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ABSTRACT   

Generating companies use the maintenance cost function as the sole or main objective for creating the maintenance schedule 

of power generators. Usually only maintenance activities related costs are considered to derive the cost function. However, in 

deregulated markets, maintenance related costs alone do not represent the full costs of generators. This paper models various 

cost components that affect the maintenance activities in deregulated power markets. The costs that we model include direct 

and indirect maintenance, failures, interruptions, contractual compensation, rescheduling, and market opportunity.  The loss of 

firm’s reputation and selection of loyalty model are also considered using the Analytic Hierarchy Process (AHP) within an 

opportunity cost model. A case study is used to illustrate the modelling activities. The enhanced model is utilised in generator 

maintenance scheduling cases. The experimental results demonstrate the importance and impact of market related costs in 

maintenance schedules. 
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1. Introduction 

The electricity sector in many countries has moved from a centralized structure to deregulated markets separating the 

integrated power system into various competitive entities. This has created an open electricity market pool by allowing 

competition with respect to the supply of power and allowing consumers to choose their preferred supplier of electric energy 

[6, 18, 32]. In power systems, generators must be maintained in order to supply electricity with high reliability. Power 

generating companies (GENCOs) apply different maintenance strategies, such as reliability centre maintenance [4, 29], 

corrective maintenance [4], preventive maintenance [6, 7], age-based maintenance [19] etc., to achieve their objectives in 

terms of quality and cost. Regardless of the type of maintenance carried out, the generator units must be taken out of service 

for a period of time ranging from several hours to several weeks [13, 32]. In the deregulated environment, the decision when 

to take the generator out of service depends on various factors such as the effect of maintenance outages on the overall 

system, reliability, loss of services, loss of firm’s reputation and loss of revenue [9, 10]. The coordination of this is usually 

done by the Independent System Operator (ISO).  

This paper concentrates on the maintenance cost modelling of power generators for GENCOs in a deregulated environment. 

There are different costs associated with generator maintenance activities in deregulated power markets that influence 

maintenance scheduling and other planning activities. Reducing the maintenance cost is one of the main objectives in 

scheduling power system maintenance but this can be problematic. As the major factor for scheduling maintenance, 

formulating the problem requires the maintenance cost to be carefully modelled to reflect the real-world scenarios. It must be 

accurately quantified to ensure the optimal solution found represents a realistic optimised schedule [7]. 

In Al-Arfaj et al. [1] preliminary modelling concepts and opportunity costs of planning generator maintenance have been 

introduced. We extend these ideas by developing two complete maintenance cost models under “no-failure” and “failure” 

cases. The developed models also include “reputational costs”, “interruption” and “contractual compensation”
1
 (hereafter 

“compensation”) costs. The reputational cost is quantified with the selection of the best loyalty model to minimise the loss 

using the Analytic Hierarchy Process (AHP). The paper also shows the data gathering process for the proposed cost models. 

The developed cost model has been utilised in two generator maintenance scheduling cases to demonstrate the impact of the 

“reputational costs” with the AHP loyalty models on the maintenance schedule.  

 
1 In case of failure to generate power, GENCOs are obliged to supply the contractual volume by buying in the spot market. Hence the 

compensation cost will be equal to the difference between spot price and contracted price (see expression 6 for further details). 

 



 

2. Related work 

Maintenance cost in power systems includes direct and indirect costs. Examples of direct maintenance costs include the 

costs of labour, spare parts, and cleaning materials. The indirect costs include costs for inventory, shipment, indirect labour 

(e.g. health insurance), test equipment, etc. Most formulations, however, concentrate only on total (fixed and variable) direct 

maintenance costs in the delivery of maintenance cost models [9, 22, 32]. A general model for scheduling maintenance is 

presented in [32], which uses maintenance costs of power generating units and the energy production cost within the objective 

function. This model has been described with different objective functions [26], such as minimising total operating cost or 

minimising the loss of revenue, but using the same maintenance cost function. The model presented by Leou [23] focuses on 

improving reliability by maintaining the units as early as possible. The model is a cost minimisation model which includes the 

direct maintenance cost. The maximisation of the profit objective function was considered by Chen et al. [9] to find the best 

maintenance schedule for generators in deregulated power systems. 

The maintenance model for deregulated power systems should also include market related costs such as opportunity costs 

(revenue lost due to opportunity foregone), compensation costs and failure costs, in addition to the classical maintenance cost. 

The opportunity cost was introduced as an influencing factor in modelling cost and electricity pricing in restructured power 

systems [3, 8, 25]. Baughman et al. [3] developed a mathematical model for real-time pricing of electricity, which includes 

selected ancillary services and incorporates constraints on power quality and environmental impact that often influence the 

operation of a power system. The model uses optimal nodal specific real-time prices both for real and reactive power that 

incorporate additional premiums, reflecting the effects of the various engineering and environmental operating constraints. 

The opportunity cost of market participation was included in the generator maintenance scheduling model in [25]. 

Chattopadhyay [8] developed a model that considered the trade-off between short- and long-term objectives to determine 

optimal generator maintenance profiles. All major costs associated with maintenance, namely direct maintenance expenses, 

opportunity costs, replacement costs and contractual compensation, are explicitly recognized in the model. Clearly, 

maintenance cost representations in this model differ from the traditional models. 

In the deregulated environment a company can have only limited information on the activity of other companies, adding 

uncertainties to its own planning decisions [10, 17, 20]. In the competitive market, the interaction between GENCOs and the 

ISO can affect the profit of GENCOs, who are to maximise the profit against the time-varying market prices. Kim et al. [20] 

presented a game-theoretical framework taking GENCOs as game players to maximise their profit in a competitive 

environment. Feng et al. [17] investigated an iterative maintenance scheduling scheme in power markets, considering the 

influence of unexpected generating unit failures. Conejo et al. [10] proposed a coordination method based on an 



 

incentive/disincentive programme between the ISO and GENCOs to overcome their conflicting maintenance scheduling 

objectives in a competitive environment. To attain the preferred level of reliability, the model proposes reallocating the 

maintenance outages to GENCOs that are making the least profit. This model aims to provide a compromise solution to both 

GENCOs and the ISO. This indicates that there is a cost pertaining to GENCOs’ coordination, which is imposed by the ISO to 

ensure an appropriate distribution of maintenance outages over the period. Along with the competitive prices, GENCOs 

should also play an important role in delivering high reliability and customer care to enhance their corporate reputation and 

brand value by acting in a responsible manner which can make a significant impact on customer retention [6, 33]. Cai et al. 

