12 a13 a14 a15 a16 a17 a18

g1 4 16 8 17 8 20 12 14 9

g2 20 7 11 12 6 7 4 11 13

g3 8 14 5 6 7 4 15 12 12

g4 9 10 19 8 19 12 13 9 6

• g1 is more important than g2,

• g3 is more important than g4,

• there is a positive interaction between criteria g1 and g2,

• there is a positive interaction between criteria g2 and g3,

• there is a negative interaction between criteria g2 and g4.

As explained in Section 4, we use the Hit-and-Run procedure considering a number of iterations

equal to 2, 000, 000.

For each iteration, we sample a model compatible with the preference information provided by the

DM, and therefore we compute the Choquet integral of each alternative obtaining a complete ranking.

At the end of all iterations, we compute the rank acceptability index brk for each k, r = 1, . . . , l and

the Möbius representation of the central capacity for each alternative ak that can get the first rank

at least once, as shown, respectively, in Tables 3 and 4. In particular, looking at Table 3, we observe

that alternatives a3, a4, a9, a10 and a18 can never be ranked first, a11 has reached the first position

more than all other alternatives (b111 = 26.22) and a9 is instead the alternative that reached almost

always the last position in the obtained rankings (b189 = 93.18).

For each pair of alternatives (ah, ak) we compute also the frequency of the preference of ah over ak

as shown in Table 6. Looking at the results, alternative a11 can be still considered the best because
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Table 3: Rank acceptability indices considering precise evaluations on the considered criteria and

preference information only on importance and interaction of criteria

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k
b11

k
b12

k
b13

k
b14

k
b15

k
b16

k
b17

k
b18

k

a1 1.76 9.46 16.16 10.66 13.72 12.75 10.64 7.81 4.98 3.85 2.89 2.35 1.37 1.15 0.45 0.02 0.00 0.00

a2 10.88 6.03 6.19 8.15 9.32 9.00 7.11 9.02 7.34 8.75 5.75 5.86 2.87 1.94 1.38 0.41 0.00 0.00

a3 0.00 4.37 3.85 3.10 3.10 5.24 6.45 5.01 6.10 6.19 6.97 9.31 6.23 8.23 9.73 10.47 5.51 0.14

a4 0.00 0.03 0.07 0.17 0.45 0.72 1.02 2.10 2.69 4.70 5.26 8.49 16.93 13.06 16.65 18.44 9.21 0.00

a5 7.60 11.15 12.89 9.43 8.21 7.68 6.83 9.69 6.97 5.97 5.69 3.02 2.62 1.79 0.44 0.03 0.00 0.00

a6 1.60 1.30 1.29 1.42 1.93 2.31 2.94 3.42 3.12 5.56 4.62 5.40 6.13 8.79 9.05 20.47 19.69 0.96

a7 13.77 4.54 5.00 5.72 5.00 6.24 7.81 6.31 9.52 7.66 6.99 7.30 6.34 3.49 3.25 1.01 0.05 0.00

a8 3.31 3.11 3.94 4.78 7.53 10.01 10.04 10.69 9.42 9.88 11.04 5.03 3.48 3.21 2.83 1.65 0.03 0.00

a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.15 0.26 1.05 5.26 93.18

a10 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.19 0.78 1.32 2.66 2.93 6.32 7.41 6.84 12.78 53.79 4.88

a11 26.22 17.56 15.43 15.32 9.66 6.37 5.69 2.29 0.98 0.33 0.12 0.03 0.00 0.00 0.00 0.00 0.00 0.00

a12 1.14 1.01 1.67 1.67 1.66 2.01 2.91 4.11 5.34 5.38 9.17 10.31 11.59 21.09 15.51 5.13 0.31 0.00

a13 0.59 4.56 6.53 8.77 7.27 5.96 7.18 7.05 8.10 9.06 6.20 5.31 5.05 5.78 4.36 6.20 1.53 0.51

a14 0.67 2.43 2.24 1.82 2.63 4.50 5.45 4.66 8.05 6.73 8.51 7.40 16.40 8.98 12.33 7.08 0.12 0.00

a15 12.84 5.54 3.16 3.70 5.05 5.97 4.50 5.11 5.33 5.46 7.06 5.45 5.60 6.16 7.46 7.10 4.17 0.33

a16 3.02 8.29 10.75 10.93 8.96 6.73 6.79 7.22 8.80 6.58 5.17 5.26 3.16 3.38 3.40 1.47 0.08 0.00

a17 16.60 20.65 10.81 13.48 12.62 9.63 6.48 3.74 2.85 1.69 0.84 0.35 0.22 0.03 0.00 0.00 0.00 0.00

a18 0.00 0.00 0.02 0.87 2.88 4.85 8.07 11.56 9.64 10.90 11.08 16.16 5.61 5.37 6.05 6.69 0.24 0.00

it is preferred to all other alternatives with a frequency of at least the 63.31%, while a9 can be

considered surely the worst alternative because all alternatives are preferred to it with a frequency

at least equal to the 94.77%.

Computing the Möbius representation of the barycenter of compatible capacities shown in Table

5, and applying the Choquet integral, we find the following complete ranking of the considered

alternatives:

a11 ≻ a17 ≻ a1 ≻ a5 ≻ a16 ≻ a2 ≻ a7 ≻ a8 ≻ a13 ≻ a15 ≻ a18 ≻ a3 ≻ a14 ≻ a12 ≻ a6 ≻ a4 ≻ a10 ≻ a9.

Let us suppose the DM gives the following further preference information in terms of comparisons

of alternatives: a16 ≻ a2, a3 ≻ a14 and a13 ≻ a8.

Using the procedure described in Section 4, we obtain the rank acceptability indices, the Möbius

representations of the central capacities and the frequency of the preference between pairs of alter-

natives shown, respectively, in Tables 17, 18 and 20 in the Appendix.

Considering this preference information, we get some new results. Looking at Table 17, alternative

a9 is almost always the worst because it has reached the last position in the rank with a frequency of

the 96.89%, but, differently from the previous case, a11 is no more the alternative obtaining the first
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Table 4: Möbius representation of the central capacity for alternatives being the first at least once

in the final ranking obtained by the Choquet integral, considering precise evaluations on considered

criteria and preference information only on importance and interaction of criteria

