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Multiobjective Optimization: When Objectives Exhibit Non-Uniform Latencies
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Abstract

Building on recent work by the authors, we consider the problem of performing multiobjective optimization when
the objective functions of a problem have differing evaluation times (or latencies). This has general relevance to
applications since objective functions do vary greatly in their latency, and there is no reason to expect equal latencies
for the objectives in a single problem. To deal with this issue, we provide a general problem definition and suitable
notation for describing algorithm schemes that can use different evaluation budgets for each objective. We propose
three schemes for the bi-objective version of the problem, including methods that interleave the evaluations of different
objectives. All of these can be instantiated with existing multiobjective evolutionary algorithms (MOEAs). In an
empirical study we use an indicator-based evolutionary algorithm (IBEA) as the MOEA platform to study performance
on several benchmark test functions. Our findings generallyshow that the default approach of going at the rate of the
slow objective is not competitive with our more advanced ones (interleaving evaluations) for most scenarios.

Keywords: Multiobjective optimization, evolutionary computation,delayed objective functions, closed-loop
optimization, budgeted optimization.

1. Introduction

Multiobjective optimization problems require the si-
multaneous optimization of multiple (often conflicting)
objectives over a given space of candidate solutions.
These problems occur in many practical applications,
rather often as bi-objective problems, with typical pairs
of objectives as quality vs cost, strength vs weight, or
accuracy vs complexity (e.g., of a model). A concrete
example of a multiobjective problem is the design of a
bridge1, such that it passes one or more strength tests,
and such that its cost of construction is not too high.

Although in tackling such problems, it is possible to
treat one objective as a constraint, or to weight or prior-
itize objectives to form a scalar optimization problem,
a more general approach to multiobjective optimization
(and the one we follow here) is to postpone or avoid
the assignment of weights or priorities, and instead to
seek a representation of all the optimal trade-offs of the
objectives (the Pareto optimal front) to allow posterior

∗Corresponding author. Tel.:+44 (0)20 7679 7745
Email address:r.allmendinger@ucl.ac.uk (Richard

Allmendinger )
1Which may indeed be made of concrete — no pun intended.

exploration of the optimal choices, and a final solution
to be selected (see Figure 1).

The problem that we identify and tackle in this paper
stems from the fact that, to date, almost all such meth-
ods for multiobjective optimization, including the many
methods based on evolutionary algorithms, assume that
each candidate solution is evaluated on all the objec-
tives simultaneously. Thus, every candidate solution
explored is associated with its vector of objective val-
ues, it can be plotted in the objective space (as in Fig-
ure 1), and more importantly it can take part in rela-
tive assessments of its multiobjective fitness (or utility)
so that fitness-biased selection (particularly) can be car-
ried out. However, given that the objective functions to
be evaluated could be of quite different character, this
means these algorithms are somewhat overly-restricted,
and could be inappropriate or inefficient for cases, un-
der a time-budgeted optimization (see Jansen & Zarges
(2013)), where the different objective functions vary in
evaluation times (or latencies).

Consider an extreme example. We wish to optimize
the formulation of a washing powder, and our two ob-
jectives are washing excellence and cost. In this case,
it is easy to imagine that assessing washing excellence
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Figure 1: Solutions to a discrete optimization prob-
lem plotted in bi-objective space. Assuming only that
the decision maker is consistent in her preference for
larger values of each objective over smaller values, she
must prefer the non-dominated solutions (shaded). If
the set shown is the whole solution space, then the non-
dominated solutions form the Pareto Front and are the
optimal tradeoff solutions to the problem.

may be a laborious process involving testing the pow-
der, perhaps on different materials and at different tem-
peratures. By contrast, the cost of the particular formu-
lation can be computed very quickly by simply look-
ing up the amounts and costs of constituent ingredi-
ents and performing the appropriate summation. (This
scenario is rather typical of the whole area of closed-
loop optimization, where optimization algorithms di-
rect and obtain results from real physical experiments,
as described elsewhere (Box, 1957; Rechenberg, 2000;
Caschera et al., 2010; Small et al., 2011), but, equally,
objective functions may all be computational but still
have widely differing latency (or delay).)

It is not obvious, we think, what a good strategy for
the above scenario would be, given current multiobjec-
tive evolutionary algorithms (MOEAs) and the state of
the field. Nor is it clear how much potential loss of per-
formance comes about by using a basic MOEA going at
the speed of the slowest objective (a default approach to
the problem). These are the two main questions we seek
to answer in the remainder of this paper. For simplicity,
we focus mostly on the bi-objective case, although some
of our definitions are general, and we include a discus-
sion of extensions tom> 2 objectives in a later section.

2. Problem Definition

We define the problem more formally in the follow-
ing. The notation we introduce here allows us to de-
scribe MOEAs that are suitable for evaluations that are
not necessarily performed on all objectives at the same

time. In the next section on algorithms we will present
some such general schemes and indicate how they are
instantiated on some basic, well-known MOEAs.

2.1. Basic Definitions

Definition 2.1 (Multiobjective Optimization Prob-
lem). The general formulation of the problem is:
“maximize” f (x) subject tox ∈ X, where x is an n-
dimensional candidate solution vector,X is the search
domain andf = ( f1, . . . , fm) is a vector objective func-
tion f : X → Rm mapping solutions to anm dimen-
sional real-valued objective space. The term ‘maximize’
is written in quotes in order to indicate that there are
not unique maxima to such a problem in general, and
a further definition is needed to define an ordering on
candidate solutions (see below).

Definition 2.2 (Pareto dominance). Consider two solu-
tionsx1 andx2. We say thatx1 dominatesx2, also writ-
ten asx1 ≻ x2, if and only if∃i such thatfi(x1) > fi(x2)
and∀ j, f j(x1) ≥ f j(x2).

Definition 2.3 (Pareto optimal front). The Pareto op-
timal front, also denotedPFtrue, is the set of points
{f (x)|x ∈ X, ∄y ∈ X, y ≻ x}.

Definition 2.4 (Approximation Sets and Performance).
Any set of points in the objective space with elements
that are all non-dominated within the set is called an
approximation set. Such sets can be partially ordered
according to thebetter relation (Zitzler et al., 2003),
analogously to the dominance order on points. The aim
of multiobjective optimization can be defined as finding
the best possible approximation set, where best is deter-
mined by this order. As a proxy method for assessing
approximation sets, we use the hypervolume and attain-
ment surfaces, as recommended by Zitzler et al. (2008).

2.2. Budgeted Optimization Definitions

Definition 2.5 (Total Budget). The total budget for
solving an optimization problem is the total number of
time stepsB available for solving it, under the assump-
tion that only solution evaluations consume any time.

Definition 2.6 (Limited-Capacity Parallel Evaluation
Model). We assume parallelization of the evaluation of
solutions is available, in two senses. First, a solution
may (but need not) be evaluated on one objective in par-
allel to its being evaluated on another objective. Sec-
ondly, a number of (at mostλ) solutions may be eval-
uated at the same time (i.e., as a batch or population)
on any objective, provided their evaluation is started at
the same time step, and finishes at the same timestep
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(i.e. batches cannot be interrupted, added to, etc., dur-
ing evaluation). For sake of simplicity, we assumeλ is
the same for all objectives.

Definition 2.7 (Per-Objective Latency). Assume that
each objectivei can be evaluated inki ∈ Z+ timesteps
(for a whole batch). Here, we consider a bi-objective
case, and for simplicity, we definek1 = 1 andk2 =

kslow > 1, so that the slower objective iskslow times
slower than the faster one.2

Lemma 2.1(Per-Objective Budgets). From definitions
2.5, 2.6, 2.7, it follows that the total budget of evalua-
tionsper objectiveis different. The budget forf1 is λB,
whereas the budget forf2 is λ⌊B/kslow⌋.

Note, these per-objective budgets are derived and are
the best possible, assuming that solutions are always
evaluated in parallel batches of sizeλ, and new batches
are evaluated immediately after the one just finished
with no timestep unused (both objectives). Assuming
a standard MOEA applied to the problem, by contrast,
one would obtain onlyλ⌊B/kslow⌋ evaluations on both
objectives.

3. Algorithms

In this section, we will describe a number of algo-
rithmic schemes that are able to operate in the model
of budgeted multiobjective optimization defined above.
One approach to the problem, as posed, would be to run
a standard MOEA at the speed of the fast objective but
to use fitnessapproximation(or “inheritance”) when-
ever the slow objective function is “busy” with evalu-
ating an earlier batch. Such an approach relies rather
heavily on the fitness approximation scheme, and its
performance will certainly depend on it closely. We
briefly consider methods such as this one, which use
approximation, in Section 5 (and these types of scheme
were also the focus of our previous work (Allmendinger
& Knowles, 2013a)). Our main original contribution in
this paper, in contrast, is to propose and analyze a num-
ber of schemes that do not use approximation for the
slow objective. We define the schemes in general terms,
then provide four concrete strategies (there are two vari-
ants of Scheme 3) based on them. Finally, we indicate
how these can be instantiated on existing generational
MOEAs (and also explain, later in Section 6, how the
schemes can be applied within steady-state MOEAs).

2In reality, the objectives of a problem may not have latencies that
are exact multiples of each other, of course, and we will discuss this
scenario in more detail in Section 6.