[6] analysed GENCOs’ customers
2
 who would switch to a competitor under various price discounts and service attributes 

(reliability, renewable power, energy conservation assistance, and customer service).  

What follows from the above discussion is that different cost components have an effect on maintenance scheduling and 

that there is a need for a single model which incorporates all maintenance cost components in order to analyse their effect on 

GENCOs. Also, many of the cost components suggested in the literature are assigned to fixed values, restricting their use in 

optimisation models. In this paper, we model a wide range of cost components that affect the maintenance activities of 

deregulated GENCOs. We also model GENCOs’ reputational cost due to the maintenance activities of generators. We 

propose loyalty models to minimise the loss of firm’s reputation using the AHP.  

The AHP has been applied to a number of applications in the literature [28]. The AHP approach is a subjective 

methodology where information and the priority weights of criteria may be obtained from a decision-maker using direct 

questioning or a questionnaire method [16]. It is a decision approach designed to solve a complex multiple-criteria based 

problem in a number of application domains. Nigim et al. [28] use the AHP to study the impact of Special Protection 

Schemes’ (SPSs) mis-operations in a power system due to hidden failures in the SPS at the most critical bus locations. Hidden 

failures (i.e. failures that are not apparent during the normal operation of a system which become exposed during a fault) are 

major contributing factors for a serious system disturbance to happen. The AHP reduces time and effort in locating the most 

and least vulnerable SPS as it integrates an expert’s service experience in the field and probability tools. Sato and Kataoka 

[31] have introduced customer satisfaction surveys and analysed customers’ perception of telecommunication services. All 

customers are surveyed regarding items such as service order reception, provisioning and repairs. The AHP was used to 

investigate each customer’s perception of the importance of the Quality of Service, and to estimate the overall customer 

satisfaction weighted by importance. Medjoudj et al. [27] developed an application of multi-criteria techniques for decision 

 
2 GENCOs customers include suppliers, retailers, traders, brokers and end users. 

 



 

making in an electrical distribution system for customer satisfaction and financial success of the company. Cost-benefit 

analysis and the AHP were introduced to overcome the reputational issue of the company. A particular concentration is given 

to the AHP because it makes the selection process very clear with huge benefits for a company assuring public services. The 

AHP is applied to choose the best alternative to provide customer satisfaction and financial success. The result shows that 

both cost-benefit analysis and the AHP methods converge to an investment need. 

In this paper we will focus on the application of an AHP technique to select the best alternative (loyalty model - LM) which 

contains the most important criteria that affect “reputational cost”. However, the concepts of the developed model will be 

used to mathematically quantify the reputational cost to be included in the cost model of the maintenance scheduling of 

deregulated power systems.  

3. Maintenance Models for Deregulated Power Markets 

3.1 Notations 

The maintenance models for deregulated power markets are formulated as an optimisation problem with single and multiple 

objectives and a set of constraints. The following notations are used to represent the maintenance costs in the sections below. 

AMt Available manpower at period t 

)(sCmait
 Cost ($) of maintenance actions for generator i at time t for maintenance strategy s 

)(sCf it
 Cost ($) of failure for generator i at time t for maintenance strategy s 

)(sCrit
 Repair (or replacement) cost ($) for generator i at time t for maintenance strategy s 

)( ii gC  Generation cost function ($) of generator i  

Di Duration of maintenance for generator i 

Epi Earliest period for maintenance of generator i to begin 

Exp ( itC ) Total expected generator maintenance cost ($) for generator i at time t  

if  The probability of generator unit failure 

scheditg ,
 Power (MW) scheduled to be supplied by generator i at time t 

i Index for generators 

I Set of generator indices 

)(sICf it
 Interruption cost ($) due to  failure of generator i at time  t for maintenance strategy s 

Lpi Latest  period for maintenance of unit i to end 

Lt Anticipated load delivery for period t 

Mit Manpower needed by unit i at period t 

N  Total number of generators 



 

itoppl  No-bids losses ($) of generator i at time  t   

itoppf  Contractual compensation cost ($) to due to failure of generator i at time  t 

itoppi  Reputational cost ($) due to failure or planned maintenance of generator i at time t 

itRC  Rescheduling cost ($)  due to failure or planned maintenance of generator i at time  t   

Rt Anticipated load reserve for period t 

T Index of time periods 

T  Total number of periods in planning horizon, e.g. weeks  

 

3.2 Deregulated Market Structure   

This section briefly introduces the electricity market structure and electricity prices considered in this paper. In a 

competitive environment, GENCOs (who produce electricity), suppliers (who supply the electricity to the end users), and 

other intermediaries (such as traders, retailers, brokers) can freely trade electricity through one or many free markets [5, 14, 

18, 24]. The market structure considered in this paper is represented by two market segments: a day-ahead market and a real-

time hourly (spot) market. The power system is operated by an ISO to balance supply and demand of electricity in real-time. 

Generally the ISO does not own any generators but has the responsibility of balancing in order to maintain both security and 

reliability of power systems. The ISO does this by scheduling the generation level of participating GENCOs.  

In the day-ahead-market, the ISO conducts an auction of electricity delivery for each hour of the next operating day [14, 

18]. GENCOs bid to supply a fixed unit of electricity based on their ability to produce in the specified period on the following 

day. The ISO accepts bids from generators on an hourly basis to meet the electricity demands of the end users. The last bid 

accepted for a particular hour is the price the ISO pays to all generators. This price is called the market clearing price (MCP). 

MCPs are calculated for each hour of the next operating day based on bids submitted to the ISO. The generator receives 

feedback from the MCP and load profiles for the day-ahead electricity market on a daily basis along with the day’s generator 

schedule from the ISO. 

Some customers, instead of purchasing from the day-ahead market, can obtain their electricity from generators through 

individual contracts, known as bilateral contracts. Using bilateral contracts, sellers and buyers enter into transactions where 

the quantities traded and the prices are negotiated. In some cases these contracts may be indexed to the MCP. The MCP, 

therefore, can affect the price that direct access customers pay for electricity [21]. 

The ISO runs a real-time hourly spot (wholesale) market where generators offer real-time electricity delivery at spot prices 

[14]. If their offer is used, the payment will be made to the generators at the spot price. The ISO utilises the real-time hourly 

spot market to ensure that the supply and demand are equal and to alleviate any network problems that may occur. Also, the 



 

real-time hourly spot market provides a balancing mechanism if GENCOs and/or customers deviate from contracted positions. 