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a1 0.36 0.09 0.18 0.18 0.21 -0.06 -0.09 0.17 -0.04 0.01

a2 0.25 0.11 0.37 0.31 0.08 -0.09 -0.07 0.08 -0.07 0.04

a5 0.12 0.12 0.19 0.17 0.05 0.10 0.09 0.06 -0.08 0.17

a6 0.19 0.11 0.48 0.57 0.04 0.07 -0.07 0.04 -0.09 -0.33

a7 0.28 0.20 0.22 0.19 0.18 -0.06 0.02 0.06 -0.09 -0.01

a8 0.25 0.10 0.50 0.21 0.08 -0.16 0.04 0.15 -0.05 -0.11

a11 0.25 0.10 0.24 0.22 0.06 0.15 -0.02 0.07 -0.05 -0.02

a12 0.20 0.11 0.45 0.49 0.12 -0.01 -0.04 0.06 -0.05 -0.34

a13 0.43 0.07 0.23 0.13 0.24 -0.17 -0.06 0.07 -0.03 0.08

a14 0.16 0.11 0.32 0.48 0.07 0.11 -0.07 0.14 -0.08 -0.24

a15 0.49 0.11 0.36 0.22 0.07 -0.23 -0.01 0.09 -0.06 -0.04

a16 0.14 0.09 0.47 0.22 0.04 -0.02 0.16 0.04 -0.06 -0.07

a17 0.18 0.10 0.15 0.16 0.15 0.10 0.02 0.17 -0.04 0.01

Table 5: Möbius representation of the barycenter of compatible capacities considering precise eval-

uations on considered criteria and preference information only on importance and interaction of

criteria

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.26 0.12 0.27 0.22 0.098 0.008 -0.001 0.09 -0.06 -0.07

rank more than all other alternatives. In fact, a15 has been the first with a frequency of the 35.98%,

while a11 has been the first with a frequency of the 30.33%. Looking at Table 20, we can see that in

the space of compatible preference models, alternative a11 is preferred to a15 with a frequency of the

53.63%. From Table 18 we still get that, in average, the main differences in the Möbius representation

of central capacities of a11 and a15 are the following:

• m({1}) = 0.35 for a11 being the first and m({1}) = 0.52 for a15 being the first,

• m({3}) = 0.20 for a11 being the first and m({3}) = 0.31 for a15 being the first,

• m({1, 3}) = 0.08 for a11 being the first and m({1, 3}) = −0.2 for a15 being the first.

Also in this case, we have computed the Möbius representations of the barycenter of the com-

patible capacities shown in Table 19 of the Appendix, and again applying the Choquet integral

considering the precise evaluations on the considered criteria, we get the following complete ranking

of the considered alternatives:
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Table 6: Frequency of the preference between pairs of alternatives considering precise evaluations on

considered criteria and preference information only on importance and interaction of criteria

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 0.00 56.46 82.31 94.54 50.14 85.66 67.36 70.21 99.94 99.94 24.69 86.75 82.95 83.25 71.03 54.40 19.54 92.90

a2 43.54 0.00 68.55 90.84 42.85 91.78 54.37 59.23 99.97 98.56 24.05 86.02 60.76 86.17 61.69 50.39 30.49 75.18

a3 17.69 31.45 0.00 70.87 30.27 63.25 26.46 36.13 99.33 84.09 13.18 58.31 28.54 54.25 13.88 33.60 15.02 47.75

a4 5.46 9.16 29.13 0.00 9.26 46.67 8.76 11.70 100.00 78.89 1.17 26.52 16.96 28.28 25.23 12.64 1.93 21.43

a5 49.86 57.15 69.73 90.74 0.00 91.72 59.45 66.32 99.99 99.32 18.10 85.11 63.90 86.92 62.57 76.10 33.99 82.88

a6 14.34 8.22 36.75 53.33 8.28 0.00 24.38 20.54 99.03 73.12 4.41 35.32 28.96 10.39 33.08 10.31 8.08 28.92

a7 32.64 45.63 73.54 91.24 40.55 75.62 0.00 55.11 99.80 97.72 25.14 77.58 64.36 70.14 61.07 44.18 24.53 69.11

a8 29.79 40.77 63.87 88.30 33.68 79.46 44.89 0.00 100.00 98.97 12.26 76.40 52.87 73.15 55.81 37.86 14.60 78.19

a9 0.06 0.03 0.67 0.00 0.01 0.97 0.20 0.00 0.00 5.23 0.00 0.00 1.19 0.13 0.70 0.03 0.00 0.08

a10 0.06 1.44 15.91 21.11 0.68 26.88 2.28 1.03 94.77 0.00 0.01 16.18 6.90 13.10 14.26 1.54 0.01 1.74

a11 75.31 75.95 86.82 98.83 81.90 95.59 74.86 87.74 100.00 99.99 0.00 94.78 81.70 94.66 77.34 85.12 63.31 98.66

a12 13.25 13.98 41.69 73.48 14.89 64.68 22.42 23.60 100.00 83.82 5.22 0.00 28.98 36.20 37.16 19.12 7.47 33.20

a13 17.05 39.24 71.46 83.04 36.10 71.04 35.64 47.13 98.81 93.10 18.30 71.02 0.00 64.55 52.97 39.93 17.03 58.90

a14 16.75 13.83 45.75 71.72 13.08 89.61 29.86 26.85 99.87 86.90 5.34 63.80 35.45 0.00 41.22 17.65 8.79 37.08

a15 28.97 38.31 86.12 74.77 37.43 66.92 38.93 44.19 99.30 85.74 22.66 62.84 47.03 58.78 0.00 40.69 24.17 54.33

a16 45.60 49.61 66.40 87.36 23.90 89.69 55.82 62.14 99.97 98.46 14.88 80.88 60.07 82.35 59.31 0.00 30.80 77.23

a17 80.46 69.51 84.98 98.07 66.01 91.92 75.47 85.40 100.00 99.99 36.69 92.53 82.97 91.21 75.83 69.20 0.00 100.00

a18 7.10 24.82 52.25 78.57 17.12 71.08 30.89 21.81 99.92 98.26 1.34 66.80 41.10 62.92 45.67 22.77 0.00 0.00

a11 ≻ a15 ≻ a17 ≻ a1 ≻ a13 ≻ a7 ≻ a3 ≻ a5 ≻ a16 ≻ a2 ≻ a8 ≻ a18 ≻ a4 ≻ a12 ≻ a14 ≻ a6 ≻ a10 ≻ a9.

We observe that, alternative a15 is in the second position, while it was in the middle of the ranking

obtained considering the barycenter in case there were not preference information on comparisons

between alternatives.

5.2 Considering imprecision in the evaluations on considered criteria

At this stage, we slightly modify the evaluation matrix shown in Table 2, by introducing imprecision

on the evaluation criteria (see Table 7). In this example, we suppose that the evaluations of considered

alternatives on each criterion are integer numbers within an interval (for example, the evaluation of

a1 on criterion g1 can be 14, 15 or 16), but this is not a specific requirement for our model i.e., in

general, we can sample values from the whole interval. We can consider this as a specific probability

distribution fχ(ξ) concentrating uniformly the mass only on the integers in the interval of evaluations

on considered criteria.

