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Abstract

In this paper we examine multi-objective linear programming prob-
lems in the face of data uncertainty both in the objective function and
the constraints. First, we derive a formula for radius of robust feasi-
bility guaranteeing constraint feasibility for all possible uncertainties
within a specified uncertainty set under affine data parametrization.
We then present a complete characterization of robust weakly effcient
solutions that are immunized against rank one objective matrix data
uncertainty. We also provide classes of commonly used constraint data
uncertainty sets under which a robust feasible solution of an uncertain
multi-objective linear program can be numerically checked whether or
not it is a robust weakly efficient solution.

Keywords. Robust optimization. Multi-objective linear programming. Ro-

bust feasibility. Robust weakly efficient solutions.

1 Introduction

Consider the deterministic multi-objective linear programming problem

(P ) V-min
{
Cx : a⊤j x ≥ bj , j = 1, . . . , p

}
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where V-min stands for vector minimization, C is a real m×n matrix called
objective matrix, x ∈ Rn is the decision variable, and

(
aj , bj

)
∈ Rn+1, for

j = 1, . . . , p, are the constraint input data of the problem. The problem
(P ) has been extensively studied in the literature (see e.g. the overviews
[2] and [5]), where perfect information is often assumed (that is, accurate
values for the input quantities or parameters), despite the reality that such
precise knowledge is rarely available in practice for real-world optimization
problems.

The data of real-world optimization problems are often uncertain (that
is, they are not known exactly at the time of the decision) due to estimation
errors, prediction errors or lack of information. Scalar uncertain optimiza-
tion problems have been traditionally treated via sensitivity analysis, which
estimates the impact of small perturbations of the data in the optimal value,
while robust optimization, which provides a deterministic framework for un-
certain problems ([1],[6]), has recently emerged as a powerful alternative
approach.

Particular types of uncertain multi-objective linear programming prob-
lems have been studied, e.g. [12] considers changes in one objective function
via sensitivity analysis, [10] and [11] consider changes in the whole objec-
tive function x 7→ Cx, and [8] deals with changes in the constraints, the
latter three works using different robustness approaches. The purpose of the
present work is to study multi-objective linear programming problems in the
face of data uncertainty both in the objective function and constraints from
a robustness perspective.

Following the robust optimization framework, the multi-objective prob-
lem (P ) in the face of data uncertainty both in the objective matrix and in the
data of the constraints can be captured by a parameterized multi-objective
linear programming problem of the form

(Pw) V-min
{
Cx : a⊤j x ≥ bj , j = 1, . . . , p

}

where the input data, the rows of C and (aj , bj) , j = 1, . . . , p, are un-
certain vectors. The sets U and Vj , j = 1, . . . , p, are specified uncer-
tainty sets that are bounded, but often infinite sets, C ∈ U ⊂ Rm×n and
(aj , bj) ∈ Vj ⊂ Rn+1, j = 1, . . . , p. So, the uncertain parameter is w :=
(C, (a1, b1), ..., (ap, bp)) ∈ W := U ×

∏p

j=1 Vj. By enforcing the constraints
for all possible uncertainties within Vj, j = 1, . . . , p, the uncertain problem
becomes the following uncertain multi-objective linear semi-infinite program-
ming problem

(PC) V-min
{
Cx : a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj, j = 1, . . . , p

}
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where the data uncertainty occurs only in the objective function and

X := {x ∈ Rn : a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj , j = 1, . . . , p},

is the robust feasible set of (Pw).
Following the recent work on robust linear programming (see [1]), some

of the key questions of multi-objective linear programming under data un-
certainty include:

I. (Guaranteeing robust feasibility) How to guarantee non-emptiness of
the robust feasible set X for specified uncertainty sets Vj, j = 1, . . . , p?

II. (Defining and identifying robust solutions) How to define and charac-
terize a robust solution that is immunized against data uncertainty for
the uncertain multi-objective problem (PC)?

III. (Numerical tractability of robust solutions) For what classes of uncer-
tainty sets robust solutions can be numerically checked?

In this paper, we provide some answers to the above questions for the
multi-objective linear programming problem (PC) in the face of data uncer-
tainty. In particular, we derive a formula for the radius of robust feasibility
guaranteeing non-emptiness of the robust feasible setX of (PC) under affinely
parameterized data uncertainty. Then, we establish complete characteriza-
tions of robust weakly efficient solutions under rank one objective matrix
data uncertainty (the same type of uncertainty considered in [11] for efficient
solutions of similar problems with deterministic constraints). We finally pro-
vide classes of commonly used uncertainty sets under which robust feasible
solutions can be numerically checked whether or not they are robust weakly
efficient solutions.

