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Abstract 

We discuss how to properly decompose economic efficiency when the underlying 

technology is non-homothetic using alternative allocative and technical efficiency 

criteria. We first show that only under the production of one output and assuming the 

particular case of constant returns to scale homotheticity, we may claim that the 

standard radial models correctly measure pure technical efficiency. Otherwise, when 

non-homotheticity is assumed, we then show that these traditional estimations would 

measure an undetermined mix of technical and allocative efficiency. To restore a 

consistent measure of technical efficiency in the non-homothetic case we introduce a 

new methodology that takes as reference for the economic efficiency decomposition 

the preservation of the allocative efficiency of firms producing in the interior of the 

technology. This builds upon the so-called reversed approach recently introduced by 

Bogetoft et al. (2006) that allows estimating allocative efficiency without presuming that 

technical efficiency has been already accomplished. We illustrate our methodology 

within the Data Envelopment Analysis framework adopting the most simple non-

homothetic BCC model and a numerical example. We show that there are significant 

differences in the allocative and technical efficiency scores depending on the approach. 
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1. Introduction 

Economic (overall) efficiency measurement based on the approach initiated by 

Farrell (1957) has received great attention from academics and practitioners. Since 

Farrell, economic efficiency originates from two different sources, viz. technical 

efficiency and allocative efficiency. In the spirit of his renowned decomposition, 

technical efficiency is estimated in first place as some measure of the gains obtained 

from moving the evaluated firm to the frontier of the production possibility set. The main 

argument behind this approach is that the measurement of allocative efficiency 

presumes technical efficiency since only on the production isoquant the rate of 

substitution between production inputs is well-defined and comparable with the ratio of 

market prices. Therefore, under the Farrell’s approach, the analysis focuses on the 

isoquant corresponding to the observed output before estimating allocative efficiency. 

Specifically, Farrell (1957) resorted to radial movements in order to measure technical 

efficiency, relating this particular component to both the coefficient of resource 

utilization of Debreu (1951) and the inverse of the Shephard’s distance function 

(Shephard, 1953). Indeed, and thanks to duality results (Shephard, 1953), allocative 

efficiency can be derived as a residual between the overall economic efficiency and its 

technical efficiency component As a result of this residual nature of the allocative 

efficiency term, where its technical efficiency counterpart is the driving component, the 

former has received much less attention in the literature. While there are many ways to 

define and calculate technical efficiency (oriented and non-oriented models, radial, 

additive, directional-based measures, etc.), the allocative efficiency problem of the firm 

in relation to the overall economic efficiency has been neglected. 

However, this is changing nowadays. In contrast to Farrell’s approach, Bogetoft et 

al. (2006) introduced a new method for estimating the potential gains from improving 

allocative efficiency without presuming that technical efficiency has already been 

accomplished. In particular, they propose to use a ‘reversed’ Farrell approach, first 

correcting for allocative efficiency and next for technical efficiency and, consequently, 

changing the traditional order to decompose overall efficiency. The rationale is that 

when a firm is inefficient, both the input and output orientations are feasible choices to 

gain efficiency, and allocative efficiency can be evaluated in alternative input or output 

isoquants. Following this thread, we show that approaching the problem of 

decomposing overall economic efficiency dealing with allocative efficiency in the first 

place sheds new light on the analysis of the economic behavior of inefficient firms, 

which must be taken into account by researchers. 
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Particularly, the fact that firms may solve technical inefficiencies by either reducing 

inputs or expanding outputs has relevant implications in empirical research, as these 

two alternative dimensions normally used by researchers when measuring technical 

efficiencyoutput or inputpass on to the concept of allocative efficiency. This is 

indeed central in our analysis since an inefficient firm situating inside the technology 

may have used inputs in excess for the observed level of output (input perspective), or 

may have fallen short of potential output given its observed level of inputs (output 

perspective). This theoretical or conceptual ambivalence that the applied researcher 

faces when choosing a particular orientation has an immediate implication in a cost 

minimizing analytical framework because a firm, when demanding its optimal input 

quantities, may take as reference its actually observed output level that the firm has not 

been capable of producing efficiently by incurring in input excesses (an input 

perspective), or the intended and unknownpotential output level (an output 

perspective).  

In this respect, the analytical implications of the choice of the output benchmark are 

clear. Given the observed market prices for inputs, the first order conditions for cost 

minimization subject to a given output level determine whether the firm is allocative 

efficient or not; particularly, if the marginal rates of technical substitution are equal to 

the price ratios. As a result, a firm will demand different input mixes depending on its 

ex-ante planned output level, which may not be realized latter on resulting in technical 

inefficiency. Assuming perfect competition in the input markets results in price taking 

firms, and therefore alternative input mixes imply different allocative efficiency levels. 

As a result both technical and allocative efficiency will differ depending on the chosen 

orientation when assessing overall cost efficiency. 

Relevant for this discussion, Bogetoft et al. (2006) prove that if the technology is 

homothetic then both decompositions based on the standard and reversed Farrell 

approaches are equivalent. Therefore, researchers do not have to worry about whether 

the subjective analytical choice of orientation yields alternative decompositions of 

overall economic efficiency, as they are the same. This is because from an economic 

theory perspective, one remarkable result of homotheticity is that least cost expansion 

paths are vectors passing through the origin and, therefore, this property preserves 

marginal rates of substitution or transformation as one moves along rays from the 

origin, and, consequently, as it is well-known in the standard Farrell approach, radial 

measures preserve the value of allocative efficiency along the contracting paths given 

by the input mix. Since market prices are exogenous, allocative efficiency remains 

constant along radial projections of technically inefficient firms. As marginal rates of 
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substitution do not change, whatever the difference between the ratios of market prices 

and marginal rates might be (when they are equal the firm is allocative efficient), it does 

not change regardless of the input or output isoquant that is considered to evaluate 

allocative efficiencyformally the marginal rates of substitution are independent of the 

output levels. Moreover, it is this normally overlooked property of homothetic 

technologies what guarantees that the radial movements associated to the traditional 

input and output measures can be rightly interpreted as pure technical efficiency gains, 

since allocative efficiency remains unchanged, resulting in a consistent decomposition 

of overall economic efficiency. In this framework, and not surprisingly, Chamber and 

Mitchell (2001) established the advantages of assuming homotheticity as the most 

common functional restriction used in economics. Specifically, the level sets for a 

homothetic function are radial expansions (“blow ups”) of a reference level set. 

