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Distribution companies that serve a very large number of customers, courier com-
panies for example, o�en partition the geographical region served by a depot into
zones. Each zone is assigned to a single vehicle and each vehicle serves a single
zone. An alternative approach is to partition the distribution region into smaller
microzones that are assigned to a preferred vehicle in a so-called tactical plan.
When the workload in each microzone is known, the microzones can be reassigned
to vehicles in such a way that the total distance traveled is minimized, the work-
load of the di�erent vehicles is balanced, and as many microzones as possible are
assigned to their preferred vehicle.

In this paper we model the resulting microzone-based vehicle routing problem as a
multi-objective optimization problem and develop a simple yet e�ective algorithm
to solve it. We analyze this algorithm and discuss the results that it obtains.

Key words: Variable neighborhood tabu search, workload balancing, metaheuris-
tics, multi-objective optimization, vehicle routing, courier companies.
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1 Introduction

Following the example of FedEx, many courier companies now organize their distribution sys-
tem as a hub-and-spoke model (see FedEx (2006), Rodrigue et al. (2006), Waldheim and Berger
(2008) and Lyster (2012)). In this model, vehicles collect parcels and bring them to the nearest
depot where they are consolidated and transported, through a chain of hubs, to the depot clos-
est to their �nal destination. From this �nal depot, the parcels are brought to their destination
by vehicles performing so-called milk-runs.

�is paper focuses on the last step: the delivery process from the �nal depot of a courier com-
pany to the end customers. On a daily basis, courier companies face a vehicle routing problem
(VRP) that is not only among the largest in the logistics industry, but also highly dynamic. It is
not uncommon for a courier company to execute several thousand stops from a single depot,
using several hundred vehicles. Additionally, the list of pick-up locations changes throughout
the day as customers call to order the pick-up of a parcel, and the list of drop-o� locations is
only available a very short time before the vehicles leave the depot. In order to deliver these
parcels in an e�cient manner, route planning so�ware could in theory provide e�cient solu-
tions, but experience shows that such so�ware is rarely used in practice.

�e fact that the distribution planning process in many courier companies is not automated
can be ascribed to a number of reasons. Firstly, correct data on exact drop locations is o�en
lacking, i.e., customer addresses can be incomplete due to sloppy writing, carelessness, or lack
of information on behalf of the sender. Because deciphering these addresses is best done by
people with an understanding of the geographical distribution region, this task is o�en le�
to the drivers or to other people in the �nal depot. Couriers therefore lack the possibility to
generate the routes algorithmically without considerable investment in a centralized address-
scanning-and-correcting service. Secondly, conventional route planning so�ware requires all
data to be available and correct before a �nal routing plan can be built. �is implies that pro-
cesses that depend on the �nal route plan, such as sorting and loading parcels into the correct
vehicles, have to wait until all order entries are known. As this would extend the delivery time,
one of the main competitive factors for a courier, it is considered an una�ractive option.

As the surplus in route e�ciency achieved by route planning so�ware would not compensate
for the increased delivery time and the loss of �exibility, couriers rely on more stable organi-
zational structures for the distribution of their parcels. A popular technique to deal with this
�exibility requirement is to partition the area serviced from the depot into regions, usually one
per vehicle. All customers that fall within a region are then assigned to the vehicle this region
belongs to, which implies that the sorting of parcels per vehicle can start as soon as the parcel
arrives at the depot. �e �nal routing, i.e., determining the order in which to visit the customers
in his1 region is then le� to the driver. �is way of working has the additional advantage that
a driver has the possibility to get acquainted with his region.

1To avoid awkward formulations like his/her, we will refer to drivers in the masculine form and decision-
makers/planners in the feminine form.
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Figure 1: �e parcel distribution process from the arrival of the parcels, until the departure of the vehicles.

Figure 1 shows the parcel distribution process from the arrival of the parcels, until the departure
of the vehicles. �e le� image, shows the time consumed if all parcels are processed based on
their destination address. �e right image, shows the time consumed if parcels are processed
based on zones. �e sorting of the parcels can start much earlier, which results in a reduction
of time from the arrival of the parcels until the departure of the vehicle.

In case of workload imbalances or vehicle capacity violations, drivers are sometimes allowed
to swap individual packages among themselves. For this reason, the physical layout of the
distribution depot sometimes resembles that of the geographical delivery region, in the sense
that vehicles that serve adjacent routes are stationed close to each other.