GENCOs/customers specify their prices for short-term supply/demand to participate in the spot market. The price of 

electricity in this market is called the spot market price (SMP). SMP is usually low during off-peak and high during peak 

loads.  

If a generator experiences an outage after acceptance of a bid by the ISO, it must buy replacement electricity from the spot 

market to fulfil its commitments. However, the generator is still paid by the ISO at the agreed day-ahead MCP. It incurs a loss 

when the SMP is greater than the day-ahead MCP [14]. In competitive markets GENCOs must factor failures and the 

maintenance of generators in their bidding strategies to calculate their production. 

3.3 Direct and Indirect Maintenance Costs 

There are direct and indirect costs related to the maintenance actions in power systems. The direct costs include labour 

( itL ) and material ( itM ) costs ($) for generator i at time t. The indirect costs include indirect labour ( itIL ) (e.g. health care) 

and indirect material ( itIM ) (i.e. test equipment) costs ($) for generator i at time t. Taking these into account, the direct and 

indirect maintenance costs can be expressed as, 

ititititit ILIMMLsCma )(                      (1) 

 

3.4 Cost of Failure  

This is the cost of repair or replacement due to failures.  Referring to [4] the cost of failure can be modelled as,      

)()()( s
it

Crs
it

sCfit                                        (2) 

Where, )(s
it
  is the failure rate for generator i at time t for maintenance strategy s.  

3.5 Opportunity Costs 

The opportunity costs can be found in the two scenarios: when the generator is subjected to planned maintenance, or when 

it fails between maintenance periods. In this section we model five different components of opportunity costs. 

3.5.1 No-Bids Losses 

Generators can trade electricity in a spot market with immediate settlement of payment and delivery. Generally, this 

provides an opportunity for the generators to sell the electricity at a higher price; however, this will also increase the risk of 

not being able to sell. This opportunity cost can be expressed in terms of real-time Spot Market Price at time t ( tSMP ) 

($/MW) and day-ahead Market Clearing Price at time t ( tMCP ) ($/MW).  



 

For each hour an MCP is obtained which is equal to the incremental cost of supplying the next unit of power. The day-

ahead MCPs can be estimated using an appropriate distribution function in a time series model. For simplicity and 

demonstration purposes, we assume that they follow a normal distribution. Therefore, the generators can then estimate MCP 

for each hour of the day from normal distribution of historical MCP data. In a normal situation the SMP (spot price) follows 

the pattern of the MCP; it can reach very high values occasionally and can even be less than the MCP during the off-peak 

periods [14]. The real-time hourly SMP is modelled using:  

)1( 
t

MCP
t

SMP                                 (3) 

In reality SMP varies within a range (the range increases with the increase in market volatility) or regulators may put a cap 

on the price. Consequently the value of  varies within a range. We can calculate the upper and lower bounds of  using 

historical data of SMP and average MCP for a period.  Let us define maximum value of SMP as SMPmax, minimum value of 

SMP as SMPmin and average MCP as MCPave for a representative period. The minimum and maximum values of   can be 

calculated using expression (3) as follows: For the lower bound  min = (SMPmin / MCPave) – 1; and for the upper bound  max 

= (SMPmax / MCPave) – 1.  

Bessembinder and Lemmon [5] and Longstaff and Wang [24] report that the values of MCP and SMP are similar on 

average and somehow related. The average value of SMP, however, is more volatile and can be very different from the 

average value of MCP in a given period.  In the absence of historical data for SMP, we assume that SMP can be within the 

range of (0.1* average MCP) and (10* average MCP). Based on these values,  varies in the range of (-0.9, 9).  

Let us assume that all generators have an opportunity to participate in the day-ahead or real-time spot markets. No-bids loss 

occurs when the generator is under maintenance or when it ceases working because of a failure. The loss is the difference 

between the earnings from the market participation and the generation cost.  This cost is summarised in expression (4): 
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Expression (4) applies for both no-bids loss ($) due to maintenance or failure of generator i at time t, (
itopplm ) and 

(  itopplf ) respectively. For convenience we represent these two terms separately as in expression (5): 

   in case  of  planned  maintenance 

    in  case  of  failure  

it

it

opplm

opplf

 
 
 

       (5) 



 

No-bids loss is included as one of the components in the expected maintenance cost (see Section 3.6) which we wish to 

minimise while scheduling maintenance activities (see expression (14)). Note that the expected maintenance cost (and the no-

bids loss as a part of this) is calculated only for the generators which are taken off the line for maintenance (as the unit i is off 

for maintenance at time t).  

3.5.2 Contractual Compensation Cost  

Acceptance of a bid/contract to supply electricity in the day-ahead market does not ensure GENCO’s profit, as a forced 

outage can occur. If outage occurs the GENCO is required to buy electricity from the real-time spot market to meet its 

contractual obligation at the SMP. However, it receives payment at the agreed day-ahead MCP rate. Therefore, the 

compensation cost due to a failure can be positive (loss) or negative (gain), depending on the difference between SMP and 

MCP as summarised in expression (6): 

( )
,itoppf g SMP MCP

it sched t t
             (6) 

When the loss/profit expressed in (4) and the compensation cost (6) are summed up, we obtain the potential loss of not being 

able to supply electricity due to the outage of generator i at time t.  

3.5.3 Rescheduling Cost  

Referring to [10], another component of opportunity cost is the ISO payment (incentive) to each GENCO for maintenance 

scheduling adjustment (Rescheduling Cost of generator i at time t ( itRC )); the adjustment cost is defined as: 

itit gRC                                (7) 

Where τ is the constant used to express the incentive/disincentive (
t ) in cost units ($) per MW, and 

ig is the generator 

capacity in MW. These rescheduling costs occur when the generator is under maintenance and when it stops working because 

of a failure. In the case of failure, the GENCO may be penalized (disincentive) for making the ISO adjust the maintenance 

schedule of other generators. For convenience we represent them here separately as: 

   in case  of  planned  maintenance 

    in  case  of  failure  

it

it

RCm

RCf

 
 
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     (8) 

3.5.4 The Reputational Cost 

In the case of generator failure or maintenance, GENCOs are responsible for delivering the contracted power by buying 

from the spot market. However, GENCOs need to play a role in risk management under various contractual arrangements that 

are intended to reduce the risk of other market players including their own customers (the suppliers, retailers, traders, brokers 

and end-users). If the reputation of a GENCO is dented, its customers may minimise their risk by opting to trade in the spot 



 

market or by entering into short-term/long-term contracts directly with more reputable GENCOs. Moreover, if a GENCO 

frequently fails to deliver power, it will run the risk of not being accepted by the ISO. Cai et al. [6], Medjoudj et al. [27] and 

Sullivan et al. [33] look at different reputational attributes and price discounts to analyse the switching behaviour of 

GENCO’s customers to a competitor. Some service attributes, namely reliability, renewable power and customer 

service/satisfaction, are found to be important factors affecting customers’ choice of GENCOs.  The GENCOs need to invest 

in maintaining their customer satisfaction, reliability and reputation to ensure future contracts and enterprise profitability. This 

cost must be included in the maintenance cost models as the reliability of the GENCO directly depends on the frequency and 

quality of the maintenance.  

