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Abstract

We study the capacitated k-facility location problem, in which we are given a set of
clients with demands, a set of facilities with capacities and a constant number k. It costs
fi to open facility i, and cij for facility i to serve one unit of demand from client j. The
objective is to open at most k facilities serving all the demands and satisfying the capacity
constraints while minimizing the sum of service and opening costs.

In this paper, we give the first fully polynomial time approximation scheme (FPTAS)
for the single-sink (single-client) capacitated k-facility location problem. Then, we show
that the capacitated k-facility location problem with uniform capacities is solvable in poly-
nomial time if the number of clients is fixed by reducing it to a collection of transportation
problems. Third, we analyze the structure of extreme point solutions, and examine the ef-
ficiency of this structure in designing approximation algorithms for capacitated k-facility
location problems. Finally, we extend our results to obtain an improved approximation
algorithm for the capacitated facility location problem with uniform opening cost.

1 Introduction

In the capacitated k-facility location problem (CKFL), we are given a set D of clients and a
set F of potential facilities (locations where we can potentially open a facility) in a metric
space. Each facility i ∈ F has a capacity si. Each client j has a demand dj that must be
served. Establishing facility i incurs an opening cost fi. Shipping xij units from facility
i to client j incurs service costs cijxij , where cij is proportional to the distance between i
and j. The goal is to serve all the clients by using at most k facilities and satisfying the
capacity constraints such that the total cost is minimized. In this paper, we consider the
hard capacities, that is, we allow at most one facility to be opened at any location. (Note
that in the soft capacities case multiple facilities can be opened in a single location [33].)

CKFL can be formulated as the following mixed integer program (MIP), where variable
xij indicates the amount of the demand of client j that is served by facility i, and yi indicates
whether facility i is open.
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min
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi (1)

subject to:
∑
i∈F

xij = dj , ∀j ∈ D, (2)∑
j∈D

xij ≤ siyi, ∀i ∈ F, (3)

∑
i∈F

yi ≤ k, (4)

xij ≥ 0, ∀i ∈ F,∀j ∈ D, (5)

yi ∈ {0, 1}, ∀i ∈ F. (6)

If we replace constraints (6) by

0 ≤ yi ≤ 1, i ∈ F, (7)

we obtain the LP-relaxation of CKFL. Without loss of generality we suppose that si, dj for
each i ∈ F, j ∈ D are all integral.

CKFL is related to the capacitated k-median problem (CKM), in which inputs and goal
are the same as CKFL except that there is no opening cost for facilities. A constant fac-
tor approximation algorithm is still unknown for CKM, let alone CKFL. All the previous
attempts with constant approximation ratios for these problems violate the capacity con-
straint, or cardinality constraint that at most k facilities are allowed to be used. We call
these approximation algorithms pesudo-approximation algorithms. Recently, Byrka et al. [7]
gave a constant factor approximation algorithm for CKM with uniform capacities while vio-
lating the capacities with a factor 2 + ε, where ε > 0 can be arbitrarily small. Although most
researchers believe that relaxing the cardinality constraint makes the problem simpler than
relaxing the capacity constraint with respect to designing pesudo-approximation algorithms,
the best known violation ratio for cardinality constraint is still 5 + ε to get a constant factor
approximation algorithm [27] for CKM with uniform capacities. It seems that to obtain a
better constant factor approximation algorithm with violating the cardinality constraint has
not received much attention yet.

In this paper, we give an improved approximation algorithm for CKFL (with arbitrary
capacities) with uniform opening cost by using at most 2k facilities. To show the poten-
tial power of this algorithm, we improve the approximation ratio for the capacitated facility
location problem with uniform opening cost [30], by combining this algorithm with a pesudo-
approximation algorithm for the k-median problem derived from a bifactor approximation
algorithm for the uncapacitated facility location problem [10]. That is, pesudo-approximation
algorithms for capacitated k-facility location problems may be extended to get approxima-
tion algorithms for well-studied capacitated facility location problems. We believe that this
technique has the potential to further improve approximation ratios for capacitated facility
location problems.

Additionally, in Section 2 we give the first fully polynomial time approximation scheme
(FPTAS) for the single-sink (hard) capacitated k-facility location problem. In Section 3, we
give a polynomial time algorithm for the uniform capacitated k-facility location problem with
a fixed number of clients.

1.1 Related Work

The k-facility location problem has already been studied since the early 90s [14, 21]. It is a
common generalization of the k-median problem (in which at most k facilities are allowed to
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be opened, and there is no opening costs) and the uncapacitated facility location problem,
which are classical problems in computer science and operations research and have a wide
variety of applications in clustering, data mining, logistics [6, 22, 28], even for the single-sink
(single client) case [19].

For the uncapacitated k-facility location problem (UKFL), Charikar et al. [11] gave the
first constant factor approximation algorithm with performance guarantee 9.8, by modifying
their 62

3 -approximation algorithm for the uncapacitated k-median problem. Later, the ap-
proximation ratio was improved by Jain and Vazirani [25], who made use of a primal-dual
scheme and Lagrangian relaxation techniques to obtain a 6-approximation algorithm. Jain
et al. [23, 24] further improved the ratio to 4 by using a greedy approach and the so-called
Lagrangian Multiplier Preserving property of the algorithms. The best known approximation
algorithm for this problem, due to Zhang [38], achieves a factor of 2 +

√
3 + ε using a local

search technique. The k-median problem, as a special case of UKFL, was studied extensively
[2, 3, 8, 10, 11, 24, 25, 31] and the best known approximation algorithm was recently given
by Byrka et al. [8] with approximation ratio 2.611 + ε by improving the algorithm of Li and
Svensson [31]. In addition, Edwards [15] gave a 7.814-approximation algorithm for the multi-
level uncapacitated k-facility location problem by extending the 62

3 -approximation algorithm
by Charikar et al. [11] for the uncapacitated k-median problem.

Unfortunately, the capacitated k-facility location problem is much less understood al-
though the presence of capacity constraints is natural in practice. The difficulty of the
problem lies in the fact that two kinds of hard constraints appear together: the cardinality
constraint, and the capacity constraints. This seems to result in hardness of the methods
such as LP-rounding, primal-dual method used to solve the k-median problem, and even local
search algorithms used to solve the capacitated facility location problem and the k-median
problem.

The capacitated k-facility location problem is related to the capacitated facility location
problem (CFL), whose inputs and goal are the same as for CKFL but without the cardi-
nality constraint. Most known approximation algorithms for CFL are based on local search
technique since the natural linear programming relaxation has an unbounded integrality gap
for the general case [34]. For nonuniform capacities, Pál, Tardos, and Wexler [34] proposed
the first constant factor approximation algorithm with a factor of 8.53. Later, Mahdian
and Pál [32] improved this factor to 7.88. Zhang, Chen, and Ye [37] reduced this factor to
(3 + 2

√
2 + ε) by introducing a multi-exchange operation. The currently best known approx-

imation algorithm, due to Bansal, Garg, and Gupta [4], achieves the approximation ratio 5.
As it was expected that the problem is easier for uniform capacities, Korupolu, Plaxton, and
Rajaraman (KPR) [27] gave the first constant factor approximation algorithm with a factor
of 8. Later, this factor was improved to 5.83 by Chudak and Williamson [12]. The currently
best approximation algorithm due to Aggarwal et al. [1] has performance guarantee of 3.

Additionally, Levi, Shmoys, and Swamy [30] showed that the linear programming re-
laxation has a bounded integrality gap for CFL with uniform opening costs, and gave a
5-approximation algorithm for this case by an LP-rounding technique.