To diminish the main disadvantage of zone-based organization — the limited possibility to
automate the planning process — several authors have proposed an alternative method, in
which the geographical region is divided into smaller zones (“microzones”). In practice, each
microzone corresponds to a bin or container into which the parcels can be dropped at the
moment they arrive at the �nal depot.

To ensure stability in the planning, the preferred assignment of microzones to vehicles is �xed
in a tactical plan. When an estimate of the workload in each microzone becomes available,
the microzones are reassigned to the di�erent available vehicles, with a preference for the
vehicle they are assigned to, in the tactical plan. In this paper, we present an approach to
assign microzones to vehicles and determine the order in which the microzones should be
traversed. We model this problem as a tri-objective vehicle routing problem and develop an
e�cient multi-objective metaheuristic to solve it.

�is paper is organized as follows: Section 2 gives a short literature overview, followed by the
problem delineation in Section 3. Section 4 elaborates on the approach we used, the neighbor-
hoods that are explored and the algorithm we developed. Finally Section 5 presents the results
of our experiments. Our �ndings and conclusions as well as our ideas on future research are
posed in Section 6.

2 Literature review

Although the microzone concept has been described by di�erent names (“zones”, “cells”, “core
areas”, “�ex zones”), the advantages of using microzones as building blocks for routes in large-
scale vehicle routing problems have been recognized by several authors (Mourgaya, 2004;
Mourgaya and Vanderbeck, 2006, 2007; Zhong et al., 2007). A complete application of this
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concept requires solving several challenging problems (Expósito Izquierdo et al., 2013): (1) cre-
ating robust microzones, (2) assigning microzones to routes in a tactical plan, (3) estimating
the workload in each microzone and each route (Daganzo, 1984), (4) reassigning microzones to
vehicles in balanced routes on an operational level, and (5) determining the �nal route planning
within the microzones.

In this overview we focus on the fourth challenge, the operational assignment of microzones to
vehicles and the sequencing of the microzones for each vehicle, taking into account the tactical
plan. Previous research has focused on the use of a tactical assignment of zones to routes
with the purpose of balancing these routes and allowing drivers to familiarize themselves with
certain parts of their tours. Less variability allows drivers to gain experience in their region
and improve the relationship with regular customers (see Kunkel and Schwind (2012)).

In this research we tackle this problem, by using a multi-objective approach. More speci�cally,
we address the problem of transforming unbalanced tactical route plans into balanced and
feasible routes, where the imbalance in the tactical plan is due to the stochastic nature of the
problem.

Both Zhong et al. (2007) and Mourgaya (2004) try to improve package delivery under uncer-
tainty by building a robust dispatching system, which determines �exible routes, with more
familiar drivers in order to provide be�er service and lower costs. Ouyang (2007) has done
research concerning the design of zones for large-scale distribution systems.

�e method proposed in Zhong et al. (2007) tries to �nd a balance between driver familiarity
with a zone, this can be accomplished by assigning the same driver to the same service area each
day, and the �exibility to optimize dispatch plans on a daily basis, which is accomplished by
adjusting the number of vehicle routes, and maximizing driver utilization. �ey propose using
core areas, which are serviced by the same driver every day, in combination with a �ex zone and
unassigned zones, where customers are serviced by a di�erent driver on daily basis depending
on the utilization of the vehicles in the neighborhood of that cell. �e authors further develop a
constructive heuristic in which cells are added to the partial routes, minimizing time duration
of the routes, and taking into account driver familiarity with a cell.

Similar to portfolio management, where combining uncorrelated assets leads to a lower port-
folio risk (see Bodie et al. (2005)), to decrease the imbalance of the work load for each vehicle
in the tactical plan, a combination of zones will be taken (as the work load for the zones is not
correlated).

Mourgaya and Vanderbeck (2006) approach a multiperiodic problem by using a tactical plan
optimizing both the work load balance as the regionalization of the routes. �ey cluster clients
based on the distance between them. �e clustering is based on well known classi�cation
models.

Several papers have tackled the issue of workload balancing between the vehicles of a vehicle
routing problem (Liu et al., 2006; Nikolakopoulou et al., 2004; Santiago et al., 2013).