3.1. Algorithm Schemes

The basis of the proposed schemes is the observation
that the slower objective is only evaluated everykslow

time steps. Then three distinct approaches can be iden-
tified for using the faster objective(s)3:

• Scheme I: To go at the rate of the slower objec-
tive (and go at the same rate on the faster objective,
skipping time steps) using a standard MOEA. This
approach uses the full budget of evaluations on the
slow objective, but it does not fully utilize the eval-
uation budgets available for the faster objective.

• Scheme II: To go at the rate of the faster objec-
tive using a standard single-objective evolutionary
algorithm (EA), for part of the optimization, and
then switch to a final, evaluation of some selected
solutions on the slower objective at some timestep
tswap. Until the time pointtswap, this approach fully
exploits the budget of evaluations for the fast eval-
uation, but it does not utilize the budget of evalua-
tions available for the slower objective.

• Scheme III: Interleaving the evaluation of the ob-
jectives so that both per-objective budgets are used
to their full extent. Figure 2 illustrates this for the
two-objective case.

Note that all three of these schemes result in a fi-
nal population that has been evaluated on both objec-
tives. It may seem intuitive that Scheme III is likely
to be the most desirable, as more evaluations are done
per unit time (and time is budgeted), but there remains
the question of how to co-ordinate the additional evalu-
ations done on the fast objective only, with a population
of points that is evaluated on both objectives.

Four strategies based on the above schemes are inves-
tigated in this work: Waiting, Fast-First, Brood Inter-
leaving, and Speculative Interleaving. In the following
each strategy is explained in more detail.

In order to define concrete instantiations of the
schemes, the following notation is introduced: The set
Gi denotes the EA population at time stepi. In contrast
to this, the search traceSi comprises the entire set of
solutions generated by the EA up to time stepi. The
setsGfast

i andGslow
i denote the sets of solutions to be

evaluated on the fast and slow objective at time stepi,

3Note that the schemes are defined for two objectives only, but
could also work for the case wherem> 2 with just one slower objec-
tive, and the set of faster ones all evaluating at the same speed. For
m > 2 and all objectives having different latencies (or delays), we
have not designed a scheme yet.
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Figure 2: A sequence diagram of an MOEA using two
objective functions with different latencies. (Time in-
creases downwards in the diagram.)

respectively. Note that these can be distinct from each
other and from the current offspring population — the
need for this will become clear later in this section. The
setsG′i ,G

′′
i , andG′′′i represent auxiliary sets of solutions

at time stepi, such as the offspring population or parents
selected for reproduction, andKi andK′j the current and
offspring interleaving population devoted for optimiz-
ing the fast objective function by Speculative Interleav-
ing, respectively.

3.1.1. Waiting
The most straightforward strategy to deal with de-

layed objectives is an implementation of Scheme I, as
shown in Algorithm 1. This strategy deals with de-
layed objectives by maintaining a single population (for
both objectives) that goes at the rate of the slow objec-
tive on both objectives. In other words, evolution waits
for all evaluations to be completed before continuing,
thus losing evaluation time on the fast objective (Lines 4
and 11).

We call this strategyWaiting, and it can be easily em-
bedded into a standard MOEA. This approach can be
seen as a representative of the standard approach used
in the MOEA literature, where possible differences be-
tween the delay of objectives have not been considered.

3.1.2. Fast-First
A simple strategy for the implementation of Scheme

II is as follows (see Algorithm 2): The strategyFast-
First aims to maximize the number of fast evaluations,
while ensuring that a final set ofλ solutions has been
evaluated on all objectives.

Algorithm 1 Scheme I: Waiting

1: initialize Gfast
0 :=Gslow

0 :=G0
2: in parallel, do (a) and (b):
3: (a): evaluateGslow

0
4: (b): evaluateGfast

0
5: i:=kslow; Si :=G0
6: while i < B− kslow do
7: apply multiobjective (parental) selection with variation to

Gi−kslow to giveG′i
8: Gfast

i :=Gslow
i :=G′i

9: in parallel, do (a) and (b):
10: (a): evaluateGslow

i
11: (b): evaluateGfast

i
12: Si+kslow := Si ∪G′i
13: apply environmental selection toGi−kslow andG′i to giveGi

14: i:=i + kslow; Si := Si−kslow ∪G′i−kslow

15: identify and output the set of non-dominated solutions in Si

This can be achieved by going, for most of the op-
timization duration, at the rate of the faster objective
so as to optimize the faster objective only, and then by
switching to the slower objective at the latest possible
point (i.e. tswap = B − kslow, which allows for a final
round of evaluations on the slow objective) (Line 5).
The faster objective can be optimized using a standard
single-objective EA. In the simplest case (considered
here), the subsequent switch to the slower objective
would involve the evaluation of a diverse set of solutions
(here the best, distinctλ solutions found with respect to
the fast objective) on the slower objective.

Again, it is clear that this strategy can be easily em-
bedded into a standard single-objective EA. The main
modification required is the maintenance of the search
traceSi required for the final filtering step (Line 12).
The approach bears some resemblance to the previ-
ous use of diversity-preserving MOEAs in applications
where additional objectives become available at the end
of the optimization only (Chmielewski, 2013).

3.1.3. Interleaving strategies
The final two strategies, Brood and Speculative In-

terleaving, are implementations of Scheme III, and are
less straightforward than the Waiting and the Fast-First
strategies discussed above. Unlike Waiting and Fast-
First, strategies in Scheme III attempt to utilize the full
budget of evaluations available under both the fast and
the slow objectives. The two strategies differ between
each other in the way the results from fast and slow eval-
uations are integrated. Let us first present the general
idea of strategies in Scheme III before explaining the
strategies Brood and Speculative Interleaving in more
detail.

The pseudocode given in Algorithm 3 presents a gen-
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Algorithm 2 Scheme II: Fast-First

1: initialize Gfast
0 :=G0

2: evaluateGfast
0

3: update objective values inG0 based on the values obtained for
Gfast

0 only
4: i:=1; Si :=G0
5: while i < B− kslow do
6: apply single-objective (parental) selection with variation to

Gi−1 to giveG′i
7: Gfast

i := G′i
8: evaluateGfast

i
9: update objective values inG′i based on the values obtained for

Gfast
i only

10: apply environmental selection toGi−1 andG′i to giveGi

11: i:=i + 1; Si := Si−1 ∪G′i−1
12: select the best, distinctλ solutions inSi (wrt the fast objective)

and assign these toGslow
i

13: evaluate and outputGslow
i

eral Scheme III strategy, which we divided into several
modules: Afterinitializing the populationG0 and evalu-
ating it in parallel on the slow and fast objective, (a) and
(b), aninner (single-objective) EAis initialized with the
current generation on the fast objective,Gfast

0 , and ap-
plied to optimize the fast objective for the remainder
of the interleaving period (i.e.kslow − 1 generations).
The main loopfirst creates a parent population based
on multiobjective selection applied to the current popu-
lation Gi−kslow, and then enters theInterleaving module
to create the new populationsGslow

i and Gfast
i . These

populations are then evaluated in parallel, and anin-
ner (single-objective) EAis used to optimize the fast
objective for the remainder of the interleaving period.
Finally, environmental selection is applied to the cur-
rent populationGi−kslow and the current generation on the
slow objectiveGslow

i to give the new populationGi . The
main loop is repeated until the budgetB is used before
non-dominated solutions on both objectives are identi-
fied and returned to the user.

Brood Interleaving: The idea ofBrood Interleavingis
to use the fast objective function to look ahead at pos-
sible offspring of the current generation being evaluated
on the slow objective. This looking ahead can then be
used to bias the next generation on the slow objective
(hopefully in a positive way) so that the slow objective
is used as efficiently as possible.

The way in which the look ahead is achieved is via
something reminiscent of (soft) brood selection (Al-
tenberg, 1994; Tackett & Carmi, 1994; Walters, 1998).
In brood selection, more offspring are created by vari-
ation than will pass into the next generation, and this
surplus (or brood) is then reduced by performing some

Algorithm 3 Scheme III: A general template

1: // Initialization:
2: initialize a populationG0 of solutions and setGfast

0 :=Gslow
0 :=G0

3: in parallel, do (a) and (b):
4: (a): evaluateGslow

0
5: (b): evaluateGfast

0 , followed by an
inner (single-objective) EA: dokslow−1 generations of an EA
initialized withGfast

0 on the fast objective
6: increment time counteri:=kslow, and updateSi

7:
8: // Main loop:
9: while i < B− kslow do

10: apply multiobjective (parental) selection onGi−kslow to pro-
duce new parent populationG′i

11:
12: // Interleaving module:
13: This module creates the two new populations,Gslow

i andGfast
i ,

as follows:
14: Gslow

i is composed of solutions from the last inner EA run
that improved on their parentsG′i on the fast objective plus,
if insufficiently many, some new offspring of the parent pop-
ulationG′i

15: Gfast
i is composed of offspring ofGslow

i
16:
17: in parallel, do (a) and (b):
18: (a): evaluateGslow

i
19: (b): evaluateGfast

i , followed by an
inner (single-objective) EA: do kslow − 1 generations of a
EA initialized withGfast

i on the fast objective
20: apply environmental selection toGi−kslow andGslow

i to give
new populationGi

21: increment time counteri:=i + kslow, and updateSi

22: identify and output the set of non-dominated solutions in Si

filtering on the brood. In the case ofBrood Interleav-
ing, the fast objective is used to filter out prospective
offspring of the generation currently under evaluation
for the slow objective that perform worse than their par-
ent(s) on the fast objective. This filtering should have
the effect of avoiding the evaluation of offspring domi-
nated by its parents. However, it also prevents the evalu-
ation of those solutions that outperform their parents on
the slow objective only, and it is unclear to what extent
this biases the search.