The capacitated k-median problem (CKM), which is a special case of CKFL, is already
difficult to handle. The natural linear programming relaxation has an unbounded integrality
gap (see Remark 1). We have to blow up the capacity or increase the number of opening
facilities by a factor of at least 2 if we use the cost of the LP solution as a lower bound to
obtain an integral solution [11].

For the hard uniform capacity case, Charikar et al. [11] gave a constant factor approxi-
mation algorithm while violating the capacities within a constant factor 3 by LP-rounding.
Recently, Byrka et al. [7] improved this violation ratio to 2+ε by designing a (32l2 +28l+7)-
approximation algorithm increasing the capacity by a factor of 2 + 3

l−1 , l ∈ {2, 3, 4, · · · }.
Based on a local search technique, Korupolu et al. [27] proposed a (1 + 5/ε)-approximation
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algorithm by using at most (5+ ε)k facilities, and a (1+ ε)-approximation algorithm by using
at most (5 + 5/ε)k facilities.

For soft non-uniform capacities, based on primal-dual and Lagrangian relaxation methods,
Chuzhoy and Rabani [13] presented a 40-approximation algorithm by violating the capacities
within a constant factor of 50. Bartal et al. [5] proposed a 19.3(1 + δ)/δ2-approximation
algorithm (δ > 0) by using at most (1 + δ)k facilities.

To the best of our knowledge, for hard non-uniform capacities, a constant factor ap-
proximation algorithm is still unknown if we allow for a violation of the two kinds of hard
constraints: the cardinality constraint and capacity constraints. Without violating any con-
straint, a constant factor approximation algorithm remains unknown even for the single-sink
capacitated k-median problem in which |D| = 1, let alone the capacitated k-facility location
problem.

1.2 Our Contributions and Techniques

(i) The single-sink facility location problem has several applications in practice [19]. We
show that the single-sink hard capacitated k-facility location problem, in which D contains
exactly one client, is NP-hard even when fi = 0, i ∈ F . We give the first FPTAS for SCKFL
by extending the FPTAS for the knapsack problem. To the best of our knowledge, this is
also the fist FPTAS for the single-sink capacitated facility location problem, which answers
a question by Görtz and Klose [17].

(ii) For the hard capacitated k-facility location problem with uniform capacities, in which
si = s, i ∈ F , we observe that for |D|=1, it is easy to find an optimal solution. A natural
question is to extend this to any fixed number m := |D| of clients. We give a polynomial time
algorithm for this setting that runs in time O(

(
n
m

)
· n3), where n = |F |. Using the structure

of the graph consisting of the fractional valued edges in any extreme solution, the problem is
reduced to a number of transportation problems.

(iii) We observe that the number of fractionally open facilities can be bounded by ana-
lyzing the rank of the constraint matrix corresponding to the tight constraints at a fractional
extreme point solution. Then, we give approximation algorithms for two variants of the hard
capacitated k-facility location problem based on this upper bound.

Another example to show the potential power of the structure of extreme point solu-
tions is that we can slightly improve the previous best approximation ratio 5 obtained by
Levi, Shmoys, and Swamy [30], and Bansal, Garg, and Gupta [4] for the capacitated facility
location problem with uniform opening costs, by combining our technique with a pesudo-
approximation algorithm for the k-median problem.

2 The Single-sink Capacitated k-facility Location Problem

In this section, we consider the single-sink capacitated k-facility location problem (SCKF).
Since we only have one client with demand d, the formulation for the CKF is reduced to the
following mixed integer program.
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ZMIP = min
∑
i∈F

(cixi + fiyi) (8)

subject to:
∑
i∈F

xi = d, (9)∑
i∈F

yi ≤ k, (10)

0 ≤ xi ≤ siyi, ∀i ∈ F, (11)

yi ∈ {0, 1}, ∀i ∈ F. (12)

Again, the natural LP relaxation of SCKFL can be obtained by replacing constraints (12)
by (7).

Lemma 1. The single-sink capacitated k-facility location problem is NP-hard even when
fi = 0 for all i ∈ F .

Proof. Consider the case that si > 1, ci := 1− 1
si

and fi = 0 for all i ∈ F . We claim that

ZMIP ≤ d− k ⇐⇒ there exists I ⊆ F with |I| = k and
∑
i∈I

si = d. (13)

Indeed, for the objective value we find∑
i∈F

cixi = d−
∑
i∈F

xi
si

= d−
∑
i|yi=1

xi
si
≥ d− k,

where the last inequality holds because xi ≤ si and yi = 1 for k values of i. Equality holds if
and only if xi = si for all i ∈ F with yi = 1. That is, if and only if

∑
{si | yi = 1} = d.

The claim above allows to reduce SUBSET-SUM to SCKFL as follows. Let positive
integers s1, · · · , sn > 1 and d form an instance of SUBSET-SUM. Now there exists a subset
I ⊆ {1, 2, · · · , n} such that

∑
i∈I si = d if and only if the objective value of SCKFL is at

most d− k for some k ∈ {1, · · · , n}.

Remark 1. The integrality gap ZMIP/ZLP is unbounded.

Take the instance shown in Figure 1 with four facilities {1, 2, 3, 4}, s1 = s2 = s, s3 =
Ms, s4 = s + 1, d = 2s + 1, f1 = f2 = f3 = f4 = 0, and c1 = c2 = 0, c3 = 100, c4 = 1, k = 2
and M � s � 100. For this instance, we have ZMIP = s + 1 and ZLP = 100M

M−1 . Thus,

ZMIP/ZLP = s+1
100M
M−1

> s+1
200 , which can be arbitrarily large. In addition, a simple LP-rounding

technique does not work for SCKFL. For the above instance, an optimal solution for LP-
relaxation is y1 = 1, y2 = Ms−s−1

(M−1)s , y3 = 1
(M−1)s , x1 = s, x2 = Ms−s−1

M−1 , x3 = M
M−1 . A natural

idea is to round y3 to be 1, y2 to be 0. It is clear that the objective value of the solution
obtained by this simple rounding is still really large.

We aim to design a fully polynomial time approximation scheme (FPTAS) for SCKFL.
Before introducing our algorithm, we present a key observation (Pál, Tardos, and Wexler
gave a similar observation in the proof of Lemma 3.3 in [34]).

Observation 1. For the single-sink capacitated k-facility location problem, there is an opti-
mal solution (x∗, y∗) in which at most one open facility t0 is not fully used, i.e., x∗i ∈ {0, si}
for i 6= t0.
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facility
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3
2

4

Figure 1: An instance for SCKFL. An optimal solution for the LP-relaxation of this instance
is y1 = 1, y2 = Ms−s−1

(M−1)s , y3 = 1
(M−1)s , x1 = s, x2 = Ms−s−1

M−1 , x3 = M
M−1 , with the total cost

100M
M−1 . An optimal solution for the MIP is y1 = y4 = 1, x1 = s, x4 = s+ 1 with the total cost
s+ 1.

Without loss of generality we suppose that cij and fi, for each i ∈ F, j ∈ D, are all
integral. Given t0, which is allowed not to be fully used in an optimal integral solution
(x∗, y∗), in order to solve SCKFL it is sufficient to solve the following problem for a given
integer p:

max
{∑
i∈F ′

si | F ′ ⊆ F \ {t0}, |F ′| ≤ k − 1,
∑
i∈F ′

(cisi + fi) = p
}
. (14)

In words, we find for each total cost p a set of at most k − 1 facilities (not containing t0) to
open and use to full capacity, maximizing the total capacity.