Like many related problems found in the literature, the problem developed in this paper is
a multi-objective optimization problem. Unlike single objective optimization, multi-objective
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optimization leads to a set of solutions known as the Pareto optimal set. �is set consists of
non-dominated solutions, i.e., solutions for which no other solution exists that has at least the
same performance on all objectives and a be�er performance on at least one. For a more formal
de�nition of dominance we refer the reader to Jozefowiez et al. (2008b).

For multi-objective combinatorial optimization problems (MOCO) like the problem solved in
this paper, �nding the e�cient frontier by means of exact methods, is computationally very
expensive and sometimes even impossible (Caballero et al., 2007; Zhiping and Yuxing, 2010).
For that reason, metaheuristic algorithms become an a�ractive choice (Ehrgo� and Gandibleux,
2000). For courier companies, �nding a small set of good solutions in short computing time is
more important than �nding the optimal Pareto set.

A common approach to approximate the Pareto set in multi-objective optimization problems,
is to optimize the (convex) weighted sums of objectives for varying weights (Konak et al., 2006;
Marler and Arora, 2004)). �e main drawback with this varying weights approach is that not
all Pareto optimal points can be found when the Pareto front is not convex, i.e., it only �nds
the solutions on the convex hull of the optimal Pareto set (see Geiger (2008) and Jozefowiez
et al. (2008a)). Nevertheless, with regard to our goal, it remains an a�ractive technique as
it is straightforward, guarantees that the solutions converge towards the Pareto-front, and is
computationally e�cient (Konak et al., 2006). Another important advantage is that it allows
employing single-objective heuristics or meta-heuristics. Using di�erent weight combinations
will guide the search in di�erent directions, leading to a more diversi�ed result set, which is
either the true shape of the Pareto-optimal set, or a convex approximation of it (see Caramia
and Dell’Olmo (2008) and Jozefowiez et al. (2008a)). �e use of a di�erent multi-objective op-
timization method, or a true multi-objective meta-heuristic could be helpful to give a be�er
estimate of the real Pareto set (Geiger, 2008).

�e methods de�ned in Zhong et al. (2007) and Mourgaya and Vanderbeck (2006) use a con-
structive heuristic to create the tactical and operational plan. �e focus, however, is more on
the creation of the tactical plan. In this paper we will present a heuristic where the focus is
more on rebalancing an existing tactical plan.

To compare di�erent Pareto optimal sets, we will make use of the hypervolume (see Okabe
et al. (2003)). �e hypervolume for two or three objectives can be seen respectively as the
area or volume between a reference point and the Pareto-front. Zitzler de�ned it as the size
of the dominated space (see Zitzler and �iele (1998, 1999)). �is means that the larger the
hypervolume, the closer the found solution set is to the theoretical optimal solution set.

3 Problem definition

�e vehicle routing problem developed in this paper is de�ned on a graph G = {So, E}. �e
nodes of this graph represent the microzones, i.e., geographically distinct regions that are part
of the distribution area. �e set of microzones is labeled S. An extra node represents the depot
o, from which all vehicles depart and where they all arrive. Together, the microzones and the
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depot form the set So = S ∪ {o}. A set of vehicles V is also given, where |V | = R is the number
of available vehicles. A tactical plan is given, in which each microzone is assigned to exactly
one vehicle. �is is represented by the parameter ȳik which is 1 if microzone i ∈ S is assigned
to vehicle k ∈ V in the tactical plan and 0 otherwise. �e working time ci in a microzone i
is a number that represents an estimate of the time to deliver all parcels in that microzone
and includes the (estimated) intra-zone driving times. �e edges in the edge set E of graph G
represent the travel between zones. �e time a vehicle takes to drive between microzones i
and j is represented as cij . We use the travel time between the center points of micro zones
as an estimate for this driving distance. It is a rough estimate but it will stay constant as long
as the same microzones are considered. �e real driving distance can vary a lot based on the
distribution of the points inside a microzone, and based on the position where the microzone
is entered.

�e aim of the problem is to �nd an operational route plan, i.e., an assignment of microzones
to vehicles, as well as an order in which each vehicle should visit the microzones assigned to
it. An operational route plan is determined by decision variables yik which take a value 1 if
microzone i is assigned to vehicle k and 0 otherwise, and xij , which is 1 if a vehicle travels
directly between microzones i and j and 0 otherwise.