One interesting byproduct of the reversed Farrell decomposition proposed by 

Bogetoft et al. (2006) is that it opens the way to determine allocative efficiency without 

first projecting the evaluated firm on the isoquant corresponding to the observed level 

of output. In this respect, a point that has received little attention in the production 

economics literature and that stems from the above discussion is that if one is 

interested in measuring the technical efficiency corresponding to a firm producing in the 

interior of the production possibility set through movements to the frontier, then it is 

necessary to assure that the allocative efficiency does not change along this 

processas in the standard Farrell approach for homothetic technologies. In other 

words, if we determine the ‘starting’ allocative efficiency of the assessed firm before 

projecting it on the frontier of the technology, applying the reversed approach, this 

value should coincide with the estimation of the allocative efficiency at the projected 

point after moving the original production plan of the firm to the corresponding 

isoquant. Only in this way we could be sure that the gains in moving from the original to 

the projected plan are waste due to exclusively technical reasons. In a homothetic 

setting researches do not have to worry about how to measure the residual allocative 

efficiency, either by the standard or reversed approaches since both methodologies 

coincide, but this would not be the case for non-homothetic technologies. Keeping in 

mind that true technologies will not generally follow the stylized assumptions underlying 

theoretical analyses, we believe that to define, interpret and correctly measure 

technical efficiency, it is necessary to keep constant the allocative efficiency so as to 

rightly and unambiguously decompose overall efficiency. 

As a result of these reflections, in this paper we maintain that the interpretation of 

the scores in the well-known radial Data Envelopment Analysis models (the CCR by 
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Charnes et al., 1978 and the BBC by Banker et al., 1984) as technical efficiency is 

unclear unless we can assume that the underlying technology is homothetic, a scenario 

that is verified only for the production of one output when the technology exhibits 

constant returns to scale (CRS). This implies that unless researchers are certain of the 

mistakes made by the managers of the firm resulting in input excesses or output 

deficits (and note that individual firms in the evaluated sample could differ in their 

production errors), the decomposition of overall economic efficiency may be erroneous. 

Additionally, we propose a simple solution for properly measuring technical efficiency 

and decomposing overall efficiency when the technology is non-homothetic, which 

should result in an improvement of the strategies prescribed to managers when 

adopting both technical and economic decisions aimed at improving their efficiency. 

The paper is organized as follows. In Section 2, we briefly recall the standard and 

reversed Farrell approaches and, in addition, we study under which technological 

assumptions the radial models actually measure technical efficiency in Data 

Envelopments Analysis, DEA. Section 3 is devoted to introduce the correct 

decomposition of economic efficiency into its technical and allocative components 

when the technology is not homothetic. In particular, we show that any DEA measure 

of economic performance would not only convey technical shortcomings, but also 

would be related to allocative criteria and, consequently, we suggest a method to 

overcome this problem. In Section 4, we illustrate the new methodology using a 

numerical example. Section 5 concludes. 

2. The standard and reversed cost efficiency decompositions for homothetic 

and non-homothetic technologies  

In this section, we first formalize some key notions about the technology and recall 

how overall economic efficiency has been traditionally decomposed. In a second stage 

we show the main characteristics of the approach introduced by Bogetoft et al. (2006) 

and, finally, we prove that the Shephard’s distance function, related to the inverse of 

the radial models in DEA, properly measure technical efficiency if the technology 

satisfies the particular homotheticity property.  

Let us consider n firms (or decision making units, DMUs) to be evaluated, which 

consume m inputs to produce s outputs. Firm j consumes    1 ,..., m
j j mjX x x R  

amounts of inputs to produce the following amounts of outputs:  1 ,..., s
j j sjY y y R  . 

As usual, the relative efficiency of each firm in the sample is assessed with reference to 

the so-called production possibility set, which can be empirically constructed using 
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DEA from the observations by assuming several postulates. In particular, if we impose 

constant returns to scale on the technology including the postulate of ‘ray-

unboundedness’, Banker et al. (1984) proved that the production possibility set can be 

characterized as follows: 

  

 








 
   

   
    
  





1

1

, : , 1,..., ,

, 1,..., , 0, 1,...,

n
m s

j ij i
j

CRS s

j rj r j
j

X Y R x x i m

T

y y r s j n

. 

 

(1)

 

On the other hand, if we assume variable returns to scale, then the corresponding 

characterization of the production possibility set, denoted by TVRS, is the same as (1) 

but adding the additional constraint 
1

1
n

j
j

 . Hereafter, we will use the corresponding 

subscripts when needed. 

As in the introduction, and seeking simplicity, we state most of our discussions in 

the input space. To do so, we need to introduce the input requirement set  L Y  

defined as the set of inputs that can produce output Y . Formally, 

    : ,mL Y X R X Y T   . On the other hand, in order to measure technical 

efficiency it is necessary to isolate certain subset of  L Y that serves as benchmark for 

the evaluation of efficiency. We are referring to the isoquant of  L Y : 

      : 1 .IsoqL Y X L Y X L Y       

Since we are concerned with overall efficiency in the input space, and following 

standard economic theory, we assume that firms minimize production costs while 

facing exogenously determined input prices. This implies that if firms succeed in 

choosing the inputs combination (bundle) resulting in the minimum cost of producing a 

given output level at the existing market prices, they are allocative efficient. Let us 

denote by  ,C Y W  the minimum cost of producing the output level Y given the input 

price vector  1,...,
m

mW w w R  :    
1

, min :
m

i i
i

C Y W w x X L Y


 
  

 
 . 

2.1. The standard and reversed approaches based on the radial input distance function 

The standard Farrell approach (Farrell, 1957) views the overall (cost) efficiency as 

originating from technical efficiency and allocative efficiency. Specifically, Farrell 
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quantified, and therefore defined each of these terms as follows. Technical efficiency 

corresponds to the largest feasible equiproportional contraction of the observed input 

vector 0,X capable of producing the observed output vector 0,Y  by moving from 0X  to 

 *
0 0 0X IsoqL Y , where *

0  is determined as the optimal value of the following linear 

program: 



 













 

 



 







0

0 0
1

0
1

1

min

. . , 1,..., ,

, 1,..., ,

1,

0, 1,..., .

n

j ij i
j

s

j rj r
j

n

j
j

j

s t x x i m

y y r s

j n

 

 

(2)

 

This program is known in the DEA literature as the BCC model (Banker et al., 

1984) and it is closely related to the Shephard’s input distance function (Shephard, 

1953), which defines as        , sup 0 : ,iD Y X X L Y  thereby coinciding with 

the inverse of 
*
0 . 

Regarding the allocative efficiency component, following Farrell’s tradition, it 

corresponds to the adjustment of the projected input vector to the minimum cost input 

combination; i.e., from *
0 0X  to  *

0, ,X Y W where  *
0,X Y W    

 0
1

argmin :
m

i i
i

w x X L Y


 
 

 
 . As for the decomposition of cost efficiency, the 

following well-known inequality holds: 

 


 
 



 

  

  
 

0 0*
0

0 0Technical
0 0Efficiency ( )

1 1

Cost
Efficiency ( )

, , 1

,m m
i

i i i iTE
TEi i

CE
CE

C Y W C Y W

D Y Xw x w x
. (3)

 

Finally, the residual allocative efficiency (AE) component is derived from (3) 

rendering it an equality, i.e., AE=CE/TE. 