The reputational costs (
itoppi ) that the customers may incur during failure or planned maintenance of generator i at time t 

will affect the decision in the next electricity supply contract. It can be represented as the “cost of loss in customer trust”. The 

reputation is like customer loyalty to the company due to its good service. This is represented by expression (9): 

   in case  of  planned  maintenance 

    in  case  of  failure  

it

it

oppim

oppif

 
 
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 .     (9) 

Using decision theory terminology, reputational cost may be assessed through pricing-out the loss of customer loyalty. This 

may be interpreted as the maximum price that the supplier is willing to pay in order to avoid losing customer loyalty. We use 

the AHP [30] to estimate reputational cost. The first step in an AHP is to develop a hierarchical representation of the problem, 

as shown in Figure 1. At the top of the hierarchy, level 0, stands the goal of the analysis. Level 1 consists of multiple criteria. 

Level 2 lists the alternatives. The connections between components of different levels indicate relationships between criteria, 

alternatives and goals.  

 

 

 

 

 

 

 

 

Figure 1: AHP structure 

 

 

Once the hierarchy has been structured, the priorities of criteria and alternatives at each level are determined. Comparison 

matrices of all criteria and alternatives in each level with respect to the criteria and alternatives of the immediately higher 
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level are constructed following the priorities, and individual comparative judgments are converted into ratio scale 

measurements.  

The pair-wise comparison is an assessment tool used to determine the relative weight of each criterion and each alternative. 

It specifies which criterion or alternative is preferable with respect to the goal or the selected criterion. The weights are 

quantified by using a nine-point scale explained in [30].  The pair-wise comparison works by judging each criterion as to its 

relative preference/weight to the goal and judging each alternative as to its relative preference to its parent criterion.  Judging 

can be done using a bottom up or top down pair-wise assessment, depending on which is better understood, the criteria or the 

alternatives. The pair-wise comparisons generate a vector of priorities (with values of relative rankings) for each level of the 

hierarchy depending on the number of criteria and alternatives at each level.  

The maximum Eigen-value (λmax) is calculated from the priority vector and pair-wise assessments by multiplying the 

priority vector and the sum of weights of each criterion. An example of λmax calculation is shown in Appendix A. λmax is then 

used to validate whether the pair-wise comparison matrix provides a completely consistent evaluation. The Consistency Ratio 

(CR) can be obtained using: CI/RI; where, the Consistency Index (CI) for each matrix = (λmax -n)/ (n-1); where n is equal to 

the order of the comparison matrix. The Random Consistency Index (RI) can be randomly obtained from a large number of 

simulation runs, and varies depending upon the order of matrix (n). Reference [30] shows the average (RI) obtained by 

approximating random indices using a sample size of 500. 

The acceptable CR range varies according to the size of matrix. If the value of CR is equal to, or less than, the acceptable 

value, this implies that the evaluation within the matrix is acceptable or indicates a good level of consistency in the 

comparative judgments represented in that matrix. If CR is more than the acceptable value, then the evaluation process should 

be improved and repeated. 

Finally, the weights of the alternatives with respect to each criterion are derived, and then the overall composite weight of 

each alternative is calculated. The composite weight of the alternative can be used to quantify the reputational cost. A full 

example of this calculation is given in Appendix A. 

3.5.5 Interruption Cost 

The interruption cost is the economic losses that the customer may incur during a generator failure. An example of 

interruption cost for a large industrial customer is presented in [33] and is given as expression (10): 

itICf ( s ) = 
itVLP + 

itORC  – 
itORS                       (10) 



 

The Value of Lost Production ($) for generator i at time t (
itVLP ) is equal to the customer’s expected revenue without 

outage minus its revenue with outage. The Outage Related Costs ($) for generator i at time t  (
itORC ) are the direct costs 

incurred because of outages. The Outage Related Savings ($) for generator i at time t  (
itORS ) are the cost savings from the 

outages, such as cost of unused fuel and cost of unused raw materials [30].   

3.6 Maintenance Cost Model 

The complete cost model under no-failure (Cost Ait) represents the cost model when generators are not subjected to failures 

and includes all maintenance cost components.  

 ititititit oppimRCmopplmsCmaACost   )(          (11) 

The cost model with failures (Cost Bit) is the maintenance cost model for the scenario when generators are subjected to 

failures. This includes all maintenance cost components of (11) and failure related cost components. 

      )(  )()( sICfoppifRCfoppfopplfsCfoppimRCmopplmsCmaBCost ititititititititititit          (12) 

Both Cost Ait and Cost Bit represent maintenance costs in different scenarios. Cost Ait is the sum of all traditional 

maintenance costs (material and labour) plus other opportunity costs associated with planned maintenance, such as loss of 

potential profit, reputational cost and rescheduling cost after planned maintenance. As we can see, this cost represents only the 

scenario of no-failure between planned maintenance periods with the no-failure probability. Cost Bit represents the failure 

scenario taking into consideration failures between planned maintenance periods with the failure probability (fi). In the failure 

scenario there exist other failure costs in addition to the maintenance costs presented by Cost Ait. 

The total expected maintenance cost (Exp (Cit)) = Cost Ait × (1-fi)+ Cost Bit ×fi 
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3.7 Generator Maintenance Scheduling Problem Formulation  

 

The generator maintenance scheduling problem can be formulated using integer variables to represent the period in which 

the maintenance of each unit starts [13]. The variables are bounded by the maintenance window constraints. Suppose TiT is 

the set of periods when maintenance of unit i may start, so Ti={tT: epitlpi-di+1} for each i. We define, 



 

 Xit=
1

0

  if unit i starts maintenance in period t

 otherwise





, 

to be the maintenance start indicator for unit iI in period tTi. It is convenient to introduce two further sets. Firstly let Sit 

be the set of start time periods such that if the maintenance of unit i starts at period k that unit will be in maintenance at period 

t, so Sit={kTi: t-di+1kt}. Secondly, let It be the set of units which are allowed to be in maintenance in period t, so It={i: 

tTi}. Then the problem can be formulated as below. 