�is problem has three objectives:

• Objective 1 - Minimize total transportation cost: measured by total travel time.

min f1 =
∑
i∈So

∑
j∈So

cijxij (1)

• Objective 2 - Minimize deviation from tactical plan: measured by counting the re-
gions that are assigned to a di�erent vehicle.

min f2 = 1
2
∑
i∈S

∑
k∈V
|yik – ȳik| (2)

• Objective 3 -Minimize workload imbalance: measured by the square root of the sum
of the squared deviations from the average route time.

min f3 =
√

1
V

∑
k∈V

(lk – 1
V

∑
k∈V

lk)2 (3)

where lk is the workload of vehicle k and is de�ned as lk =
∑
i∈So

∑
j∈So

yikxijcij +
∑
i∈So

yikci

∀k ∈ V .
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For each vehicle k, its total working time in the operational route plan is limited to a pre-
speci�ed value.

∀k ∈ V : lk ≤ C (4)

For reasons of simplicity, we assume in this paper that both the preferred working time and
the maximum allowed working time are the same for all vehicles (drivers), something which is
de�nitely not the case in real life. However, the model can be easily adapted to such situations.
�e constraint in Equation 4 can be changed to have a di�erent maximal working time per
vehicle by replacing the global constant C with a maximal allowed working time per vehicle
Ck . Objective 3, the minimization of the workload imbalance, can be modeled in di�erent ways
when working times are variable. One way is to minimize the workload imbalance separately
for di�erent values of expected workload (e.g., 8h and 4h). Another way would be to normalize
the data, i.e., divide lk by Ck and minimize the sum or squared sum of deviations of lk/Ck
from 1.

Another assumption of our model is that the vehicles are not capacity-constrained. �is is a re-
alistic assumption, given that many courier companies only distribute relatively small parcels,
le�ers, etc.

Except for the two additional objectives, the problem developed in this paper is a distance-
constrained vehicle routing problem (without capacity constraint). In the next section, we
develop an e�cient algorithm for this problem.

4 Methodology

In this section we develop a simple yet e�ective metaheuristic to solve the multi-objective
vehicle routing problem described in Section 3. �e algorithm presented in this paper is able to
produce a set of non-dominated solutions, and it is le� to the decision maker to pick the �nal
solution she decides to implement.

Our algorithm constructs a new routing plan for the multi-objective VRP by iteratively apply-
ing a multi-neighborhood tabu search heuristic to a weighted exponential sum of the objective
functions discussed in Section 3. �is heuristic uses a set of problem-speci�c operators to e�-
ciently search for high-quality solutions.

To e�ciently evaluate intermediate solutions generated using the tabu search heuristic, a weighted
exponential sum of normalized values of the tree objective functions is used:

f (x) =
[
w1f n1 (x)P + w2f n2 (x)P + w3f n3 (x)P

] 1
P (5)

where w1 + w2 + w3 = 1.
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By varying the weights of the weighted exponential sum, the tabu search heuristic is forced to
explore di�erent areas of the search space, resulting in diverse solutions. Moreover, the value
of P allows to adjust the curvature of the objective function, which results in a be�er �t with
the Pareto front, and which allows to capture non-convex Pareto points (Marler and Arora,
2004; Messac et al., 2000a,b). �is type of objective function is easy to implement, and allows
to prioritize certain types of solutions by changing the values of the weights.

If the value of P is not large enough, however, not all Pareto-optimal points can be found when
the Pareto front is not convex. Nevertheless, with regard to our goal, it remains an a�ractive
technique as it is straightforward and computationally e�cient.

4.1 Neighborhoods

Like a majority of e�cient algorithms to solve vehicle routing problems, our variable neigh-
borhood tabu search uses several di�erent neighborhoods to escape from local optima and
overcome the myopic behavior of a single neighborhood.

To speed up the search process, the moves are restricted to operate on so-called “natural neigh-
bors”. Natural neighbors are de�ned as nodes that are connected in a Delauney triangulation
of the original fully connected graph on which the problem is de�ned. �e Delaunay triangula-
tion was �rst de�ned by Delaunay (1934) as a triangulation of the points in the system, in such
a way that the circumcircle of any triangle does not contain any other points of the system.

We consider only euclidean instances in this paper. If other instances are to be considered, a
projection can be made into euclidean space and the Delaunay triangulation can be performed
on that projection. If no projection can or should be made, another method to �nd nearest
neighbors is to be used. One possibility is to use the distance matrix to select k nearest neigh-
bors to evaluate.