We now illustrate the standard decomposition through Figure 1 and a set of seven 

firms that consume two inputs producing a single output  1 2, ,x x y : (3,6,1), (2,2,1), 
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(1,5,1), (4.5,0.5,1), (3,5,2), (4,2,2) and (7,1,2). Additionally, we consider 1 1w   and 

2 1.3w  . In Figure 1, variable returns to scale have been assumed in order to 

estimate the piecewise linear input requirement sets and their corresponding isoquants. 

For the particular firm  0 0,X Y = (3,6,1), Figure 1 shows that it is producing in the 

interior of the technology represented by the input requirement set  1L . Resorting to 

the standard equiproportional projection for solving technical efficiency, this firm should 

reduce input quantities matching those used by D on the  1IsoqL . Afterwards, the 

firm should correct for allocative efficiency by changing its input bundle from D to C, the 

production plan where cost is minimized for  1IsoqL . 

Figure 1. The traditional and the reversed decompositions of cost efficiency with non-
homothetic DEA technologies. 

 

Complementing the classic approach, Bogetoft et al. (2006) recently introduced an 

alternative decomposition to CE in (3). In their method, allocative efficiency is corrected 

in first place and technical efficiency is calculated in a second stage. In order to 

undertake the new approach it is necessary to consider a reference output vector *Y  

such that  *
0X IsoqL Y . Following this approach, they define the ‘reversed’ 

allocative efficiency AER and the ‘reversed’ technical efficiency TER as: 
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 *

0
1

,
R

m

i i
i

C Y W
AE

w x





, and 

  * *
0

1

, ,
R

i

TE
D Y X Y W

 . (4)

 

In this way, they first correct for allocative efficiency by changing the input bundle 

form 0X  to    * * *

1

, argmin :
m

i i
i

X Y W w x X L Y


 
  

 
  on the  *IsoqL Y , and, later 

remove technical inefficiency by reducing input quantities from  * *,X Y W  to 

   * *
0,X Y W IsoqL Y  , where 

  * *
0

1

, ,iD Y X Y W
  . 

The reversed decomposition is also shown in Figure 1. In the example, * 2Y   

since 0X = (3,6) belongs to  2IsoqL . Therefore, 0X  reduces cost by adopting A’s 

production plan, and mirroring the input mix that minimizes the cost of producing  

* 2Y  . Afterwards, technical inefficiency should be corrected by moving from A to B, 

where B is the efficient projection of A on  1IsoqL  obtained by way of an 

equiproportionalradialcontraction of inputs. 

Bogetoft et al. (2006) proved that the reversed decomposition coincides with the 

standard Farrell approach if and only if the technology is input homothetic, a property 

that geometrically establishes that the input requirement sets for different output 

vectors are “parallel”; i.e.      1sL Y H Y L  , where   : sH Y R R  and 

 1 1,...,1 s
s R   (Jacobsen, 1970).  

Proposition 1 [Bogetoft et al., 2006]. RAE AE  and RTE TE  and, consequently, 

R RCE AE TE AE TE     if and only if the technology is input homothetic. 

Note that in Figure 1, proposition 1 is not verified as the projection of firm A in to B 

does not correspond to firm C minimizing cost for  1IsoqL . Nevertheless, as argued 

in the introduction, if firm 0X = (3,6) had planned producing *Y  = 2, the right reference 

for allocative efficiency measurement is indeed firm A, and Bogetoft’s approach yields 

the decomposition that is consistent with the production plan of firm *
0( , )X Y  = (3,6,2). 

While information on the firm’s planned output level (either 0Y  or *Y ) is necessary to 

choose the correct decomposition (standard or reversed) for non-homothetic 
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technologies (as exemplified above with the popular variable returns to scale BCC 

formulation), it is not a matter of concern for homothetic technologies since proposition 

1 holds. 

Indeed, the equivalence of the standard and reversed approaches under 

homotheticity is illustrated in Figure 2. In this example the same dataset used for 

Figure 1 is exploited for estimating two isoquants (those corresponding to 0Y  and *Y ) 

but assuming now the constant returns to scale case. Considering again for evaluation 

the firm 0X = (3,6), its output benchmarks are either 0Y  = 1 or *Y  = 2.1, with the latter 

being a suitable transformation of  1sL  in accordance with the usual structure of input 

homothetic technologies and such that  0 2.1X IsoqL . Applying Farrell’s approach 

technical efficiency is solved by projecting 0X = (3,6) to C and, subsequently, allocative 

inefficiency is corrected by shifting the input mix from C to B. On the other hand, 

following Bogetoft et al.’s approach allocative efficiency is corrected by matching A’s 

input bundle, while technical inefficiency is solved by projecting A onto B. By input 

homotheticity, it can be proved that RAE AE , RTE TE  and 

R RCE AE TE AE TE     as Proposition 1 states. 

Figure 2. The reversed approach with homothetic DEA technologies. Distance function 

with G=X0, and the new approach.
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2.2. The standard and reversed approaches based on the directional input distance 

function 

After Farrell’s work, and particularly during the last two decades, part of the 

economic theory literature has focused on duality theory and distance functions, being 

Chambers et al. (1996), Briec and Lesourd (1999) and Briec and Garderes (2004) good 

examples. In particular, Chambers et al. (1996) introduced the notion of directional 

input distance functions as a way of generalizing the Shephard’s input distance 

function and showed by duality how cost efficiency may be decomposed into the usual 

technical and allocative components.  

Let  1,...,
m

mG g g R   be a vector such that 0mG  , then the directional input 

distance function defines as     , ; sup :iD X Y G X G L Y   


 (see Chambers 

et al., 1996). It can be proved that if 0G X then 

    *
0 0 0 0 0 0, ; 1 1 , 1i iD X Y X D X Y    


, and from this relationship and the flexibility of 

G, the directional input distance function encompasses the Shephard’s input distance 

function. Moreover, Chambers et al. (1996) were able to establish a dual 

correspondence between the cost function and the directional input distance function, 

depending on the value of the reference vector G : 

 
 

0 0
1

0 0

Technical
Inefficiency (TI)1

Cost
Inefficiency (CI)

,
, ;

m

i i
i

im

i i
i

w x C Y W
D X Y G

w g

















. 

 

(5)

 

From (5), allocative inefficiency may be computed as a residual: AI = CI – TI. Note 

that in this case the decomposition is additive instead of multiplicative due to the nature 

of each of the corresponding distance functions used in (3) and (5). Also, AI can be 

explicitly expressed as: 

 
    0 0 0 0

1
0 0

1

, ; ,
, , ,

m

i i i i
i

m

i i
i

w x D X Y G g C Y W
AI X Y W G

w g





 







, 
(6)
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since, from (5), AI = CI – TI and TI can be equivalently rewritten as 

 
 0 0

1
0 0

1

, ;
, ;

m

i i i
i

i m

i i
i

w D X Y G g
D X Y G

w g













. 