Pseudocode for Brood Interleaving is given in Algo-
rithm 4. A population of individuals,G0, is initialized
and this becomes the generation zero for both the slow
and fast objectives. Evaluations are done in parallel (in-
terleaved) on the slow and fast objectives (Lines 3 to 6).
While the slow one is evaluating the zeroth generation,
the fast one finishes, and subsequent generations for the
fast objective are constructed and evaluated. These sub-
sequent generations are offspring (i.e., genetic variants)
of generation zero (Line 6).

When the slow objective function finishes, it is time
to construct the next generation for the slow objective,

5



Algorithm 4 Scheme III(i): Brood Interleaving

1: initialize Gfast
0 :=Gslow

0 :=G0
2: in parallel, do (a) and (b):
3: (a): evaluateGslow

0
4: (b): evaluateGfast

0
5: for j = 1 to kslow − 1 do
6: apply uniform selection with variation toGslow

0 to generate
Gfast

j , and evaluateGfast
j

7: i:=kslow; Si := G0 ∪Gfast
1 ∪ . . . ∪Gfast

kslow−1
8: while i < B− kslow do
9: apply multiobjective (parental) selection without variation to

Gi−kslow to giveG′i
10: find offspring ofG′i in Gfast

i−kslow+1,. . . ,Gfast
i−1 and assign toG′′i

11: select fromG′′i those offspring that improved on one of their
parents’ (inG′i ) evaluation on the fast objective function and
assign toG′′′i

12: Gfast
i := ∅

13: while |G′′′i | > λ do
14: remove a solution selected at random fromG′′′i
15: while |G′′′i | < λ do
16: create offspringo from uniform selection and variation ap-

plied toG′i ; G′′′i := G′′′i ∪ {o}; Gfast
i := Gfast

i ∪ {o}
17: Gslow

i := G′′′i
18: while |Gfast

i | < λ do
19: create offspringo from uniform selection and variation ap-

plied toGslow
i ; Gfast

i := Gfast
i ∪ {o}

20: in parallel, do (a) and (b):
21: (a): evaluateGslow

i
22: (b): evaluateGfast

i
23: for j = 1 to kslow − 1 do
24: apply uniform selection with variation toGslow

i to gen-
erateGfast

i+ j , and evaluateGfast
i+ j

25: apply environmental selection toGi−kslow andGslow
i to give

Gi

26: i:=i + kslow; Si := Si−kslow ∪G′′′i−kslow
∪Gfast

i−kslow+1 ∪ . . . ∪Gfast
i−1

27: identify and output the set of non-dominated solutions in Si

Gslow
i , upon performing multiobjective parental selec-

tion on the current EA populationGi−kslow to give (the
parent population)G′i (Line 9). The next generation on
the slow objective,Gslow

i , is then made up (partially) of
those offspring ofG′i (already evaluated on the fast ob-
jective) whose parents (one or both of them) improved
over at least one of their parents’ fast objective function
evaluations (Line 10 and 11).

At this point the next generation can be smaller or
larger than the batch sizeλ (e.g. if only few or many
offspring improved upon their parents, respectively). In
the latter case, solutions are removed at random from
the generation (Line 14). In the former case, the gen-
eration is filled with solutions resulting from uniform
selection fromG′i and subsequently applying variation
(Line 16); note that these solutions need to be evaluated
on both the fast and slow objective, occupying some of
the spots available in the next generation for the fast ob-

jective, Gfast
i . The remaining spots for evaluation un-

derGfast
i are filled with solutions resulting from uniform

selection fromGslow
i and subsequently applying varia-

tion (Line 19). After evaluating the generations for the
slow and fast objective, and the interleaving populations
(Lines 21 to 24), environmental selection is applied to
the current EA populationGi−kslow and the set of solu-
tions evaluated on the slow objective,Gslow

i , to give the
EA population of the next iteration,Gi (Line 25).

Speculative Interleaving: The strategy ofSpecula-
tive Interleaving(see Algorithm 5) is similar to Brood
Interleaving except that it aims to maintain selection
pressure at all time steps. Prior to the return of slow
evaluations, only partial information about solutions is
available. This means that a single-objective selection
scheme needs to be used during the wait for slow evalu-
ations, which will only account for solution evaluations
under the fast objective. This single-objective scheme
is embedded into a single-objective EA that has the task
to drive the evolution of the generations on the fast ob-
jective. It is clear that this may introduce a bias towards
the optimization of the fast objective, yet it is unclear
to what extent this will outweigh the advantages gained
from increased selection pressure.

Increased selection pressure is achieved by creating
the interleaving populations,Gfast

i+ j , j = 1, . . . , kslow − 1,
by applying a single-objective EA (i.e. single-objective
selection, variation, and potentially elitism) toK j , j =
1, . . . , kslow− 1 (Lines 6 to 8, and Lines 26 to 28). Since
the interleaving populations evolve whilst the slow ob-
jective is evaluated, we need to record all the solutions
or ancestors (inGslow

i ) used to create a solution inGfast
i+ j ,

j = 1, . . . , kslow − 1; note, assuming that a solution is
created from two parents, then the number of distinct
ancestors associated with a solution may vary between
2 and 2kslow−1. Subsequently, an offspring is included
into Gslow

i if its ancestors (one or multiple) are selected
by multiobjective parental selection (Lines 11 and 12)
and it outperforms at least one of them with respect to
the fast objective (Line 13).

This strategy resembles principles of speculative par-
allelization used in some parallel simulated annealing
methods (Marchesi et al., 1994).

3.2. Instantiations on Generational-Based MOEAs

When augmenting the algorithm schemes introduced
in the previous section on a generational-based MOEA,
then the environmental and multiobjective parental se-
lection scheme, and the variation mechanism (crossover
and/or mutation), need to be replaced with the ones used

6



Algorithm 5 Scheme III(ii): Speculative Interleaving

1: initialize Gfast
0 :=Gslow

0 :=G0
2: in parallel, do (a) and (b):
3: (a): evaluateGslow

0
4: (b): evaluateGfast

0
5: K1 := Gfast

0
6: for j = 1 to kslow − 1 do
7: apply single-objective (parental) selection with variation

to K j to generateGfast
j , and evaluateGfast

j

8: apply environmental selection toK j andGfast
j to giveK j+1

9: i:=kslow; Si := G0 ∪Gfast
1 ∪ . . . ∪Gfast

kslow−1
10: while i < B− kslow do
11: apply multiobjective (parental) selection without variation to

Gi−kslow to giveG′i
12: find offspring ofG′i in Gfast

i−kslow+1, . . . ,Gfast
i−1 and assign toG′′i

13: select fromG′′i those offspring that improved on one of their
parents’ (inG′i ) evaluation on the fast objective function and
assign toG′′′i

14: Gfast
i := ∅

15: while |G′′′i | > λ do
16: remove a solution selected at random fromG′′′i
17: while |G′′′i | < λ do
18: create offspringo from uniform selection and variation ap-

plied toG′i ; G′′′i := G′′′i ∪ {o}; Gfast
i := Gfast

i ∪ {o}
19: Gslow

i := G′′′i
20: while |Gfast

i | < λ do
21: create offspringo from uniform selection and variation ap-

plied toGslow
i ; Gfast

i := Gfast
i ∪ {o}

22: in parallel, do (a) and (b):
23: (a): evaluateGslow

i
24: (b): evaluateGfast

i
25: K1 := Gfast

0
26: for j = 1 to kslow − 1 do
27: apply single-objective (parental) selection with varia-

tion to K j to generateGfast
j , and evaluateGfast

j

28: apply environmental selection toK j andGfast
j to give

K j+1
29: apply environmental selection toGi−kslow andGslow

i to give
Gi

30: i:=i + kslow; Si := Si−kslow ∪G′′′i−kslow
∪Gfast

i−kslow+1 ∪ . . . ∪Gfast
i−1

31: identify and output the set of non-dominated solutions in Si

by the MOEA selected (e.g. in Lines 7 and 13 in Al-
gorithm 1, and Lines 6, 9, 16 and 19 in Algorithm 4).
For Fast-First (Line 6 in Algorithm 2) and the process
of creating interleaving populations within Speculative
Interleaving (Lines 6 to 8, and Lines 26 to 28, in Al-
gorithm 5), we would replace these operators with the
ones used by the single-objective EA selected.

4. Empirical Study

To understand the relative performance of the above
strategies, we conduct an empirical study on a variety
of problem instances with delayed objectives. In partic-
ular, we focus on the analysis of the following aspects:

1. The optimization performance of Waiting, Fast-
First and Interleaving strategies compared to the
optimization performance obtained in an unde-
layed environment, in general terms.

2. The relative optimization performance of the more
advanced methods of Fast-First and the two In-
terleaving strategies compared to the optimization
performance of a standard (Waiting) strategy, in
general terms.

3. The effect of problem type on the relative opti-
mization performance of the strategies. Specifi-
cally, we expect this to be influenced by the corre-
lation between objectives, the length of the delay,
and the ruggedness of the fitness landscape being
optimized.

4. Time budget effects: the relative optimization per-
formance of the different strategies as a function of
total optimization time.