We can recursively solve the above problem by dynamic programming. Without loss of
generality, suppose F \ {t0} = {1, 2, · · · , n − 1}, where n = |F |. For nonnegative integers p
and g ≤ b ≤ n− 1 define

Sg(b, p) := max
{∑
i∈F ′

si | F ′ ⊆ {1, . . . , b}, |F ′| ≤ g,
∑
i∈F ′

(cisi + fi) = p
}
,

and let Fg(b, p) be an optimal solution F ′. If
∑

i∈F ′(cisi + fi) = p does not hold for any
F ′ ⊆ {1, . . . , b} with |F ′| ≤ g, we set Sg(b, p) := −∞ and Fg(b, p) := ∅. Clearly, Sg(0, 0) = 0
and Sg(0, p) = −∞ for p > 0. The other values Sg(b, p), and the corresponding optimum
solutions Fg(b, p), can be computed recursively since

Sg(b+ 1, p) = max
(
Sg(b, p), sb+1 + Sg−1(b, p− (fb+1 + cb+1sb+1)

)
for 0 < g ≤ b. In the maximum, the two values correspond to not opening and opening
facility b+ 1, respectively.

For computing the maximum in (14), it suffices to restrict to values 0 ≤ p ≤ (k−1)P ≤ nP,
where P = max{cisi + fi | i ∈ {1, . . . , n− 1}}. Hence we can solve (14) in time O(n3P).

Since P may be exponential in the size of the input of SCKFL, the computing time could
be non-polynomial. We overcome this difficulty by a scaling-and-rounding technique. The
resulting Algorithm 1 may be seen as a generalization of the FPTAS for the knapsack problem
(with cardinality constraints) [9, 29].

Assumption 1. For each i ∈ F,Ci > 0, where Ci := cisi + fi.

Note that if Ci = 0 and si < d we directly open i and serve demand si of the single client
by i without increasing any cost. If Ci = 0 and si ≥ d, the optimal total cost is 0.

Remark 2. Note that in Algorithm 1 for nonnegative integers p and g ≤ b ≤ r̄,

Sg(b, p) := max
{∑
i∈F ′

si | F ′ ⊆ {1, . . . , b} − {t}, |F ′| ≤ g,
∑
i∈F ′

(cisi + fi) = p
}
.

Theorem 1. Let OPT be the cost of an optimal solution, SOL be the cost of the solution
returned by Algorithm 1. Then, SOL ≤ (1 + ε)OPT . The running time of Algorithm 1 is

O(n
6

ε ), for any ε > 0.
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Algorithm 1 An FPTAS for the single sink capacitated k-facility location problem

Input Finite set F of facilities, costs c ∈ ZF≥0, costs f ∈ ZF≥0, demand d ∈ Z≥0, capacities

s ∈ ZF≥0, integer 1 ≤ k ≤ n := |F |, ε > 0.

Output A feasible solution (x, y) that is within a factor 1 + ε of optimum, if a feasible
solution exists.

Description

1. Order facilities such that C1 ≤ C2 ≤ · · · ≤ Cn, where Ci := cisi + fi.

2. for t = 1 to n do

for r = 1 to n do

if {1, · · · , r} − {t} = ∅,
Let C0

r = 0, f̄t = ft, c̄t = ct, W = 1.

end if

if {1, · · · , r} − {t} 6= ∅

Let W = εC0
r
k , where C0

r = max{Ci | i ∈ {1, · · · , r} − {t}}.

For each facility i ∈ {1, · · · , r} − {t}, define C̄i = bCi
W c.

Let f̄t = ft
W , c̄t = ct

W .

end if

Consider the subproblem Prt involving items {1, · · · , r} ∪ {t}, in which

only t can be not fully used, that is, xi ∈ {0, si}, i ∈ {1, · · · , r} − {t};
0 ≤ xt ≤ st. With the above scaled costs, compute Sg(r̄, p) for each

0 ≤ g ≤ k − 1, 0 ≤ p ≤ (k − 1)bC
0
r
W c, where r̄ = r if r 6= t, r̄ = r − 1

otherwise. Then, find a solution with total scaled cost:

min{p+ (d− Sg(r̄, p))c̄t + f̄t | 0 ≤ d− Sg(r̄, p) ≤ st, 0 ≤ g ≤ k − 1,

0 ≤ p ≤ (k − 1)bC
0
r
W c}, if a feasible solution exists.

end for

end for

3. for r = 1 to n do

if sr ≥ d,

find a solution with total cost dcr + fr.

end if

end for

4. Output the solution with the minimum total original cost.
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Proof. Suppose (x∗, y∗) is an optimal solution in which at most one open facility is not fully
used. Let t0 be the open facility in (x∗, y∗) that is not fully used if it exists. Otherwise, let
t0 be some open facility in (x∗, y∗). Then, we define F ∗1 = {i ∈ F | y∗i = 1} − {t0} as the set
of opened facilities in (x∗, y∗) excluding t0.

If F ∗1 = ∅, clearly our algorithm can find an optimal solution in Step 3. If F ∗1 6= ∅, let
C0
i = max{Ci | i 6= t0, y∗i = 1}. Note that C0

i ≤ OPT . Moreover, let i0 = max{i ∈ F ∗1 | Ci =
C0
i }. Thus, Ci0 = C0

i .
Suppose in iteration t = t0, r = i0 of Step 2 we get an optimal solution (x, y). Let

F1 = {i ∈ F | yi = 1} − {t0}. Let Cost(x, y) and Scaled cost(x, y) be the original and scaled
total cost of solution (x, y) respectively. So, Cost(x, y) = (

∑
i∈F1

Ci) + xt0ct0 + ft0 , and
Scaled cost(x, y) = (

∑
i∈F1

C̄i) +xt0 c̄t0 + f̄t0 , where the definition of C̄i is given in Algorithm
1. We will show that Cost(x, y) ≤ (1 + ε)OPT , which then implies SOL ≤ (1 + ε)OPT .

Recall that W = εC0
r
k . We have

Cost(x, y) = (
∑
i∈F1

Ci) + xt0ct0 + ft0

≤ (
∑
i∈F1

(WC̄i +W )) +Wxt0 c̄t0 +Wf̄t0

≤W ((
∑
i∈F1

C̄i) + xt0 c̄t0 + f̄t0) + kW

≤W · Scaled cost(x, y) + kW,

where the second inequality holds as |F1| ≤ k − 1.
The scaled total cost of solution (x∗, y∗) in this iteration is (

∑
i∈F ∗1

C̄i) + x∗t0 c̄t0 + f̄t0 .
Clearly,

Scaled cost(x, y) ≤ (
∑
i∈F ∗1

C̄i) + x∗t0 c̄t0 + f̄t0 ,

since (x, y) is optimal in this iteration. That is,

Scaled cost(x, y) ≤ (
∑
i∈F ∗1

bCi
W
c) + x∗t0

ct0

W
+
ft0

W
.

Then, we have

W · Scaled cost(x, y) ≤W (
∑
i∈F ∗1

bCi
W
c) +Wx∗t0

ct0

W
+W

ft0

W

⇒W · Scaled cost(x, y) + kW ≤ (
∑
i∈F ∗1

Ci) + x∗t0ct0 + ft0 + kW.

Therefore, we get

Cost(x, y) ≤ (
∑
i∈F ∗1

Ci) + x∗t0ct0 + ft0 + kW = OPT + εC0
i ≤ (1 + ε)OPT,

where the equality holds by the definition of W and the last inequality holds as C0
i ≤ OPT .

