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Electric vehicle-sharing systems have been introduced to a number of cities as a means of increasing
mobility, reducing congestion, and pollution. Electric vehicle-sharing systems can offer one or
two-way services. One-way systems provide more flexibility to users since they can be dropped-off at
any station. However, their modeling involves a number of complexities arising from the need to relocate
vehicles accumulated at certain stations. The planning of one-way electric vehicle-sharing systems
involves a host of strongly interacting decisions regarding the number, size and location of stations, as
well as the fleet size.

In this paper we develop and solve a multi-objective MILP model for planning one-way vehicle-sharing
systems taking into account vehicle relocation and electric vehicle charging requirements. For real world
problems the size of the problem becomes intractable due to the extremely large number of relocation
variables. In order to cope with this problem we introduce an aggregate model using the concept of
the virtual hub. This transformation allows the solution of the problem with a branch-and-bound
approach.

The proposed approach generates the efficient frontier and allows decision makers to examine the
trade-off between operator’s and users’ benefits. The capabilities of the proposed approach are
demonstrated on a large scale real world problem with available data from Nice, France. Extensive
sensitivity analysis was performed by varying demand, station accessibility distance and subsidy levels.
The results provide useful insights regarding the efficient planning of one-way electric vehicle-sharing
systems and allow decision makers to quantify the trade-off between operator’s and users’ benefits.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

According to Federal Highway Administration (FHWA) studies a
private vehicle travels on average 40 kilometers per day, which is
approximately 90 minutes time. For the rest of the time this vehi-
cle is idle and occupies a parking spot (FHWA, 2010). An alternative
is car-sharing (also known as shared-use vehicle) systems, which
have attracted considerable attention with multiple implementa-
tions worldwide due to their potential to improve mobility and
sustainability (Shaheen & Cohen, 2013). These systems provide
benefits both to their users and the society as a whole. Reduced
personal transportation cost and mobility enhancement have been
cited as the two most notable benefits to individual users. Recent
studies show that, car-sharing also decreases average vehicle
kilometers traveled and, it is likely to decrease congestion
(Crane, Ecola, Hassell, & Natarah, 2012) and emissions (Shaheen
& Cohen, 2013). Provision of affordable mobility to economically
disadvantaged groups with on-demand and public transportation
systems is another societal benefit (Duncan, 2011).

The attractiveness of car-sharing systems is determined by the
level of service offered and the cost associated with the use of the
system. The level of service is influenced by the accessibility of
vehicle stations by the potential users, i.e. (i) the distance between
user’s origin and destination from pick-up and drop-off vehicle
stations respectively, and (ii) the availability of vehicles at stations.
On the other hand, station number and size, as well as fleet size
and availability of vehicles, at the ‘‘right time’’ at the ‘‘right sta-
tion’’, influence the cost of establishing and operating a car-sharing
system.

The car-sharing systems can be classified into flexible ‘‘one-
way’’ and the more restricted ‘‘two-way’’ types, according to
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whether the users should return the rented vehicle at a different or
at the location they picked it up. The ‘‘one-way’’ systems are also
classified as ‘‘free-floating’’ and ‘‘non-floating’’ according to park-
ing spot restrictions. The former refers to a system without
restricted parking spots. Users can pick-up or drop-off vehicles in
any parking spot restricted within the borders of an area. The latter
is used for defining systems in which pick-up and drop-off
locations of the vehicles should be designated parking spots. In
‘‘free-floating’’ models, reservation is not possible whereas
‘‘non-floating’’ models provide users both the ability to make
reservation and the flexibility of one-way trips. While two-way
systems allow users for reservations, the state of practice in
one-way systems is renting-based on real-time availability or with
short term reservations (e.g. 30 minutes in advance). A recent
study showed with an agent based simulation that parking
reservations can improve the quality of service for one-way car
sharing systems (Kaspi, Raviv, & Tzur, 2014).

The problem of ensuring vehicle availability and fulfilling reser-
vation becomes more prominent when the vehicles can be rented
and used on a one-way basis in non-floating systems. The one-
way operation of the vehicles coupled with the imbalance of
demand for vehicles, both at the origin of the trip (pick-up station)
and at the destination (drop-off station), may result to a situation
where vehicles are accumulated to stations where they are not
needed, while at the same time there is vehicle shortage at the sta-
tions where more vehicles are needed (Barth, Todd, & Xue, 2004).

Vehicle relocation, i.e. transfer of vehicles from stations with
high vehicle accumulation to stations where shortage is
experienced, is a technique that has been proposed to improve
the performance of one-way car-sharing systems (e.g. Cucu,
Ion-Boussier, Ducq, & Boussier, 2009; Jorge, Correia, & Barnhart,
2014; Kek, Cheu, & Chor, 2006). The lack of efficient vehicle reloca-
tion coupled with the need to guarantee a given level of vehicle
availability may lead to an unnecessary increase of the fleet size
and vehicle underutilization. The efficient and cost-effective strate-
gic planning, and the operation of one-way car-sharing systems
require models that will optimally determine the number and loca-
tion of the service stations, the fleet size, and the dynamic alloca-
tion of vehicles to stations. These models should assist decision
makers to strike an optimum balance between the level of service
offered and the total cost (including vehicle relocation costs) for
implementing and operating the car-sharing system.

However, the literature currently lacks a model that can
consider simultaneously decisions related to the determination of
station location, size and number, and fleet size, while taking into
account the dynamics of vehicle relocation and balancing for a sys-
tem with reservations. Existing models (Correia & Antunes, 2012;
Lin & Yang, 2011) either look at station locations without due con-
sideration to vehicle relocation decisions (Lin & Yang, 2011), or
consider station locations assuming that only the demand in the
catchment area of opened stations needs to be served (Correia &
Antunes, 2012). In the case where vehicle relocation is modeled
(Correia & Antunes, 2012), the relocation of the vehicles and the
associated costs are considered only at the end of the operating
period (usually a day), and therefore they are influencing the fleet
size.

The objective of this paper is twofold: (i) to develop and solve a
mathematical model for determining the optimum fleet size, and
the number and location of the required stations of one-way
non-floating reservation-based, for both pick-up and drop-off,
car-sharing systems by taking into account the dynamic reposi-
tioning (relocation) of vehicles, and (ii) to apply the proposed
model for planning and operating a one-way electrical car-sharing
system in the city of Nice, France.

The remainder of this paper is organized as follows. Section 2
provides an overview of previous related work and further
elaborates on the arguments justifying the need for the proposed
model, Section 3 presents the formulation and the solution
approach of the proposed model, Section 4 describes the
application of the proposed model for planning and operating a
one-way electrical car-sharing system in Nice, France, Section 5
highlights practical considerations while Section 6 discusses the
research conclusions and provides recommendations for future
research.
2. Previous related research

Models related to the planning and operation of car-sharing
systems can be classified into the following two broad categories:
(i) models addressing strategic planning decisions and (ii) models
supporting operational decisions.
2.1. Models for strategic planning decisions

Strategic planning decisions seek to determine the number, size
and location of stations, and the number of the vehicles that should
be assigned to each station, in order to optimize a measure or a
combination of measures for system performance. Station location
models have been developed to locate bicycle stations (Lin & Yang,
2011) and car stations (Correia & Antunes, 2012). Although the
focus of our work is on electrical car-sharing systems, we also
review models that address the station location of shared-use
bicycles, given some similarities of the two systems.