Firstly, we shall take into account only the preference information in terms of importance and

interaction of criteria as presented in Section 5.1. As explained in Section 4, the set of constraints
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Table 7: Imprecise evaluations of alternatives on considered criteria

Alternatives

Criteria a1 a2 a3 a4 a5 a6 a7 a8 a9

g1 [14,16] [6,8] [17,19] [8,10] [11,13] [7,9] [13,15] [7,9] 3

g2 [11,13] [7,9] [7,9] [15,17] 5 3 [18,20] [12,14] [16,18]

g3 [9,11] [13,15] 4 [3,5] [13,15] [6,9] 5 [14,15] 2

g4 [6,9] [15,17] [11,13] [15,17] [13,15] [18,20] [9,11] 6 [13,15]

Criteria a10 a11 a12 a13 a14 a15 a16 a17 a18

g1 4 [15,17] [7,9] [16,18] [7,9] [18,20] [11,13] [13,15] [8,10]

g2 [18,20] 7 [10,12] [11,13] [6,8] [6,9] 4 [10,12] [12,14]

g3 [7,9] [13,15] 5 [5,7] [6,9] [3,5] [14,16] [11,13] [11,13]

g4 [8,10] [9,11] [18,20] 8 [18,20] [11,13] [12,15] [8,10] [5,7]

EDM is the same during all the iterations and therefore we can apply the Hit-and-Run method to

sample 2, 000, 000 compatible models. At the end of all iterations we obtain the rank acceptability

index of each alternative for each possible rank, the Möbius representations of the central capacities

and the preference matrix shown, respectively, in Tables 21, 22 and 24 in the Appendix. Comparing

results in Tables 3 and 21, we observe that the imprecision on the evaluations of alternatives with

respect to considered criteria has increased the uncertainty for the ranking position of the alternatives.

In fact, in case of exact evaluations, five alternatives cannot reach the first position, while considering

imprecise interval evaluations, only two alternatives (a9 and a10) cannot arrive first in the final

ranking. Nevertheless, the best alternative should be still chosen from a11, a17, and a7 because

they have the greatest rank acceptabilities for the first position (b111 = 21.06%, b117 = 15.98% and

b17 = 11.43%) while the worst one is almost surely a9 because it has the greatest rank acceptability for

the last position (b189 = 90.05%). Table 24 supports the idea that a11 is the best alternative because

it is preferred to all other alternatives with a frequency at least equal to the 57.60%. Table 22 gives

the Möbius representation of the central capacities ranking the considered alternatives in the first

position.

As already done previously, we find the barycenter of the Möbius representations of the central

capacities shown in Table 23 in the Appendix and representing the average preferences of the DM.

Because, we sampled uniformly at each iteration an evaluation matrix, the average evaluation matrix

is that one in which each element is the middle point of each interval. Applying the Choquet integral

considering the average evaluation matrix and the barycenter shown in Table 23, we get the following

ranking of alternatives:
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a11 ≻ a17 ≻ a1 ≻ a5 ≻ a2 ≻ a16 ≻ a7 ≻ a8 ≻ a13 ≻ a15 ≻ a3 ≻ a18 ≻ a14 ≻ a12 ≻ a4 ≻ a6 ≻ a10 ≻ a9.

Introducing the preference information in terms of comparison between alternatives presented

in Section 5.1, we find the rank acceptability indices, the Möbius representations of the central

capacities and the preference matrix shown in Tables 25, 26 and 28 reported in the Appendix.

Moreover, considering the barycenter of the Möbius representations of the central capacities and

applying the Choquet integral we get the following ranking of considered alternatives:

a17 ≻ a7 ≻ a11 ≻ a1 ≻ a13 ≻ a15 ≻ a5 ≻ a3 ≻ a16 ≻ a8 ≻ a18 ≻ a2 ≻ a4 ≻ a12 ≻ a14 ≻ a6 ≻ a10 ≻ a9.
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5.3 An example with the criteria expressed on different scales

In this section, we deal with a decision making problem in which the evaluation of alternatives on

considered criteria are expressed on heterogeneous scales.

From the city-car segment market, we select ten cars evaluated on the basis of the following criteria:

price (in Euro), acceleration (0/100 km/h in seconds), maximum speed (in km/h) and consumption

(in l/100km) (see Table 8).

Table 8: Evaluation matrix

Cars Price Acceleration Max speed Consumption

Euro 0/100 km/h km/h l/100km

PEUGEOT 208 1.6 8V 17,800 10.9 185 3.8

e-HDi 92 CV Stop&Start 3p. Allure

Citroen C3 15,750 13.5 163 3.8

1.4 HDi 70 Seduction

FIAT 500 0.9 15,050 11 173 4

TwinAir Turbo Street

SKODA Fabia 1.2 15,260 14.2 172 3.4

TDI CR 75 CV 5p. GreenLine

LANCIA Ypsilon 5p 16,300 11.4 183 3.8

1.3 MJT 95 CV 5p. S&S Gold

RENAULT Clio 1.5 dCi 90 16,050 11.3 176 4

CV 3p. Dynamique

SEAT Ibiza ST 1.2 15,700 14.6 173 3.4

TDI CR Ecomotive

ALFA ROMEO MiTo 1.3 17,500 12.9 174 3.5

JTDm 85 CV S&S Progression

TOYOTA Yaris 1.5 17,800 11.8 165 3.2

Hybrid 5p. Lounge

VOLKSWAGEN Polo 1.2 17,060 13.9 173 3.4

TDI 5p. BlueMotion 89g

The DM supplies the following preference information in terms of importance and interaction of

criteria as well as in terms of comparisons of alternatives:

• Preference between alternatives: a5 ≻ a1, a7 ≻ a6, a2 ≻ a3,

• Comparisons of importance of criteria: g1 ≻ g2, g4 ≻ g3,

• Positive interaction between criteria g3 and g4 and negative interaction between criteria g2 and

g3.
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As explained in Section 4, at each iteration we sample a common scale, and, if the set of constraints

EDM , that in this case will depend from the sampled scale, is feasible, then we sample a capacity

compatible with these constraints.

At the end of all the iterations, we shall get the rank acceptability indices, the Möbius representations

of the central capacities for each alternative and the preference matrix shown respectively in Tables

9, 10 and 11.

Looking at Table 9, we observe that car a7 is the most preferred by the DM (b17 = 71.82%) followed

by a4, while a3 is most frequently the least preferred car (b103 = 40.68%) and a1, a2, a3, a6 and a10

can never arrive first. Table 10 gives the Möbius representations of the central capacities ranking

considered alternatives in the first position at least once, while from Table 11, giving the frequency of

the preference between pairs of alternatives, we observe that a7 is preferred to all other alternatives

with a frequency at least equal to 71.91%.