Next, we show that if G = 0X  the generalized decomposition (5) encompasses (3). 

In this case CI can be expressed as 
   

 


  


 

0 0
01

0 0
1 1

,
,

1

m

i i
i

m m

i i i i
i i

w x C Y W
C Y W

CI
w x w x

 1 ,CE  and regarding the technical component: 

     


0 0 0 0 0, ; 1 1 ,i iTI D X Y X D X Y   *
01    1 TE . 

It is worth noting that although (5) is highly flexible in measuring cost and technical 

inefficiency through a wide set of potential reference vectors G, in practice researchers 

usually resort to 0G X  as their only choice. The reason is apparent; When 0G X  

the overall cost inefficiency decomposition (5) in the additive framework is completely 

equivalent to the well-known multiplicative setting of the Shephard’s input distance 

function (3) and, therefore, the value of the technical measure has a clear interpretation 

in terms of equiproportional reduction in inputs. However, dismissing the flexibility of 

the directional distance function by adopting a decomposition dating back to the fifties 

is unjustified as it holds back theoretical breakthroughs. In fact, we believe that thanks 

to the flexibility of the directional distance function we here can consistently extend the 

notion of cost efficiency decomposition to non-homothetic technologies and, in doing 

so, show that the current practice, results, and interpretations of allocative and 

technical efficiency obtained in many empirical studies using common DEA models can 

be questioned. In this respect, until now, one of the most attractive features of the 

directional input distance function, its flexibility associated with the direction G, has 

been underutilized. Finally, besides its convenience when interpreting results, the only 

explanation for the systematic adoption of 0G X  is the absence of a criterion to a 

priori select a vector different from that related to the standard scenario. Here we set 

the ground for a far reaching application of the directional distance function and the 

choice of a different vector G as a consistent and interpretable measure of technical 

inefficiency in non-homothetic technologies. 
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Once the definition of the standard overall economic efficiency decomposition in 

terms of the directional distance function has been presented, we can now extend 

Bogetoft’s et al. (2006) reversed efficiency contribution to the case of the directional 

input distance function. As already presented, these authors introduced a way to 

estimate the “starting” allocative efficiency of 0X , which does not need the initial 

projection of this vector to the input requirement set defined by the observed output 

vector 0Y ,  0IsoqL Y . As previously discussed in the motivation we believe that if one 

is interested in measuring the technical efficiency corresponding to 0X  in the input 

space by means of movements to the frontier associated with the production of 0Y , 

then it seems appropriate to assure that the allocative efficiency does not change along 

this process. Only in this way, one could be sure that the cost savings derived from 

these input adjustments are consequence of exclusively 

technicalengineeringissues not related to allocative efficiency; i.e., changes in the 

input mix.  

To formalize these ideas let us define the reversed allocative inefficiency 

associated with an arbitrary output vector *Y  and an input vector  *
0X IsoqL Y  as 

the normalized difference between the optimal cost given a set of market prices W  

and the observed cost at 0X :  

 
    

 









 
 













* *

0 0
* 1

0

1

*
0

1

1

, ; ,
, , ,

,
.

m

i i i i
R i

m

i i
i

m

i i
i

m

i i
i

w x D X Y G g C Y W
AI X Y W G

w g

w x C Y W

w g

 (7)

The second equality in (7) is true thanks to  *
0, ; 0iD X Y G 


 for all 

 *
0X IsoqL Y  and  1,...,

m
mG g g R   such that 0mG  . 

Now, returning to the idea of properly interpreting and measuring technical 

efficiency, we contend that it is necessary to keep constant allocative efficiency along 

projections of the observed input vector X0. In this case the following question arises 

naturally: Is there a reference vector G that actually measures technical inefficiency 
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through the directional input distance function while leaving allocative efficiency 

unchanged? We now undertake this question. In particular, we show that under the 

assumption of input homotheticity the directional input distance function with reference 

vector 0G X , always satisfies this desired property. In words, in the case of using 

this specific direction the “starting” allocative inefficiency, measured with respect to 

 *IsoqL Y , i.e., before projecting the original input vector 0X  to the isoquant of 0Y , 

and the “final” allocative inefficiency, after projecting the original input vector, are the 

same. 

Proposition 2. Let T be an input-homothetic technology and *
0,

sY Y R . Then, 

   *
0 0 0 0 0, , , , , ,RAI X Y W X AI X Y W X , for all    *

0 0X L Y IsoqL Y  . 

Proof. If 0G X  then    *

*
0

0
1

,
, , , 1R

m

i i
i

C Y W
AI X Y W G

w x


 


 and 

 
      

 

0 0 0 0 0 0
01

0 0
*

0 0 0
1 1

, ; ,
,

, , , 1

m

i i i i
i

m m

i i i i
i i

w x D X Y X x C Y W
C Y W

AI X Y W G
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 

 
  


 



 since 

    *
0 0 0 0 0 0, ; 1 1 , 1i iD X Y X D X Y    


. Finally, based on the assumption of input-

homotheticity, 
   

 

*

0

*
0 0 0

1 1

, ,
m m

i i i i
i i

C Y W C Y W

w x w x
 



  
 (see Bogetoft et al., 2006, p. 456) and, 

therefore,    *
0 0 0 0 0, , , , , ,RAI X Y W X AI X Y W X . ■ 

Indeed, by Proposition 2, the directional input distance function with reference 

vector 0G X , or equivalently the Shephard’s input distance function, is the 

uniqueexactmeasure that yields allocative efficiency-preserving estimations of 

technical efficiency when input homotheticity is assumed. Some comments on this 

result are in order. First, we have established that for properly measuring technical 

efficiency we previously need to make sure that allocative efficiency does not change 

between the “starting” technical inefficient input vector and its “final” technical efficient 

projection. That is, allocative efficiency must be the same with respect to Y* and Y0 at 

the existing input market prices (regardless of whether we decide for the standard or 

the reversed approach). Therefore, the correct estimation of the technical efficiency 
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component so as to ensure that allocative efficiency remains unchanged requires 

knowledge of the applicable input prices. However, the significance of Proposition 2 is 

that, even without knowing actual input prices, the true technical efficiency can be 

computed from the observed quantity data using the directional input distance function 

taking as reference vector 0G X , irrespective of input prices and ignoring the 

allocative efficiency of the firm. Secondly, since allocative efficiency remains constant 

along the radial projections of the input vector, it turns out that the actually 

plannedbut unrealizedoutput level Y* that the inefficient firm might had in mind 

when setting its production schedule, does not need to be known by the researcher 

when assessing the relevant allocative efficiency, since it is the same regardless that 

output level. That is, input homotheticity guarantees that the cost efficiency 

decomposition into its technical and allocative terms is always correct, as the actually 

planned level of output that should be taken as benchmark to measure allocative 

efficiency is irrelevant, because allocative efficiency is the same across the whole set 

of possible reference output levels. Thereby, the radial input measure constitutes a 

precise measure of technical efficiency. From an empirical perspective, assuming 

(even if wrongly) input-homotheticity simplifies the whole evaluation process in terms of 

the information required to achieve a correct decomposition of cost inefficiency, as both 

knowledge of input market prices and the actually planned output level are 

unnecessary to properly estimate technical efficiency (but not, obviously, for calculating 

cost efficiency). 