The objective function considered for scheduling the maintenance activities is to minimise the expected market maintenance 

cost given by expression (13). The generator maintenance scheduling problem with the objective function and some of the 

common constraints is presented below for completeness. This formulation will be used in the case study in Section 4.    
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This is subject to the following constraints: 

 Maintenance window constraints, which define the possible times and the duration of maintenance for each piece of 

equipment,  
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 Crew constraints, which consider the manpower availability for maintenance work,     
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    for all tT.           (16) 

 Load and reserve constraints, which consider the demand and minimum reserve margin of the power system during the 

scheduling period,  
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for all tT.       (17) 

Expressions (14)-(17) define a general mathematical model for a general generator maintenance scheduling problem. 

Further constraints may be imposed involving the reliability, transmission capacity and maintenance in local areas of the 

power system. 



 

4. Case Study  

4.1 Maintenance Cost Data Gathering 

In this section we present a case study to demonstrate the development of the expected maintenance cost function discussed 

in the previous section. We will show the AHP application for calculating the loss of reputation cost. The case study uses the 

system data presented in [15], which considers three generating units with a capacity of 80 MW, 110 MW and 50 MW over a 

four week period. The power generating units encompass a single GENCO. All maintenance costs components, which are 

introduced in Exp(Cit) given by expression (13), are calculated, except the rescheduling cost since the result of [10] shows that 

it is less than 0.42% for nine GENCOs, which is considered to be minimal. Therefore, it is ignored in this case study.     

Actual maintenance, material and labour data have been gathered from an electricity company. The yearly maintenance 

report contains maintenance cost data for all segments. We have taken the average maintenance cost for different segments 

and used it in this example.  Table 1 contains the average maintenance cost for one generator. We assume all generators have 

the same maintenance cost throughout the planning period. 

Table 1:  Summary of Maintenance Data 

Maintenance costs Yearly Weekly 

Direct labour cost $3,577,754 $68,803 

Indirect labour cost    $889,580 $17,107 

Direct material cost $2,857,160 $54,945 

Indirect material cost $3,867,326 $74,371 

Total Maintenance costs $215,226 

 

Using the data presented in [16] the Mean Time between Failures (MTBF) (IEEE-RTS generation system) is assumed to be 

1200 hours (7 weeks). So, the failure rate is equal to 1/7 = 0.1429 failures per week and the cost of repair or replace is 

assumed to be $1,000,000. So, the cost of failure is equal to = 0.1429 * 1,000,000 = $142,900. The total expected costs for 

the three generation units during the four week horizon is calculated, assuming that the probability of failure is 5%, which is 

towards the higher end of the failure probability [35]. 

Historical data on MCPs for 1998-2001 of some GENCOs in California are available in [21]. MCPs are assumed not to 

vary geographically in this study. Since we don’t have MCPs values, a normal distribution of historical MCP data will be used 

to derive the weekly MCP. In doing so, the MCPs’ values for weeks 1, 2, 3 and 4 are 36.43 $/MW (flat during the week), 



 

40.71 $/MW, 43.29 $/MW and 37.71 $/MW respectively. With these MCPs, the total cost for one MW-week for weeks 1, 2, 

3 and 4 will be $6,120, $6,840 and $7,272 and $6,336 respectively. 

Both MCPs and SMPs change over time. As described earlier, the SMP is volatile and is equal to MCP multiplied by (1+ 

α), where α takes a random value between (-0.9, 9) for each time period, although the average values of MCP and SMP are 

similar as noted in [5, 24]. For demonstration purposes we set the value of α to 0.05 (i.e. 5%) representing a small volatility 

and slightly higher value of SMP with respect to MCP, i.e. SMP is equal to MCP*1.05. Therefore, the SMPs’ values for 

weeks 1, 2, 3 and 4 are 38.25 $/MW (flat during the week), 42.75 $/MW, 45.45 $/MW and 39.60 $/MW respectively and the 

total cost based on SMPs for one MW-Week for weeks 1 to 4 will be  $6,426 , $7,182, $7,636 and $6,653 respectively. Each 

generator is assumed to supply its capacity in MW ( ig ) and the cost curve function is a quadratic cost function as follows: 
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The cost curve functions for each generator are as follows: The total generation cost for the first generating unit 

is 100)80(12)80(10.0)80(
2

1 C =$1700. There are 168 hours in a week; therefore the total generation cost for a week is 

$285,600. Similarly, the total generation costs for the second and third units are $441,840 and $159,600 respectively.  

Assuming that the GENCO could participate in the day-ahead market to receive MCP rate, the no-bids losses for each unit 

for a time period can be calculated using expression (4) for the day-ahead market. For example, the no-bids losses for week 1 

(i.e. t=1) for each generating unit is calculated as follows: for generating unit 1: 80*6120 – 285,600 = $204,000, for 

generating unit 2: $231,360, and for generating unit 3: $146,400. 

The contractual compensation for each unit for a time period can be calculated using expression (6). For example, 

compensation for week 1 (i.e. t = 1) for each generator unit are calculated as follows: for generating unit 1: 80(6426) – 

80(6120) = $24,480; for generating unit 2:  $33,660; and for generating unit 3: $15,300.  

Using the data presented in reference [34] the interruption cost for a week for a large commercial and industrial customer is 

assumed to be equal to $74,835. Calculation for other time periods can be obtained in a similar way and these are summarised 

in Table 4. 

4.2 AHP Application 

The literature shows the ability of the AHP in making decisions and solving multi-criteria problems for different 

applications. Although there are many ways to assess subjective data, the AHP is thought to be appropriate for weighting 

layered data such as ours in this case study. Similar to AHP applications in telecommunication services [31] and power 



 

system operations [27] discussed earlier, the AHP will be used here to model reputational cost. We investigate and model 

GENCOs’ reputational cost that is affected by maintenance activities of generators using the AHP. The AHP hierarchy is 

constructed by the goal at level 0, then the criteria in the first level and finally the alternatives in the last level. 

The competition in the deregulation environment is expected to promote their services to meet customer expectation. 

Therefore, GENCOs are expected to lose customers if they fail to deliver these expectations [6, 33]. In a market environment, 

criteria such as efficiency, technical support and customer satisfaction should be considered in order for GENCOs to compete 

with each other to win their market share and remain in business. In this case study, the criteria are selected based on direct 

questions to a decision maker of the electricity company. We have conducted an interview with decision makers (five 

directors) in an electricity company. The interview took into consideration the information presented in [6, 33] which indicate 

that technical support and customer satisfaction are very important for customer relations. Also they have two criteria in mind 

which are very important; reputation and discount. A telephone survey with decision makers in another two companies was 

conducted and the result is similar to the previous interview result. They all agree that technical solution is a very important 

criterion. Table 2 explains the criteria (some are discussed in [2]), which are used in our case study. 