Table 9: Rank acceptability indices sampling simultaneously compatible capacities and scales

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k

a1 0 0 0 0.017 0.14 1.68 17.45 25.28 30.11 25.30

a2 0 0 5.32 10.41 21.22 52.43 9.74 0.80 0.04 0

a3 0 0 0 0.18 0.54 1.41 5.25 22.96 28.94 40.68

a4 28.06 71.14 0.71 0.07 0.004 0 0 0 0 0

a5 0.04 0.189 17.15 20.88 39.46 14.50 5.28 1.73 0.74 0

a6 0 0 0.1 0.63 1.67 6.27 36.4 28.26 19.9 6.74

a7 71.82 28.09 0.07 0.002 0 0 0 0 0 0

a8 0.058 0.252 15.62 43.49 21.7 13.12 3.899 1.57 0.259 0.013

a9 0.006 0.004 0.41 1.21 4.27 7.036 20.739 19.101 19.95 27.25

a10 0 0.31 60.59 23.08 10.96 3.52 1.22 0.26 0.02 0

Table 10: Möbius representations of central capacities sampling simultaneously compatible capacities

and scales

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a4 0.14 0.21 0.19 0.14 0.077 0.001 0.22 -0.09 -0.01 0.096

a5 0.17 0.22 0.21 0.17 0.002 0.001 0.19 -0.109 0.001 0.109

a7 0.14 0.21 0.19 0.14 0.06 0.0006 0.23 -0.1 -0.007 0.099

a8 0.17 0.22 0.21 0.18 0.015 0.002 0.18 -0.108 -0.001 0.108

a9 0.18 0.15 0.13 0.51 0.012 0.008 -0.0004 -0.067 -0.009 0.067

Since there are different common compatible scales, we propose the DM the most discriminant

common scale presented in Table 12. After the DM accepts the common scale, we apply SMAA

sampling capacities compatible with the preference information provided by the DM, computing the
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Table 11: Frequency of the preference between pairs of alternatives considering a simulation sampling

of random capacities and common scales

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0 1.64 58.82 0 0 31.02 0 0.619 48.18 0.31

a2 98.35 0 100 0 25.72 95.56 0 24.59 91.2 11.08

a3 41.17 0 0 0 2.99 16.61 0 2.38 36.3 0.67

a4 99.99 100 100 0 99.77 100 28.08 99.67 99.98 99.65

a5 100 74.27 97 0.22 0 97.7 0.067 39.38 90.88 23.12

a6 68.97 4.43 83.38 0 2.29 0 0 4.97 57.32 2.21

a7 99.99 100 100 71.91 99.93 100 0 99.91 99.99 100

a8 99.38 75.4 97.61 0.32 60.61 95.02 0.082 0 96.81 23.74

a9 51.81 8.79 63.69 0.01 9.11 42.67 0.007 3.18 0 0.85

a10 99.68 88.91 99.32 0.34 76.87 97.78 0 76.25 99.14 0

rank acceptability indices, the Möbius representations of the central capacities and the preference

matrix displayed, respectively, in Tables 13, 14 and 16. Applying the Choquet integral with respect

to the Möbius representation of the barycenter of the compatible capacities shown in Table 15, and

considering the most discriminating common scale we get the following ranking of the considered

alternatives:

a7 ≻ a4 ≻ a5 ≻ a8 ≻ a2 ≻ a10 ≻ a3 ≻ a1 ≻ a9 ≻ a6.

Table 12: Evaluations of alternatives on considered criteria expressed on the most discriminating

common scale

Alt Price Acceleration Max speed Consumption

a1 0.0193 0.1135 0.6644 0.5638

a2 0.7066 0.2816 0.0717 0.5638

a3 0.9955 0.1187 0.3358 0.0878

a4 0.7377 0.4395 0.09 0.6603

a5 0.4261 0.2167 0.6397 0.5638

a6 0.4802 0.2017 0.6284 0.0878

a7 0.7105 0.8193 0.3358 0.6603

a8 0.2811 0.2606 0.6164 0.6138

a9 0.0199 0.248 0.0868 0.9567

a10 0.3982 0.2835 0.3358 0.6603
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Table 13: Rank acceptability indices taking into account evaluations of alternatives on considered

criteria expressed on the most discriminating common scale shown in Table 12

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k

a1 0 0 0.21 4.09 4.61 6.82 16.89 24.35 28.87 14.11

a2 0 0 27.23 13.39 13.17 21.76 15.13 8.53 0.75 0

a3 0 0 0 7.55 5.34 6.41 20.99 19.99 25.36 14.32

a4 0 65.12 10.82 10.44 6.72 5.17 1.69 0.001 0 0

a5 0.52 21.71 34.57 23.30 12.25 4.92 2.17 0.53 0 0

a6 0 0 0 0 0.001 0.502 7.71 28.22 27.76 35.79

a7 97.11 1.809 0.85 0.21 0.003 0 0 0 0 0

a8 1.12 7.79 19.78 21.83 17.31 20.66 10.45 1.02 0 0

a9 1.22 3.43 3.17 1.98 2.7 5.57 13.58 15.42 17.12 35.76

a10 0 0.11 3.32 17.16 37.86 28.16 11.35 1.89 0.109 0

Table 14: Möbius representation of the central capacities, taking into account evaluations of alter-

natives on considered criteria expressed on the most discriminating common scale, shown in Table

12

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a5 0.089 0.106 0.155 0.2 -0.016 0.087 0.09 -0.03 -0.015 0.336

a7 0.222 0.201 0.163 0.244 0.038 0.002 0.102 -0.06 -0.007 0.09

a8 0.145 0.098 0.167 0.28 0.017 -0.017 -0.027 -0.033 -0.012 0.38

a9 0.269 0.152 0.099 0.685 -0.005 0.016 -0.187 -0.03 -0.05 0.055
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Table 15: Möbius representation of the barycenter of capacities taking into account evaluations of

alternatives on the considered criteria expressed on the most discriminant common scale shown in

Table 12

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.22 0.19 0.16 0.25 0.037 0.003 0.097 -0.05 -0.008 0.09

Table 16: Frequency of the preference between pairs of alternatives taking into account evaluations

of alternatives on the most discriminant common scale shown in Table 12

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0 18.33 48.3 6.52 0 64.7 0.21 0 56.69 9.97

a2 81.66 0 100 0 30.88 98.49 0 43.23 80.83 52.06

a3 51.69 0 0 0 8.66 74.71 0 15.11 58.21 17.68

a4 93.47 100 100 0 69.57 99.99 0 75.77 92.34 87.75

a5 100 69.11 91.33 30.42 0 100 1.27 77.77 90.54 88.35

a6 35.29 1.5 25.28 0.004 0 0 0 0.18 47.07 0.022

a7 99.7843 100 100 100 98.72 100 0 98.55 98.75 100

a8 100 56.76 84.88 24.22 22.22 99.81 1.44 0 90.09 65.22

a9 43.308 19.16 41.78 7.65 9.45 52.92 1.24 9.904 0 11.73

a10 90.02 47.93 82.31 12.24 11.64 99.97 0 34.77 88.26 0

6 Conclusions

In this paper, we have integrated the Stochastic Multiobjective Acceptability Analysis (SMAA) to

the Choquet integral preference model extending a work already published by the authors [1]. We

have proposed to explore the space of the parameters compatible with some preference information

provided by the DM using SMAA. In particular, we have considered the DM’s preference information

not only in terms of relative importance of criteria and interaction between them , but differently

from [1], also in terms of pairwise comparison between alternatives and comparisons of intensity of

preferences between pairs of alternatives. Moreover, again differently from [1], we have considered

also imprecise evaluations of alternatives on the considered criteria expressed in terms of intervals of

possible values.