2.3. The most common DEA technologies are non-homothetic yielding an inconsistent 

decomposition of cost efficiency  

We now turn to the analysis of the most usual DEA technologies in order to 

explore whether their technological characteristics ensure a correct decomposition of 

cost efficiency by satisfying the desirable allocative efficiency-preserving property. In 

this respect, the usual constant returns to scale (CRS) assumption is an example of an 

input homothetic technology, but only in the case of a single output. 

Proposition 3. Let 1s  . Then, CRST  in (1) is input homothetic. 

Proof.             1
1 : , ,1 : , ,1m mH y L H y X X R X T Z Z R H y X T



       , 

where the last equality is true thanks to the following change of variables:  Z H y X . 

Finally, considering that CRS CRST T , for all 0  , we have that 
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   

 
1

: , ,1mZ Z R H y Z T =      

 
1

: , ,1mZ Z R H y H y Z T  =

   : , , .mZ Z R Z H y T   Defining  H y y , then    : , ,mZ Z R Z H y T    

    : , ,mZ Z R Z y T L y   . ■ 

Figure 2 illustrates Proposition 3, where a CRS DEA technology is generated using 

the dataset with two inputs and one output. 

By Propositions 1 and 2, the above result ensures that the only measure that 

properly estimates technical inefficiency under the restricted scenario of a DEA 

technology exhibiting CRS and one single output is the well-known CCR measure 

(Charnes et al., 1978), which yields the same projections that the Shephard’s input 

distance function. Additionally, we conclude that even under this so simple scenario, 

alternative measures as, for example, the input-oriented Russell measure (Färe and 

Lovell, 1978), the input-oriented additive models (Lovell and Pastor, 1995), or even the 

directional input distance function itself with a reference vector different from 0X  

(Chambers et al., 1996), would not correctly measure technical efficiency. This is 

because these measures cannot assure that the starting allocative efficiency, assessed 

at 0X
 with  *IsoqL Y  as reference, and the final allocative efficiency, evaluated in its 

corresponding projection on  0IsoqL Y , coincide.  

Let us now to prove that in general the DEA technologies under CRS are not input 

homothetic. To do that, we next show a numerical counterexample. Let us assume that 

we have observed two firms using two inputs to produce two outputs  1 2 1 2, , ,x x y y : A 

= (2,1,2,1) and B = (1,1,1,1). Resorting to expression (1), the DEA technology under 

CRS is estimated for this example as follows: 

     

     
        

       

4
1 2 1 2 1 2

1 2

, , , : 2 , ,

2 , , 0, 0
A B A B

CRS

A B A B A B

x x y y R x x
T

y y
. 

 

(8)

 

The input set for the output vector    1 2, 1,1y y  corresponds to 

       2
1 2 1 21,1 , : 1, 1 .L x x R x x  However, for the output vector    1 2, 1,2y y  , 

      2
1 2 1 21,2 , : 1, 2 1,1L x x R x x k L     , for any 0.k   As a consequence, 
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the technology is not input homothetic since  L Y  cannot be written as 

     1sL Y H Y L  , with   : sH Y R R  for all  1 2,Y y y . 

Likewise, it can be shown that the variable returns to scale DEA production 

possibility set characterizes technologies that are not in general input homothetic. In 

fact, Figure 1, which corresponds to this kind of technology, depicts two isoquants that 

do not follow ‘parallel’ expansions. Consequently, we conclude that radial projections 

linked to the CCR-CRS and BCC-VRS models do not always keep allocative efficiency 

constant in moving from 0X  to its projected benchmark on the isoquant, except in the 

case of CRS DEA technologies restricted to exclusively one output. Therefore, it 

cannot be guaranteed that the values provided by the CCR and BCC models could be 

unambiguously interpreted as true technical efficiency scores, since they depend on 

the relevant output level targeted by the firms.  

Finally, as a historical note, we point out that the methodology introduced by the 

seminal paper of Farrell (1957) to decompose cost efficiency was well defined in the 

sense of this paper. It is due to the input homotheticity setting that was implicitly 

assumed by the author, who restricted his analysis to CRS technologies with one 

single output. 

3. Decomposing cost efficiency with non-homothetic DEA technologies  

These findings call for the introduction of new DEA models that estimate technical 

efficiency in the general case of non-homothetic technologies. These models would 

keep constant allocative efficiency as in the classic approach, thereby allowing for a 

correct interpretation of the distance function as a measure of technical efficiency. 

Having shown that the classic radial measures in DEA are not a suitable tool for 

estimating the true technical efficiency under non-homothetic technologies, it is 

necessary to overcome their inadequacy by adopting the flexibility offered by the 

directional distance function. To do that, we resort to Bogetoft et al.’s approach for 

estimating the starting allocative efficiency of the firm, and from there we determine its 

technical efficiency subject to the condition that when projected to its benchmark on the 

isoquant, its final allocative efficiency must be the same as the starting one. 
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Accordingly, in a first step we need to determine a level of output *Y , at which to 

evaluate allocative efficiency, such that  *
0X IsoqL Y  (e.g., * 2Y   in Figure 1).1 To 

identify a valid level of output *Y  for 0X , it is necessary to solve the following linear 

programming model: 

 




 
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 
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 
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j
j
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Max

s t

x x i m

y y y r s

j n

 

 

(9) 

 

Model (9) coincides with the directional output distance function with the reference 

direction 0yG Y . It is well-known that if  * *,   is an optimal solution of (9), then 

 *
0 0 0Y Y IsoqP X  , where  0P X  denotes the set of outputs producible from 0X

. Less known is the fact that 0X  belongs to the isoquant of the optimal level of output 

* *
0 0:Y Y Y   . 

Proposition 4. Let  * *,   be an optimal solution of (9). Then,   *
0X IsoqL Y , 

where * *
0 0Y Y Y   . 