For fixed t, the running time of the subproblem Prt, r = 1, · · · , n is O(n3bC
0
r
W c). That is,

O(n3 k
ε ). Thus, the total running time of our algorithm is O(n

6

ε ) as we have O(n2) subprob-
lems.
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3 The Capacitated k-facility Location Problem with Uniform
Capacities

In this section, we aim to show the following result for the capacitated k-facility location
problem with uniform capacities (CKFU). Let m = |D|, n = |F | and si = s, i ∈ F .

Theorem 2. For fixed m, the capacitated k-facility location problem with uniform capacities
can be solved in polynomial time O(

(
n
m

)
· n3).

We need new notation to describe our idea. We consider an optimal solution (x, y) for
CKFLU as a weighted bipartite graph G = (V,E), where V = {i ∈ F | yi = 1} ∪ D and
E = {{i, j} | xij > 0, i ∈ F, j ∈ D}. To be more precise, if xij > 0, we add an edge {i, j}
between facility i and client j with weight xij . Moreover, let Ē = {{i, j} ∈ E | 0 < xij < s}
and V̄ =

⋃
e∈Ē e. We call (V̄ , Ē) the untight weighted subgraph of G.

Define rj := dj/s for all j ∈ D. If all rj are integral, we say that the CKFLU is divisible.

Lemma 2. The divisible capacitated k-facility location problem with uniform capacities can
be solved in O(n3) time.

Proof. We transform the divisible CKFLU to a balanced transportation problem, in which the
total capacity is equal to total demand. Then, to get an integer solution to this transportation
problem, we can consider this problem as a minimum weight perfect matching problem that
can be solved in O(n3) time [16], by splitting the demands. Since the problem is infeasible if
k <

∑
j∈D rj , we only consider the case: |F | ≥ k ≥

∑
j∈D rj .

By dividing the capacity and demand constraints by s, we can get an equivalent formu-
lation for the divisible CKFLU, in which the new capacity of each facility is 1 and the new
demand of each client j is rj .

First, we show that there exists an optimal integral solution for this equivalent formu-
lation. We add a dummy client j′ to D with demand rj′ = n −

∑
j∈D rj . Take the cost of

shipping one unit from i ∈ F to j ∈ D \{j′} to be scij +fi, from i ∈ F to j′ to be 0. Now the
divisible CKFLU can be considered as a balanced transportation problem with total demand
n. Since rj , j ∈ D are integers, there is an integer optimal solution for this transportation
problem (see for instance [20], or Theorem 21.14 in [35]). Note that based on the optimal
integer solution for this transportation problem, we can easily construct an optimal solution
for our original problem.

Then, to get an optimal integer solution for the constructed transportation problem, we
can split each j ∈ D to rj copies each with demand 1. Now we can consider the balanced
transportation problem as a minimum weight perfect matching problem that can be solved
in O(n3) time[16].

Note that if we know the exact structure of (V̄ , Ē), then according to the definition of G
the remaining part (V,E \ Ē) can be generated by an optimal integer solution to an instance
of the divisible CKFLU problem. Thus, the high-level idea is that we reduce our original
problem to a collection of divisible CKFLU problems by checking all the possible structures
of (V̄ , Ē). To prove that we can examine all the structures in polynomial time, we show some
useful properties of the untight weighted subgraph of G first.

Lemma 3. Let G = (V,E) be the graph corresponding to a vertex (x, y) of the convex hull
of feasible solutions of the MIP to CKFLU, and H = (V̄ , Ē) be its corresponding untight
subgraph. Then,

(a) G is acyclic;

(b) in each connected component of H, there is at most one i ∈ F ∩ V̄ with 0 <
∑

j∈D xij <
s;

9



(c) H contains at most m facilities and 2m− 1 edges.

Proof. (a). Suppose that there is a cycle O = (e1, e2, . . . , e2p−1, e2p) in G. Note that O must
have even number of edges as G is bipartite. Let χO ∈ RE be the signed incidence vector of
this path:

χO(ei) = (−1)i for i = 1, 3 . . . , 2p− 1;χO(ei) = (1)i for i = 2, 4 . . . , 2p;

χO(e) = 0 for e ∈ E \ {e1, . . . , e2p}.

For sufficiently small ε > 0 both (x + εχO, y) and (x − εχO, y) are feasible solutions,
contradicting the fact that (x, y) is a vertex.

(b). The idea is similar to (a). Consider any connected component B of H. Suppose for
contradiction that we have two facilities i1, i2 in B with 0 <

∑
j∈D xi1j < s, 0 <

∑
j∈D xi2j <

s. Since B is connected, there is a path P = (e1, e2, . . . , e2p−1, e2p) from i1 to i2. Again, we
can construct two feasible solutions (x+ εχP , y) and (x− εχP , y), contradicting the fact that
(x, y) is a vertex.

(c). Consider any connected component of H with at least one edge. Note that each
component is a tree with 0 < xij < s for each edge {i, j}. If there is a facility i∗ in this
component with 0 <

∑
j∈D xi∗j < s, then take i∗ as the root. Otherwise, take an arbitrary

facility as the root. Since 0 < xij < s for each edge {i, j} and
∑

j∈D xij = s for each facility
i 6= i∗, each facility except i∗ has at least two neighbors. Then, each facility in this connected
component has at least one child (client) as each facility has at most one parent. Moreover,
no two facilities have a common child (by the definition of a rooted tree). Therefore, the
number of facilities in each connected component is at most the number of clients. Thus, we
have at most m facilities in H as there are at most m clients. Clearly, the number of edges
is at most 2m− 1 since H is a forest.

Lemma 4. For any untight and acyclic subgraph H = (V̄ , Ē), given the set I = {i ∈ F ∩ V̄ |
0 <

∑
j∈D xij < s}, we can get the unique weight xij for each edge {i, j} ∈ Ē in O(m) time.

Proof. Consider any connected component of H. Note that each connected component must
be in the form of a tree. If there is a facility i∗ ∈ I in this component, then take i∗ as the
root. Otherwise, take an arbitrary facility i∗ in this component as the root. Then, all leaves
are clients since

∑
j∈D xij = s for each facility i 6= i∗ in the considered connected component

(Lemma 3(b)) and 0 < xij < s for each edge {i, j}.
We will show that in each connected component, if node (client) j is a leaf, we can obtain

the exact value of xij , where i is the father of j; and for each other node in this tree, we can
compute the value of the edge between this node and its father based on the values of edges
between this node and its children. Then, we can obtain the values of all edges in the tree
by induction.

Consider a client j. Let f(j) be the father node (facility) of j in the tree and c(j) be
the set of children (facilities) of j. If j is a leaf, that is c(j) = ∅, then we know |{i ∈ F |
0 < xij < s}| = 1. Otherwise, j cannot be a leaf. Thus, we can get the exact value for

xf(j),j = dj − bdjs c · s since j has exactly one father. If j is not a leaf, the value xf(j),j =

(dj −
∑

i∈c(j) xij)− b
dj−

∑
i∈c(j) xij
s c · s as xtj ∈ {0, s}, ∀t ∈ V \ V̄ .

Consider a facility i 6= i∗. Let f(i) be the father node (client) of i in the tree and c(i) be the
set of children (clients) of i. We can obtain the value of xi,f(i) as long as all values of xij , j ∈
c(i) are known, since i must be fully used by Lemma 3. That is, xi,f(i) = s −

∑
j∈c(i) xij .

Note that if i = i∗, we can stop since f(i∗) = ∅.
Moreover, the computing time is O(m) since each edge is only examined once.