Table 2: Criteria classifications 

N

o 

Criteria Explanations 

1 Technical Solution (TS)  Provide Uninterrupted Power Supply (UPS), or deployment of 

portable power generator  in case of failure 

2 Reputation (Rep) Maintain excellent reputation among other competitors 

3 Customer  Satisfaction (CS) Maintain excellent customer satisfaction by pleasing them and 

providing good services 

4 Discount (Dis)  Give discount on  price of electricity 

 
 

As described in [2], a Service Level Agreement (SLA) is a formal negotiated agreement between a customer and the service 

provider to provide a service at a performance level that meets or exceeds the specified objectives (criteria). Managed 

telecommunications services are typically governed by a multiyear contractual SLA and measured using Key Performance 

Indicators (KPIs). For each SLA, one or more KPI is required. If the contractor fails to meet any of the KPIs for an SLA for a 

given month, then the contractor is subjected to penalties and may lose future contracts. 

The alternatives are at the last level of the hierarchy. Similarly to telecommunications services, the SLA concept will be 

used in defining the alternatives. Three alternatives (loyalty models - LMs) are classified to reflect the different services which 



 

GENCOs are expected to provide with a specific cost according to the selected criteria, as explained in Table 3. The cost 

corresponds to the quality of loyalty model (i.e. services), assuming that the best loyalty model will have the highest cost.   

 

Table 3: Alternative (loyalty models) explanation (H-High Focus, M-Medium Focus, L-Low Focus) 

Loyalty models 

Criteria 

TS Rep CS Dis 

LM-A H M L H 

LM-B M M L M 

LM-C L M H M 

 

The selection of the best alternative depends on the criteria, where each alternative (loyalty model or service level 

agreement) has different weights for each criterion. For example, if LM-A is chosen to be the best model, then the GENCOs 

are expected to account for the cost of maintaining those criteria in the total generator’s maintenance cost in order to avoid 

reputational cost. The cost of LM-A will be quantified using MCP to reflect the real situation of the deregulated environment.  

     The AHP procedure, as described above and in section 3.5.4, is implemented for the three unit case study of section 4.1 

in Appendix A. This selects a loyalty model to price out the loss of GENCO’s reputation (reputational cost). As demonstrated 

in Appendix A, if we use LM-A to price “reputational cost” during failure ( itoppif ) or planned maintenance ( itoppim ) of 

generating units, then the reputational cost for generator i at time t is equal to: Composite weight of the LM-A * g it,sched   MCP 

t. The composite weight of LM-A alternative, as calculated in Appendix A is 0.6402, therefore the  reputational cost during 

failure or planned maintenance for generating unit 1 at time 1 (week 1) is equal to: 0.6402* 80 * 6,120 = $313,442. 

Similarly, the reputational costs for the other generator units can be calculated. Also, different loyalty models may be used 

to price the failure and planned maintenance scenario, since the effect of the latter scenario is less than the former because the 

customer will know about the planned maintenance in advance and can prepare for it. This value, together with other 

maintenance costs, is added to the maintenance cost model to represent the opportunity cost in the maintenance scheduling of 

a deregulated power system. Table 4 represents the estimated values for the maintenance cost components for the three 

generating units for four time periods. The result shows that overall maintenance costs can increase significantly compared to 

the maintenance costs being considered in previous publications [15, 22, 32]. This cost model should be used in planning and 

scheduling the maintenance activities of generators as well as identifying the best maintenance strategies over a period of time 

as they consider failure and opportunity costs.  



 

 

Table 4: Maintenance Cost Components (in $) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Application of Cost Models in Maintenance Scheduling  

 
This section briefly discusses the utilisation of the developed cost models in generators’ maintenance schedules to 

investigate the impact of the reputational cost on the AHP loyalty models. First we look at the same test system with three 

generating units over a four week planning horizon, as discussed in the previous section. The scheduling problem has 

maintenance window, sequence, load and non-simultaneous maintenance constraints. The relevant scheduling problem data 

and constraints are taken from [15]. The objective function considered for scheduling the maintenance activities is to 

minimise the market expected maintenance cost given by expression (14).   

The different components of the maintenance costs have been calculated in a previous section and are presented in Table 4. 

A set of experiments was conducted using a genetic algorithm-based solution technique to obtain an optimised maintenance 

schedule as described in [12, 13] for four scenarios. The evaluation (fitness) function is formulated as a weighted sum of the 

objective function and the penalty function for violations of the constraints in this example, taking a similar approach to that 

described in [13].  

The first scenario was without including opportunity costs (i.e. without the reputational and interruption costs). The 

optimum schedule that satisfied all constraints is shown Figure 2. The black bar indicates the maintenance state of the 

generators.   
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1 1 215,226 142,900 204,000 24,480 313,442 74,835 239,706 661,441 260,793 553,148 974,883 574,235 

 2 215,226 142,900 231,360 33,660 430,983 74,835 248,886 697,981 271,341 679,869 1,128,964 702,323 

 3 215,226 142,900 146,400 15,300 195,901 74,835 230,526 594,661 248,733 426,427 790,562 444,634 

2 1 215,226 142,900 261,600 27,360 350,317 74,835 242,586 721,921 266,553 592,903 1,072,238 616,870 

 2 215,226 142,900 310,560 310,560 481,686 74,835 525,786 1,054,081 552,201 1,007,472 1,535,767 1,033,887 

 3 215,226 142,900 182,400 17,100 218,948 74,835 232,326 632,461 252,333 451,274 851,409 471,281 

3 1 215,226 142,900 296,160 29,088 372,443 74,835 244,314 758,209 270,009 616,757 1,130,652 642,452 

 2 215,226 142,900 358,080 39,996 512,109 74,835 255,222 831,037 284,013 767,331 1,343,146 796,122 

 3 215,226 142,900 204,000 18180 232,777 74,835 233,406 655,141 254,493 466,183 887,918 487,269 

4 1 215,226 142,900 221,280 25,344 324,505 74,835 240,570 679,585 262,521 565,075 1,004,090 587,025 

 2 215,226 142,900 255,120 34,848 446,194 74,835 250,074 722,929 273,717 696,268 1,169,123 719,911 

 3 215,226 142,900 157,200 15,840 202,815 74,835 231,066 606,001 249,813 433,881 808,816 452,628 
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Figure 2: The optimum solution 

The other three set experiments were conducted including the reputational and interruption costs in the maintenance 

scheduling model with Loyalty Model A (LM-A), Loyalty Model B (LM-B) and Loyalty Model C (LM-C) to model the 

reputational cost respectively. In all experiments the optimum solution obtained was the same schedule as shown in Figure 2, 

but with different cost values.  The highest cost value is obtained in the experiment where we use the best loyalty model (LM-

A) for quantifying reputational cost. However, the lowest cost was obtained in the experiment where we use the poor loyalty 

model (LM-C). The result shows that customer-related costs are critical factors impacting on the overall maintenance costs’ 

value; therefore they must be considered and carefully modelled in order to obtain the optimum solution. We may conclude 

that Loyalty Model A can be used for pricing out reputational cost for strategic customers and Loyalty Models B and C for 

other customers.  