4.1. Theoretical considerations

Given the design of the algorithms, we can set out the
following rough expectations regarding their individual
and relative performance:

1. In most scenarios, the performance of an MOEA
in the absence of delays would be expected to pro-
vide us with an estimated “upper bound” on the
optimization performance of any of the alterna-
tive strategies (embedded within the same MOEA).
This is because a delay has the effect of reduc-
ing the per-objective budgets available within these
strategies. Any further increase in the length of the
delay has the effect of reducing these budgets fur-
ther. Therefore, any performance gap between the
three strategies and this “upper bound” may be ex-
pected to increase as a function of the length of the
delay.

2. Similarly, the Waiting strategy can be seen to pro-
vide an estimated “lower bound” on the optimiza-
tion performance of anysensiblestrategy that we
could design to account for the presence of delays.
This is because Waiting is equivalent to a scenario
with the same delay length on both objectives. As a
consequence, the per-objective budget for the fast
objective is not fully used, and the gap between
the available and the used evaluations increases as
a function of the length of the delay. Clearly, an
improved strategy should attempt to fully utilize
unused portions of the per-objective budgets. As-
suming that the size of the evaluation budget has

7



a tangible effect on optimization performance (in-
creasing monotonically in the number of evalua-
tions), any performance advantage of such a strat-
egy (compared to Waiting) should then be expected
to increase with the length of the delay.
It is interesting to note that the overall number of
evaluations (summing across all objectives) per-
formed by the Fast-First strategy may indeed be
smaller than the overall number of evaluations used
by Waiting (e.g. if 1< kslow ≤ 2), as Fast-First ef-
fectively abandons large parts of the per-objective
budget for the slow objective. In terms of main-
taining a ‘minimum number of overall evaluations’
(as defined by the Waiting strategy), a Fast-First
strategy is, arguably, not particularly sensible for
small delays (roughlykslow ≤ 2, unless objectives
are highly correlated).

3. The Fast-First strategy performs a “focused”
(single-objective) optimization on the fast objec-
tive, followed by a final round of evaluations on the
slow objective. This makes optimal use of the per-
objective budget for the fast objective. On the other
hand, the per-objective budget for the delayed ob-
jective is not used until the very end of the opti-
mization. Hence, such a strategy could be con-
sidered to be optimal in the presence of a perfect
correlation between objectives (in which case the
evaluation of the slower objective would result in
the duplication of information at all times). The
extent to which Fast-First can cope with objectives
that are less highly correlated is doubtful, but may
be affected somewhat by the mechanisms of diver-
sity maintenance within the underlying EA.

4. In contrast to Fast-First, both Speculative Inter-
leaving and Brood Interleaving make full use of the
per-objective budgets for each objective. In order
to do so, the time lag until the return of the de-
layed objectives needs to be used to partially eval-
uate an additionalλ(kslow− 1) solutions. The two
schemes differ in the way these additional solutions
are obtained. Brood Interleaving simply generates
λ(kslow−1) offspring, which are partially evaluated
on the fast objective. Once results from the delayed
objectives are returned, the results obtained on the
fast objective are employed to inform selection of
the next population. In contrast to this, Specula-
tive Interleaving uses a greedy strategy that corre-
sponds to a temporary switch to a single-objective
EA (optimizing several generations on the fast ob-
jective only). The difference to Fast-First is that
these episodes of single-objective optimization are
then interleaved within generations of the multiob-

jective EA (once the delayed evaluations return).
Out of the two Interleaving strategies, Brood In-
terleaving may be expected to be less affected by
the presence/absence of correlation between objec-
tives, and the ruggedness of the fitness landscape,
as its bias towards the fast objective is less pro-
nounced (a preference for the fast objective is only
introduced during the filtering step everykslow time
steps). On the other hand, the reduction of selec-
tion pressure (no selection pressure is applied dur-
ing waits for the delayed objective) will likely hin-
der convergence, especially for larger delays.
In contrast, Speculative Interleaving maintains se-
lection pressure during all generations, which may
help in driving the search — promoting quick con-
vergence to local optima on rugged fitness land-
scapes. On the other hand, selection pressure may
be too biased towards the fast objective, particu-
larly so for large delays (which will increase the
ratio of fast compared to slow evaluations). This
effect will be undesired for problems with little (or
anti-)correlation between objectives.

4.2. Experimental setup
The following subsection describes in detail the bi-

nary test functions (all functions are to be maximized),
the parameter settings, the MOEAs and the evaluation
measures used to provide empirical investigation of the
performance differences.

Test functions: The first test function, amapped bi-
objective OneMax problem, which is inspired by the
generalized OneMax problem (Droste et al., 2006), is
a family of functions that allows us to control the cor-
relation between objectives. Assumingn1(x) to be the
number of 1s in a candidate solution vectorx, n1(y) the
number of 1s iny, wherey is a mapped version of so-
lution vectorx, then the mapped bi-objective OneMax
problem can be defined as

f = ( f1, f2) = (n1(x), n1(y)),

whereyi = (xi +mapi)mod2, i = 1, . . . , n.

The mapped value of a decision variable ismapi ∈

{0, 1} and is set independently for eachi = 1, . . . , n by
flipping a coin biased by the degree of correlationcorr ∈
[−1, 1] desired. For instance, for a problem with no cor-
relation between the objectives (corr = 0), the proba-
bility of mapi = 1 or 0 is 0.5. For a maximal positive
correlation (corr = 1), we setmapi = 0, i = 1, . . . , n,
whilst for a maximal negative correlation (corr = −1)
we setmapi = 1, i = 1, . . . , n. For an intermediate cor-
relation ofc, we set a map bit to zero with a probability
of (1.0+ c)/2.
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The second test function used in this study is the
leading ones trailing zeros(LOTZ) function (Laumanns
et al., 2004), which can be defined as

f = ( f1, f2) =

















n
∑

i=1

i
∏

j=1

x j ,

n
∑

i=1

n
∏

j=i

(1− x j)

















.

The Pareto front of this problem consists of solutions of
the form 1a0b with a + b = n. The LOTZ problem has
often been used to investigate theoretical properties of
MOEA algorithms, such as running times (Laumanns
et al., 2004). Since the problem is well-understood it
should also aid the process of understanding the impact
of delayed objectives on performance.

The third test function we use is the family of multi-
objectiveNK landscapes, orMNK landscapes (Aguirre
& Tanaka, 2007).MNK landscapes extend Kauffman’s
NK model (Kauffman, 1993) to multiple objectives by
associating a differentNK landscape instance to each
objective. AnNK landscape instance can be used to
model epistatic interactions between bits so as to control
the ruggedness (number and density of local optima) of
the fitness landscape being optimized. More formally,
an MNK landscape withm objectives (we fixm = 2 in
this work) can be defined as

f = ( f1, . . . , fm),

where fi =
1
N

N
∑

j=1

g j(x j , z
( j)
1 , z

( j)
2 , . . . , z

( j)
K ), i = 1, . . . ,m.

In this equation,N defines the number of bits (in our
notation this variable is denoted asn), and the func-
tion g j the fitness contribution ofx j and theK bits (also
called neighbors),z( j)

1 , z
( j)
2 , . . . , z

( j)
K , interacting with bit

x j . Typically, theK neighbors are selected at random,
and the fitness contributionsg j initialized uniformly in
the range [0; 1) (i.e. fi ∈ [0; 1)). These settings are
set independently for each objective functionfi . The
value of K can vary between the objective functions
to tune the ruggedness of each objective function sep-
arately (with larger values ofK resulting more rugged
landscapes), whilst, of course, the number of bitsN re-
mains constant. For the sake of gaining a better under-
standing of the effect of delayed objectives on perfor-
mance, in this work we focus on the simple case where
the value ofK is identical for each objective function
(but theK neighbors and the fitness contributionsg j are
set anew and at random for each objective function).
Unlike the mapped OneMax and LOTZ problem,MNK
landscapes will allow us to investigate the performance
of the different strategies as a function of the ruggedness

Table 1: EA parameter settings.

Parameter Setting

Parent population sizeµ 50
Offspring population sizeλ 50

Per-variable mutation probabilitypm 1/n
Crossover probabilitypc 0.6
Fitness scaling factor,κ 0.05

#Time steps (generations)B 40

of the landscape optimized.4

Search algorithms: To test the delay-handling strate-
gies described in Section 3 we augment them onto the
indicator-based EA (IBEA) (Zitzler & Künzli, 2004), a
generational MOEA maximizing (in this case) the hy-
pervolume indicator (Zitzler, 1999).

The algorithm uses binary tournament selection
(with replacement) for parental selection, uniform
crossover (Syswerda, 1989), bit flip mutation, and does
not check whether a solution has been evaluated previ-
ously, i.e. identical solutions may be evaluated multiple
times. The parameter settings of the MOEA are given
in Table 1. For Fast-First, and the process of generating
interleaving populations within Speculative Interleav-
ing, a single-objective EA with the same parental selec-
tion and variation operators is employed (note, in this
case tournament selection is based on a single objective
only); environmental selection is done using a (µ + λ)-
ES (evolution strategy) reproduction scheme. Note, for
IBEA we are using the adaptive version, involving scal-
ing the hypervolume indicator values in combination
with a fitness scale factor ofκ = 0.05 (as recommended
by Zitzler & Künzli (2004)).5

If not otherwise stated we use a budget ofB = 40,
a search space of sizen = 20, and assume that objec-
tive f2 is the slow objective. For the mapped OneMax
problem andMNK landscapes, we create a new prob-
lem instance at random for each algorithmic run assum-

4Recently, MNK landscapes have been extended to control the
correlation between objectives (Verel et al., 2011). We do not con-
sider this problem here but investigate the impact of correlations be-
tween objectives using the mapped OneMax problem, which is more
straightforward to analyze.