Consider an optimal integer vertex (x, y) of the convex hull of feasible solutions for CKFLU
whose corresponding graph G = (V,E) is a forest. The graph H = (V̄ , Ē) (the untight
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subgraph of G) can be viewed as a subgraph of some spanning tree of the complete bipartite
graph KF̄ ,D, where F̄ = F ∩V̄ . Consequently, checking all the possible structures of H means
checking all the subgraphs of these spanning trees. Note that H and KF̄ ,D have the same
vertices. Then, it now suffices to answer the following questions:

1. how many different complete bipartite graphs do we have for KF̄ ,D?

2. how to list all the spanning trees for a complete bipartite graph?

3. how many subgraphs, that have the same vertices as the considered spanning tree, does
a spanning tree have?

4. for a fixed structure of H, how to compute the corresponding total cost?

If all the above questions can be solved in polynomial time, we can get all the possibilities of
H in polynomial time. Consequently, Theorem 2 can be proved by Lemma 2 and 4.

Proof of Theorem 2. Because H = (V̄ , Ē) contains at most m facilities by Lemma 3, the
number of all the possible cases for KF̄ ,D can be bounded by

∑m
t=1

(
n
t

)
≤ m ·

(
n
m

)
. So, we can

answer question 1.
Lemma 5 and 6 answer question 2. The time to list all the spanning trees for the complete

bipartite graph is O(m2m−2 + 2m+m2) since we have at most m facilities and m clients in
KF̄ ,D by Lemma 3. Note that at this stage, we do not need to consider the weight xij of edge
{i, j}.

By Lemma 3, we know that the number of edges is at most 2m − 1 in a spanning tree.
Thus, each spanning tree has at most 22m−1 subgraphs that have the same vertices as the
spanning tree. This answers question 3.

Then, the total time to list all the possible untight subgraphs is O(m ·
(
n
m

)
· (m2m−2 +

2m+m2) · 22m−1).
By Lemma 4, we can get the cost for any untight subgraph in polynomial time O(m) as

long as I = {i ∈ F ∩ V̄ | 0 <
∑

j∈D xij < s} is fixed. Note that the opening costs for facilities
are easy to get if we know the structure of H. Indeed, it is

∑
i∈F∩V̄ fi. The remaining part

(V,E \ Ē) can be considered as an optimal integer solution to a divisible CKFLU, which
means we can get the total cost in polynomial time O(n3)+O(m) by Lemma 2. This answers
question 4. Moreover, the number of all the choices for I is bounded by 2m since there are
at most m facilities in each spanning tree by Lemma 3.

Combining all the pieces together, we can get all the possibilities of solutions in computing
time O(m ·

(
n
m

)
· (m2m−2 + 2m+m2) · 22m−1 · 2m · (m+n3)) = O(

(
n
m

)
· (m2m−1 + 2m2 +m3) ·

23m−1 · (m+ n3)), that is, O(
(
n
m

)
· n3). Finally, we output the solution with at most k open

facilities and the smallest total cost.

Lemma 5. [26] For an undirected graph without weight G = (V,E), all spanning trees can
be correctly generated in O(N + |V |+ |E|) time, where N is the number of spanning trees.

Lemma 6. [36] The number of spanning trees of a complete bipartite graph is mn−1nm−1,
where m and n are respectively the cardinalities of two disjoint sets in this bipartite graph.

4 The Hard Capacitated k-facility Location Problem with Non-
uniform Capacities

In this section, we show how to bound the number of fractionally open facilities by a simple
rank-counting argument on an extreme point solution. Then, together with an algorithm
to group clients, we give a simple constant factor approximation algorithm for the hard
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capacitated k-facility location problem with non-uniform capacities (CKFL) (with uniform
opening cost) with approximation ratio 7 + ε by using at most 2k facilities. As a simple
illustration of the techniques used, we first give a 2-approximation algorithm for the single-
sink hard capacitated k-facility location problem (SCKFL). Note that this ratio is worse than
that of the FPTAS in Section 2. Here we aim to show that this upper bound is helpful to
design approximation algorithms. And the approach is totally different from the FPTAS.

4.1 A Simple Illustration of Using the Structure of Extreme Point Solu-
tions

The Structure of Extreme Point Solutions to SCKFL

Definition 1. Let Ax ≤ a,Bx ≥ b, Cx = c be a system of linear (in)equalities. For a feasible

solution z we define the rank at z of the system to be the (row)rank of
[
AT
z BT

z CT
]T

,
where Azx ≤ az, Bzx ≥ bz, Cx = c is the subsystem consisting of the (in)equalities that are
satisfied with equality by z.

Note that for two subsystems, the sum of the ranks at z of those two subsystems is at
least the rank at z of their union.

Let P be the set of feasible solutions to the system SCKFL-LP consisting of (7), (9),(11)
and

∑
i∈F yi = k (Note that in this section we consider constraint

∑
i∈F yi = k instead of the

corresponding inequality (10)). That is,

P := {(x, y) : SCKFL-LP},

where SCKFL-LP is a system of constraints given below:∑
i∈F

xi = d,
∑
i∈F

yi = k, (15)

0 ≤ xi ≤ siyi, ∀i ∈ F,
0 ≤ yi ≤ 1, ∀i ∈ F.

Lemma 7. Let (x, y) be a vertex of P . Then either y is integer, or y has exactly two
noninteger components and for every i ∈ F we have xi = 0 or xi = siyi.

Proof. Let F ′ := {i ∈ F | 0 < yi < 1}. If |F ′| = 0 we are done. As |F ′| = 1 is ruled out
because the sum of the yi is k, k ∈ Z, we may assume that |F ′| ≥ 2.

The rank of system SCKFL-LP at (x, y) is equal to 2n, n = |F |(Theorem 5.7 in [35]). We
partition the (in)equalities in this system and bound the rank at (x, y) for each subsystem:

• The rank at (x, y) of the subsystem
∑

i∈F xi = d,
∑

i∈F yi = k is at most 2.

• For every i ∈ F ′, the rank at (x, y) of the subsystem 0 ≤ xi, xi ≤ siyi, 0 ≤ yi, yi ≤ 1 is
at most 1 and equality holds if and only if xi = 0 or xi = siyi.

• For every i ∈ F \F ′, the rank at (x, y) of the subsystem 0 ≤ xi, xi ≤ siyi, 0 ≤ yi, yi ≤ 1
is at most 2 and equality holds if and only if xi = 0 or xi = siyi.

Since the rank is subadditive, we find that the rank at (x, y) of SCKFL-LP is at most

2 + |F ′|+ 2|F \ F ′| = 2n+ 2− |F ′| ≤ 2n,

where the inequality holds as |F ′| ≥ 2, with equality only if |F ′| = 2 and for each i we have
xi = 0 or xi = siyi.
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We give a 2-approximation algorithms for SCKFL to show the potential power of this
nice structure.

2-Approximation Algorithm for SCKFL

We give an alternative approach to get an approximate solution for SCKFL, compared
to the FPTAS in Section 2. This approach can be viewed as incomplete implement of a
branch and bound technique, branching on the 0-1 variables yi. To obtain a 2-approximation
algorithm that runs in polynomial time, we use two key ideas. First, by Lemma 7, we know
in any vertex of the feasible region of the LP-relaxation that either 0 or 2 components of y
are fractional. We exploit this to guide the branching. Secondly, we show that for a branch
yi = 1 either there is no 2-approximation solution, or we can find a 2-approximation solution
in polynomial time by again exploiting the structure of the vertices of the feasible region to
the LP-relaxation. A precise description of this algorithm is given in Algorithm 2.