An alternative procedure to restrict the search space of the neighborhood operators, would be
to limit the moves to pairs of microzones that are not more than a certain maximum distance
apart. �e main drawback of this approach is that this maximum distance needs to be deter-
mined, an arbitrary decision which may be di�cult when the nodes are not evenly spaced. In
such situations, microzones corresponding to remote areas may feature in much fewer moves
than microzones in busy urban regions. �e Delauney triangulation does not have this draw-
back.

Krasnogor et al. (1995), Lau and Shue (2001) are examples of papers in which the Delauney
triangulation is used in the same manner as in this paper, i.e. to restrict the search space of the
neighborhood operators. For an example of a Delaunay triangulation see Figure 2.

�e di�erent moves that are used to explore the solution space are illustrated in Figure 3:

• �e relocate move transfers a microzone from one tour to the position immediately a�er
one of its natural neighbors in another tour. Natural neighbors inside the same tour are
not regarded.
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Figure 2: Delaunay triangulation to �nd natural neighbors

• �e swap move exchanges two microzones that are natural neighbors and in di�erent
tours.

• �e 2-opt move cuts two arcs, each arc between two natural neighbors, and reconnects
the solution.

4.2 A variable neighborhood tabu search algorithm

A general outline of our algorithm is presented in Algorithm 1. As mentioned, the aim of
this paper is not to develop a state-of-the-art multi-objective metaheuristic, but to provide
a simple and transparent heuristic that can be used to illustrate the multi-objective vehicle
routing problem.

Algorithm 1: Diversi�cation and storage sequence
Let wi ∈ [0, 1], be the weight for objective i, with step size ∆t = 0.1 ;
Initialization - calculate an initial solution given the assignment of microzones to vehicles of
the tactical plan;
for all combinations of wi |

∑n
i=1 wi = 1 do

Do tabu search ;
Store solution in the solution archive A ;

Filter A ;
Return A ;

�e tactical plan is used as a starting point for the multi-objective variable neighborhood tabu
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Relocate Swap 2-opt

Figure 3: Examples of the di�erent moves used in the variable-neighborhood tabu search algorithm

search in the sense that the initial solution is determined by assigning all microzones to their
preferred vehicle and then calculating a traveling salesperson solution per vehicle.

For each combination of weights wi which sum up to 1, and which vary in steps of 0.1, an
iteration of the variable neighborhood tabu search is executed, starting from the initial solution.
�e varying weight combinations will guide the search in di�erent directions, leading to a more
diversi�ed approximation of the Pareto set.

�e result retrieved from the tabu search routine is stored in a solution archive A, which is kept
in memory until the end of the program. �is solution archive is �ltered before it is returned
to the decision maker. �e �ltering step will remove all solutions from the archive that are
dominated by another solution, only accepting non-dominated solutions.

Moves are executed using a “best-improvement” strategy. �e tabu list is a list of moves that
has been executed in the last t iterations of the tabu search procedure, and each neighborhood
has its own tabu list. In a limited pilot experiment, it was established that a value of t = 6
robustly resulted in high-quality solutions.

�e variable neighborhood tabu search algorithm (see Algorithm 2) is executed for every weight
combination that sums up to one. A solution vector V is created, and the algorithm keeps track
of the neighborhood it is exploring. Depending on the neighborhood, a certain move is exe-
cuted, and the respective tabu list is updated. If no improvement can be found, the algorithm
moves on to the next neighborhood. Otherwise, all solutions are evaluated using the weighted
exponential sum (see Equation 6) of the objective functions, and the best solution is used as
the starting solution for the next iteration.
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Algorithm 2: Variable neighborhood tabu search
Let V be the solution vector ;
Let N be the neighborhood tracker, initiate N = 0 ;
while N < 3 do

if N = 0 then
Do 2-opt and update tabu list ;

else
if N = 1 then

Do swap and update tabu list ;
else

if N = 2 then
Do relocate and update tabu list ;

if no improvement found then
Increase N

else
Store the current solution in V

Find best solution in V using weighted exponential sum of the objective values using wi;

f (x) =
[
w1f n1 (x)2 + w2f n2 (x)2 + w3f n3 (x)2

] 1
2 (6)

As it is not necessary, nor desirable to spend time capturing all Pareto optimal solutions, P is set
to 2. �is value for P gives a curvature of the objective function, and can enable the algorithm
to �nd more points on the Pareto front.