Finally, we have proposed a methodology to construct the common scale required by the Choquet

integral; this is very useful in case the criteria for the decision problem at hand are defined on different
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scales. Such aspect of the methodology we are proposing, constitutes another original contribution

with respect to [1]. We have provided several different examples in which the proposed methodology

has been applied. We envisage the following future developments:

• application of SMAA methodology to some extensions of the classical Choquet integral, e.g.

the bipolar Choquet integral [17, 18] (see also [23]), the level dependent Choquet integral [21],

the robust Choquet integral [28];

• implementation of the SMAA methodology to the Choquet integral in presence of hierarchy of

criteria [2] within the so called multiple criteria hierarchy process [9, 10].

We believe that the methodology we are proposing can greatly contribute to extend and to improve

the use of the Choquet integral preference model in Multiple Criteria Decision Aiding.
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[24] S. Greco, B. Matarazzo, and R. S lowiński. Axiomatic characterization of a general utility

function and its particular cases in terms of conjoint measurement and rough-set decision rules.

European Journal of Operational Research, 158(1):271–292, 2004.
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[29] S. Greco, R. S lowiński, J.R. Figueira, and V. Mousseau. Robust Ordinal Regression. In

M. Ehrgott, J.R. Figueira, and S. Greco, editors, Trends in Multiple Criteria Decision Analysis,

pages 241–283. Springer, New York, 2010.

30



[30] E. Jacquet-Lagreze and J. Siskos. Assessing a set of additive utility functions for multicriteria

decision-making, the UTA method. European Journal of Operational Research, 10(2):151–164,

1982.
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Appendix

Table 17: Rank acceptability indices considering preference information both in terms of comparison

of alternatives and importance and interaction of criteria

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k
b11

k
b12

k
b13

k
b14

k
b15

k
b16

k
b17

k
b18

k

a1 1.25 7.05 20.65 15.61 22.70 14.64 6.70 4.49 4.33 2.02 0.49 0.04 0.02 0.01 0.00 0.00 0.00 0.00

a2 0.00 0.02 0.89 1.72 2.86 3.63 3.53 4.40 5.90 21.34 15.26 17.32 8.53 7.24 5.72 1.61 0.03 0.00

a3 0.00 14.80 11.54 7.51 5.84 9.47 14.00 8.32 9.18 7.55 5.30 4.85 1.00 0.50 0.14 0.00 0.00 0.00

a4 0.00 0.00 0.00 0.03 0.10 0.28 0.42 2.95 2.10 3.77 4.97 9.02 28.28 11.80 14.35 19.25 2.67 0.00

a5 4.06 5.81 7.42 8.10 7.92 7.97 8.70 25.07 11.06 8.34 3.53 1.52 0.46 0.03 0.00 0.00 0.00 0.00

a6 0.00 0.00 0.01 0.03 0.02 0.04 0.12 0.24 0.42 1.42 2.63 4.17 4.58 11.66 8.52 40.58 23.45 2.12

a7 17.21 7.07 6.83 9.79 8.15 9.44 13.66 6.32 9.19 6.23 3.85 1.32 0.62 0.28 0.03 0.00 0.00 0.00

a8 0.00 0.00 0.01 0.07 0.54 2.18 3.95 11.22 10.55 20.45 26.58 8.63 4.71 4.69 4.12 2.31 0.01 0.00

a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.27 2.78 96.89

a10 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.13 0.37 0.50 1.09 1.00 3.18 5.37 5.19 11.73 70.38 0.99

a11 30.33 18.57 14.55 14.01 9.74 6.68 5.74 0.34 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a12 0.00 0.00 0.02 0.05 0.10 0.18 0.27 0.66 1.08 2.05 3.82 6.98 12.93 37.34 28.29 5.88 0.36 0.00

a13 0.98 8.39 15.35 17.00 16.57 11.90 12.89 10.13 4.71 1.24 0.39 0.30 0.12 0.02 0.00 0.00 0.00 0.00

a14 0.00 0.00 0.00 0.00 0.04 0.08 0.11 0.37 0.91 2.85 6.24 8.11 26.64 14.16 27.83 12.35 0.31 0.00

a15 35.98 12.28 4.75 6.14 7.22 10.41 5.66 5.24 4.32 2.77 2.75 1.16 0.58 0.34 0.33 0.06 0.00 0.00

a16 0.45 3.89 6.58 7.90 8.06 6.90 7.72 12.19 25.64 6.21 7.45 3.33 2.49 1.13 0.06 0.00 0.00 0.00

a17 9.73 22.11 11.40 12.01 9.81 14.51 13.98 3.13 1.97 0.87 0.45 0.02 0.01 0.00 0.00 0.00 0.00 0.00

a18 0.00 0.00 0.00 0.04 0.33 1.69 2.50 4.81 8.22 12.38 15.18 32.23 5.83 5.42 5.39 5.98 0.01 0.00
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Table 18: Möbius representations of central capacities for alternatives taking into account precise

evaluations on considered criteria and preference information both in terms of comparison of alter-

natives and importance and interaction of criteria

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a1 0.38 0.10 0.14 0.11 0.18 0.02 -0.02 0.13 -0.04 0.01

a5 0.26 0.10 0.20 0.11 0.06 -0.05 0.11 0.04 -0.06 0.23

a7 0.32 0.22 0.18 0.15 0.12 -0.02 0.06 0.05 -0.08 0.00

a11 0.35 0.10 0.20 0.16 0.07 0.08 0.00 0.06 -0.05 0.03

a13 0.44 0.07 0.16 0.08 0.23 -0.08 -0.01 0.05 -0.03 0.08

a15 0.52 0.10 0.31 0.17 0.06 -0.20 0.03 0.07 -0.05 -0.01

a16 0.31 0.07 0.39 0.12 0.04 -0.20 0.22 0.02 -0.04 0.07

a17 0.24 0.10 0.11 0.10 0.16 0.10 0.06 0.13 -0.04 0.04

Table 19: Möbius representation of the barycenter of compatible capacities taking into account

precise evaluations on considered criteria and preference information both in terms of comparison of

alternatives and importance and interaction of criteria

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.39 0.12 0.23 0.15 0.086 -0.045 0.033 0.067 -0.053 0.02