Algorithm 2 A 2-approximation algorithm for the single-sink hard capacitated k-facility
location problem

Input Finite set F of facilities, costs c ∈ ZF≥0, costs f ∈ ZF≥0, capacities s ∈ ZF≥1, demand
d ∈ Z≥1, integer k ∈ Z≥1.

Output A feasible solution (x, y) to MIP: (8),(11),(12), and (15), that is within a factor 2
of optimum, if a feasible solution exists.

Description

1. Find an optimal vertex (x, y) of the feasible region of the LP-relaxation.
If no solution exists then stop. If y is integer then return (x, y) and stop.

2. Let i1 6= i2 in F with yi1 , yi2 ∈ (0, 1) and si1 ≥ si2 .

3. Define x1 by x1
i1

:= xi1 + xi2 , x1
i2

:= 0 and x1
i := xi for i 6= i1, i2.

Define y1 by y1
i1

:= 1, y1
i2

:= 0, y1
i := yi for i 6= i1, i2.

4. Recursively compute a 2-approximation solution (x0, y0) for the restriction to F \ {i1}
and extend it by setting x0

i1
:= 0 and y0

i1
:= 0.

5. Set F0 := ∅. While |F0| ≤ |F | − k do:

a. Find an optimal vertex (x′, y′) of the feasible region of the LP-relaxation intersected
with {(x, y) | yi1 = 1, yi = 0 ∀i ∈ F0}.

b. If y′ is integer, return the best solution among (x′, y′), (x0, y0) and (x1, y1) and
stop.

c. If x′i1 = si1 , return the best solution among (x0, y0) and (x1, y1) and stop.

d. Let i3 6= i4 in F with y′i3 , y
′
i4
∈ (0, 1) and fi3 ≤ fi4 .

e. Define y′′ by y′′i1 := 0, y′′i3 := y′′i4 := 1 and y′′i := y′i for i 6= i1, i3, i4.
If (x′, y′′) has smaller value than (x0, y0), set (x0, y0)← (x′, y′′).

f. Set F0 ← F0 ∪ {i4}.

Theorem 3. For the single-sink hard capacitated k-facility location problem, Algorithm 2
finds a solution that is within a factor 2 of optimum, or it concludes correctly that there is no
feasible solution. The running time is polynomially bounded in the number |F | of facilities.

Proof. Notice that an optimal vertex of the feasible region of the LP-relaxation can be found
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in polynomial time (see for instance [18]). Furthermore, since the number of recursive calls
is no more than |F | − 1, the polynomial running time is evident. It now suffices to show that
when the MIP: (8),(11),(12), and (15) is feasible, the solution given by Algorithm 2 is within
a factor two of optimum.

Clearly, if y is integer in Step 1 of Algorithm 2, then the output (x, y) is an optimal
feasible solution. Hence, by Lemma 7, we may assume that y has exactly two fractional
components yi1 and yi2 . Then, we know yi1 + yi2 = 1 since

∑
i∈F yi = k, and all yi, i ∈ F are

integer except yi1 and yi2 . Without loss of generality we can assume that si1 ≥ si2 .
To see that (x1, y1) defined in Step 3 of Algorithm 2 is indeed a feasible solution, it suffices

to show that x1
i1
≤ si1 . This follows directly from the fact that si1 ≥ si2 , since

x1
i1 = xi1 + xi2 ≤ yi1si1 + yi2si2 ≤ yi1si1 + yi2si1 = si1 .

Further, we find an upper bound for the value of (x1, y1),

cTx1 + fTy1 ≤ (cTx+ fTy) + (ci1si1 + fi1), (16)

which is at most the optimum plus ci1si1 + fi1 .
To conclude the proof, we analyse Step 5 of Algorithm 2. Observe that the initial solution

(x0, y0) may be replaced, but only by a better solution. Also observe, that the solution that
is returned is always at least as good as (x0, y0) and (x1, y1). Hence, we may assume that
(x0, y0) (at the end of the algorithm) and (x1, y1) are not 2-approximations. Let (x∗, y∗) be
an optimal solution. We have y∗i1 = 1, since otherwise (x0, y0) would be a 2-approximation
already at Step 4. It suffices to show that (x∗, y∗) remains feasible throughout the iterations
of Step 5, until a solution of the same value is returned in Step 5b. For this, we observe
that while (x∗, y∗) is feasible, the situation x′i1 = si1 as in Step 5c cannot occur, because
otherwise, by (16), we would have

cTx1 + fTy1 ≤ cTx+ fTy + (ci1si1 + fi1) ≤ cTx+ fTy + cTx′ + fTy′ ≤ 2(cTx∗ + fTy∗),

contradicting the fact that (x1, y1) is not a 2-approximation.
In Step 5d, the fact that y′ has exactly two fractional components follows from Lemma 7

as y′ is a vertex of a face of the feasible region of SCKFL-LP, and hence of that region itself.
Observe that this implies that y′i3 + y′i4 = 1, hence (x′, y′′) defined in Step 5e is a feasible
solution.

In Step 5f, we have y∗i4 = 0. Indeed, for the cost of (x′, y′′) we find:

cTx′ + fTy′′ = (cTx′ + fTy′)− fi1 + (1− y′i3)fi3 + (1− y′i4)fi4

≤ (cTx′ + fTy′) + fi4 ≤ (cTx∗ + fTy∗) + fi4 .

Since (x0, y0) and hence (x′, y′′) is not a 2-approximation, we find that fi4 > cTx∗ + fTy∗

and hence y∗i4 = 0. This shows that (x∗, y∗) remains feasible after adding i4 to F0.

4.2 An Approximation Algorithm for CKFL with Uniform Opening Costs

In this section, we consider the capacitated k-facility location problem with uniform opening
costs, i.e., fi = f, i ∈ F . Since we have an upper bound on the number of fractionally open
facilities based on Lemma 8 below, a natural idea is to design a constant factor approxima-
tion algorithm for CKFL by relaxing the cardinality constraint with a constant factor. We
give a simple algorithmic framework that can extend any α-approximation algorithm for the
(uncapacitated) k-median problem (UKM) to a (1 + 2α)-approximation algorithm for CKFL
using at most 2k facilities (2k − 1 for uniform capacities).
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The (uncapacitated) k-median problem (UKM) can be formulated as follows, where vari-
able xij indicates the fraction of the demand of client j that is served by facility i, and yi
indicates whether facility i is open.

min
∑
i∈F

∑
j∈D

djcijxij

subject to:
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F,∀j ∈ D,∑
i∈F

yi ≤ k,

xij , yi ∈ {0, 1}, ∀i ∈ F,∀j ∈ D.

The Structure of Extreme Point Solutions to CKFL

Let Q be the set of feasible solutions (x, y) to the system CKFL-LP consisting of (2), (3),
(4), (5) and (7). That is,

Q := {(x, y) : CKFL-LP},

where CKFL-LP is a system of constraints given below:∑
i∈F

xij = dj , ∀j ∈ D;
∑
i∈F

yi ≤ k,∑
j∈D

xij ≤ siyi, ∀i ∈ F,

xij ≥ 0, ∀i ∈ F,∀j ∈ D,
0 ≤ yi ≤ 1, ∀i ∈ F.

Lemma 8. Let (x, y) be a vertex of Q. Then y has at most m + 1 noninteger components,
where m = |D|.

Proof. The proof is similar to the proof of Lemma 7. Let F ′ = {i ∈ F | 0 < yi < 1}. The
rank of system CKFL-LP at (x, y) is equal to (m+ 1)n, n = |F |,m = |D|. We partition the
(in)equalities in this system and bound the rank at (x, y) for each subsystem:

• The rank at (x, y) of the subsystem
∑

i∈F xij = dj ,∀j ∈ D;
∑

i∈F yi ≤ k is at most
m+ 1.