5 Computational results

5.1 Test instances

As stated before, the model assumes that a tactical plan is given, with known work times for
the microzones and known microzone-vehicle allocations. To test the algorithm described in
this paper extensively, a set of realistic test instances is generated. �e test instances comprise:
zones that are assigned to vehicles in a tactical plan, an initial routing for the tactical plan, a
limit in amount of work a vehicle (driver) can perform, the amount of work in the microzones
and the coordinates of the microzones in the distribution zone.

To construct the instances, microzones are generated in randomly distributed locations on a
square canvas (of size 1000 by 1000). To replicate city centers and industrial areas, or other
areas with a denser customer base than rural areas, the instances are generated in such a way

11



that 90% of the microzones are concentrated in clusters. �e locations of the remaining 10%
are uniformly generated.

To mimic the typical layout of a distribution area, microzone clusters are generated in such
a way that the center of the cluster is denser than the boundaries. �is models the fact that
houses in city centers are built closer to each other, and apartment blocks are more common.
To this end, the distance between a microzone and the center of the cluster it belongs to is
generated as an exponentially distributed variate with mean λ–1, a parameter which can vary
across di�erent clusters.

To obtain a tactical plan from this generated instance, the open-source VRP solver, VRPH
(Groer (2008)), is used to build routes using the microzones as customers and the distances
between those microzones as travel times. �ese routes determine the tactical assignment of
microzones to drivers.

In the generation of the tactical plan, the microzones are of equal workload. �is is a realistic
assumption as the generation of microzones for use in a tactical plan in a previous step in the
“tactical plan– operational plan” approach, would mean that they are robust and as close as
possible to equal workloads for known (historical) pick-up and delivery locations. Of course,
for the daily operational plan the workload in each microzone can vary. For this reason, the
operational demand in each microzone is generated as a single draw from a triangular distri-
bution. �e median of this triangular distribution is set equal to the tactical demand of the
microzone, its minimum and maximum are set to (100 – w)% and (100 + w)% of the tactical
demand respectively, where w is allowed to vary between 0 and 30.

�e instances used in this paper, which can be found onhttp://antor.ua.ac.be/ZVRP,
use the following naming syntax:

ZVRP <unique name> N<number of microzones> n<number of clusters> w<workload
deviation> M<maximum distance> L<lambda> case <case number>.csv

ZVRP refers to “zone-based vehicle routing problem”. �e unique name is used to di�erentiate
between instances where all other variables have identical values. �e maximum distance
refers to the size of the problem instance. �e values we have used for the di�erent parameters
in our generated instances can be found in Table 1. An example of an instance name generated
with a particular combination of values in the table and the unique name “full test” would be:

ZVRP full test N100 n0 w0 M1000 L20 case 0.csv

Parameter Min Max Step size
Number of microzones (N) 100 200 50
Number of clusters (n) 0 3 1
Maximum workload deviation (w) 0 30 5
Maximum distance (M) 1000 1000 0
Lambda (L) 20 20 0
Case number (case) 0 2 1

Table 1: Parameter values
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5.2 Results

�e variable neighborhood tabu search algorithm was run on 252 test instances, with number
of zones varying from 100 to 200 in steps of 50, the number of clusters from 0 to 3 in steps
of 1 and the maximum deviation in the work per zone from 0 to 30% in steps of 5%. �ree
di�erent instances of all combinations of the parameters are created. Since this is a novel
problem, no algorithms are available to compare the results. We therefore discuss the results
of our algorithm, which provide some insight into the structure of the problem. �e average
computational time needed for one instance is 4 minutes.

An example of a Pareto-front obtained using our method can be found in Figure 4. For an
increase in maximum workload deviation there is no visible in�uence on the shape of the
Pareto-front. In Table 2, we can see that the overall average percentage di�erence between
the best hypervolume for an instance and the other hypervolumes for that instance is only
3%, with a maximum of only 5%. �is shows that there are no big di�erences between the
di�erent Pareto sets we �nd for each instance. We can conclude that the maximum deviation
in workload (wx for x ∈ [0, 30], with step size ∆t = 5) has nearly no impact on the �nal Pareto
front obtained. Two possible explanations for this behavior come to mind. �e �rst one being
that the workload imbalance in microzones gets resolved by a good combination of microzones
(which would prove the usefulness of combining microzones for balancing workload between
vehicles). �e other possible explanation, that the amount of work inside a microzone is very
small in comparison to the time spent driving between microzones and that the impact of
di�erent workloads inside the microzones is therefore very small, can be ruled out. �e test
instances have been generated to ensure that, on average, more than 40% of a vehicle’s time is
spent inside the microzones.