The problem of locating stations for shared-use bicycles has
been studied recently (Lin & Yang, 2011). This paper presents a
model for determining the number and location of bicycle stations
and the structure of the network of bicycle paths that should be
developed to connect the bicycle stations. The problem is formu-
lated as a non-linear integer model. The objective function used
expresses the total yearly cost encountered by the operator and
the users. A small scale example was used to illustrate the model
and a branch and bound algorithm was used to solve it. This model
does not consider the daily variation of demand and the problems
arising from the dynamic accumulation/shortage of bicycles due to
the variation of demand in time and space.

The optimization of vehicle depot locations and the definition of
the number of parking spaces (size) for each depot has been also
addressed (Correia & Antunes, 2012). The number of parking
spaces at each depot is determined by the maximum number of
vehicles that are allocated to each station throughout an operating
day. Vehicle relocation (and the associated relocation cost) is con-
sidered only at the end of the entire operating period (i.e. day).
Thus, this model does not treat explicitly the dynamic imbalance
created by the one-way operation and therefore it does not rebal-
ance the vehicles at the end of each operating sub-interval (e.g.
hour). This model assumes that the vehicle imbalance problem is
by-passed through the optimum depot location and size. The
objective function of the model seeks to maximize the profit of
the operating agency and takes into account the depreciation,
maintenance and relocation (at the end of the operating period)
costs of the vehicles, the maintenance cost of the depots, and the
revenues generated by the system operations. This model makes
the assumption that only trips associated with open stations need
to be served. Thus, the demand (trips) that falls outside the
catchment area of open stations associated with the stations that
are not open is ignored. As a consequence, this model does not
consider the access and egress cost of the potential users to/from
the candidate station locations. A direct implication of this
assumption is that, the proposed model cannot be used to study
the trade-off between station accessibility cost and system bene-
fits. Finally, this model does not consider the dynamic relocation



720 B. Boyacı et al. / European Journal of Operational Research 240 (2015) 718–733
of vehicles throughout the operating period. The proposed model
was used to analyze a case study in Lisbon and an optimizer based
on branch-and-cut algorithms was used to solve the problem.

A recent work also models one-way car-sharing problem with
an MILP considering relocation throughout the day (Jorge et al.,
2014). Similar to Correia and Antunes (2012), the model exoge-
nously associates trips to stations. Different than the previous
work, the model allows relocations at any time of the day. The
objective function maximizes the profit of the operating agency.
The model is tested on three different scenarios and the results
are supported with a simulation. In simulation, cost of relocation
is minimized with a minimum cost flow algorithm. Results on dif-
ferent scenarios show that, with dynamic relocation, car-sharing
system modeled on the demand in Lisbon, Portugal starts
profiting.

The problem of determining the fleet size and the distribution
of vehicles among the stations of a car-sharing system was stud-
ied in relation to the Personal Intelligent City Accessible Vehicles
(PICAVs). This system uses a homogeneous fleet of eco-friendly
vehicles and allows one-way trips (Cepolina & Farina, 2012).
The stations are parking lots that offer vehicle recharging services
and are located at inter-modal transfer points and near major
attraction sites within a pedestrian area. The number, location
and capacity of stations are not determined by the model, hence
constitute inputs to the simulated annealing process. To cope
with the imbalance of vehicle accumulation of the one-way sys-
tem, this model introduces the concept of supervisor. The task
of the supervisor is to direct users that are flexible in returning
the vehicle to alternative stations, as to achieve a balanced
operation and fulfill a maximum waiting time constraint. The
objective function of this model includes the minimization of
the daily system and user costs subject to a maximum waiting
time constraint. The value of the objective function of the model
was estimated through micro-simulation. A simulated annealing
approach was used for determining the fleet size and for allocat-
ing vehicles among system stations.

Models for evaluating the performance of a network of car-
sharing stations has been introduced in the literature (Fassi,
Awasthi, & Viviani, 2012; George & Cathy, 2011). This problem
arises when the demand for car-sharing services changes
(increases) and as a consequence the network of stations should
be adapted to serve better the emerging demand profile. In
response to this need, a decision support tool was developed,
which allows decision makers to simulate alternative strategies
leading to different network configurations. Such strategies
include opening and/or closing stations, and increasing the
capacity of stations. This tool is based on discrete event simula-
tion and seeks to maximize the satisfaction level of the users
and to minimize the number of vehicles used (Fassi et al.,
2012). This model does not address vehicle relocation as it is
based on a system that does not allow one-way use of vehicles.
Performance analysis for shared-use vehicles systems has been
proposed in the literature using a closed queuing network model
(George & Cathy, 2011). In this approach, both exact and approx-
imate solution methods are proposed to evaluate the bike shar-
ing system Vélib operating in Paris, France with over 20,000
bicycles and 1500 locations.

Recently, the impact of user flexibility in choosing their
pick-up and drop-off station, and the impact of using real time
information regarding vehicle and parking space availability at
stations was studied (Correia, Jorge, & Antunes, 2014). This
research extents the MILP optimization model proposed in
Correia and Antunes (2012), by considering scenarios regarding
user flexibility and availability of information, i.e. inflexible,
flexible, and flexible users with vehicle stock availability
information. The model was applied to the city of Lisbon, Portu-
gal. The results emerging from this case study suggest that if
users are willing to choose one of the three closest stations to
their origins and destinations to pick-up and drop-off vehicles
respectively instead of insisting on using the closest stations,
the satisfied demand ratio will increase from 33% to 65%. In
addition, making the vehicle stock information available to flex-
ible customers will increase the satisfied demand ratio to 83%
(Correia et al., 2014).

2.2. Operational decisions

A major decision associated with the operation of one-way car-
sharing systems is how to relocate vehicles. The vehicle relocation
problem arises from the imbalanced accumulation of vehicles at
stations when the car-sharing system allows their one-way use.
Different strategies and models have been proposed in the litera-
ture to cope with the vehicle relocation problem.

The relocation of shared vehicles can be realized by using oper-
ating staff (Kek et al., 2006) or it can be user-based (Barth et al.,
2004). Shortest time, and inventory balancing strategies have been
used (Kek et al., 2006) for staff-based vehicle relocation. The
shortest time strategy relocates vehicles from other stations to
minimize the travel time needed for a staff member from his/her
current location to the station where the vehicle is available plus
the travel time needed from the station that the vehicle is available
to the station where the vehicle is needed. The inventory balancing
strategy relocates vehicles from stations with over-accumulated
vehicles to stations that experience vehicle shortages. Both
strategies were tested through a simulation model which was
validated using data from an operational car-sharing system (Kek
et al., 2006). An optimization-trend-simulation decision support
system (Kek, Cheu, Meng, & Fung, 2009) is proposed which uses
the same simulation model. In this three-phase decision support
system, the effectiveness of different relocation policies are
evaluated according to zero-vehicle time (duration of the vehicle
shortage), full-port time (shortage of empty parking space when
needed) and number of relocations.

The dynamic allocation of vehicles among stations of a
car-sharing system to maximize profit has been modeled in Fan,
Randy, and Lownes (2008). The fleet size, the location of stations,
and the demand for trips for a given planning horizon are known
in advance. Penalties associated with unserved trip requests are
not considered. A multistage stochastic linear model with recourse
has been proposed to address this problem. A stochastic optimiza-
tion method based on Monte Carlo simulation was used to solve
the proposed model Fan et al. (2008). This model considers only
the vehicle relocation decisions. Furthermore, vehicle relocation
is performed at the end of the day.