• For every i ∈ F ′, the rank at (x, y) of the subsystem
∑

j∈D xij ≤ siyi; 0 ≤ xij , j ∈
D; 0 ≤ yi; yi ≤ 1 is at most m and equality holds if and only if xij = 0 or xij = siyi for
each xij .

• For every i ∈ F \ F ′, the rank at (x, y) of the subsystem
∑

j∈D xij ≤ siyi; 0 ≤ xij , j ∈
D; 0 ≤ yi; yi ≤ 1 is at most m+ 1 and equality holds if and only if xij = 0 or xij = siyi
for each xij .

Since the rank is subadditive, we find that the rank of CKFL-LP is at most

m+ 1 +m|F ′|+ (m+ 1)|F \ F ′| = m+ 1 + (m+ 1)n− |F ′|.

So, we have |F ′| ≤ m+ 1 as m+ 1 + (m+ 1)n− |F ′| ≥ (m+ 1)n.
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For the uniform capacities case (si = s > 0, ∀i ∈ F ), we will show a stronger property
that there is an optimal solution (x, y) to the LP-relaxation with at most m noninteger
components in y. Indeed, consider an optimal solution (x, y) with |{i | 0 < yi < 1}| minimal.
Suppose for contradiction that y has more than m fractional components. Then there exist
a client j and two facilities i1, i2 such that yi1 and yi2 are fractional and xi1j , xi2j > 0, and
xi1j = syi1 , xi2j = syi2 by Lemma 8. Without loss of generality assume that ci1j ≤ ci2j . Let
ε := min{syi2 , s(1− yi1)}. Now modify (x, y) by setting

xi1j := xi1j + ε yi1 := yi1 + ε/s

xi2j := xi2j − ε yi2 := yi2 − ε/s,

to obtain a new optimal solution, while |{i | 0 < yi < 1}| decreases, a contradiction. Thus, we
can find an optimal solution (x, y) to the LP-relaxation for which y has at most m noninteger
components.

The Algorithm

We convert our original instance to a new instance with at most k clients while incurring
some bounded extra costs. Then, at most 2k facilities are (fractionally or fully) opened for
the new instance according to Lemma 8.

Theorem 4. By Algorithm 3, each α-approximation algorithm for UKM can be extended to
get a (1 + 2α)-approximation algorithm for CKFL with uniform opening costs using at most
2k facilities.

Proof. Without loss of generality, suppose exactly k facilities are opened in an optimal solu-
tion to our original problem (as we check all the cases in our algorithm).

LetOPT (∗) denote the optimal cost of the instance ∗. We consider the following instances.

I0 the original instance.

I1
the constructed instance in Step 1,
that is a (uncapacitated) k-median problem.

I2
the constructed instance in Step 2 in which
we have at most k clients.

Let COST (·, ·) be the total cost of obtained solution (·, ·). We consider the following
solutions

(x′, y′) the obtained integral solution by α-approx. alg. for instance I1.

(x, y) an optimal fractional solution of instance I2.

(x∗, y∗) an integral solution of instance I0 while using at most 2k facilities.

Clearly, we have COST (x, y) ≤ OPT (I2), and COST (x′, y′) ≤ αOPT (I1).
By the process to construct instance I2, we have OPT (I0) + COST (x′, y′) ≥ OPT (I2).

Moreover, we know that OPT (I0) ≥ OPT (I1) + kf .
We will prove

COST (x∗, y∗) ≤ COST (x′, y′) + COST (x, y) + kf.

We first show that we can obtain an integer solution for I2 with the total cost at most
COST (x, y) + kf in Step 4 of Algorithm 3. We have |{i | 0 < yi < 1}| ≤ k+ 1, since Lemma
8 still holds when

∑
i∈F yi = k. Moreover, if |{i | 0 < yi < 1}| > 0, then |{i | yi = 1}| ≤ k−1.

So, we open at most 2k facilities. Thus, the total cost of the obtained solution for I2 is at
most COST (x, y) + kf .

Then, based on the above solution for I2 we can construct an integer solution for I0 by
moving the demand of tr, which is located at the same position with facility r, back to all
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Algorithm 3 A (1 + 2α)-approximation algorithm for CKFL with uniform opening costs
using at most 2k facilities.

Input Finite set F of facilities, D of clients, costs c ∈ QF×D
≥0 , opening cost f ∈ Q≥0,

capacities s ∈ QF
≥0, demands d ∈ QD

≥0, integer k ∈ Z≥1.

Output A solution (x, y) to MIP (1)-(6) using at most 2k facilities that is within a factor
1 + 2α of optimum, if a feasible solution exists.

Description

Suppose exactly l facilities are opened in an optimal solution. That is, we can consider a
stronger constraint

∑
i∈F yi ≤ l.

Step 1. Reduce the input instance I0 of CKFL to an instance I1 of UKM as follows.
Let F and D be the set of facilities and clients of our input instance I0 respectively. Let
F ′ = F (located at the same sites) be the set of facilities of UKM while with infinite
capacities and without opening costs. Let D′ = D be the set of clients of UKM. Solve this
constructed instance (denoted by I1) by the existing α-approximation algorithm for UKM.
Suppose we get an integer solution (x′, y′). Note that for UKM, there is an optimal solution
in a form of so-called stars. That is, each client is served by exactly one open facility.
Without loss of generality, suppose y′1 = · · · = y′l = 1. Then, we can consider (x′, y′) as l
stars {T1, · · · , Tl}, where Tr = {j ∈ D′ | x′rj = 1} and the center of Tr is the facility r.

Step 2. Consolidate clients and construct a new instance I2 of CKFL with at most l clients
as follows.
For each star Tr in (x′, y′), we set a client tr at the location of facility r with the total
demand of clients in Tr, i.e., dtr =

∑
j∈Tr dj . Let D̄ = {t1, · · · , tl} be the set of our new

clients. Now we get a new instance of CKFL, denoted by I2, with facilities F and clients D̄.

Step 3. Find an optimal vertex (x, y) of the feasible region of the LP-relaxation to the
constructed instance I2 in step 2 with

∑
i∈F yi = l.

Step 4. We simply open all the facilities with yi > 0 in our original instance I0 and then
solve a transportation problem to get an integer solution (x∗, y∗).

Since we do not know how many facilities are opened in an optimal solution in advance, we
repeat the above 4 steps for l := 1, · · · , k. Then, output the solution with smallest total
cost.
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clients in Tr = {j ∈ D′|x′rj = 1} with increasing at most COST (x′, y′) cost as COST (x′, y′) =∑k
r=1

∑
j∈D′ djcr,jx

′
r,j . Therefore, the solution obtained by Step 4 has COST (x∗, y∗) ≤

COST (x′, y′) + COST (x, y) + kf .
Then, we have

COST (x∗, y∗) ≤ COST (x′, y′) +OPT (I2) + kf

= (OPT (I2)− COST (x′, y′)) + 2COST (x′, y′) + kf

≤ OPT (I0) + 2COST (x′, y′) + kf

≤ OPT (I0) + 2αOPT (I1) + kf

≤ OPT (I0) + 2α(OPT (I1) + kf) ≤ (1 + 2α)OPT (I0).

That is, the approximation ratio is 1 + 2α.

We can obtain the following result as there is a (3 + ε)-approximation algorithm for the
(uncapacitated) k-median problem in [3], and we can make sure that at most 2k− 1 facilities
are opened in step 4 if all capacities are equal.