5All strategies have been coded up in Java within the jMetal frame-
work (Durillo & Nebro, 2011). The code to run the strategies within
IBEA and other generational MOEAs, such as NSGA-II (Deb et al.,
2002), as well as steady-state MOEAs, such as SEMO (Laumanns
et al., 2004) and SMS-EMOA (Beume et al., 2007), is availableat
http://www.ucl.ac.uk/~ucberal/.
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Figure 3: Median and interquartile ranges of the hypervolume achieved on the mapped OneMax problem by different
strategies embedded within IBEA after 40 generations usinga population size of 50. The correlation between the two
objectives was varied from -1 to 1, in steps of 0.25. Results are shown for a latency of 5 (left) and 20 (right) generations
on the slow objective (heref2). For every setting marked by a point in the line graphs, a Friedman test (significance
level of 5%) has been carried out. In the left plot, Waiting performs best out of the four strategies forcorr = −0.5. In
the right plot, Speculative Interleaving performs best outof the four strategies in the range−1 < corr < 0.5. There is
no clear winner for the other settings.

ing a fixed level of correlation (the problem instances
are the same for each strategy investigated). Any results
shown are average results across 30 independent algo-
rithm runs. We use paired comparison by employing a
different seed for the random number generator for each
EA run but the same seeds for all strategies described
above.

Evaluation measures: We use two approaches to as-
sess the performance of a multiobjective optimizer sub-
ject to delayed objectives. The first is based on thehy-
pervolume indicator(Zitzler, 1999; Zitzler et al., 2003).
This indicator assesses the size of the bounded region
(in the objective space) dominated by a set of points
(vectors of objective function values of non-dominated
solutions). The region dominated is bounded on one
side by a set of non-dominated solutions, and on the
other side by a bounding point. If the bounding point
is set appropriately and kept the same when comparing
multiple sets of non-dominated solutions, then larger in-
dicator values indicate that a solution set is better than
another one in terms of various desirable aspects includ-
ing diversity, extent and proximity to the Pareto opti-
mal front. As, for the problems considered here, the
value ranges of the objectives are known, the bounding
point is set to the worst possible point in the objective
space shifted by 1 in each objective. To compare the
hypervolume obtained by different algorithms, we run
each algorithm multiple times on a problem and report
the median and interquartile ranges of the hypervolume

across the algorithmic runs. To investigate significant
differences between algorithms with respect to the hy-
pervolume, we use a repeated-measures statistical test,
the Friedman test (Friedman, 1937). This test does not
assume an underlying distribution of the data (i.e. is
non-parametric).

The second approach is based onattainment sur-
faces(Fonseca & Fleming, 1996). Attainment surfaces
express graphically the performance of an MOEA in
terms of the surface in the objective space that can be
attained in a fraction of algorithmic runs. For each strat-
egy, we show the surfaces that can be attained in 50%
of the runs, also known as median attainment surface.

4.3. Experimental Results
In the following, we explore the empirical results

on the mapped OneMax, LOTZ, andMNK landscapes
problem, and discuss the extent to which they meet the
expectations from our theoretical considerations above.

4.3.1. Correlation between objectives
The empirical results confirm some of the key ex-

pectations regarding the sensitivity of different strate-
gies to the correlation between objectives. Results are
given in Figure 3, which analyzes optimization perfor-
mance on the mapped OneMax problem. The graphs
show the average hypervolume obtained by the strate-
gies as a function of the correlation between objectives.
For the LOTZ problem andMNK landscapes, the cor-
relation between objectives cannot be controlled so no
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Figure 4: Median and interquartile ranges of the hypervolume achieved on the mapped OneMax problem by different
strategies embedded within IBEA after 40 generations usinga population size of 50. Results are shown for a corre-
lation of -0.5 (left) and 0.5 (right) between the two objectives, for different latencies. For each setting shown on the
abscissa, a Friedman test (significance level of 5%) has beencarried out. In the left plot, Speculative Interleaving
performs best out of the four strategies forkslow = 20. There is no clear winner for the other settings.

results are shown. The following key observations can
be made from these figures:

• For problem instances with a negative correlation
between objectives, Waiting can be considered an
appropriate strategy. In fact, in the presence of neg-
ative correlations and only short delays, Waiting
emerges as the preferred strategy (see the results
obtained forkslow = 5 and correlations in the range
[−1, 0]). This can be explained by the fact that all
three alternative strategies bias the search towards
the fast objective — albeit to varying degrees.
It appears that this bias is sufficiently strong to
be detrimental to optimization performance (when
there is anti-correlation between objectives) and is
not offset by the increased number of evaluations
afforded by these strategies.

• For problem instances with a positive correlation
between objectives, Fast-First, Brood Interleaving
and Speculative Interleaving tend to perform as
well or better than the Waiting strategy. As ex-
pected, the strategies start to gain an advantage as
the correlation between objectives increases. Over-
all, Speculative Interleaving emerges as the most
robust performer. The performance of Brood In-
terleaving is more varied and appears influenced by
the length of the delay (explored in more detail in
the following section). The performance of Fast-
First in all settings is disappointing and becomes
competitive for very high levels of correlation only.

4.3.2. Length of the delay

We further investigate how the different strategies are
affected by increases in the delay period. Figure 4 shows
the average hypervolume obtained by the strategies as a
function of the delay in the slow objective. Results are
shown for the mapped OneMax problem for the case of
correlated and anti-correlated objectives. Equivalent re-
sults for the LOTZ problem andMNK landscapes are
included in the Appendix (see Figure A.1). The follow-
ing key observations can be made from these figures:

• For small delays of the slow objective, Waiting is
the preferred strategy. This is the case independent
of a positive or negative correlation between objec-
tives.

• For larger delays, the interleaving strategies start
to become competitive, particularly so in the case
of positive correlations. In the case of positive
correlations, Brood Interleaving emerges as the
preferred strategy for medium-length delays, with
Speculative Interleaving becoming the most com-
petitive for long delays. This confirms our prior
expectation that a lack of selection pressure may
cause problems for Brood Interleaving in combi-
nation with long delay periods.

• The performance of Fast-First is generally poor,
but almost unaffected by the delay length, which
could potentially make it a reasonable strategy in
the case of very long delays.
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Figure 5: Median attainment surface on the mapped OneMax problem obtained by different strategies embedded
within IBEA after 40 generations using a population size of 50. Results are shown for a correlation of -0.5 (left) and
0.5 (right) between the two objectives, and a latency of 5 (top) and 20 (bottom) generations on the slow objective (here
f2).

We further use median attainment surfaces to provide
a more detailed investigation of the convergence behav-
ior of the different strategies. Figure 5 shows results
obtained by the different strategies for delay lengths of
kslow = 5 (top plots) andkslow = 20 (bottom plots) time
steps on a mapped OneMax problem with a correlation
of 0.5 (right plots) and -0.5 (left plots). Equivalent re-
sults on the LOTZ problem andMNK landscapes are
included in the Appendix (see Figures A.2 and A.3).

The figures confirm the intuition that, compared to
a search in an undelayed environment, all strategies
would be affected more severely for longer delay pe-
riods. Looking at the strategies in turn, it can be seen
from Figure 5 that generally Waiting is able to main-
tain the most diverse set of non-dominated solutions
among the strategies as it is not subject to any search
bias arising from the preferential evaluation of the fast
objective. As observed above, an exception is apparent

for problems combining a positive correlation between
objectives with long delays (bottom right plot), where
strategies with a high selection pressure, such as Fast-
First and Speculative Interleaving, do well. There is
evidence of this expected bias for all other three strate-
gies (see plots on the left-hand side with a correlation of
corr = −0.5), with a trade-off between the optimization
of the non-delayed objective (i.e. identifying fit solu-
tions on the bottom right part of the Pareto front) and a
uniform approximation of the Pareto front. As expected,
Fast-First has the most pronounced bias and it performs
best with respect to the fast objective (detecting reliably
the optimal solution with respect tof2), although almost
no other parts of the Pareto front are found. Brood Inter-
leaving shows the least bias towards the fast objective,
but the results do indicate a lack of convergence towards
the Pareto front. This effect is more pronounced for
large delays, and is a direct consequence of the reduced
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Figure 6: Proportion of attainable hypervolume (as derivedin an undelayed environment) achieved by a strategy
when embedded within IBEA on the mapped OneMax problem after40 generations using a population size of 50.
The color coding shows the performance ratio associated with each strategy as a function of the latency (y-axis) and
the correlation between the objectives (x-axis).

selection pressure. The bias of Speculative Interleaving
is more pronounced than that of Brood Interleaving, but
it does appear to strike the best balance between bias
and convergence over all.

The strategies behave symmetrically when the delay
is put on objectivef1 instead off2.

4.3.3. Combined view
In order to provide a more comprehensive picture of

the interaction of correlation and delay length for differ-
ent search strategies, Figure 6 shows the ratio of the av-
erage hypervolume achieved between each of the strate-
gies and an undelayed search as a function of the cor-
relation between objectivescorr and of the delay length
kslow. For the LOTZ problem andMNK landscapes, the
correlation between objectives cannot be controlled so
no results are shown.