Chance constraint modeling has been used to study fleet redis-
tribution (Nair & Miller, 2011). This model assumes that system
configuration, current inventory of each station, costs and demand
at each station are known in advance. The model aims to find the
minimum cost fleet redistribution plan for the demand expected
in the near future. The chance constrained model with reliability
p (CCM-p) is constructed and solved by utilizing a special tech-
nique involving p-efficient points (PEPs) (Prékopa, 2003). The
model is applied on the Intelligent Community Vehicle System in
Singapore, a one-way system with 14 stations, 202 parking spaces
and 94 vehicles.

Two user-based relocation strategies namely, trip-joining and
trip-splitting have been proposed for a system operating at a
university (Barth et al., 2004). The trip-joining strategy is used
when two users have common pick-up and drop-off stations and
there is a shortage of vehicles at the pick-up station. In this case,



Fig. 1. Relationship between strategic, tactical and operational decisions.

Fig. 2. The relationship between time intervals and operations where
T ¼ t1; t2; . . . ; tjTj

� �
is the set of time intervals.
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the users are asked to share the ride. The trip-splitting strategy is
used when there is a surplus of vehicles at the pick-up station(s)
and there are users that are traveling as a group. Under this
condition, the users are asked to use separate vehicles when there
is a shortage of vehicles at their destination (Barth et al., 2004).
However these strategies would be difficult to be implemented
in open access systems with numerous origins and destinations,
where people hardly know each other.

Relocation operations in bike-sharing systems are also investi-
gated in the OR literature. Asymmetric demand creates problem
of imbalance for bike-sharing systems. This results in increase
in the number of users (i.e. who try to rent bikes from empty
stations or to leave bikes to full stations) who cannot utilize the
system properly. As a result redistribution of bikes becomes inev-
itable. The literature contains solutions for both static and
dynamic balancing problems. Static balancing problem disregards
customer demand and assumes the system does not operate dur-
ing redistribution (e.g. during the night). Whereas in dynamic
balancing problem, demand varies with time and redistribution
operations are performed accordingly. The static balancing
problem has been modeled as a single vehicle one-commodity
capacitated pickup and delivery problem (SVOCPDP) and was
solved with an exact algorithm based on column-generation
(Chemla, Meunier, & Wolfler Calvo, 2012). Additional formula-
tions of the static balancing problem have been proposed in
Raviv, Tzur, and Forma (2013). Dantzig and Wolfe (1960)
and Benders (1962) decompositions have been also used to solve
the dynamic balancing problem (Contardo, Morency, & Rousseau,
2012).

In the literature, there are also other types of problems that
share common structures with the one-way car-sharing problem.
The multiple depot vehicle scheduling problem with time windows
(MDVSPTW) is one of the examples (Desaulniers, Lavigne, &
Soumis, 1998). In the MDVSPTW, each customer has a request of
tight time windows with a precise start and end time of operations,
and a fleet of vehicles serves these customers one at a time. Each
vehicle in the fleet belongs to a depot and the vehicles have to
return to their depot at the end of the service. The objective of
the problem is to minimize the number of vehicles and empty
trips.

The literature review revealed that existing modeling efforts
make a sharp separation between strategic and tactical deci-
sions. This means that strategic decision-making models do
not integrate in their structure aspects of tactical and opera-
tional decisions (e.g. vehicle relocation, fleet size) which, as
we demonstrate in this paper have a significant bearing on
the cost and performance of the car-sharing system. On the
other hand, operational models are focused on the detailed
modeling of different types of relocation strategies, assuming
that the location, number, and station and fleet size are exoge-
nously defined.

In reality, strategic, tactical, and operational decisions are
interweaved and therefore there is a strong interaction between
the three decision-making levels. Strategic decisions are primarily
related to the definition of the location, number, and size of sta-
tions and interact with the tactical decision of fleet size determina-
tion. In turn, the fleet size is affected by vehicle relocation which is
an operational decision. Here it is important to stress the fact that
both fleet size and vehicle relocation influence the strategic level
decisions. The above discussion suggests that there is a need for
a model that will be able to address the strategic and tactical
decisions by taking into account (at a macroscopic level) the
impact of vehicle relocation. Fig. 1 illustrates these interactions.
The above discussion suggests that there is a need for a model that
will be able to address the strategic and tactical decisions by taking
into account the impact of vehicle relocation. In what follows we
are presenting such a model.

3. Model description

The proposed model is motivated from the planning of electrical
one-way non-floating reservation-based, for both pick-up and
drop-off, car-sharing system. Shared-use electric vehicles are used
to serve trips within a given geographical area. In what follows, we
provide a description of the system in terms of its demand and
supply characteristics before introducing the problem formulation.

3.1. System characteristics

i. Vehicles: A homogeneous fleet of electric vehicles is used to
provide the services. Any type of trip request can be accommo-
dated by any available vehicle.



Fig. 3. (a) Location of stations and historical trips generated between origins and
destinations; (b) origins and destinations are grouped according to the set of
accessible (candidate) stations; and (c) based on this aggregation, a specific demand
can be served in two different ways (trip 1 and 2).
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ii. Stations: Vehicles are picked-up and dropped-off at
designated stations. Stations have the necessary infrastructure
for parking and recharging the vehicles. Each station provides a
specific number of parking places which defines the station size.
Station size varies among stations and the size of each station
determines its capacity.

iii. Time intervals: An operating day is divided into time
intervals (not necessarily equally long) and each operation (i.e.
rental, relocation, charging) starts at the beginning and finishes
at the end of a time interval. The first time interval of a given
day starts after the last time interval of the previous day (Fig. 2).

iv. Operations: The system involves three types of operations:
rental, relocation and charging.

a. Rental: The system operates on the basis of reservations and
allows one-way rental of vehicles. Reservations are made in
advance of the pick-up time. Origin and destination locations,
and pick-up and drop-off times are also known. Vehicles are
picked-up/dropped-off from/at a station that is accessible to
the initial origin/destination location of the respective user at
pre-specified (when reservation is made) periods. It is assumed
that each rental starts at the beginning of a time interval and
ends at the end of the same or a subsequent time interval
(Fig. 2).
b. Relocation: The system allows one way rental of vehicles. As
a result, there might be accumulation and/or shortage of
vehicles at stations. Relocation is used to rebalance the system
resources, i.e. vehicles. Relocations can last more than one time
interval (Fig. 2). During relocation, the vehicle is not available
with the exception of extremely closely located stations (i.e.
less than 2 kilometers per second), in which case rental and
relocation can take place at the same time interval. The total
time spend for relocation operations during a time interval
cannot exceed the total available time of the staff assigned to
a working shift.
c. Charging: The system modeled in this paper uses electric
vehicles. In order to model the electric vehicles charging period,
it is assumed that after a vehicle is returned from a rental oper-
ation, it has to stay in the station for a fixed period of time,
which represents the charging period of the vehicle.

v. Working shift: A set of consecutive time intervals defines a
working shift. The personnel needed for relocation operations is
assigned to working shifts.

vi. Demand centers: In the model, demand centers (in the
rest of the paper referred as centers) represent demand points
that can be served by the same set of (candidate) stations. To
illustrate how the centers are defined, we are using the
example shown in Fig. 3. Fig. 3a depicts the origin and
destination of demand and the station locations. Fig. 3b shows
the stations that are accessible by different origin and
destination locations. Please note that more than one station
may be accessible from a given origin/destination point. The
origin/destination points that can access the same set of sta-
tions are clustered together and constitute a center. Fig. 3c
illustrates two centers (shaded areas) and trips (demand)
associated with these centers. The grouping of demand into
centers decreases the number of variables since the trips with
the same origin and destination centers are grouped together.
This grouping allows the solution of larger instances of
problems. The distance between a center and a station is
the average of all distances defined by the demand points
of a given center and the associated station.