2 Radius of robust feasibility

In this section, we first discuss the feasibility of our uncertain multi-objective
model under affine constraint data perturbations. In other words, for any
given matrix C ∈ Rm×n, we study the feasibility of the problem

(Pα) V-min Cx
s.t. a⊤j x ≥ bj , ∀(aj , bj) ∈ Vα

j , j = 1, . . . , p,

for α ≥ 0, where the uncertain set-valued mapping Vα
j takes the form

Vα
j := (aj , bj) + αBn+1, j = 1, . . . , p, (1)
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with {x ∈ Rn : a⊤j x ≥ bj} 6= ∅, and Bn+1 denotes the closed unit ball for the
Euclidean norm ‖·‖ in Rn+1.

Let V :=
∏p

j=1 Vj . The radius of feasibility associated with Vj , j =
1, . . . , p, as in (1) is defined to be

ρ(V) := sup {α ∈ R+ : (Pα) is feasible for α} . (2)

To establish the formula for the radius of robust feasibility, we first note
a known useful characterization of feasibility of an infinite inequality system
in terms of the closure of the convex cone generated by its set of coefficient
vectors.

Lemma 1 ([9, Theorem 4.4]). Let T be an arbitrary index set. Then, {x ∈
Rn : a⊤t x ≥ bt, t ∈ T} 6= ∅ if and only if (0n, 1) /∈ cl cone{(at, bt) : t ∈ T}.

Using the above Lemma, we first observe that the radius of robust fea-
sibility ρ(V) is a non-negative number since, given j = 1, ..., p, (0n, 1) ∈
(aj, bj) + αBn+1 for a positive large enough α, in which case the correspond-
ing problem (Pα) is not feasible.

The next result provides a formula for the radius of feasibility which
involves the so-called hypographical set ([3]) of the system {a⊤j x ≥ bj , j =
1, . . . , p}, defined as

H(a, b) := conv
{
(aj , bj), j = 1, . . . , p

}
+ R+ {(0n,−1)} , (3)

where a := (a1, . . . , ap) ∈ (Rn)p and b := (b1, . . . , bp) ∈ Rp. We observe that
H(a, b) is the sum of the polytope conv

{
(aj , bj), j = 1, . . . , p

}
with the closed

half-line R+ {(0n,−1)} , so that it is a polyhedral convex set.

Lemma 2. Let (aj, bj) ∈ Rn × R, j = 1, . . . , p, and α ≥ 0. Suppose that

(0n, 1) ∈ clcone
(
{(aj , bj), j = 1, ..., p}+ αBn+1

)
.

Then, for all δ > 0, we have

(0n, 1) ∈ cone
(
{(aj, bj), j = 1, ..., p}+ (α + δ)Bn+1

)
.

Proof. Let δ > 0. To see the conclusion, we assume by contradiction that

(0n, 1) /∈ cone
(
{(aj, bj), j = 1, ..., p}+ (α + δ)Bn+1

)
.

Then, the separation theorem implies that there exists (ξ, r) ∈ Rn+1\{0n+1}
such that for all (y, s) ∈ cone

(
{(aj, bj), j = 1, ..., p}+ (α + δ)Bn+1

)
one has

r = 〈(ξ, r), (0n, 1)〉 ≤ 0 ≤ 〈(ξ, r), (y, s)〉, (4)
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where 〈·, ·〉 denotes the usual inner product, i.e. 〈(ξ, r), (y, s)〉 = ξ⊤y + rs.
Recall that (0n, 1) ∈ clcone

(
{(aj, bj), j = 1, ..., p}+ αBn+1

)
. So, there exist

sequences {(yk, sk)}k∈N ⊂ Rn × R, {µj
k}k∈N ⊂ R+, and {(zjk, t

j
k)}k∈N ⊂ Bn+1,

j = 1, . . . , p, such that (yk, sk) → (0n, 1) and

(yk, sk) =

p∑

j=1

µj
k

(
(aj , bj) + α(zjk, t

j
k)
)
.