Proof. This results is derived from Lemma 2.2.10 in Färe et al. (1985). ■ 

Given input market prices W  and *Y  from (9), it is trivial to determine  0,C Y W  

and  *,C Y W , the minimum cost at output levels 0Y  and *Y , respectively. However, 

in order to calculate the starting allocative inefficiency at  *IsoqL Y  using expression 

(7) we need to choose a value for the endogenous reference vector G . However, 

prefixing its value has both implications on the calculation of technical inefficiency, as 

                                                            
1 Hereafter and seeking simplicity we assume a variable returns to scale technologythe case of constant 
returns to scale with s>1 can be implemented analogously. 
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well as the compliance of the desired property: allocative inefficiency must remain 

constant along the projection of X0 on  0IsoqL Y . For example, if we determine *Y  by 

means of (9) for  0 3,6X   using the dataset in Figure 1, we obtain a value of 2 for 

the optimal output, with    3,6 2IsoqL  by proposition 4. Given input market prices 

1 1w   and 2w =1.3, we first calculate  *,C Y W  and, subsequently, 

 *
0, , ,RAI X Y W G . If we define 0G X , then we obtain  *

0 0, , , 0.389RAI X Y W X   

using (7) but, additionally, we are measuring technical inefficiency along that specific 

input vector, projecting 0X  on point D=(1.6,3.2) by contracting inputs equiproportionally 

(see Figure 1). In this respect, as argued above, radial projections may not keep 

allocative efficiency constant in the case of non-homothetic technologies. Indeed, using 

(6)  0 0 0, , , 0.107 0.389AI X Y W X   . Therefore, the question is, what reference 

peer in the input space is generated by removing technical inefficiency through 

reductions in 0X  to its corresponding projection on the frontier of  0L Y  while ensuring 

that allocative inefficiency remains constant? 

Next, we introduce the reversed directional input distance function that 

simultaneously yields the reference vector that preserves allocative inefficiency, and 

provides a consistent measure of technical inefficiency. In particular, we take 

advantage of the flexibility of the directional distance function allowing the reference 

vector G  be a decision variable of the following optimization problem:2  
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(10)

 

                                                            
2 See Zofio et al. (2013) and Färe et al. (2013) as examples of directional distance function approaches 
where the reference vector is a decision variable of the corresponding model. 
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. 

Model (10) is similar to the directional input distance function but in this case ig , 

1,...,i m , is a set of decision variables and, additionally, we force that the final 

allocative inefficiency at  0L Y ,  0 0, , ,AI X Y W G , matches the starting allocative 

inefficiency as calculated by  *
0, , ,RAI X Y W G  at  *L Y . 

From (6) and (7), we have that the constraint 

   *
0 0 0, , , , , ,RAI X Y W G AI X Y W G  is equivalent to 

   0 0
1

1

,
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i i i
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i i
i

w x g C Y W

w g


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,
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i i
i

m

i i
i

w x C Y W

w g
, which can be written as    *

0
1

, ,
m

i i
i

w g C Y W C Y W


  . 

Before we engage in the corresponding maximization process, we remark that (10) 

yields an infinite number of optimal solutions; i.e., it is affected by an arbitrary positive 

multiplicative scalar since given a feasible solution  , ,G  , the transformation 

 , ,k G k   is also a feasible solution for any 0k  . So, if a feasible solution exists, 

then (10) is unbounded as we may consider 2,3,4,...k   To control for this possibility 

and settle for a single solution we propose the following restriction to be incorporated 

as an additional constraint in (10):  

0
1 1

m m

i i
i i

g x
 

  . 

 

(11) 

 

This formulation presents several advantages. First it is linear and simple. Second, 

it does not eliminate any a priori feasible direction for model (10) since the constraint is 

only a normalization of the reference vector. And third, it makes comparable the 

solution of model (10), the optimal value of  , with the value of the most usual 

directional input distance function with 0 0i iG X g x   , 1,...,i m  , as in this case 

the sum of the components of the reference vector coincides with 0
1

m

i
i

x

 . In other 

words, both reference vectors have the same size. Note, however, that model (10) 
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enhanced with (11) is not linear. Fortunately, it may be transformed into a linear model 

by adopting the following change of variables: i ig  , 1,...,i m . 
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(12) 

 

Proposition 5. Let  * *,   be an optimal solution for (12). If    *
0, ,C Y W C Y W , 

then  * * *, ,G   with 
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* 1
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
 and * * *G    is an optimal solution of (10) plus 

(11). 

Proof. If  * *,   is an optimal solution of (12), then  * * *, ,G   with 

*
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 and 

* * *G    is a feasible solution of (10) satisfying (11). Note, in fact, that *G  is well-

defined because * 0   since, by hypothesis,    *
0

1

, , 0
m

i i
i

w C Y W C Y W


    

and 0iw  , 1,...,i m  . Let us now assume that  * * *, ,G   is not an optimal 

solution of (10) plus (11). Then there exists a feasible solution  , ,G   such that 

*  . Now, it is not hard to prove that  ,   with i i ig  , 1,...,i m  , is a 
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feasible solution of (12). But then, regarding the objective function value of model (12), 

we have that 1
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, which is 

the contradiction we were seeking. ■ 

On the other hand, the standard directional input distance function with 0G X  

has the property of yielding technical inefficiency measures between zero and one. 

This desirable property is retained by the new approach as the following result 

establishes. 

Proposition 6. Let  * * *, ,G   be an optimal solution of (10) plus (11), then 

*0 1  . 

Proof. (i) *0   is trivial by the constraints of (10). (ii) Let us assume that * 1.   

Then if we sum the first m constraints of model (10) we have that 

 * * * *
0 0

1 1 1 1 1

1
m n m m m

j ij i i i
i j i i i

x x g x  
    

        using (11). But then *

1 1

0
m n

j ij
i j

x
 

  

because  *1 0  . However, we get a contradiction with the fact that * 0j  , 

1,...,j n , and 0ijx  , 1,...,j n , 1,...,i m . Consequently, * 1.   ■ 

We now apply model (12) to the dataset portrayed in Figure 1. Resorting to the 

standard directional input distance function with 0G X  for evaluating  0 3,6X  , the 

projection on  0IsoqL Y  coincides with point D. In this situation, as previously shown, 

   *
0 0 0 0 0, , , , , ,RAI X Y W X AI X Y W X . However, solving (12) we obtain that *

1 2   

and *
2 0   and, therefore, by Proposition 5 the reversed directional input distance 

functiontechnical inefficiencyequals  *
0 0, , , 0.222R

iD X Y Y W 


 with *
1 9g   and 

*
2 0g  , being in this particular case E the final projected benchmark. The main 

difference between both approaches is that the reversed directional input distance 

function keeps allocative inefficiency constant: 

   * * *
0 0 0, , , 0.467 , , ,RAI X Y W G AI X Y W G  . 
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4. A numerical example 

This section includes a numerical illustration of the use of the methodology 

proposed in this paper. We are particularly interested in showing that we may find 

substantial differences between the estimation of the technical inefficiency obtained 

when considering the usual directional input distance function with 0G X or, 

equivalently, the traditional BBC model, and that obtained when implementing the new 

approach. This issue is quite relevant when decomposing cost inefficiency for non-

homothetic technologies as researchers ignore the output level targeted by the firms. 

To illustrate the discrepancy between the standard and reversed approaches we use 

the data already explored in Ray (2004, pp. 222-223). A set of 51 production 

observations are assessed: 50 US states plus Washington D.C.. The production is 

characterized by one output, Gross value of production, and six inputs, Production 

workers (L), nonproduction workers or employees (EM), buildings and structures (BS), 

machinery and equipment (ME), materials consumed (MC) and energy (ENER). 