vii. Demand: Demand has a temporal and a spatial dimen-
sions. Demand represents an aggregation of trip reservations
(orders) of rentals that are associated with the same set of ori-
gin and destination centers and have common departure and
arrival time intervals. In order to satisfy an ‘‘order’’ (i) a vehicle
from a station that is accessible from the origin location (or
equivalently center) at the beginning of the departure time
interval, and (ii) a parking space at a station that is accessible
from the destination location (or equivalently center) at the
end of the arrival time interval have to be available. Note that
‘‘orders’’ do not have to be assigned to the closest station, but
to accessible ones.
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viii. Atoms: An atom represents a small geographical area with
known population. The atoms are used to model the population
coverage of the car-sharing system. In our model, we assume that
there is a maximum distance that determines if an atom is covered.
Thus, if there is an open station closer than the predefined
maximum value (coverage distance), the atom is covered. Atoms
used in population coverage of the example problem can be seen
in Fig. 4. These atoms represent the cells of a grid with an area of
0.1 square kilometer.

ix. Costs and revenues: The model includes two objective
functions expressing the objectives of the users and the operator.
The operator’s benefits include vehicle rental revenues and subsi-
dies, while costs include maintenance, operation and relocation
of vehicles, and station opening costs. Users’ net benefit is calcu-
lated as the difference between the utility gain in terms of mone-
tary value, and the sum of vehicle rental and accessibility costs.
In what follows (see items a–h below) we define all these terms.

a. Vehicle rental cost: The amount paid by the users to the
operator to rent a vehicle expressed in euro per hours
b. Subsidy: It represents money paid directly to the operator, by
public agencies, to cover revenue deficits per rental in euro per
unit time.
c. Fixed vehicle cost: The cost encountered by the operator
expressed in euro per day (e.g. depreciation, insurance)
d. Variable vehicle cost: The cost of the operator per km vehi-
cle rented (e.g. cost of energy, maintenance cost due to wear-
and-tear).
e. Vehicle relocation cost: The cost related to the relocation
operations of the vehicles. It has two components: the reloca-
tion personnel cost (per shift) and the cost for driving vehicles
between stations.
f. Station operating cost: The cost of operating a station. It is a
function of the number of operating parking spaces.
g. User utility: The monetary value of the utility gained by the
users by each satisfied trip expressed in euro per unit time.
h. Accessibility cost: The monetary value of time of the users
required to reach a station from their origin and from stations
to their destination expressed in euro per distance.

x. Scenarios: We use scenarios, to cope with the stochasticity
and the seasonality of the demand. Alternative scenarios are
defined by varying the input parameters of the model (e.g. week-
days, weekends).

xi. Scenario groups: The set of scenarios which addresses the
same strategic decisions and parameters (e.g. number of vehicles,
relocation personnel cost) belongs to the same scenario group. In
order to account for daily variation within the same season (e.g.
summer, autumn, winter), each season is set as a scenario group
and more than one scenario are generated according to day of
the week (e.g. weekdays, weekends).

3.2. Mathematical model

In this part, we represent the mathematical structure of the
proposed model. We first define the sets and indices used to
describe the model as well as the functions, variables and param-
eters in Section 3.2.1. In Section 3.2.2, the detailed multi-objective
mathematical model is given and its objective functions and con-
straints are described in detail. The aggregate model and the
rational for to have an aggregate model are presented in
Section 3.2.3.
3.2.1. Inputs
Sets and indices:

i and k 2 I: center indices
j and l 2 J: (candidate) station indices
t;u and w 2 T: time interval indices
f 2 F: working shift index
a 2 A: atom index
s 2 S: scenario index
g 2 G: scenario group index

Functions:

coverðaÞ: set of stations that are accessible from atom a
btwnðt;uÞ: set of time intervals from t to u
close jð Þ: set of stations that relocation with station j is possible
during the same time interval

Parameters:

SOCj: cost for establishing station j
PSCj: cost per parking space at station j
VFCg: fixed vehicle cost per vehicle-day in scenario group g
VOCstu

jl : operating cost of a vehicle rented at time interval t from
station j to reach station l at time interval u in scenario s
VRCgt

jl : relocation cost of moving a vehicle from station j to l
starting at time interval t in scenario group g
ACgt

ij =ACgt
ij : accessing/egressing cost from/to center i to/from sta-

tion j at time interval t in scenario group g
RPCg

f : cost of relocation personnel for working shift f in scenario
group g
RCgtu

jl =SAgtu
jl : rental charge/subsidy when a vehicle is rented at

time interval t from station j to reach station l at time interval
u in scenario group g
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UGstu
jl : user utility when a vehicle is rented at time interval t

from station j to reach station l at time interval u in scenario s
CAPj: maximum number of available for opening parking
spaces at station j
COV: minimum percentage of population need to be covered by
open stations
PRa: percent of population inhabiting in atom a
ODstu

ik : number of orders starting at the beginning of time inter-
val t from center j ending at the end of time interval u at center
k for scenario s
RIgt

jl : time intervals needed to relocate a vehicle from station j to
l starting at the beginning of time interval t in scenario group g
LRIgt

jl : last time interval of relocation if a vehicle is relocated
from station j to l starting at the beginning time interval t in sce-
nario group g
SIg

f : time intervals included in working shift f in scenario group
g
RTgt

jl : time spent to relocate a vehicle from station j to l at the
beginning of time interval t in scenario group g
WHgt: total available working hours for a shift operating during
time interval t in scenario group g
SWs: weight of the net benefit of scenario s in the objective
function
CTstu

jl : charging periods of vehicles rented at time interval t from
station j to reach station l at time interval u in scenario s
N: maximum number of open stations
S gð Þ: scenarios belonging to scenario group g
G sð Þ: scenario group of scenario s

Decision variables:

xj: binary variable indicating if (candidate) station j is open or
not
cj: number of parking spaces at station j
vg: number of vehicles used in scenario group g
da: binary variable indicating if atom a is covered by a station or
not
hg

f : number of relocation personnel needed during shift f in sce-
nario group g

Auxiliary variables:

nst
j : number of available vehicles in station j at the beginning of

time interval t in scenario s
ystu

ikjl: number of trip orders satisfied from center i renting vehicle
from station j to make a trip at the beginning of time interval t
to reach center k through station l at the end of time interval u
in scenario s
zstu

jl : number of vehicles rented from station j at the beginning of
time interval t to reach station l at the end of time interval u in
scenario s
mstu

ik : number of unserved orders of ODstu
ik

pst
ij =pst

ij : number of vehicles rented/left from/to station j at the
beginning/end of time interval t to/from center i in scenario s
qst

j =qst
j : number of vehicles rented/left from/to station j at the

beginning/end of time interval t in scenario s
bs

t: number of vehicles rented before time interval t which are
still rented during time interval t in scenario s
es

t: number of vehicles being relocated during time interval t for
which their relocation started before t in scenario s
rst

jl : number of vehicles relocated from station j to l starting from
the beginning of time interval t in scenario s
3.2.2. Detailed model