Table 20: Frequency of the preference between pairs of alternatives taking into account precise eval-

uations on considered criteria and preference information both in terms of comparison of alternatives

and importance and interaction of criteria

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 0.00 90.34 60.44 99.91 71.66 99.66 57.00 98.28 100.00 100.00 24.60 99.68 56.53 99.71 41.99 74.29 36.57 100.00

a2 9.66 0.00 19.32 79.09 2.42 94.84 15.90 46.24 99.94 96.38 1.35 83.35 12.29 88.01 12.78 0.00 6.29 60.07

a3 39.56 80.68 0.00 97.31 58.69 99.86 45.88 84.21 100.00 98.58 28.08 98.54 36.69 100.00 2.56 62.93 37.81 87.02

a4 0.09 20.91 2.69 0.00 6.07 70.65 0.05 14.80 100.00 93.23 0.09 57.33 0.42 53.37 2.23 8.81 0.03 19.30

a5 28.34 97.58 41.31 93.93 0.00 99.73 37.63 81.39 99.99 98.96 6.25 97.35 35.18 99.26 30.14 77.75 20.32 89.19

a6 0.34 5.16 0.14 29.35 0.27 0.00 1.77 10.55 97.88 73.47 0.00 22.66 0.85 6.08 0.00 0.39 0.17 14.21

a7 43.00 84.10 54.12 99.95 62.37 98.23 0.00 91.99 100.00 100.00 32.00 99.10 46.98 97.86 38.11 65.33 39.23 97.40

a8 1.72 53.76 15.79 85.20 18.61 89.45 8.01 0.00 100.00 99.06 0.41 85.96 0.00 84.80 9.68 22.92 1.66 68.45

a9 0.00 0.06 0.00 0.00 0.01 2.12 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.32 0.00 0.02 0.00 0.00

a10 0.00 3.62 1.42 6.77 1.04 26.53 0.00 0.94 99.01 0.00 0.00 11.80 0.02 14.84 1.04 1.89 0.00 1.00

a11 75.40 98.65 71.92 99.91 93.75 100.00 68.00 99.59 100.00 100.00 0.00 100.00 71.33 100.00 53.63 95.71 72.88 100.00

a12 0.32 16.65 1.46 42.67 2.65 77.34 0.90 14.04 100.00 88.20 0.00 0.00 0.97 50.18 1.09 4.92 0.10 18.24

a13 43.47 87.71 63.31 99.58 64.82 99.15 53.02 100.00 100.00 99.98 28.67 99.03 0.00 98.96 33.03 68.69 39.70 98.89

a14 0.29 11.99 0.00 46.63 0.74 93.92 2.14 15.20 99.68 85.16 0.00 49.82 1.04 0.00 0.40 1.66 0.07 19.28

a15 58.01 87.22 97.44 97.77 69.86 100.00 61.89 90.32 100.00 98.96 46.37 98.91 66.97 99.60 0.00 73.79 53.59 90.86

a16 25.71 100.00 37.07 91.19 22.25 99.61 34.67 77.08 99.98 98.11 4.29 95.08 31.31 98.34 26.21 0.00 18.58 83.79

a17 63.43 93.71 62.19 99.97 79.68 99.83 60.77 98.34 100.00 100.00 27.12 99.90 60.30 99.93 46.41 81.42 0.00 100.00

a18 0.00 39.93 12.98 80.70 10.81 85.79 2.60 31.55 100.00 99.00 0.00 81.76 1.11 80.72 9.14 16.21 0.00 0.00
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Table 21: Rank acceptability indices taking into account imprecise evaluations and preference infor-

mation both in terms of comparison of alternatives and importance and interaction of criteria

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k
b11

k
b12

k
b13

k
b14

k
b15

k
b16

k
b17

k
b18

k

a1 7.80 11.66 12.23 10.72 11.48 10.95 9.26 7.45 5.23 3.89 3.05 2.22 1.63 1.25 0.83 0.33 0.03 0.00

a2 9.42 7.08 7.25 7.84 8.24 8.19 7.56 7.69 6.93 7.52 6.19 5.50 3.96 2.98 2.36 1.15 0.11 0.01

a3 2.16 4.16 4.12 4.34 4.94 5.64 6.01 5.69 6.05 6.32 7.07 7.76 7.43 7.82 8.40 7.87 3.97 0.26

a4 0.10 0.29 0.51 0.82 1.20 1.55 2.07 3.25 3.99 5.40 6.84 9.38 12.79 14.08 15.01 14.78 7.96 0.00

a5 6.34 9.60 10.55 9.78 8.52 7.84 7.50 8.30 7.63 6.38 5.68 4.53 3.32 2.58 1.12 0.30 0.02 0.00

a6 0.50 0.92 1.25 1.36 1.69 2.23 2.81 3.25 3.92 4.77 4.90 5.47 6.82 8.83 11.15 20.99 17.64 1.49

a7 11.43 6.15 5.87 5.83 5.74 6.12 6.89 6.70 7.95 8.05 7.38 6.97 5.79 4.14 3.07 1.71 0.20 0.01

a8 1.87 2.58 3.53 4.74 6.48 8.21 9.03 9.63 9.40 9.53 9.50 6.99 5.38 4.53 4.30 3.26 0.65 0.38

a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.12 0.20 0.34 0.74 1.23 7.17 90.05

a10 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.15 0.49 1.04 1.84 2.65 4.49 6.51 8.41 16.19 51.76 6.37

a11 21.06 16.32 15.09 13.48 10.60 7.99 6.35 3.62 2.28 1.38 0.82 0.50 0.28 0.15 0.05 0.01 0.00 0.00

a12 1.64 1.92 1.84 1.84 2.09 2.57 3.27 4.31 5.31 6.53 8.42 9.65 11.80 14.47 14.38 8.17 1.80 0.00

a13 3.17 5.75 6.78 7.65 6.95 6.69 6.79 6.76 7.56 7.42 6.44 5.67 5.19 5.28 4.89 4.70 1.77 0.55

a14 3.34 3.08 2.99 3.28 4.01 5.03 5.79 6.23 7.87 7.69 8.33 8.50 11.74 9.55 7.79 4.14 0.62 0.00

a15 7.53 5.50 4.79 4.78 5.26 5.55 5.50 5.36 5.64 5.95 6.38 6.61 6.30 6.41 6.68 6.29 4.96 0.53

a16 7.60 9.15 9.20 8.66 7.78 7.08 6.84 7.37 7.25 6.09 5.51 4.89 4.01 3.61 3.49 1.29 0.16 0.03

a17 15.98 15.49 13.02 12.88 11.65 9.29 7.02 4.66 3.43 2.49 1.65 1.05 0.71 0.44 0.20 0.05 0.01 0.00

a18 0.06 0.36 0.98 2.03 3.37 5.06 7.26 9.56 9.06 9.52 9.91 11.53 8.15 7.02 7.13 7.54 1.17 0.31