Corollary 1. Algorithm 3 can get an integer solution within 7 + ε times of the optimal cost
by using at most 2k facilities (2k − 1 facilities) for the hard capacitated k-facility location
problem with uniform opening costs (with uniform opening costs and uniform capacities).

4.3 Extension

We show how to combine the algorithm in Section 4.2 with the algorithm of Charikar and
Guha [10] to improve the approximation ratio for the capacitated facility location problem
(CFL) with uniform opening cost. In this section, we only consider uniform opening cost.
To simplify the description, sometimes we omit “with uniform opening cost” when we refer
to the problems.

A (β, δ)-approximation algorithm for the (uncapacitated) k-median problem (UKM) out-
puts an integer solution by using at most δk facilities, with service cost at most β times the
optimal total cost.

Theorem 5. Each (β, δ)-approximation algorithm for the k-median problem gives rise to a
max{2β + 1, δ + 1}-approximation algorithm for the CFL with uniform opening costs.

Proof. A crucial observation is that if exactly k facilities are opened in the optimal solution
for an instance I of CFL, then this solution is also an optimal solution to the corresponding
instance of CKFL, where the input is the same as that in I but with an extra constraint that
at most k facilities can be opened. Thus, if for each k = 1, · · · , n, n = |F | we can obtain the
optimal solution for CKFL, then the solution with smallest total cost is the optimal solution
for CFL.

Our algorithm for CFL is as follows: Repeat the 4 steps in Algorithm 3 for l := 1, · · · , n,
n = |F |. In each iteration, we consider the constraint

∑
i∈F yi ≤ l. Then, output the solution

with smallest total cost.
To get a better approximation ratio for CFL, we replace the α-approximation algorithm

for the k-median problem in Step 1 of Algorithm 3 by a (β, δ)-approximation algorithm.
Then, for each iteration l, we obtain an integer solution for the instance I1 with at most δl
open facilities. Thus, we have at most δl clients in instance I2.

Again, without loss of generality, suppose exactly k facilities are opened in an optimal
solution for the original instance I0.

We maintain all the notations in the proof of Theorem 4. Notice that we have COST (x, y) ≤
OPT (I2), OPT (I0) + COST (x′, y′) ≥ OPT (I2) and OPT (I0) ≥ OPT (I1) + kf still hold.
Moreover, COST (x′, y′) ≤ βOPT (I1),
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We will prove

COST (x∗, y∗) ≤ COST (x′, y′) + COST (x, y) + δkf.

The proof is similar to that in proof of Theorem 4. We first show that we can obtain an
integer solution for I2 with the total cost at most COST (x, y) + δkf in step 4. Note that
|{i | 0 < yi < 1}| ≤ δk+ 1, since Lemma 8 still holds when

∑
i∈F yi = k. So, at most (δ+ 1)k

facilities are opened at the end, since if |{i | 0 < yi < 1}| > 0, then |{i | yi = 1}| ≤ k − 1.
Thus, the total cost of the obtained solution for I2 is at most COST (x, y) + δkf .

Then, by moving the demand of tr back to all clients in Tr = {j ∈ D′|x′rj = 1}, we
can construct an integer solution for I0. This operation increases at most COST (x′, y′) cost
as COST (x′, y′) =

∑k
r=1

∑
j∈D′ djcr,jx

′
r,j . Therefore, the solution obtained by Step 4 has

COST (x∗, y∗) ≤ COST (x′, y′) + COST (x, y) + δkf .
Then, we have

COST (x∗, y∗) ≤ COST (x′, y′) +OPT (I2) + δkf

≤ COST (x′, y′) +OPT (I0) + COST (x′, y′) + δkf

= OPT (I0) + 2COST (x′, y′) + δkf

≤ OPT (I0) + 2βOPT (I1) + δkf

≤ OPT (I0) + 2β(OPT (I0)− kf) + δkf

≤ (1 + 2β)(OPT (I0)− kf) + (δ + 1)kf.

Recall that we assume that exactly k facilities are opened in the optimal solution to I0. So,
the total service cost of the optimal solution to I0 is OPT (I0)− kf . Then, COST (x∗, y∗) ≤
max{2β + 1, δ + 1}OPT (I0).

Theorem 6. ([10]) Let SOL be any solution to the uncapacitated facility location problem
(possibly fractional), with facility cost FSOL and service cost CSOL. For any γ > 0, the local
search heuristic proposed (together with scaling) gives a solution with facility cost at most
(1 + 2

γ )FSOL and service cost at most (1 +γ)CSOL. The approximation is up to multiplicative
factors of (1 + ε) for arbitrarily small ε > 0.

Based on Theorem 6, we can obtain the following corollary.

Corollary 2. For any γ > 0, there exists a ((1 + ε)(1 + γ), (1 + ε)(1 + 2
γ ))-approximation

algorithm for the k-median problem, where ε > 0 can be arbitrarily small.

Proof. Let (x′, y′) be an optimal solution with total cost T to the LP relaxation of UKM. A
crucial observation is that (x′, y′) is also a feasible fractional solution to UFL with uniform
opening cost f > 0. Let SOL = (x′, y′) with total facility cost FSOL and total service cost
CSOL. Note that CSOL = T and FSOL ≤ kf.

Now, it is easy to see that, based on the Charikar and Guha algorithm [10], we could get
an integer solution with at most (1 + γ)(1 + ε) times the optimal cost while using at most
(1 + 2

γ )(1 + ε)k facilities for the k-median problem. That is, there exists a ((1 + ε)(1 +γ), (1 +

ε)(1+ 2
γ ))-approximation algorithm for the k-median problem, where ε > 0 can be arbitrarily

small.

The following theorem can be obtained by combining Corollary 2 with Theorem 5 and
setting γ = 0.78078.

Theorem 7. There is a 4.562(1 + ε)-approximation algorithm for the capacitated facility
location problem with uniform opening costs, where ε > 0 can be arbitrarily small.
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pages 731–740, Montréal, Québec, Canada, 2002. ACM, New York, NY, USA.

[25] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and lagrangian relaxation. Journal of
the ACM, 48(2):274–296, 2001.

[26] S. Kapoor and H. Ramesh. Algorithms for enumerating all spanning trees of undirected
and weighted graphs. SIAM Journal on Computing, 24(2):247–265, 1995.

[27] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic
for facility location problems. Journal of Algorithms, 37(1):146–188, 2000.

[28] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses. Man-
agement Science, 9(4):643–666, 1963.

[29] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematical
Methods of Operations Research, 4(4):339–356, 1979.

[30] R. Levi, D. B. Shmoys, and C. Swamy. Lp-based approximation algorithms for capaci-
tated facility location. Mathematical Programming, 131(1-2):365–379, 2012.

21



[31] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. In Proceed-
ings of the 2013 ACM Symposium on Theory of Computing, pages 901–910, Palo Alto,
California, USA, 2013. ACM, New York, NY, USA.

[32] M. Mahdian and M. Pál. Universal facility location. In G. D. Battista and U. Zwick,
editors, Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary,
September 2003, Proceedings, volume 2832 of Lecture Notes in Computer Science, pages
409–421. Springer, 2003.

[33] M. Mahdian, Y. Ye, and J. Zhang. A 2-approximation algorithm for the soft-capacitated
facility location problem. In S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors,
Approximation, Randomization, and Combinatorial Optimization: Algorithms and Tech-
niques, 6th International Workshop on Approximation Algorithms for Combinatorial Op-
timization Problems, APPROX 2003 and 7th International Workshop on Randomization
and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ,
USA, August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in Computer Sci-
ence, pages 129–140. Springer, 2003.
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