max
X
ðs;j;l;tÞ

SWs
X

u
RCstu

jl þSAstu
jl �VOCstu

jl

� �
zstu

jl
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X

l
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l
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nst
j þbstþest¼vGðsÞ 8s;t ð13Þ
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jl rsu
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The problem formulation is described in Eqs. (1)–(18). The first
objective function (Eq. (1)) expresses the maximization of the net
revenue for the operator. Net revenue is calculated as the differ-
ence between the sum of total rental revenue and subsidy minus
station, vehicle and relocation costs. Note that all of the values in
both objective functions except station opening cost are weighted
analogously to the number of days (e.g. five for weekdays, two for
weekends) of each scenario (SWs). This is due to the fact that the
location of the stations and the number of parking spaces are
regarded as strategic decisions and therefore have to be the same
in all scenarios. However the rest of the parameters are scenario
specific (e.g. the number of vehicles). The net revenue for the trip
starting from station j to station l from the beginning of time inter-
val t to time interval u in scenario s of given type, equals the rental

charge per trip RCstu
jl

� �
plus subsidy SAstu

jl

� �
minus operating cost

VOCstu
jl

� �
times the number of trips of the same type served zstu

jl

� �
.
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The relocation cost has two components: (i) The vehicle cost
related to the total km driven to relocate and (ii) the labor cost
associated with the cost of the personnel used to relocate the
vehicles. The total vehicle relocation cost is equal to the expenses
of all the relocation operations. The vehicle relocation cost for
the relocation starting from station j at time interval t to station l

in scenario s is equal to the sum per relocation VRCG sð Þt
jl

� �
times

the number of relocations rst
jl

� �
. Similarly, the relocation personnel

cost equals the sum of all personnel costs. The total personnel cost

for shift f in scenario group g equals the unit personnel cost RPCg
f

� �
times the number of staff hired for this shift hg

f

� �
.

The fixed vehicle cost depends on the total number of vehicles
operating in the system. For scenario s, this cost is equal to the
product of the unit fixed vehicle cost VFCg� �

and the number of
vehicles in the system vgð Þ in scenario group g. Note that, for
scenarios belonging to the same (scenario) group, the number of
vehicles is the same, since we regard the number of vehicles as a
tactical decision.

The station operating and parking space costs are the costs ded-
icated to station operations. There is a fixed cost for operating a
station SOCj

� �
and a variable cost PSCj

� �
for each parking space

n�j
� �

operating at a given station j.

The second objective (Eq. (2)) expresses the maximization of
the users’ net benefit. UGstu

jl can be defined as the monetary value
(i.e. euro) of the utility gain for each realized trip starting from sta-
tion j to station l from the beginning of time interval t to time inter-
val u in scenario s of the same type. Similarly, the rental fee is the
money paid to the operator for the rental of vehicles by the users

REVstu
jl

� �
and total rental charge equals the sum of them. The

accessibility cost is the cost associated with the access or egress
of a station from a center.

Constraints (3a) and (3b) restrict the number of parking
spaces (station capacity constraint), and the number of available
vehicles for each time interval and station. For each open station
there is an upper bound (CAPj) for its capacity. Constraint (3c)
limits the total number of operating stations. Constraints (4a)
and (4b) assign at least one parking space and an operation
(i.e. rental, relocation) to each open station. These constraints
are essential in order to guarantee the coverage of the demand
by an open station. Constraints (5a) and (5b) are the atom cov-
erage constraints, i.e. if an atom is covered or not, and popula-
tion coverage constraints, i.e. the car-sharing system is
accessible by a given percentage of the population, respectively.
Constraints (6) ensure that the total number of orders is equal to
the sum of the satisfied demand (served orders) and unserved
(lost) orders.

A trip order consists of three segments (see Fig. 5). A segment
connecting any origin center with an origin station is called
access segment. A segment connecting any origin station with a
destination station is called rental segment. A segment connect-
ing any destination station with a destination center is called
egress segment. The total number of trip orders using a segment
is called segment flow. Constraints (7) ensure that for a given pair
of origin–destination stations, the rental segment flow should be
equal to the number of trip orders from the given origin to des-
tination station. Constraints (8a) require, for a given center-sta-
tion pairs, that the access segment flow should be equal to the
number of trip orders originated from the given center and
served by the given origin station. Similarly, constraints (8b)
require, for a given station-center pair, that the egress segment
flow should be equal to the number of trip orders served by
the given destination station and destined to the given center.
Constraints (9a) ensure that the sum of the flows of the access
segment to a station should be equal to the sum of the vehicles
leaving the station. The latter coincides with the sum of the
flows of the rental segments that originate from the given sta-
tion. Similarly, constraints (9b) require that the sum of the flows
of the egress segments from a station should be equal to the
number of vehicles entering the station. The latter coincides
with the sum of the flows of the rental segments destined to
the given station. Note that, these constraints hold for all time
intervals and scenarios.

Constraints (10) require that the number of vehicles leaving a
station (due to rental and relocation) at the beginning of interval
t cannot exceed the number of vehicles available at that stations
at the same time interval. Constraints (11) are the ‘‘vehicle con-
servation’’ constraints for each station.

Constraints (12a) and (12b) ensure that, if a vehicle is under
rental or relocation for more than one time interval, it will still
be accounted for by variables bs

t and es
t respectively. We do not

need to specially keep track of vehicles under relocation or rental
for one period only since they are already counted when they were
parked before they picked up for either operation. Constraints (13)
are used to ensure the conservation of the number of vehicles.
Stated otherwise, it requires that, for a given time interval, the
sum of vehicles at each station and the vehicles under rental or
relocation should be equal to the number of vehicles available
for the scenario.
variables shown in frames’ right bottom corners.



726 B. Boyacı et al. / European Journal of Operational Research 240 (2015) 718–733
Constraints (15a) and (15b) set an upper bound to relocation
from and to every station respectively. This upper bound equals
to the number of operating parking spaces in all open stations.

Constraints (16) are restrictions specific to electric-car-sharing
systems. These constraints require the vehicles to stay and be
charged, after each rental operation, at the station they arrived.
These constraints require that the number of vehicles in the station
should be greater than or equal to the number of vehicles requiring
charging.
3.2.3. Aggregate model

Eqs: ð2Þ—ð9Þ; ð12aÞ; ð16Þ—ð18Þ ð19Þ
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In real life instances, the model described by Eqs. (1)–(18). may
result in problem sizes that are not possible to be efficiently solved.
Although for most of the variables, we only generate those that
have positive values and construct the corresponding constraints
accordingly, we do not have this opportunity for the relocation
variables rst

jl . As the relocations can happen between any station
pairs, we need to generate jJj2jSjjTj number of variables which ren-
ders problem instances found in real world cases difficult to solve.
For example, for the case of Nice, France an instance of 142 candi-
date stations, 12 scenarios and 15 time intervals needs more than
3.6 millions of relocation variables, rst

jl only. In order to cope with
this issue, we assume that the relocated vehicles are firstly accu-
mulated at an imaginary hub and then distributed from that hub
to the stations. For this issue, two new variables, rst

j and rst
j are

defined expressing the number of vehicles relocated from/to
station j starting from the beginning/finishing at the end of time
interval t in scenario s. Using this transformation, the number of
relocation variables decreases to 2jJjjSjjTj which translates to
51,120 variables instead of over 3.6 millions. As we demonstrate
in the subsequent section of the paper (Section 4), in the case of
Nice, this transformation results to an error of less than 2% of the
operator’s net revenue.