�e initial solution used by the algorithm has li�le in�uence on the Pareto front found. In
Figure 5 the Pareto-fronts of the same problem instance, with di�erent start solution and one
tactical plan, are shown. �e �gure presents a few of the Pareto-fronts found for the di�erent
start solutions, and demonstrates that they are generally very close to one another. In Table 3,
the results are compared in terms of accuracy by using the hypervolume of the found Pareto
sets. Eighty four di�erent initial solutions have been tested. �e average deviation from the
best found Pareto set is 2.3%, showing that the method is relatively robust with respect to the
initial solution.

A closer look at the Pareto-fronts found by the algorithm reveals that there is a clear (inverse)
correlation between the total driving distance, the deviation of the average workload, and the
deviation from the tactical plan. As we try to minimize the deviation of the average workload,
it is obvious that a deviation of the operational solution from the tactical plan is inevitable.
In deviating from this tactical plan, the driving distance becomes larger. If the total driving
distance is minimized, the routes get more and more unbalanced, and we deviate to a greater
extent from the tactical plan.

Because of the technique used to deal with the multi-objective property of the problem, it is not
clear if this gives the true shape of the Pareto-optimal set, or just a convex approximation. �e
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Average % di�erence Maximum % di�erence standard deviation
hypervol N100 n0 case 0 1.39120959 4.5593267 1.46926533
hypervol N100 n0 case 1 1.39908527 5.18476163 1.80136414
hypervol N100 n0 case 2 0.65542098 1.47838684 0.54603236
hypervol N100 n1 case 0 1.6154032 3.46909848 1.36114729
hypervol N100 n1 case 1 2.80846146 4.33350565 1.47778115
hypervol N100 n1 case 2 1.5729616 2.74987602 0.9470098
hypervol N100 n2 case 0 1.27253838 2.29765852 0.77140121
hypervol N100 n2 case 1 1.12459149 1.91531304 0.65385443
hypervol N100 n2 case 2 0.67997033 1.60294863 0.60087508
hypervol N100 n3 case 0 2.13858032 4.10520786 1.54878545
hypervol N100 n3 case 1 1.02914402 1.60015808 0.57465281
hypervol N100 n3 case 2 0.6970578 1.13002656 0.40211289
hypervol N150 n0 case 0 0.52908273 1.08699574 0.41417231
hypervol N150 n0 case 1 0.83707682 2.09173963 0.81233216
hypervol N150 n0 case 2 1.44316261 2.30062232 0.72971846
hypervol N150 n1 case 0 3.1983654 5.2709399 1.98687116
hypervol N150 n1 case 1 0.8900108 2.36564545 0.76347774
hypervol N150 n1 case 2 1.24379315 3.34203259 1.1387423
hypervol N150 n2 case 0 0.77501097 1.12065471 0.37423947
hypervol N150 n2 case 1 1.09003271 1.74020572 0.60512264
hypervol N150 n2 case 2 1.29529657 3.26659511 1.07563041
hypervol N150 n3 case 0 2.79944405 4.82379488 2.11847038
hypervol N150 n3 case 1 1.21411829 1.90636768 0.6690894
hypervol N150 n3 case 2 0.87218235 3.02312758 1.01994804
hypervol N200 n0 case 0 1.8662516 3.88906161 1.27226784
hypervol N200 n0 case 1 0.87717255 2.81684605 0.9489694
hypervol N200 n0 case 2 0.96784812 1.61127854 0.52096437
hypervol N200 n1 case 0 1.13679859 1.66438088 0.57401662
hypervol N200 n1 case 1 1.18150358 2.00969119 0.69749246
hypervol N200 n1 case 2 1.1568058 3.47853499 1.24272541
hypervol N200 n2 case 0 0.73140137 1.44253571 0.5456957
hypervol N200 n2 case 1 2.51040143 3.62735226 1.18090497
hypervol N200 n2 case 2 0.53068883 1.74728851 0.63170498
hypervol N200 n3 case 0 0.98817476 1.66111 0.52113997
hypervol N200 n3 case 1 0.32124655 0.79793064 0.31569055
hypervol N200 n3 case 2 1.53883286 3.89912511 1.37660352

Table 2: Percentage di�erence in hypervolume for the same problem instances with di�erent deviations in the
amount of work in the zones.