The efficiency analysis performed by applying the standard input-oriented BCC 

model yields 17 technically efficient observations with a score of 1. Consequently, 34 

states are found inefficient and our analysis focuses on the estimation of the technical 

inefficiency of these observations (see Table 1). Regarding the application of the 

reversed directional input distance function, we perform the steps described in Section 

3. First, we solve (9) for each unit. In this way, we determine an output level *Y  such 

that the evaluated 0X  lays on the frontier of its corresponding input requirement set 

 *L Y . In this respect, for some observations we find significant differences between 

both possible target output levels *Y  and 0Y . Afterwards, we calculate the minimum 

cost of producing both 0Y  and *Y , denoted as  0,C Y W  and  *,C Y W , respectively. 

Finally, we determine the allocative inefficiency-preserving estimation of technical 

inefficiency, which is solved through (12). Table 1 reports, for all technically inefficient 

units, all these values and, additionally, the optimal reference vector G  obtained from 

(10) plus (11). Finally, in the last set of columns we show the optimal value of the 

reference vectors that yield the projections on each corresponding isoquant of  0L Y  

associated with the reversed directional input distance function. 
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Table 1. Results for the numerical example 

Firm *
0  

DDF 
G=X0 

Y0 Y* C(Y0,W) C(Y*,W) 
New 
DDF 

gL gEM gBS gME gMC gENER 

1 0.907 0.093 8.257 9.141 5.285 5.944 0.142 0.000 0.000 0.000 0.261 4.240 0.017 

3 0.919 0.081 5.384 5.897 3.176 3.574 0.150 0.025 0.000 0.000 0.000 4.487 0.006 

4 0.969 0.031 8.771 9.053 5.614 5.822 0.041 0.000 0.000 0.000 1.133 3.385 0.000 

5 0.973 0.027 5.933 6.120 3.802 3.950 0.053 0.000 0.000 0.000 1.689 2.829 0.000 

6 0.924 0.076 5.513 5.986 3.298 3.665 0.138 0.000 0.000 0.000 0.094 4.424 0.000 

10 0.978 0.022 3.926 4.060 2.269 2.294 0.013 0.000 0.000 0.000 3.431 1.087 0.000 

11 0.926 0.074 9.288 10.078 6.076 6.670 0.117 0.000 0.000 0.000 0.198 4.320 0.000 

13 0.873 0.127 5.875 6.794 3.480 4.114 0.173 0.000 0.000 0.000 0.000 4.449 0.069 

14 0.910 0.090 8.406 9.050 5.664 6.167 0.117 0.000 0.000 0.000 0.343 4.175 0.000 

15 0.939 0.061 11.353 11.822 8.117 8.497 0.064 0.000 0.000 0.000 0.977 3.541 0.000 

17 0.952 0.048 10.408 10.838 7.095 7.445 0.059 0.000 0.000 0.000 0.354 4.164 0.000 

20 0.966 0.034 5.312 5.525 3.260 3.427 0.049 0.000 0.000 0.000 0.000 4.411 0.107 

21 0.916 0.084 7.150 7.842 4.708 5.241 0.155 0.000 0.000 0.000 0.287 4.231 0.000 

22 0.978 0.022 6.403 6.486 4.190 4.257 0.024 0.000 0.000 0.000 4.081 0.437 0.000 

23 0.967 0.033 9.628 9.861 7.109 7.301 0.036 0.000 0.000 0.000 1.764 2.754 0.000 

24 0.911 0.089 7.221 8.007 4.618 5.224 0.162 0.000 0.000 0.000 0.307 4.210 0.000 

25 0.936 0.064 8.736 9.345 5.507 5.951 0.090 0.000 0.000 0.000 0.468 4.050 0.000 

26 0.991 0.009 9.273 9.335 6.146 6.193 0.009 0.000 0.000 0.000 0.000 4.518 0.000 

30 0.967 0.033 4.836 4.993 2.877 3.003 0.062 0.000 0.000 0.000 0.718 3.800 0.000 

31 0.998 0.002 6.541 6.558 4.240 4.254 0.005 0.000 0.000 0.000 0.000 4.518 0.000 

33 0.933 0.067 5.712 6.147 3.552 3.893 0.130 0.015 0.000 0.000 0.000 4.502 0.001 

35 0.902 0.098 5.286 5.932 2.890 3.366 0.142 0.000 0.000 0.000 0.285 4.233 0.000 

36 0.926 0.074 10.023 10.648 7.122 7.630 0.098 0.000 0.000 0.000 0.075 4.441 0.002 

37 0.978 0.022 7.410 7.594 4.745 4.885 0.035 0.000 0.000 0.000 0.000 4.518 0.000 

38 0.932 0.068 4.714 5.125 2.698 3.010 0.102 0.017 0.000 0.000 0.000 4.402 0.099 

39 0.905 0.095 7.693 8.518 5.079 5.722 0.162 0.007 0.000 0.000 0.003 4.494 0.014 

40 0.977 0.024 3.557 3.672 2.282 2.306 0.015 0.000 0.000 0.000 0.000 4.518 0.000 

41 0.942 0.058 10.818 11.267 7.327 7.693 0.066 0.000 0.000 0.000 1.161 3.357 0.000 

42 0.991 0.009 6.780 6.827 3.910 3.944 0.008 0.000 0.000 0.000 0.306 4.212 0.000 

43 0.963 0.037 10.077 10.473 6.751 7.071 0.062 0.000 0.000 0.000 0.696 3.822 0.000 

44 0.948 0.052 9.822 10.385 6.599 7.036 0.076 0.000 0.000 0.000 0.341 4.177 0.000 

45 0.879 0.121 6.167 7.130 3.643 4.362 0.179 0.037 0.000 0.001 0.036 4.391 0.052 

48 0.988 0.012 8.536 8.658 5.844 5.939 0.018 0.000 0.000 0.000 0.000 4.518 0.000 

50 0.929 0.071 8.785 9.444 5.860 6.367 0.112 0.000 0.000 0.000 0.091 4.427 0.000 
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 The first result to be highlighted is the large differences between the standard 

directional input distance function and the technical inefficiency obtained from the new 

reversed approach. Indeed, we find statistically significant differences between the 

technical inefficiencies estimated by both methods (p-value = 4.319·10-8 running a 

Wilcoxon signed rank test on two paired samples). The second result is that in contrast 

to the standard directional input distance function, where the reference direction is a 

priori fixed, the new approach allows to know the main inputs responsible for technical 

inefficiency, as the individualized directions show what inputs must be reduced and the 

magnitude of such reduction. In this example, we obtain that the direction is mainly 

driven by ME (machinery and equipment) and MC (materials consumed), resulting in 

the most important sources of pure technical inefficiency.  