In addition, we substitute the constraints (10), (11), (12b) and
(14) and (15), with the following constraints (21)–(28). Moreover,
the vehicle relocation cost part of the operator’s objective function
(Eq. (1)) is replaced with Eq. (20). Note that, parameters LRIgt

j ;VRCgt
j

and RTgt
j shows the last time interval, the vehicle relocation cost

and time spent when a vehicle is relocated from/to station
j to/from hub starting in time interval t in scenario group g respec-
tively. The aggregate model is expressed by Eqs. (19)–(28).
Constraints (21) and (22) replace constraints (10). Constraints
(21) postulate that the total number of trips starting from station
j going to station l during time interval t to u in scenario s cannot
be more than the number of available vehicles at the beginning
of the time interval t; minus the number of relocations from station
j; plus the number of relocations from the stations that are close
enough to station j to have relocations at the same time interval.
Constraints (22) set an upper bound for each station group close
enough to have relocations to the same station. For each set of sta-
tions, the total number of trips started from the corresponding set
of stations cannot be more than the total number of available vehi-
cles at these stations.

Constraints (23) replace constraints (11) of the first model.
Constraints (24) require that the total number of relocations from
stations to the imaginary hub ending in time interval t should be
equal to the number of relocations to the stations from the imagi-
nary hub starting in time interval t. This is applicable for each time
interval and scenario.

Constraints (25a) and (25b) replace constraints (15a) and (15b).
They set the number of relocations to the number of operating
parking spaces. Constraints (26) and (27) work the same as con-
straints (12b) and (14) respectively. The former constraints calcu-
late the number of vehicles under relocation whereas the latter
constraints decide on the manpower needs for each time interval
in each scenario.
4. Model application

The model presented in Section 3.2.3 was applied to plan a one-
way electric-car-sharing system in Nice, France. The study area is
294.19 square kilometer and has a population 327,188 inhabitants
between ages 15–64 with a density 1112 persons/square kilome-
ter. The area under consideration consists of 210 regions. The pop-
ulation of each region was obtained from 2009 census data (INSEE,
2010). We assume that the population is uniformly distributed
inside regions and calculate the population of each atom accord-
ingly. The atoms and their population can be seen in Fig. 4.

The whole model is implemented in C#.NET environment. IBM
ILOG Cplex Version 12.5 with Concert Technology is used for solv-
ing MILPs. To cope with the enormous number of relocation vari-
ables, the aggregate model (Section 3.2.3) is used. The exact and
aggregated relocation costs will be compared later. For each sta-
tion, half of the average distance of closest n stations is calculated
and regarded as the distance of the same station to the imaginary
hub. This approach generates values that closely approximate real
relocation distances. To further investigate the performance of the
approximation, a simulation environment that compares average
real and hub relocation distance for 1000 cases was generated with
different n values. In Fig. 6, the error for different values of the
number of relocations (n) are compared. We use n ¼ 20 which
results to an average minimum error. In other words, when dis-
tance for relocation is calculated, the distance from a station to
the hub is assumed half of the average distance of 20 closest (can-
didate) stations. Note that in the aggregate model a relocation is
composed of two legs in aggregate model: relocating vehicle from
its old station to the imaginary hub and to its new destination from
the hub. A similar approach is used for the second leg. The number
of relocations per personnel has values between 7 and 15 which
results in an error not more than 0.7 kilometer per relocation. Since
distance per relocation observed is around 4 kilometers and the
total cost of relocation is not more than 20% of the objective func-
tion value of each case (see in Figs. 10 and 11), this relaxation
might not create an error more than 3.5%. Also post-analysis
showed that the difference between the cost of relocation
operations calculated by the aggregate model and the exact model
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is less than 2% of the operator’s revenue on average. In order to
deal with the extremely large size of the problem, we take advan-
tage of the sparsity of the matrices of the variables and we do not
generate the variables that have zero value. This decreases the
number of variables of aggregate model in order of magnitude
from 10 to 5.

To guarantee generation of feasible solutions in reasonable
time, extra cuts are generated with CPLEX. The runs are taken on
a computer with 3.00 gigahertz Intel Core 2 Quad CPU and 8 giga-
bytes of RAM. All runs are realized as single-threaded programs
and every run is terminated when either they reach 2% optimality
gap or 9 hours run time. Most of the runs that are represented here
were terminated in less than three hours and all of the runs had an
optimality gap less than 8%.

The summary of the methodology for the entire approach can
be seen in Fig. 7 where woperator and wusers express the weights of
operator and users benefit respectively. The terms superior and
inferior are related to station coverage. If a candidate station covers
an additional origin or destination location as compared to another
candidate station’s covered locations, the former candidate station
is superior to the latter.

4.1. Car-sharing system in nice

The current system operating in Nice is a two-way car-sharing
system (no need for relocation operations). However, the proposed
model deals with the case of one-way car-sharing, which makes
the implementation more demanding. Therefore, there was a need
to convert the existing two-way car-sharing data into one-way.
This conversion was achieved by looking at the current database
and creating one-way data by splitting the trips into one-way legs
when the idle time of the rented vehicle at a given location was
exceeding one hour, and the location was accessible from a station
(i.e. the distance between the location and the stations is less than
500 meters). The problem formulation and solution procedure of
Section 3 are not affected by this conversion and other methods
could be utilized to generate the one-way demand (e.g. population
surveys) Efthymiou, Antoniou, and Waddell (2013).

We use the origin and destination locations of the real demand
in two steps. First, we solve a maximal set covering problem (Church
& ReVelle, 1974) to identify the candidate station locations for the
aggregate model. For each origin and destination, the (existing or
candidate) stations that are accessible (the distance between two
points is less than the maximum accessibility distance) are esti-
mated. In addition to existing 42 stations, the model was forced
Fig. 6. Average absolute error of imaginary hub usage in relocation for different
number of relocations. Different n values are compared in order to find the most
suitable value for our case.
to choose 100 new candidate locations for the stations. Second,
the locations are grouped into centers. This grouping was done
according to the (existing or candidate) stations that are accessible
to them. The locations with the same accessible stations were
assigned to the same centers. The accessibility distance between
a center and a station is calculated by taking the average of the dis-
tance between the elements of the center and the station (Fig. 3).
The graph showing the locations of the origin and destination of
the trips (crosses), the operating (blue) and candidate (red, gray
and black) stations’ locations (dots) and their catchment areas (cir-
cles with the same colors) can be seen in Fig. 8 in which x-axis
shows the longitude and y-axis shows the latitude values. Note
that, the covered origin and destination locations by already oper-
ating and/or selected candidate stations have dark gray color, and
each grid is a square with sides of 1 kilometer.

After solving set covering problems, the set of candidate loca-
tions for the aggregate model (defined in Section 3.2.3) is pro-
duced. The aggregate model is solved with different weights (of
users’ and operator’s benefit) in order to generate an efficient fron-
tier for the given case. A total of 8 different scenarios of four sea-
sons (spring, summer, autumn, winter) for two different day
groups (weekdays, weekends) were selected. A working shift is
assigned for each time interval. It was also assumed that the num-
ber of operating vehicles and relocation personnel for the same
season is the same. This is because the fleet and crew size decisions
are considered tactical and do not change within the same season.
Each scenario was constructed by using two days of the real
demand of the same day group in the same season. The capacity
of each station was set to five vehicles and the model was asked
to choose 28 more stations (from a set of 100 candidates) in addi-
tion to 42 stations that are already operating. Each day was divided
into 15 time intervals. The time intervals are generated in such a
way that the total duration of rental time (vehicle-hours) in each
time interval in the historical demand are almost equal.