From Figure 6 it can clearly be seen that a highly neg-
ative correlation between objectives and/or a short de-

lay does not affect the performance significantly, except
for Fast-First, when compared with the performance
achieved in an undelayed environment. Comparing the
strategies against each other it is apparent that Waiting
and Brood Interleaving perform similarly for almost all
correlation and delay values. A slight performance ad-
vantage of Brood Interleaving (compared to Waiting) is
visible for positive correlations and medium to long de-
lays. Overall, for this setting, Speculative Interleaving
and Fast-First perform best. However, comparing Spec-
ulative Interleaving (top right plot) with Fast-First (bot-
tom right plot), it can be seen that the performance of
Fast-First degrades significantly as the correlation be-
tween objectives reduces. Speculative Interleaving is
only inferior to Brood Interleaving for problems with
little or no correlation between objectives and a delay
of medium length. Overall, Speculative Interleaving
emerges as the most promising strategy.
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Figure 7: Proportion of brood members dominating (at least one of) their parents in terms of the fast objective (top) and
proportion of brood members inserted into the population (bottom) as a function of the generation counter obtained by
Brood and Speculative Interleaving on the mapped OneMax problem. Left plots show the two metrics for a correlation
of -0.5, and right plots for 0.5 between the two objectives.

4.3.4. Analysis of the interleaving strategies

To understand the population dynamics of Brood and
Speculative Interleaving, we investigate in more detail
the impact that the brood has on offspring generation.
Figure 7 gives insights into the contribution of partially
evaluated solutions for both Brood and Speculative In-
terleaving (on the mapped OneMax problem). Unsur-
prisingly, increasing the delay leads to a higher prob-
ability that brood members dominate at least one of
their ancestors (top plots) and thus are inserted into the
population for evaluation on the slow objective (bot-
tom plots). Due to the convergence of the population,
both probabilities reduce as the optimization progresses,
though the reduction is smaller for shorter delays. Due
to the guided optimization of the fast objective, Specu-
lative Interleaving is able to create fitter brood members
than Brood Interleaving that are also more likely to be
inserted into the population. This is particularly true at

the beginning of the search when the population has not
converged yet.

4.3.5. Impact of problem size

In this section we consider the impact of problem size
on the performance of the different strategies. The re-
sults obtained for the LOTZ problem are shown in Fig-
ure 8. Equivalent results for the mapped OneMax prob-
lem andMNK landscapes are included in the Appendix
(see Figures A.4 and A.5). The results show an increas-
ing performance gap between the strategies and an un-
delayed search for larger problem sizes. In particular,
the performance of Brood Interleaving quickly deterio-
rates for increasing search space sizes, and those strate-
gies with higher level of selection pressure (Fast-First
and Speculative Interleaving) show a higher level of ro-
bustness.
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Figure 8: Median and interquartile ranges of the hypervolume achieved on the LOTZ problem by different strategies
embedded within IBEA after 40 generations using populationsize of 50. Results are shown for a latency of 10
generations on the slow objective (heref2) as a function of problem size, which is varied from 5 bits to 50, in steps of
5. For every setting marked by a point in the line graphs, a Friedman test (significance level of 5%) has been carried
out. Brood Interleaving performs best out of the four strategies forn = 10, and Fast-First forn = 30. There is no clear
winner for the other settings.

4.3.6. Impact of fitness landscape ruggedness
Finally, we investigate the impact of fitness land-

scape ruggedness, as can be be controlled withinMNK
landscapes, on the different strategies. Figure 9 shows
the ratio of the average hypervolume achieved between
each of the strategies and an undelayed search as a func-
tion of the delay and number of neighbors,K, each bit
is interacting with. From the figure it can be seen that
changing the ruggedness of the landscape, controlled
here byK, impacts performance. For Fast-First (bottom
right plot) it can be seen that increasing the ruggedness
of the landscape tends to reduce the performance gap to
an undelayed search. For the other strategies, a different
pattern is observed: the performance tends to degrade
with increasingK until a value of aroundK = 5, and
then again improves for larger values ofK. As observed
previously, the strategies, Waiting and Brood Interleav-
ing, behave similarly. Overall, Speculative Interleaving
performs most robustly for varying values ofK.

5. Related Work

Our work on handling delayed objectives has been
informed and inspired by a number of other studies in
the literature. In the following we briefly consider some
of these parallels, and provide some further context and
justification for the methods investigated herein.

We may begin by noticing that certain types of con-
straint handling in the EA literature operate in a similar

fashion to the methods of ours that employ interleaving.
In the constraint dominance method (Deb, 2000), for
example, the idea of checking feasibility before invest-
ing in fitness function evaluation of a solution is used,
partly, to improve efficiency of search. (This has proved
a valuable idea in constrained EAs, including multiob-
jective EAs.) Although our method of Brood Interleav-
ing derives more directly from other ideas (see below),
there is a similarity to constraint dominance, since a
cheaper evaluation is being used to assess the worthi-
ness of a more expensive one. Constraint dominance is
perhaps more straightforward, though, as in Brood In-
terleaving (and Speculative Interleaving) it is less cer-
tain that evaluating on the fast objective will provide
a guide for solutions worthy of evaluation on a slower
objective, and is more dependent on the structure of
the problem, particularly the correlation between objec-
tives.

Delta-evaluation in local search (see e.g. Ross et al.
(1994) and Bianchi et al. (2005)) and in hybrid EAs
provides another parallel to our work. Delta-evaluation
refers to the use of a fast computation of the objec-
tive value of a solution by basing the computation on a
“delta” (a small change) from another previously evalu-
ated solution; this is often possible when neighborhood
search is being used. With the use of delta-evaluation
there remains the question about how effort should be
shared between the faster local moves, and more expen-
sive but more global ways of generating new solutions.
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Figure 9: Proportion of attainable hypervolume (as derivedin an undelayed environment) achieved by a strategy
when embedded within IBEA onMNK landscapes after 40 generations using a population size of 50. The color
coding shows the performance ratio associated with each strategy as a function of the latency (y-axis) and number of
neighbors,K, each bit is interacting with (x-axis).

In contrast, our interleaving methods are more restricted
since the choice of how often the faster objective can be
used relative to the slow one is determined more by the
problem itself: the time lag, and the relative sizes of
the populations (or batches) for the slow and fast ob-
jective (assumed here to be equal for simplicity). We
also note here that delta evaluation itself can be further
related to the idea of using a hierarchy of successively
more accurate but more costly functions for evaluating a
solution, sometimes employed in engineering optimiza-
tion, but we have left this promising vein of research out
of our considerations here as it falls under the category
of metamodeling approaches, which is not in our scope
(but see the Discussion section).

Staying with our interleaving methods, we note that
Brood Interleaving is inspired by the idea of brood se-
lection, as first proposed by Tackett & Carmi (1994),
and developed subsequently by Walters (1998), as stated

in Section 3.1.3. It is interesting to note that a similar
approach to brood selection/recombination was recently
rediscovered by Doerr et al. (2013) when attempting
to design an algorithm for OneMax with running time
equal to the lower bound. Overproduction followed by
culling, if culling can be guided by the objective func-
tion without its full cost, is proving to be an efficient
method to obtain progress. Similar motivations apply in
our use of the same mechanism.

Speculative Interleaving, as the name suggests, is in-
spired by speculative parallelization (Marchesi et al.,
1994), a method that can be used to speed up individual-
based (as opposed to population-based) optimizers by
evaluating all or some future search paths to some
depth. Although speculative parallelization has not al-
ways proved to be the most effective way to parallelize
algorithms like simulated annealing (Chandy et al.,
1997), our comparison to Brood Interleaving showed
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that in some important cases flattening future genera-
tions into the present one is an effective way to guide
search.

As pointed out in (Allmendinger & Knowles, 2013a),
methods for dimensionality reduction of the objective
space (Brockhoff & Zitzler, 2009) may prove to be a
fruitful direction also for delayed objectives. The usual
rationale for dimensionality reduction is of course dif-
ferent; it is that many-objective problems are inher-
ently difficult, or difficult for some existing MOEAs,
and so removing of ‘unnecessary’ objectives, if any can
be identified, is rational. But equally a similar argu-
ment applies, only more so, if one of the unnecessary
objectives is more costly to evaluate than its proxy (a
highly correlated objective). Nevertheless, there is a
caveat which applies in both cases: although objectives
may be correlated, they are usually supposed to be in-
dependent functions. Hence, the correlation between an
expensive to evaluate objective and its proxy is only a
statistical observable, which may not hold all over the
search space and in particular may not hold crucially at
or near optimality, i.e. the tradeoffs may be apparent
only near the Pareto front. Thus removal of objectives
on statistical grounds could be unwise; for these reasons
we have chosen to investigate other methods that retain
evaluation on the slow objective, but still exploit corre-
lation between objectives where it exists.

Amongst the methods we investigated, Fast-First
does not interleave objectives, but rather concentrates
on one objective for some time before changing to the
others. This is rather reminiscent of the two-phase lo-
cal search (TPLS) method introduced by Paquete &
Stützle (2003) for bi-objective combinatorial optimiza-
tion problems. Paquete cites the connectedness and
‘global convexity’ of the Pareto front in many multiob-
jective combinatorial optimization problems as the mo-
tivation behind this approach. The TPLS first optimizes
one objective before optimizing a series of weighted
sum programs with the weights gradually changing
from the first objective (alone) to favoring the second
objective. The solution to the previous program is used
as the starting solution for the successive one.