It is worth noting here that the optimum schedule obtained in all experiments in this small test problem is the same, which 

does not show the effect of the losses of reputational and interruption costs in the schedule. This is because we consider the 

opportunity cost over all the planning period to be the same. Also, the problem has a tight schedule and a very small search 

space. 

In order to demonstrate the effect of the reputational and interruption costs in the maintenance planning and scheduling, a 

set of experiments with a 21-unit test problem over 52 weeks taken from [13] were conducted. All data gathering, formulation 

and solution methodologies carried out for the 21 generating unit system in the similar way as for the 3-unit system described 

in previous sections. Two sets of experiments were conducted: without consideration of reputational and interruption costs, 

and with consideration of the reputational and interruption costs. These costs are time dependent in this case study, i.e. they 



 

are different in different time periods for the generators. For example, the reputational costs for units 1, 5 and 9 are shown in 

Figure 3. 

 

Figure 3: Reputational costs for units 1, 5 and 9 

In case of no consideration of the reputational and interruption costs, the best schedule obtained is shown in Figure 4, 

where the black bars indicate the generator is down for maintenance.  For example, generator 1 starts maintenance at week 

number 13 and will stay down for seven weeks (till week 20) since the maintenance duration is seven weeks.  

 

Figure 4: Maintenance schedule without considering the reputational and interruption costs 

With consideration of the reputational (using Model A) and interruption costs, the best schedule obtained is shown in 

Figure 5, where for example, generator 1 starts maintenance at week number 1 and will stay down for seven weeks.  

Comparison of the results shows that the previous optimum schedule becomes no more optimal because of the consideration 

of the reputational cost. We can see that the reputational cost has an effect on both schedule and maintenance cost value.  The 



 

schedule in Figure 5 shows that the generators try to avoid maintenance in the periods where reputational cost is high.   For 

example for unit number 5 we can see that the start week of maintenance is 32 (during the allowed period of maintenance (27-

52)) where the value of reputation is low.  

 

 

 

 

 

 

Figure 5: Maintenance schedule with consideration of the reputational and interruption costs 

6. Conclusions  

The maintenance cost has been modelled in the literature with several representations for centralized power systems [15, 

22, 32]. With deregulation of power industries in many countries, the costs representation to be used within the maintenance 

model in the decentralized power systems has become an important research question. In this paper we have analysed 

maintenance cost representations considering the direct, indirect and opportunity costs to include in a maintenance scheduling 

model. We demonstrated the data gathering process for different maintenance cost components. Two models are developed in 

this paper reflecting the failure and no-failure status of a generator.  The paper shows that other costs that affect the decisions 

with respect to the timing of generator maintenance should be taken into account. Also, the models account for any sudden 

failure which may happen before or after any planned maintenance event. The opportunity costs which reflect GENCOs’ 

reputation from the viewpoint of their customers in case of a failure are also considered.   

In the case of maintenance or failure, the GENCOs must minimise their reputational cost and that is equal to keeping 

customer loyalty in either case. The cost of maintaining customer loyalty should be added to the total maintenance cost of 

GENCOs.  The paper presented an application of the AHP to identify the best loyalty model for GENCOs to select in order to 

price out “reputational cost” in deregulated power systems which will help in minimising total maintenance cost. This model 
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reflects the current situation in the deregulated environment.  The experimental results with maintenance scheduling case 

studies demonstrate the effect of the new cost model in the maintenance cost and optimal schedule.  
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Appendix A 

Following the discussion in Section 4.2 we demonstrate the procedures of the AHP implementation to select a loyalty 

model and to price out reputational cost, see the case study (three generators over four time periods) described in Section 4.1. 

The decision maker judges the importance of each criterion in pair-wise comparisons. The result of the AHP is a prioritized 

ranking of each alternative. The weight of the alternatives will handle the minimisation of reputational cost in maintenance 

scheduling of power generators. The hierarchy is constructed by following the AHP steps as below: 

 The goal is to determine the best loyalty model that  minimises reputational cost (level 0) 

 Criteria are presented in Table 2 (level 1) 

 The alternatives are Loyalty Model A (LM-A),  Loyalty Model B (LM-B), and Loyalty Model C (LM-C) (level 2) 

We need a comparison matrix of  4 by 4, which corresponds to pair-wise comparisons between four criteria with respect to 

the goal for level l, as shown in Table 5,  and four comparison matrices at level 2 of size 3 by 3 (one of them is shown in 

Table 5). Four criteria are placed in Table 5 forming the first matrix using the scale presented in [30]. We set the diagonal 

equal to one (aii =1).  Furthermore, we set aij = k, and we set aji = 1/k, where the value of k is subjectively determined by the 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sullivan,%20Michael%20J..QT.&searchWithin=p_Author_Ids:37270595800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vardell,%20Terry.QT.&searchWithin=p_Author_Ids:37355323100&newsearch=true


 

decision maker using a scale of preference. A basic, but very reasonable, assumption is that if criterion X is absolutely more 

important than criterion Y and is rated at 9, then Y must be absolutely less important than X and is valued at 1/9. 

These pair-wise comparisons are carried out for all criteria presented in Table 2. There is no standard way to make the pair-

wise comparison but let us suppose that the decision maker decides that (TS), is slightly more important than the (Rep), and  

much more important than (CS) and far more important than (Dis) . In the next matrix that is rated as 3 in the cell (TS), (Rep)  

and 1/3 in (Res), (TS). Also, it is rated as 7 in the cell (TS), (CS)  and 1/7 in (CS), (TS) and  it is rated as 9 in the cell (TS), 

(Dis)  and 1/9 in (Dis), (TS). The decision maker also decides that (Rep) is more important than (CS) and (Dis), giving the 

same judgment 5 in (Rep), (CS) and (Rep), (Dis) and giving 1/5 value to (CS), (Rep) and (Dis), (Rep).  Also, the decision 

maker similarly judges that (CS), is slightly more important than (Dis), (rating = 3). This forms the completed matrix as 

shown below. 