Given that: (i) each vehicle has a maximum range of 120 kilo-
meters, (ii) the average trip length is 30 kilometers and (iii) it
takes 8 hours to fully charge an empty battery, it follows that
each vehicle should be charged at least for 2 hours before it
becomes operationally available. An average value for the charg-
ing duration is utilized for all trips as the operator is not aware
of the distance that will be traveled by the driver at the beginning
of the trip. A more detailed model can be solved in the opera-
tional problem, where uncertainty in the duration of charging
can be considered. The values for some of the other parameters
applied in the model are presented in Table 1. The fuel cost is
low because the system is operating with electric vehicles. Note
that, the stated values have been properly modified to ensure
data confidentiality.

Using the parameters presented in Table 1, we solved the model
and generated the efficient frontier provided in Fig. 9 by using
weighted sum method Cohon (2004). The selected candidate sta-
tions can also be seen in Fig. 8. The candidate stations shown with
red color are the candidates that are not selected, the ones with
gray and black are the stations selected at least once. The intensity
of the color given to the selected candidate stations increases as
the frequency of their appearance in the efficient frontier increases.
For instance, black means the candidate station appears in all the
efficient solutions whereas the lightest gray suggests that it
appeared in only one of them. The circles around each station
shows the stations’ accessibility area which is a circle with
500 meters of radius.

As it can be seen in Fig. 8, although the part of the data used to
create the efficient frontier composed of 16 of the 421 days,
selected candidate stations manage to cover locations with high
demand. For instance, there is an accumulation of demand around



Fig. 7. Summary of the methodology for the entire approach with the weights woperator and wusers for the users’ and operator’s benefit respectively.
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the coordinates 43.73N–7.19E and the model selects to operate a
station there in all efficient solutions.

From the efficient frontier shown in Fig. 9, it can be seen that
the operator should sacrifice some of its net revenue in order to
improve total users’ benefit and vice versa. Although the revenue
and subsidy of the served demand is higher when more demand
is served, the rate of increase of the operational costs (e.g. vehicle
operating cost, relocation cost) is lower than the rate of increase of
the associated benefits. Both the number of vehicles in the system
and the increase of relocation operations decrease the utilization of
the vehicles.

Another interesting result is associated with the selection of
common stations in determining the efficient frontier. It is
observed that (in addition to 42 already operating stations) all
seven efficient solutions select stations among a set of 46 candi-
date locations. More specifically, 13 of these stations appear in
all solutions; 5, 7 and 3 in six, five and four solutions (out of seven)
respectively. This result suggests that from station location point of
view, the efficient station locations are not in conflict when consid-
ering the user and the operator objectives and the solution is
robust. Since there is no conflict in station locations, these 28
stations are assumed to be operating stations in addition to already
operating 42 stations in the further analysis.

After deciding about the number and location of the stations
(strategic decision), we perform further analysis in order to explore
if different demand levels, coverage distances and subsidy
amounts influence the solution.
4.2. Effect of demand

Firstly, we examine the effect of demand by using five different
levels and equal weight for the users’ and the operator’s objectives.
The results of these runs are demonstrated in Fig. 10. In Fig. 10,
there are two sets of bar charts for each level of demand. These
bar charts correspond to different number of available vehicles,
bounded vs. relaxed. Bounded is referred to the cases where the
number of vehicles is forced to be less than or equal the corre-
sponding number of the baseline scenario. Please note that, in
the relaxed case there is no such constraint. Moving from left to
right we generate for both cases (bounded and relaxed), alternative
demand levels by increasing the baseline demand by 50% up to the
level of 200%. The table at the bottom of the graph, summarizes the
total number of trip requests, the number of lost demand and their
percentage.

For the relaxed case, the operator’s benefits for increasing levels
of demand are increasing faster than the users’ benefits. In the
bounded case we observe the same pattern. As the demand
increases, net benefits are increasing since the model can select
to serve the most profitable customers from a larger pool of candi-
date customers. In the bounded case, the slopes of users’ and oper-
ator’s benefits curves decreases as the demand increases. This is
because of the limitation on the number of vehicles. This is an
expected result since the model does not penalizes lost demand
while at the same time increases the value of the objective function
from the served demand. Note that, this increase of demand results



Fig. 8. The origin and destinations of the divided trips, the operating (blue) and candidate (gray, black and red) stations and their catchment areas. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Some values of the parameters used in the model.

Fixed vehicle cost (euro per day) 20
Vehicle operating cost (euro per kilometer) 0.01
Average number of trips per scenario 155.2
Average trip length (kilometer) 30
Max accessibility distance (kilometer) 0.5
Minimum coverage (%) 20
Subsidy (euro per hour) 5
Revenue per unit time (euro per hour) 8
Accessibility cost (euro per kilometer) 5
Utility (euro per hour) 12
Relocation speed (kilometer per hour) 30
Relocation personnel cost (euro per hour) 18
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Fig. 9. The efficient frontier for the case of Nice, France.
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to a higher density of demand, a fact that gives more flexibility to
the model to select customers leading to improved objective func-
tion values. For the 50% increased demand, the benefit lost for both
the operator and the users are almost imperceptible. However, the
difference between the relaxed and bounded cases becomes signif-
icant with a demand increase of 100%. This means that in case of
significant increase in demand, the system has to be redesigned
in some aspects to improve the quality of service and revenues.

Another important finding is the relationship of costs, benefits
and revenues. Since the rental fee is a cost for the users and a
benefit for the operator, it has no effect in our objective function
for this specific example since equal weights are used for the users’
and the operator’s objectives. The subsidy and the users utility are
the only two values contributing to the increase of the value of the
objective function and consequently more orders (customers) are
served.

In the calculation of the required relocation personnel, it is
observed that relocation cost is not significantly affecting
operator’s income. In the most congested system, not more than
35 hours of relocation personnel are required which corresponds
to a cost of 615 euro, about 12% of the rental charge. This finding
suggests that relocation operations do not significantly increase
the operator’s cost.



Fig. 10. The costs, benefits and revenues with the increased demand.
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The accessibility cost is not significant because both the
accessibility cost per kilometer (5 euro per kilometer) and
maximum accessibility distance (0.5 kilometer) are substantially
lower compared to other costs (e.g. utility: 20 euro per hour,
relocation personnel cost: 18 euro per hour).

Another important finding is related to the change in the per-
centage of unserved requests. The unsatisfied demand is increasing
with the total number of trips. In the ‘‘relaxed’’ cases the percent-
age of lost demand is decreasing until +100% demand. This may be
due to the fact that the cost of unserved demand due to shortage of
vehicles is less than the cost of acquiring extra vehicles to serve the
lost demand. However, we observe an increase in the percentage of
lost demand when demand is more than doubled. From a detailed
observation of the results, it can be inferred that the concentration
of demand during specific intervals at specific geographical loca-
tions is high. During these intervals the model either prefers not
to serve additional ‘‘orders’’, since the cost is more than the benefit
or cannot manage to serve extra demand since it reaches its limi-
tations in busy time intervals. On the other hand in bounded cases,
when demand increases more than 100%, the number of demand
served does not change. A careful look at the results shows that,
the bounded system reaches its limitations and cannot serve more
customers without increasing system resources (e.g. the number of
vehicles).

4.3. Effect of accessibility distance

The effect of maximum accessibility distance was also investi-
gated for two different levels of demand (e.g. base and +100%).
Six different accessibility distances from 500 to 1000 meters in
every 100 meters intervals were tested. The demand generated
for the 500 meters accessibility distance is used for all 6 cases to
test only the effect of flexibility. Fig. 11 shows the value of the
objective function components (left axis) and the operator’s and
users’ net benefits (right axis) as a function of maximum coverage
distance.