Average di�erence 2.32464988
Maximum di�erence 15.03348506
Standard deviation 2.40892581

Table 3: Percentage di�erence in hypervolume with the best found Pareto set for di�erent start solutions and one
tactical plan
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Figure 5: �is plot displays the Pareto-front for di�erent initial solutions for a single instance with 200 microzones,
1 cluster and a maximum work load deviation of 15%. It shows that the initial solution only has a limited
e�ect on the Pareto front found. Every di�erent Pareto-set represents the solution set for a di�erent start
solution.

use of a di�erent multi-objective optimization method, or a true multi-objective meta-heuristic
could be helpful to give a be�er estimate of the real Pareto set.

Taking a look at the routes found by the algorithm proposed in this paper (see e.g., Figure 6),
however, it is clear that the decision maker should keep an eye on the routes she selects, and has
to make a keen assessment of the routes proposed. If she pushes the equality of the workload
to the lowest point possible, and by doing so relaxes the constraint on driving distance, she
has a high probability to �nd suboptimal routes. �e algorithm will try to balance the routes
in such a way that it does not regard the driving distance and hence will produce detours, just
for the sake of balancing the routes. A healthy balance of the three objective functions should
be maintained at all times. It is up to the decision maker to keep this balance, and selecting the
optimal route con�guration for her needs.

6 Conclusions and future resarch

In this paper, we have described a multi-objective vehicle routing problem faced by several
courier companies, and developed an algorithm to solve it. A�erwards, some results were
shown and analyzed. We demonstrated that a variable neighborhood tabu search approach
could be used to balance a tactical plan with microzones, but the decision maker must pay
a�ention to the proposed results and assess its usability, and applicability on a case by case
basis.
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(a) Tactical plan

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

7273

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
97

98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124
125

126

127

128

129
130

131

132

133

134

135

136

137

138

139

140141

142

143

144

145

146

147

148

149

TDD = 56894.2

DTP = 54

DAWL = 0.0295042

(b) Most equal work devision
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(c) Lowest driving distance
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(d) A balanced result for all three objectives

Figure 6: Example solutions found for the instance with 150 zones, zero city centers and a deviation of workload in
the zones of maximum 15% of the initial workload
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A primary point of improvement is the speed of the algorithm. Currently all possible moves
with nodes from neighboring tours, tours which contain natural neighbors for the node that
is checked, are considered. It might, for example, be possible to distinguish moves that have a
higher probability to yield a good result from the ones that are rather unlikely to improve the
solution, and decrease the computational time needed to evaluate the entire neighborhood.

A second point in future research is testing di�erent ways to deal with the multi-objective
character of the problem. In the current algorithm, a scalarization technique is used, which has
the downside of not �nding convex-dominated alternatives. In the future more appropriate, but
necessarily more elaborate alternatives to this technique should be considered, to make sure the
Pareto set is not containing any non-convex parts, and to compare the results of that technique
with the results of the scalarization technique.

Related work can focus on the development of an algorithm to estimate the amount of work
in a microzone. Also, a method to divide the distribution area into robust microzones of equal
work load should be developed. �ese algorithms will provide the possibility to turn data of
courier companies into tactical plans with robust microzones, and routes of equal work load.
At this point it will be possible to investigate if the creation of the tactical plan can be more
e�ective and accurate.

�e results obtained using di�erent maximum working time deviations demonstrate that the
algorithm is, to some extent, capable of combining zones in such a way that each vehicle has
approximately the same amount of work. An interesting topic of future research could be to
be investigate whether it is advisable to generate robust microzones, i.e., microzones that have
approximately the same amount of work every day.

�e �nal step will be the development of an algorithm for the detailed routing within a micro-
zone. Some research has been done on this phase, but an approach that integrates this work
into a model like the one proposed in this paper, will certainly be useful.
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oratoire de Mathématiques Appliquées de Bordeaux, Université de Bordeaux 1, Bordeaux,
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