Table 5: Pair-wise comparison matrix for level 1 with respect to goal 

Criteria TS Rep CS Dis 

TS 1 3 7 9 

Rep 0.33 1 5 5 

CS 0.14 0.20 1 3 

Dis 0.11 0.20 0.33 1 

Sum 1.58 4.40 13.33 18.00 

 

The overall weight assigned to each criterion is between 0 and 1, and the total weights will add up to 1. We do that by 

taking each entry and dividing by the sum of the column it appears in. The normalized weights for each criterion are presented 

in Table 6.  

Table 6:  Normalized weights and priority vector for each criterion in level 1 

Criteria TS Rep CS Dis Sum Priority 

TS 0.630 0.682 0.525 0.500 2.337 58.42% 

Rep 0.210 0.228 0.375 0.278 1.090 27.25% 

CS 0.090 0.045 0.075 0.167 0.377 9.43% 

Dis 0.070 0.045 0.025 0.055 0.196 4.90% 

Sum 1.000 1.000 1.000 1.000 4.000 100.0% 

 



 

The priority vector for each criterion is equal to the average, for example it is equal to 2.337/4 =0.5842 for TS, 0.2725, 

0.0943, 0.0490 for Rep, CS and Dis respectively. These values are presented in the last column of Table 5.  

The maximum Eigen-value (λmax) is calculated by multiplying the priority vector by the sum of the weight of each criterion. 

λmax is used to validate whether the pair-wise comparison matrix provides a completely consistent evaluation [30]. The CR can 

be obtained using: CI/RI; 

λmax =  (0.5842)(1.58)+(0.2725)(4.40)+(0.0943)(13.33)+(0.0490)(18.00) = 4.2611 

Where, the CI for each matrix is equal to the following: CI = (λmax – n)/n-1 = (4.2611- 4)/3 = 0.087                                                                         

Referring to [30] the RI is equal to 0.89 for n =4 and the acceptable consistency is about 10% or less. 

CR = CI/RI = 0.087/0.89 = 9.78%, acceptable. 

Since the value of CR is less than 10%, the inconsistency is acceptable. Then, the same analysis can be performed for level 

2. The comparison matrices are made for each alternative, with respect to each criterion. Using the same methodology for 

developing the level 1 comparison matrix, three alternatives (loyalty models) are placed in Table 7 forming the first matrix for 

level 2.  

Table 7: Pair-wise comparison matrix for level 2 with respect to TS 

Alternatives LM-A LM-B LM-C 

LM-A 1 3 7 

LM-B 0.33 1 5 

LM-C 0.14 0.20 1 

Sum 1.47 4.20 13.00 

The priority vector for each alternative is equal to the average of its normalized weights. These values (for level 2 with 

respect to TS) are presented in the last column of Table 8. 

Table 8: Normalized weights and priority vectors for level 2 with respect to TS 

Alternative LM  A LM  B LM-C Sum Priority 

LM-A 0.677 0.714 0.538 1.929 64.30% 

LM-B 0.226 0.238 0.385 0.849 28.30% 

LM-C 0.097 0.048 0.077 0.222 7.40% 

Sum 1.00 1.00 1.00 3.000 100.0% 

 



 

The maximum Eigen-value (λmax), CI and CR are calculated by using the same methodology discussed earlier. Referring to 

[30] the RI is equal to 0.52 for n =3 and the acceptable consistency is about 10% or less. Therefore: λmax = 3.097, CI = 

0.0484, CR = 9.30% < 10%, acceptable.  

Regarding the Rep criteria, using the same methodology discussed earlier, the pair-wise comparison matrix for level 2 with 

respect to Rep was developed and the result shows that: λmax = 3.055, CI = 0.0277, CR = 5.32% < 10%, acceptable. However, 

we do not use the paired comparison matrix for level 2 with respect to criteria III and IV (i.e. CS and Dis), because their 

weights are very small.  Therefore, we can assume that their weights are set as zero [30]. So, the weight of criteria I and II 

must be adjusted so that the sum is still 100%. Adjusted weight for TS = 0.5842/ (0.5842+0.2725) = 0.6819, and Rep = 

0.2725/ (0.5842+0.2725) = 0.3181.  Then, we compute the overall composite weight of each alternative based on the weight 

of level 1 and level 2. The overall weight is the normalisation of the linear combination of multiplication between weight and 

priority vector.  

Table 9: Overall composite weight of the alternatives 

 Technical Solutions Reputations Composite Weight 

(Adjusted) Weight 0.6819 0.3181  

LM-A 64.30% 63.43% 64.02% 

LM-B 28.30% 26.02% 27.57% 

LM-C 7.40% 10.55% 8.41% 

 

The overall consistency of the hierarchy is given by: 

i

i

ii

i

i RIwCIwCR 


/                                (19) 

= [0.087(1) + 0.0484(0.6819) + 0.0277(0.3181)]/ [0.89(1) + 0.52(0.6819) + 0.52(0.3181)] = 9.14 %< 10%, acceptable. 

The final result presented in Table 9 shows that two criteria, TS and Rep are the most important criteria since they have 

high weights. LM-A is the best model; LM-B becomes second best and LM-C is third. LM-A is the best model with a weight 

of 0.6402 with respect to both TS and Rep criteria. Therefore, in the case of a failure or planned maintenance, GENCO may 

provide alternative power and maintain an excellent reputation in order to have customer loyalty.  LM-B may offer a lower 

probability technical solution, such as offering an uninterrupted power supply that can be sustained for a short time. 

Regarding LM-C, offering a lesser service than LM-B, makes it the third choice.  



 

If we use LM-A to price “reputational cost” during failure ( itoppif ) or planned maintenance ( itoppim ) of generating 

units, then the “reputational cost” cost for generator i at time t is equal to: Composite weight of the LM-A * g it,sched   MCP t. 

For example, we assume that the reputational cost during failure or planned maintenance for generating unit 1 at time 1 (week 

1) is equal to: 0.6402* 80 * 6120 = $313442. 

Similarly, the reputational cost for the other generating units can be calculated. Table 4 represents the estimated values for 

the reputational costs for the three generating units over four time periods. 

 