Earlier work by two of us onephemeral resource
constraints(ERCs) (Allmendinger & Knowles, 2011;
Allmendinger, 2012; Allmendinger & Knowles, 2013b)
was the main driver for the proposed method that we
call here Waiting. ERCs are not standard constraints,
but are restrictions on the set of solutions that are actu-
ally evaluable at a given time during optimization, aris-
ing due to resourcing issues. In considering how EAs
should be applied in such problems, a straightforward
solution, which can usually be applied, is to wait for the

resourcing issue to pass, and not evaluate any solutions
in the meantime. Although this wastes time steps (and
often a time budget is imposed), the method has two key
virtues: (i) its simplicity of implementation; and, (ii) it
avoids introducing a search bias which might have hap-
pened had solutions in only a restricted part of the so-
lution space been evaluated. We found that this method
was a good baseline method in our studies on ERCs,
and was surprisingly effective in many cases. Similarly,
here, we found that waiting for the slow objective, and
not using the faster one, is worthy of consideration, and
provides an excellent baseline.

6. Discussion

Our study above is necessarily limited and leaves
open a number of questions concerning how to deal with
problems subject to delays of objectives. This section
briefly considers some of these questions.

How well do approximation-free strategies fare
against approximation-based strategies? Having
looked at both, approximation-free strategies in this
work and approximation-based strategies in our previ-
ous work (Allmendinger & Knowles, 2013a), it would
be interesting and helpful to know which type of ap-
proach is best suited for a given problem. We have done
some preliminary experiments on the problems consid-
ered here using the approximation-based strategy that
performed best and most robustly in our previous study.
In brief, this strategy maintains an unlimited population
(or archive) and submits the most recently generated so-
lutions for evaluation on the slow objective(s). Miss-
ing objective values, i.e. values of the slow objective
of solutions that have been evaluated on the fast objec-
tive only, are approximated using a fitness inheritance-
based method. This method fills the missing objective
value of a solution with the objective value of the genet-
ically closest solution that has been evaluated on both
the fast and slow objective. After completing the batch
of evaluations on the slow objective, the approximated
solution values are replaced with the true (slow objec-
tive function) values. (Then, rather than relying on evo-
lution alone to update the population and search direc-
tion upon observing the new objective function values,
potentially, we could accelerate this process using the
“guardian dominator” approach of Fieldsend & Everson
(2014).)

Figure 10 shows several plots comparing this strat-
egy with the approximation-free strategies introduced in
this work on the LOTZ problem. In general, the issue
of controlling search bias induced by the fast objective
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Figure 10: Selection of plots comparing the performance of approximation-free strategies against an approximation-
based strategy for various problem scenarios: convergenceplot on the LOTZ problem using a latency of 5 generations
on the slow objective (heref2) (top left), relative performance of the approximation-based strategy compared to the
undelayed problem on the mapped OneMax problem (top right),attainment surfaces obtained on the LOTZ problem
using a latency of 5 generations on the slow objective (heref2) (bottom left), and median and interquartile ranges of
the hypervolume achieved on the LOTZ problem as a function ofthe latency (bottom right). For every setting marked
by a point in the bottom right line graph, a Friedman test (significance level of 5%) has been carried out. In the top
left plot, the approximation-based strategy peforms best out of the five strategies for 15< #Generations< 60. In the
bottom right plot, the approximation-based strategy performs best out of the five strategies in the range 2< kslow ≤ 10,
and Fast-First forkslow = 20. There is no clear winner for the other settings.

without reducing convergence speed significantly exists
with approximation-based strategy too. The top left plot
shows the convergence behavior of the approximation-
based strategy in comparison to the approximation-free
strategies introduced in this study. It can be seen from
the plot that the approximation-based approach con-
verges even faster than Speculative Interleaving at the
beginning of the search but then stagnates in perfor-
mance to be eventually overtaken by Brood Interleav-
ing and Waiting. Looking at the attainment surfaces
obtained after 40 generations (see top right plot), it is
apparent that the approximation-based strategy is less

affected by search bias towards the fast objective (i.e. is
less likely to converge to a population where many so-
lutions are of high quality wrt the fast objective only)
than Speculative Interleaving and Fast-First. In fact, as
can be observed from the bottom left plot, the strategy
converges (quickly) to the middle of the Pareto-front,
similar to Waiting, but then stagnates there (due to a
loss of diversity in the population as many solutions are
copies of each other). Finally, it is important to note
that the performance of the approximation-based strat-
egy depends heavily on the accuracy of objective value
approximations made. It is easy to see that this accu-
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racy reduces as the number of solutions evaluated on the
slow objective reduces. The bottom right plot confirms
this assumptions, indicating a significant degradation in
the performance of the strategy with increasing latency
kslow. On the mapped OneMax problem and multiobjec-
tive NK landscapes, the approximation-based strategy
is affected similar to Speculative Interleaving for dif-
ferent objective function correlations andK values, re-
spectively. The main difference between both strategies
was observed on the mapped OneMax problem for pos-
itive correlations and long latencies (see Figure A.6 in
the Appendix); here Speculative Interleaving performs
significantly better.

Generalization of strategies to a pair of objectives
where kslow is not an exact multiple of kf ast: In Def-
inition 2.7 we defined the latencies associated with the
objectives to be exact multiples of each other. Of course,
in reality, this may not be the case. However, this defini-
tion simplifies things greatly to synchronize the objec-
tives in this way, and more generally this can be done as
follows. Let’s say the fast objective takes 1 unit and the
slow one 1.7. Then we could just approximate the slow
one as taking 2 timesteps for synchronization purposes
(and we would have to put in a buffer delay on the sec-
ond objective to make the synchronization work). How-
ever, if the fast objective took one unit of time and the
slow objective took 1.5, then it would be ideal to define
the first as being 2 timesteps, and second as 3, so that the
amount of buffering is kept small. We have not consid-
ered this second way of synchronizing, but believe that
the algorithms could be altered to do it without much
additional work.

Generalization of strategies tom> 2 objectives: Our
experimental study investigated multiobjective prob-
lems withm = 2 objectives of which one was fast and
one slow. A pressing question is whether the strategies
can be generalized to problems withm > 2 objectives
and multiple objectives with different latencies. The
strategies, Waiting and Fast-First, are readily applica-
ble to other problem setups by simply going at the rate
of the slowest and fastest objective, respectively. To be
able to apply the two Interleaving strategies we could
split the objectives into two groups based on their la-
tencies, i.e. a group containing rather slow objectives
and a group with fast objectives, and use some buffer-
ing (waiting) within each group to synchronize the eval-
uations. In the case where the group with the slow
objectives contains multiple elements (objectives), we
would use a MOEA (instead of a single-objective EA)
to drive the optimization during the interleaving peri-
ods. An alternative and probably more complex strat-

egy is to first rank objectives according to their laten-
cies, and then apply a nested approach where the faster
objectives are used as look ahead for slower objectives,
and, in turn, these objectives as look ahead for even
slower objectives, and so on. Clearly, the application of
approximation-based approaches could be of great ben-
efit in such challenging scenarios, replacing the need of
evaluating all objective functions.

Instantiations of delay-handling strategies on
steady-state MOEAs: Unlike generational-based
MOEAs, which evaluate a set (population) ofλ > 1
solutions at any time, steady state MOEAs create (and
evaluate) one solution at a time (and thus are not usable
off-the-shelf in the case where several solutions can be
evaluated in parallel). This does not effect the Waiting
and First-First strategy, which can be used in the same
way as within a generational-based MOEA (though
we might want to use the Waiting strategy to create an
unbiased initial population in the case of First-First and
the two Interleaving strategies). Slight modifications
are, however, necessary for Brood and Speculative
Interleaving to account for the fact that onlykslow fast
evaluations are performed during each “interleaving
period”, compared tokslow × λ fast evaluations in
a generational MOEA. Consequently, to simulate
the performance of Brood Interleaving obtained in a
generational MOEA, the interleaving populations for a
steady state-based MOEA can be created by applying
selection and variation to the current EA populationGi

(which is of sizeλ) instead of the current generation on
the slow objective,Gslow

i (which is also of sizeλ in the
case of a generational MOEA). Similarly, to simulate
the performance of Speculative Interleaving obtained in
a generational MOEA, which involves the application
of a single-objective EA forkslow − 1 generations, each
of the interleaving populations of a steady-state MOEA
can represent a (single) mutant created by applying
variation to the single solution (parent) formingGslow

i ;
the single best mutant (in terms of the fast objective)
can then be selected to giveGslow

i assuming it is better
than its parent, otherwise a single offspring can be
created by random (parental) selection and variation
applied to the interleaving populations (mutants) to
giveGslow

i .