Finally, it is clear that in the case of non-homothetic technologies, the overall cost 

efficiency decomposition is quite different depending on whether one is willing to 

assume that inefficient firms incur in input excesses when producing 0Y  from 0X  (the 

standard approach), or, alternatively, as this is unknown to the researcher, fall short of 

producing *Y  (the reverse approach). Our findings show that the difference between 

the results obtained by both approaches increases as the gap between the two 

possible target outputs gets larger. This is quite relevant when prescribing strategies 

aimed at improving both technical and allocative efficiency, since both the reductions in 

the observed input levels might not be equiproportional, but rather restricted to some 

particular inputs as in the example, and also the cost minimizing input mix may not be 

that corresponding to 0Y  but *Y . It is apparent that in the most realistic case of non-

homothetic technologies, researchers should make an effort to determine the intended 

output level of every individual firm lying inside the production possibility set since this 

information is critical when choosing the proper cost efficiency decomposition, and 

advice managers on what are the relevant sources of inefficiency and how to solve 

them.  

5. Conclusions 

Standard economic efficiency analysis assumes homothetic technologies when 

decomposing overall efficiency accounting for technical and allocative criteria. This 

assumption is rather convenient because it allows researcher to bypass the lack of 

information on whether inefficient firms use inputs in excess or fall short from a target 

output, which is critical to determine the firms’ allocative efficiency with respect to the 

cost minimizing input bundle. When the technology is homothetic allocative efficiency is 
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the same despite the output level that is considered for its measurement, and we show 

that the directional input distance function with 0G X and equivalently the 

traditional radial distance functionscan be correctly interpreted as measures of 

technical efficiency, thereby yielding a consistent decomposition of overall efficiency 

into allocative and technical components. In particular, we show that only under 

constant returns to scale technologies producing a single output one can claim that 

these models measure true technical efficiency. Unfortunately the homotheticity 

assumption is quite restrictive from a theoretical perspective and generally untenable in 

empirical works. 

The directional distance function constitutes the analytical tool that finally allows 

breaking the straight jacket represented by the classical and restrictive framework of 

the radially based decomposition of cost efficiency, and extend it to the case of non-

homothetic technologies. The cornerstone for a correct decomposition of economic 

efficiency is the need for a flexible measure of technical efficiency that preserves 

allocative efficiency unchanged when prescribing reductions in the observed input 

vector. Resorting to Bogetoft et al. (2006) we are able to measure the starting 

allocative efficiency of interior points of the technology and, following the rationale 

behind a correct technical efficiency interpretation, the same allocative estimation must 

be observed at the final projected benchmark.  

Based on these findings we conclude that all empirical work adopting the popular 

Data Envelopment Analysis models of constant (in the multiple output case) and 

variable returns to scale is prone to important errors of interpretation with regard to the 

sources of cost inefficiency, as these models characterize non-homothetic technologies 

where allocative efficiency depends on the chosen output level. In this case the value 

of the radial distance functions could be interpreted as an undetermined mix of sources 

of inefficiency instead of an estimate of true technical efficiency as traditionally 

assumed. Our new methodology overcomes these limitations by allowing the definition 

of consistent standard and reversed decompositions of cost efficiency that can be 

applied for every individual firm if information on its targeted level of output were 

available.  

 We illustrate our concerns regarding the limitations of the traditional decomposition 

based on radial distance functions and the new methodology using a numerical 

example. We show that for technically inefficient observations, substantial differences 

arise when decomposing cost efficiency by applying the standard non-homothetic BBC 

model, and that obtained when the new reversed approach is implemented. As a result, 
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the alternative strategies that firms may undertake so as to improve their economic 

performance based on both allocative and technical criteria would be substantially 

different, and the decision making process informed by researchers may be misleading 

if information of the intended output levels is not at hand; particularly with respect to the 

reduction of the observed vector of inputs.  While the standard approach prescribes 

equiproportional reductions that do not alter the input mix, the new approach may call 

for individual adjustments.     

In summary, it can be concluded from our analysis that researchers must keep in 

mind that in theusualcase of non-homothetic technologies, both the standard and 

reverse approaches yield different results, and that further information on the target 

output levels need to be brought into the analysis so as to correctly choose the 

appropriate method, and attain a consistent decomposition of overall cost efficiency. 

 

Acknowledgements. This research has been supported by the Ministerio de Ciencia e 

Innovación, Gobierno de España, under grants ECO2011-25349, as well as by the 

Conselleria de Educacion, Generalitat Valenciana, under grant ACOMP/2012/144. 

  



28 
 

References 

Banker, R.D., Charnes, A. and Cooper, W.W. (1984) Some models for estimating 

technical and scale inefficiencies in data envelopment analysis. Management 

Science 30(9): 1078–1092. 

Bogetoft, P., Färe, R. and Obel, B. (2006) Allocative efficiency of technically inefficient 

production units. European Journal of Operational Research 168: 450–462 

Briec, W. and Lesourd, J.B. (1999) Metric distance function and profit: some duality 

results. Journal of Optimization Theory and Applications 101(1): 15–33. 

Briec, W. and Garderes, P. (2004) Generalized benefit functions and measurement of 

utility. Mathematical Methods of Operations Research 60(1): 101–123. 

Chambers, R.G., Chung, Y. and Färe, R. (1996) Benefit and Distance Functions. 

Journal of Economic Theory 70: 407–419. 

Chambers, R.G. and Mitchell, T. (2001) Homotheticity and Non-Radial Changes. 

Journal of Productivity Analysis 15: 31–39. 

Charnes, A., Cooper, W.W. and Rhodes, E. (1978) Measuring the efficiency of decision 

making units. European Journal of Operational Research 2/6: 429–444. 

Debreu, G. (1951) The coefficient of resource utilization. Econometrica 19(3): 273–292. 

Färe, R. and Lovell, C.A.K. (1978) Measuring the Technical Efficiency of Production. 

Journal of Economic Theory 19: 150–162. 

Färe, R., Grosskopf, S. and Whittaker, G. (2013) Directional output distance functions: 

endogenous directions based on exogenous normalization constraints. Journal of 

Productivity Analysis 40(3): 267–269. 

Farrell, M.J. (1957) The measurement of productive efficiency. Journal of the Royal 

Statistical Society, Series A, General 120: 253–281. 

Jacobsen, S.E. (1970), “Production correspondences,” Econometrica, 38(5), 754-768. 

Lovell, C.A.K. and Pastor, J.T. (1995) Units invariant and translation invariant DEA 

models. Operations Research Letters 18: 147–151. 

Shephard, R.W. (1953) Cost and Production Functions. Princeton Univ. Press. 



29 
 

Zofio, J.L., Pastor, J.T. and Aparicio, J. (2013) The directional profit efficiency measure: 

on why profit inefficiency is either technical or allocative. Journal of Productivity 

Analysis 40(3): 257–266. 