In both graphs shown in Fig. 11, it can be seen that the max-
imum accessibility distance decreases the net users’ benefit
slightly (around 1%) while operator’s revenue is improved 1–4%
for each accessibility distance increment. However, the same
trend is not followed by the demand served. These two results
are the consequence of the flexibility introduced to the system.
The average number of accessible stations for the covered origin
or destination points increases from 2.30 to 6.65. The increase
of the number of accessible stations, results to an expanded fea-
sible region and leads to an improvement of the operator’s reve-
nue. Since accessibility cost is low (5 euro per kilometer)
compared to operational costs of the operator, the model leads
to a choice that decreases the operational cost when accessibility
distance is increased.

This analysis shows the importance of station accessibility. In
our model, the effect of other public transportation systems to
accessibility distance is not taken into consideration. It is assumed
that the users can reach stations that are close enough to walk,
while they might be more options in multimodal transport net-
works. This underlines the nature of the car-sharing systems that
work as systems complimentary to public transportation, which
contribute to the improvement of the overall mobility.

4.4. Effect of subsidy

The effect of subsidy on car-sharing system performance was
also studied. Three different levels of subsidy (0, 2.5 and 5 euro
per hour) were investigated for three different levels of demand



Fig. 11. The costs, benefits and revenues for different maximum accessibility distances.
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(50% decreased, base and 100% increased demand). Alternatively, if
an exact model of demand sensitivity to pricing exists, a similar
analysis could be made. The results of this analysis are shown in
Fig. 12. The value of the objective function components (left axis)
and the operator’s and users’ net benefits (right axis) are shown
for different levels of subsidy.

The results of this analysis suggest that, the percent of demand
served increased by 4–11%. Unprofitable demand in low or
no-subsidy becomes profitable for the operator. Although 5–15%
increase of the operator’s cost (fix and variable vehicle, and reloca-
tion personnel costs) is required, the extra revenues generated
outweigh the extra costs.

Note that, the increase in subsidy results in increase in the
number of vehicles. However, it is not the case for the relocation
personnel. Since increased subsidy enables operator to have more
vehicles, the system becomes less dependent on relocation
operations.

Another important finding of the analysis of subsidy levels
relates to the effect of demand balance between demand level
Fig. 12. The costs, benefits and reven
and subsidy on net revenues. If the net revenues of the oper-
ator for the same subsidy amount with different demand levels
are compared, it can be observed that the increase in the
profit is faster than the increase in demand. The operator
earns more than double with double demand. This is some-
thing expected: Increase in demand makes the system more
efficient and profitable and as a result the level of subsidy
can decrease.
5. Practical considerations

In this paper we have developed and implemented a methodo-
logical framework for optimizing one-way car sharing systems with
reservations. The implementation of the proposed methodological
framework to a given problem setting requires the consideration
of a number of practical issues. A central issue related to strategic
decision-making for car-sharing systems is the estimation of the
spatial and temporal distribution of the demand. The expected
ues for different subsidy levels.
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demand for car-rentals expressed in terms of origin–destination
matrices for different hours of the day, days of the week, and months
of the year constitute essential inputs to the proposed model. Two
different cases have to be considered, (i) the development of a
one-way car sharing system from scratch and (ii) the transformation
of an existing two-way system to one-way system. While our meth-
odology and problem formulation is general, implementation issues
might be different. An important aspect of this analysis is the asso-
ciated demand for the service. In our analysis, we converted with a
simplistic approach a two-way to a one-way demand. While this
might be a reasonable approximation, given the available data, it
might not integrate induced demand because of the improved
quality of service. Therefore, at the strategic planning phase of a
car-sharing system, it is essential to conduct thorough surveys that
will try to forecast (as accurately as possible) the expected demand.
These demand forecasting models should incorporate potential
characteristics of the car-sharing system that will offer alternative
levels of service to its users, at different pricing levels. While pricing
is not carefully analyzed due to lack of data, an elastic demand
formulation could be a future extension of this work.

Another practical issue related to the implementation of the pro-
posed model relates to the identification of the candidate locations
where potential stations of the car sharing system can be established.
The definition of the candidate station locations should consider the
spatial distribution of the demand, the contribution of various loca-
tions to increasing the accessibility of key activity centers, the
improvement of the connectivity of the public urban transport sys-
tem, and the availability of physical space for establishing the
required infrastructure for parking and recharging the vehicles of
the car sharing system. Therefore, it is very important to integrate
the design of the car-sharing system with the urban and public trans-
port planning activities of a given municipality. In case (ii) of trans-
forming a two-way to one-way system, we consider that the
existing stations will not close (due to high cost), but such an analysis
would be possible if an operator is willing to make such a decision.

Close cooperation of the relevant agencies, in charge of these
planning activities, is a must for ensuring the acceptance and imple-
mentation of strategic planning outcome. Other practical issues
associated with the implementation of a car-sharing system include
the business model that will be used to distribute benefits and costs
associated with the establishment and operation of the car sharing
system. Another important practical issue is the hiring of personnel
for relocation. Nevertheless, our analysis shows that such an addi-
tion will be very beneficial both for the operator (increased benefit)
and the user (better quality of service and less loss demand). Budget
or subsidy constraints can also be easily integrated in the model if
specified by the operator. It would be also necessary that the opera-
tor is aware of the location and the status of each vehicle in the sys-
tem. To the best of our knowledge, most of the existing systems
provide such information through GPS technology. These practical
considerations can be further explored in future research activities.
6. Concluding remarks

A multi-objective model for supporting strategic and tactical
planning decisions for car-sharing systems was developed and
tested in a large-scale real-world setting. The model considers
simultaneously the net benefits of both the operator and the users.
The proposed model closes a gap in the existing literature by con-
sidering simultaneously decisions associated with the allocation of
strategic assets, i.e. stations and vehicles of car-sharing systems
and the allocation of personnel for relocation operations (tactical
decision). The model provides decision makers with ample oppor-
tunities to perform sensitivity analysis for relevant model parame-
ters. This feature is particularly useful for cost values that are
difficult to establish empirically (e.g. utility gain of satisfied cus-
tomers, population coverage, station accessibility cost). Further-
more, the multi-objective nature of the model allows the
decision maker to examine the trade-off between operator’s profit
and users’ level of service. This last feature is of particular
importance if we consider that car-sharing systems are subsidized
with public funds. The results obtained from the application of the
model to a case resembling real world decision making
requirements, provides useful information regarding the system
performance.

Although the model provides satisfactory results for the case
under consideration, it should be pointed out that the results are
dependent on the model parameters used and cannot be directly
generalized. However the proposed model can be utilized in differ-
ent settings without difficulty. The value of the research presented
herein stems from the innovative model proposed and its use for
supporting strategic and tactical decision for car-sharing systems.

Research work under way involves the integration of the pro-
posed model with a simulation model that will provide a more
realistic representation of the relocation operation costs by looking
on operational decisions. Modeling the operational problem and
assigning the vehicle rosters while taking their electrical charge
level into consideration is another future work directions. A field
implementation of the proposed framework for one-way car-shar-
ing is under preparation. Operational problem will consider differ-
ent sources of uncertainties, such as last minute reservations,
deviations from scheduled pick up and drop off times, level of
charging and others. An operational model can also influence or
redirect demand with pricing strategies, by giving for example
the flexibility to choose the exact station or location (multiple sta-
tions) to the users.
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