Table 22: Möbius representation of central capacities taking into account imprecise evaluations of

alternatives on considered criteria and including preference information in terms of importance and

interaction of criteria

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a1 0.29 0.11 0.18 0.18 0.16 0.00 -0.03 0.14 -0.05 0.01

a2 0.26 0.11 0.37 0.30 0.08 -0.09 -0.07 0.08 -0.07 0.03

a3 0.49 0.12 0.37 0.24 0.07 -0.25 0.01 0.07 -0.06 -0.06

a4 0.24 0.16 0.32 0.41 0.11 -0.03 -0.02 0.04 -0.03 -0.20

a5 0.16 0.12 0.26 0.21 0.06 0.07 0.07 0.06 -0.08 0.07

a6 0.21 0.13 0.44 0.58 0.04 0.05 -0.09 0.04 -0.11 -0.28

a7 0.30 0.20 0.22 0.21 0.18 -0.08 0.02 0.06 -0.09 -0.01

a8 0.25 0.10 0.45 0.20 0.08 -0.14 0.04 0.17 -0.04 -0.10

a11 0.26 0.10 0.26 0.22 0.07 0.10 -0.02 0.08 -0.05 -0.02

a12 0.24 0.13 0.37 0.51 0.10 -0.01 -0.09 0.06 -0.07 -0.25

a13 0.45 0.13 0.26 0.18 0.15 -0.16 -0.07 0.08 -0.05 0.03

a14 0.21 0.12 0.35 0.49 0.08 0.05 -0.09 0.08 -0.09 -0.21

a15 0.50 0.12 0.36 0.24 0.07 -0.23 -0.02 0.08 -0.06 -0.04

a16 0.18 0.11 0.35 0.22 0.05 0.01 0.06 0.05 -0.07 0.03

a17 0.20 0.10 0.18 0.17 0.13 0.08 0.02 0.15 -0.04 0.00

a18 0.16 0.10 0.24 0.17 0.11 0.06 0.05 0.23 -0.06 -0.06
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Table 23: Möbius representation of the barycenter of the compatible capacities taking into account

interval evaluations and preference information of alternatives on considered criteria in terms of

importance and interaction of criteria

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.27 0.12 0.27 0.23 0.10 -0.007 -0.005 0.09 -0.06 -0.013

Table 24: Frequency of the preference between pairs of alternatives taking into account imprecise

evaluations of alternatives on considered criteria and preference information expressed in terms of

importance and interaction of criteria only

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 0.00 58.70 78.99 91.93 54.65 86.95 67.84 74.97 99.56 99.69 33.11 84.96 77.10 77.84 72.88 56.05 34.62 88.88

a2 41.30 0.00 64.82 84.80 44.84 91.95 53.41 63.46 99.91 98.53 26.97 80.98 57.54 74.49 61.01 47.78 32.65 73.23

a3 21.01 35.18 0.00 70.30 34.29 67.41 30.46 43.17 99.11 86.97 17.40 59.37 33.71 50.44 38.55 36.42 19.39 51.98

a4 8.07 15.20 29.70 0.00 14.00 53.61 12.01 21.74 100.00 82.30 4.64 34.27 19.97 25.77 27.52 16.88 5.18 29.96

a5 45.35 55.16 65.71 86.00 0.00 92.65 56.97 68.91 99.88 99.28 22.34 81.66 60.05 77.52 61.78 56.91 34.60 79.78

a6 13.05 8.05 32.59 46.39 7.35 0.00 23.11 21.81 98.43 74.52 4.75 30.60 26.35 13.00 30.55 8.61 8.25 28.71

a7 32.16 46.59 69.54 87.99 43.03 76.89 0.00 58.11 99.50 97.24 27.80 75.82 59.52 63.88 62.11 44.89 27.60 68.24

a8 25.03 36.54 56.83 78.26 31.09 78.19 41.89 0.00 99.10 97.76 12.07 70.11 47.26 60.70 52.63 33.71 14.22 69.80

a9 0.44 0.09 0.89 0.00 0.12 1.57 0.50 0.90 0.00 7.34 0.08 0.01 1.49 0.10 1.04 0.26 0.16 1.15

a10 0.31 1.47 13.03 17.70 0.72 25.48 2.76 2.24 92.66 0.00 0.06 13.69 6.20 8.05 12.53 1.46 0.12 3.40

a11 66.89 73.03 82.60 95.36 77.66 95.25 72.20 87.93 99.92 99.94 0.00 91.39 77.31 88.28 77.35 77.99 57.60 95.87

a12 15.04 19.02 40.63 65.73 18.34 69.40 24.18 29.89 99.99 86.31 8.61 0.00 29.68 29.69 37.78 21.38 10.72 37.54

a13 22.90 42.46 66.29 80.03 39.95 73.65 40.48 52.74 98.51 93.80 22.69 70.32 0.00 59.91 56.87 42.00 22.21 62.07

a14 22.16 25.51 49.56 74.23 22.48 87.00 36.12 39.30 99.90 91.95 11.72 70.31 40.09 0.00 46.50 26.17 15.16 48.14

a15 27.12 38.99 60.83 72.48 38.22 69.45 37.89 47.37 98.96 87.47 22.65 62.22 43.13 53.50 0.00 40.20 24.45 55.56

a16 43.95 52.22 63.58 83.12 43.09 91.39 55.11 66.29 99.74 98.54 22.01 78.62 58.00 73.83 59.80 0.00 34.14 75.92

a17 65.29 67.35 80.61 94.82 65.40 91.75 72.40 85.78 99.84 99.88 42.40 89.28 77.79 84.84 75.55 65.86 0.00 97.38

a18 11.12 26.77 48.02 70.04 20.22 71.29 31.76 30.20 98.85 96.60 4.13 62.46 37.93 51.86 44.44 24.08 2.62 0.00
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Table 25: Rank acceptability indices taking into account imprecise evaluations of alternatives on

considered criteria, preference information in terms of importance and interaction of criteria and

comparisons between alternatives

Alt b1

k
b2

k
b3

k
b4

k
b5

k
b6

k
b7

k
b8

k
b9

k
b10

k
b11

k
b12

k
b13

k
b14

k
b15

k
b16

k
b17

k
b18

k

a1 19.03 22.62 23.26 15.84 9.28 4.99 2.73 1.29 0.62 0.22 0.09 0.03 0.01 0.00 0.00 0.00 0.00 0.00

a2 0.00 0.01 0.04 0.13 0.43 1.60 3.84 7.12 10.46 14.90 17.97 19.02 12.43 7.38 4.10 0.55 0.02 0.00

a3 0.63 1.55 2.56 3.93 6.36 9.95 13.55 13.66 12.51 11.35 11.17 9.05 2.88 0.80 0.05 0.00 0.00 0.00

a4 0.00 0.01 0.04 0.10 0.26 0.64 1.28 2.63 3.55 4.89 6.33 8.90 14.84 20.53 23.38 10.84 1.78 0.00

a5 0.47 1.62 3.70 7.17 10.58 12.19 12.14 12.65 12.70 10.04 7.57 5.02 2.57 1.13 0.41 0.03 0.00 0.00

a6 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.19 0.43 0.84 1.96 4.75 10.73 44.11 36.42 0.41

a7 22.46 15.47 15.55 18.16 11.48 6.59 4.04 2.61 1.75 0.96 0.51 0.25 0.10 0.04 0.01 0.00 0.00 0.00