The performance of the delay-handling strategies
when embedded to a steady-state MOEA, as described
above, seems to be similar to the performance ob-
tained for a generational MOEA. The main difference
we observed is that Brood Interleaving and Waiting per-
form better within a steady-state MOEA than a gener-
ational MOEA for problem with high correlations be-
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Figure 11: Median and interquartile ranges of the hypervolume achieved on the mapped OneMax problem by dif-
ferent strategies embedded within a steady-state EMOA, here the Simple Evolutionary Multiobjective Optimizer
(SEMO) (Laumanns et al., 2004), after 40 generations using apopulation size of 50. In the left plot, the latency
was set to 5 generations on the slow objective (heref2), and the correlation was varied from -1 to 1, in steps of 0.25.
In the right plot, the correlation was set to 0.5 between the two objectives and the latency was varied. For every setting
marked by a point in the line graphs, a Friedman test (significance level of 5%) has been carried out. In the left plot,
Speculative Interleaving performs best out of the four strategies in the range−1 ≤ corr < 0. There is no clear winner
for the other settings.

tween objectives, especially when combined with long
delay lengths. This observation can also be made from
Figure 11 where results are shown for an example of
a steady-state MOEA, in this case the Simple Evolu-
tionary Multiobjective Optimizer (SEMO) (Laumanns
et al., 2004). This pattern may be due to the relatively
higher selection pressure of a steady-state MOEA (com-
pared to a generational MOEA, such as IBEA). How-
ever, a more thorough investigation is needed to confirm
the performance differences between these two repro-
duction schemes.

Relationship to problems with asynchronous evalua-
tions: Asynchronous evaluation in optimization in the
context of grid computing was considered in [12,16].
The problem overlaps but is distinct from ours in that
the cloud computing resource is assumed to be hetero-
geneous and/or unreliable, and the asynchrony happens
across the population rather than across objectives. (In
contrast, we assume for the moment a rather reliable
and homogeneous process for evaluating a whole pop-
ulation en masse, and are concerned only with the fact
that some objectives can be evaluated faster than oth-
ers.) Although the context is a bit different, we think
that as Lewis et al.[12] found, a strategy based on a
moderate amount of waiting for slower evaluations may
be competitive in some settings, and we also consider
the effect of diversity maintenance might be important

(see below).

How to select an appropriate strategy for dealing
with delayed objectives in the absence of knowledge
about the problem at hand?If the experimentalist (i.e.
an expert on the problem domain at hand) is unaware
about correlations between objectives and/or structure
of the fitness landscape, then some knowledge about
these aspects might be obtained from evaluating a set
of random solutions on the problem. The knowledge
gained might be used to select an appropriate strategy,
and the solution set evaluated could form the initial pop-
ulation of the MOEA within which the strategy is em-
bedded. Alternatively, if this approach is not feasible
(e.g. because it is too expensive) or does not yield use-
ful insights into the problem, one might select an ap-
propriate strategy based on the latencies of the objec-
tives. In this work we have shown that a strategy with
high selection pressure, such as Speculative Interleav-
ing, is well-suited for small budgets and long latencies,
whilst a Waiting strategy is more appropriate for large
budgets. Finally, confidence in the strategy selected can
be increased by designing problem functions that simu-
late the problem at hand as closely as possible, and then
to test several strategies offline on these functions and
use the best one for the real-world problem.

20



7. Conclusion

Continuing our previous work (Allmendinger &
Knowles, 2013a), we have considered a multiobjective
optimization scenario in which the objective functions
of a problem require different evaluation times. This
kind of problem can be encountered in closed-loop op-
timization scenarios, where physical experiments may
be of differing temporal durations, as well as problems
in which objective functions are evaluated on the com-
puter but have differing latency (e.g. due to lengthy
computer simulations). We considered scenarios with
two objectives, a fast and a slow objective, and, un-
like to our previous work, proposed and analyzed sev-
eral approximation-free strategies to deal such scenar-
ios: Waiting, Fast-First, Brood Interleaving, and Specu-
lative Interleaving. We showed how these strategies can
be augmented on generational and steady state-based
MOEAs, and assessed them on three well-known bi-
nary test functions: (i) the well-understood LOTZ prob-
lem, (ii) a family of mapped OneMax problems to inves-
tigate the impact of correlation between objectives on
strategy performance, and (iii) multiobjectiveNK land-
scapes (MNK landscapes) to investigate the impact of
varying fitness landscape ruggedness on strategy perfor-
mance.

The experimental study revealed that the performance
of all strategies is affected by the presence of delayed
objectives. In general, the degree to which performance
is affected depends on how well a strategy is able to
control search bias towards solutions that are fit on the
fast objective without degrading population diversity
and convergence speed severely. Based on the experi-
mental study, we can conclude tentatively that a strat-
egy with relatively high selection pressure towards opti-
mizing the fast objective, such as Speculative Interleav-
ing, performs well if little optimization time is available
and/or delays are long, objectives are positively corre-
lated, and fitness landscapes are rugged.

A strategy that focuses on optimizing the fast ob-
jective only, such as Fast-First, has shown to perform
well for problems with highly positively correlated ob-
jectives. Furthermore, Fast-First was also unaffected
by the length of delays, and performed better within a
generational MOEA than a steady state-based MOEA.
In fact, when embedded within a generational-based
MOEA and applied to problems with long delays, the
performance of Fast-First was competitive to the one of
Speculative Interleaving.

Compared to Speculative Interleaving and Fast-First,
we observed that the strategies Waiting and Brood In-
terleaving are less aggressive with respect to the opti-

mization of the fast objective, and that, with increas-
ing budgets, both strategies become increasingly com-
petitive. They perform similarly in several settings, but
Brood Interleaving outperforms Waiting for long delays
and large problem sizes. Furthermore, Brood Interleav-
ing turns out to perform significantly better when used
in combination with a steady state-based MOEA (here
SEMO) rather than a generational-based MOEA (here
IBEA).

Our study has shown that, for most scenarios, smart
approximation-free strategies are more competitive than
simple approaches, such as Waiting, to deal with multi-
objective problems where objectives have differing eval-
uation times. In particular, EA performance depends
on the mechanism used to create offspring (interleav-
ing populations) during the periods the slow objective is
evaluated. Hence, future research could look at merg-
ing the strategies proposed here (e.g. for creating off-
spring) with the approximation-based strategies we con-
sidered in our previous work (e.g. for estimating their
objective values). To improve the approximation-based
strategy itself, or, more precisely, the way a popula-
tion is updated after observing the true values of the
slow objective function, we could experiment with the
“guardian dominator” approach of Fieldsend & Everson
(2014). We believe that there is also scope for improve-
ment on the strategy Fast-First. For example, one could
learn (using a reinforcement learning-based approach as
done e.g. in (Allmendinger & Knowles, 2011)) when to
switch during the search between single-objective op-
timization of the fast objective and multiobjective op-
timization of both the fast and slow objective. To im-
prove the applicability of the strategies proposed here,
it is also important to extend and investigate them for
multiobjective problems withm > 2 objectives where
possibly all objectives may have different latencies. Fi-
nally, we can look into merging our strategies with
surrogate-assisted evolutionary optimization (Ong et al.,
2005; Jin, 2011) for coping with delayed environments,
as well as get inspiration from asynchronous evolution
techniques (Lewis et al., 2009; Harada & Takadama,
2014), which account for latencies across individual so-
lutions rather than objectives.
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Appendix A. Supplementary Experimental Results
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Figure A.1: Median and interquartile ranges of the hypervolume achieved on the LOTZ problem (left) and onMNK
landscapes (forN=20 andK=2) (right) by different strategies embedded within IBEA after 40 generationsusing a
population size of 50. Results are shown for different latencies. For every setting marked by a point in the line graphs,
a Friedman test (significance level of 5%) has been carried out. In the left plot, Speculative Interleaving performs best
out of the four strategies for 5< kslow ≤ 10, and Fast-First forkslow = 20. In the right plot, Speculative Interleaving
performs best out of the four strategies forkslow = 20. There is no clear winner for the other settings.
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Figure A.2: Median attainment surface on the LOTZ problem obtained by different strategies embedded within IBEA
after 40 generations using a population size of 50. Results are shown for a latency of 5 (left) and 20 (right) generations
on the slow objective (heref2).
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Figure A.3: Median attainment surface onMNK landscapes (forN=20 andK=2) obtained by different strategies
embedded within IBEA after 40 generations using a population size of 50. Results are shown for a latency of 5 (left)
and 20 (right) generations on the slow objective (heref2).
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Figure A.4: Median and interquartile ranges of the hypervolume achieved by different strategies embedded within
IBEA on the mapped OneMax problem after 40 generations usinga population size of 50. Results are shown for a
latency of 10 generations on the slow objective (heref2) as a function of problem size, which is varied from 5 bits to
50, in steps of 5. For every setting marked by a point in the line graphs, a Friedman test (significance level of 5%) has
been carried out. In theleft plot, Speculative Interleaving performs best out of the four strategies forn > 20. There is
no clear winner for the other settings.
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Figure A.5: Median and interquartile ranges of the hypervolume achieved onMNK landscapes (forN=20 andK=2)
by different strategies embedded within IBEA after 40 generationsusing a population size of 50. Results are shown
for a latency of 10 generations on the slow objective (heref2) as a function of problem size, which is varied from 5
bits to 50, in steps of 5. For every setting marked by a point inthe line graphs, a Friedman test (significance level of
5%) has been carried out. Speculative Interleaving performs best out of the four strategies forn > 20. There is no
clear winner for the other settings.
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Figure A.6: Proportion of attainable hypervolume (as derived in an undelayed environment) achieved by an
approximate-based strategy on the mapped OneMax problem after 40 generations using a population size of 50.
The color coding shows the performance ratio associated with each strategy as a function of the latency (y-axis) and
the correlation between the objectives (x-axis).
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