a8 0.00 0.01 0.09 0.52 2.14 7.74 11.46 13.98 12.38 12.80 11.37 9.61 7.85 5.49 3.53 1.02 0.01 0.00

a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.59 99.40

a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.17 0.60 1.91 5.88 30.78 60.35 0.19

a11 25.30 22.25 18.37 14.01 9.37 5.43 3.37 1.37 0.40 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

a12 0.00 0.00 0.00 0.02 0.05 0.15 0.40 1.04 2.07 3.63 5.81 9.13 16.47 26.31 27.59 6.90 0.44 0.00

a13 2.29 6.10 10.01 15.94 23.21 17.91 11.67 6.41 3.78 1.70 0.66 0.22 0.07 0.02 0.00 0.00 0.00 0.00

a14 0.00 0.00 0.00 0.00 0.02 0.09 0.39 1.51 3.35 5.66 8.71 13.71 23.24 20.85 17.91 4.23 0.32 0.00

a15 2.91 4.15 5.40 7.43 10.53 13.45 12.39 9.96 8.22 7.05 6.43 5.05 3.38 2.07 1.24 0.31 0.05 0.00

a16 0.47 1.03 1.69 2.93 5.28 8.65 12.29 15.63 17.18 14.82 10.75 5.60 2.60 0.99 0.07 0.00 0.00 0.00

a17 26.42 25.15 19.06 12.73 7.65 4.48 2.69 1.20 0.46 0.12 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

a18 0.00 0.03 0.23 1.10 3.36 6.12 7.74 8.91 10.48 11.55 12.07 13.37 10.98 7.74 5.08 1.21 0.02 0.00

Table 26: Möbius representation of central capacities for alternatives taking into account imprecise

evaluations of alternatives on considered criteria, preferences on importance and interaction of criteria

and comparisons between alternatives

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a1 0.31 0.18 0.19 0.19 0.10 0.03 0.00 0.10 -0.09 -0.01

a3 0.40 0.15 0.26 0.21 0.09 -0.11 0.03 0.09 -0.06 -0.05

a4 0.27 0.14 0.27 0.24 0.08 -0.01 0.01 0.07 0.06 -0.15

a5 0.28 0.16 0.20 0.21 0.06 0.05 0.04 0.06 -0.11 0.03

a7 0.32 0.20 0.21 0.20 0.11 -0.04 0.01 0.09 -0.09 -0.01

a11 0.30 0.16 0.17 0.19 0.09 0.09 0.01 0.08 -0.08 -0.02

a12 0.30 0.10 0.30 0.30 0.07 -0.03 -0.02 0.09 0.04 -0.15

a13 0.34 0.19 0.21 0.19 0.11 -0.04 0.00 0.09 -0.09 -0.01

a15 0.39 0.15 0.25 0.21 0.09 -0.09 0.02 0.09 -0.07 -0.04

a16 0.31 0.16 0.25 0.22 0.06 -0.03 0.04 0.06 -0.11 0.04

a17 0.29 0.18 0.18 0.19 0.10 0.07 0.00 0.10 -0.08 -0.01

a18 0.28 0.20 0.21 0.18 0.10 0.03 -0.02 0.12 -0.11 0.00
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Table 27: Möbius representation of the barycenter of the compatible capacities taking into account

interval evaluations of alternatives on considered criteria, preference information on importance and

interaction of criteria and comparisons between alternatives

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.31 0.18 0.19 0.19 0.097 0.034 0.008 0.091 -0.08 -0.014

Table 28: Frequency of the preference between pairs of alternatives taking into account imprecise

evaluations of alternatives on considered criteria, preferences on importance and interaction of criteria

and comparisons between alternatives

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 0.00 99.09 92.23 99.70 91.39 99.98 55.80 98.53 100.00 100.00 47.59 99.88 80.36 99.85 85.65 94.32 44.09 99.16

a2 0.91 0.00 29.52 78.07 14.31 99.20 2.96 37.69 99.99 99.33 0.25 83.54 6.58 77.66 23.08 0.00 0.39 45.69

a3 7.77 70.48 0.00 93.07 43.69 99.57 8.24 61.99 100.00 99.87 8.77 95.18 18.31 100.00 35.82 53.00 8.02 66.50

a4 0.30 21.93 6.93 0.00 9.17 86.72 0.23 16.44 100.00 95.37 0.45 51.96 0.97 42.25 6.56 11.77 0.23 21.00

a5 8.61 85.69 56.31 90.83 0.00 99.99 15.78 65.84 100.00 99.85 2.72 94.92 27.39 94.32 46.07 62.74 5.17 73.95

a6 0.02 0.80 0.43 13.28 0.01 0.00 0.14 2.68 99.59 62.13 0.00 9.16 0.13 4.64 0.78 0.04 0.00 2.85

a7 44.20 97.04 91.76 99.77 84.22 99.86 0.00 96.75 100.00 100.00 43.89 99.73 76.56 99.37 84.76 90.05 40.20 96.87

a8 1.47 62.31 38.01 83.56 34.16 97.32 3.25 0.00 100.00 99.93 2.64 86.11 0.00 79.90 29.48 42.28 1.66 58.17

a9 0.00 0.01 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a10 0.00 0.67 0.13 4.63 0.15 37.87 0.00 0.07 99.80 0.00 0.00 4.19 0.00 3.89 0.28 0.19 0.00 0.19

a11 52.41 99.75 91.23 99.55 97.28 100.00 56.11 97.36 100.00 100.00 0.00 99.94 77.93 99.96 84.83 97.71 47.04 98.97

a12 0.12 16.46 4.82 48.04 5.08 90.84 0.27 13.89 100.00 95.81 0.06 0.00 0.60 39.11 5.38 7.14 0.04 17.50

a13 19.64 93.42 81.69 99.03 72.61 99.87 23.44 100.00 100.00 100.00 22.07 99.40 0.00 99.07 69.73 82.77 18.51 91.79

a14 0.15 22.34 0.00 57.75 5.68 95.36 0.63 20.10 100.00 96.11 0.04 60.89 0.93 0.00 7.73 9.83 0.05 24.04

a15 14.35 76.92 63.57 93.44 53.93 99.22 15.24 70.52 100.00 99.72 15.17 94.62 30.27 92.27 0.00 63.15 14.14 72.99

a16 5.68 100.00 47.00 88.23 37.26 99.96 9.95 57.72 100.00 99.81 2.29 92.86 17.23 90.17 36.85 0.00 4.06 65.09

a17 55.82 99.61 91.98 99.77 94.83 100.00 59.80 98.34 100.00 100.00 52.96 99.96 81.49 99.95 85.86 95.94 0.00 99.46

a18 0.84 54.31 33.50 79.00 26.05 97.15 3.13 41.83 100.00 99.81 1.03 82.50 8.21 75.96 27.01 34.91 0.54 0.00
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