If {
∑p

j=1 µ
j
k}k∈N is a bounded sequence, by passing to subsequence if neces-

sary, we have

(0n, 1) ∈ cone
(
{(aj , bj), j = 1, ..., p}+ αBn+1

)
.

Thus, the claim is true whenever {
∑p

j=1 µ
j
k}k∈N is a bounded sequence. So,

we may assume that
∑p

j=1 µ
j
k → +∞ as k → ∞. Let (y, s) ∈ Bn+1 be such

that 〈(y, s), (ξ, r)〉 = ‖(ξ, r)‖. Note that

p∑

j=1

µj
k

(
(aj, bj) + α(zjk, t

j
k)− δ(y, s)

)
∈ cone

(
{(aj, bj), j = 1, ..., p}+ (α + δ)Bn+1

)
.

Then, (4) implies that

r ≤ 0 ≤ 〈(ξ, r),

p∑

j=1

µj
k

(
(aj, bj) + αzjk

)
〉 − (

p∑

j=1

µj
k) δ‖(ξ, r)‖

= 〈(ξ, r), (yk, sk)〉 − (

p∑

j=1

µj
k) δ‖(ξ, r)‖.

Passing to the limit, we arrive to a contradiction as (ξ, r) 6= 0n+1, δ > 0,∑p

j=1 µ
j
k → +∞ and (yk, sk) → (0n, 1). �

We now provide our promised formula for the radius of robust feasibility.
Observe that, since 0n+1 /∈ H(a, b) by Lemma 1, d

(
0n+1, H(a, b)

)
can be

computed minimizing ‖·‖2 on H(a, b) (i.e. by solving a convex quadratic
program).

Theorem 3 (Radius of robust feasibility). For (Pα), let (aj , bj) ∈ Rn × R,
j = 1, . . . , p, with {x ∈ Rn : a⊤j x ≥ bj, j = 1, ..., p} 6= ∅. Let Vj := (aj, bj) +
αBn+1, j = 1, . . . , p, and V :=

∏p

j=1 Vj. Let ρ(V) be the radius of robust

feasibility as given in (2) and let H(a, b) be the hypographical set as given in
(3). Then, ρ(V) = d

(
0n+1, H(a, b)

)
.
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Proof. If a given (v, w) ∈ (Rn)p × Rp is interpreted as a perturbation of
(v, w) ∈ (Rn)p × Rp, we can measure the size of this perturbation as the
supremum of the distances between the vectors of coefficients corresponding
to the same index. This can be done by endowing the parameter space
(Rn)p × Rp with the metric d̃ defined by

d̃ ((v, w), (p, q)) := sup
j=1,...,p

‖(vj , wj)− (pj , qj)‖ , for (v, w), (p, q) ∈ (Rn)p×Rp.

Let a ∈ (Rn)p and b ∈ Rp be as in (3). Denote the set consisting of all
inconsistent parameters by Θi, that is,

Θi = {(v, w) ∈ (Rn)p × Rp : {x ∈ Rn : v⊤j x ≥ wj, j = 1, ..., p} = ∅}.

We now show that

d̃
(
(a, b),Θi

)
= d

(
0n+1, H(a, b)

)
. (5)

By Lemma 1, d
(
0n+1, H(a, b)

)
> 0. Let (a, b) ∈ H(a, b) be such that ‖(a, b)‖ =

d
(
0n+1, H(a, b)

)
. Then, 0n+1 ∈ H1 where

H1 := H(a, b)−(a, b) = conv
{
(aj − a, bj − b), j = 1, . . . , p

}
+R+ {(0n,−1)} .

So, there exist λj ≥ 0 with
∑p

j=1 λj = 1 and µ ≥ 0 such that

0n+1 =

p∑

j=1

λj(aj − a, bj − b) + µ(0n,−1).

This shows that

(0n, 1) =

p∑

j=1

λj

µ+ 1
k

(aj − a, bj − b+
1

k
), k ∈ N.

So, {x : (aj − a)⊤ x ≥ bj−b+ 1
k
, j = 1, . . . , p} = ∅. Thus, (a−a, b−b+ 1

k
) ∈ Θi,

and so, (a− a, b− b) ∈ cl Θi. It follows that

d̃
(
(a, b),Θi

)
= d̃

(
(a, b), cl Θi

)
≤ ‖(a, b)‖ = d

(
0n+1, H(a, b)

)
.

To see (5), we suppose on the contrary that d
(
(a, b),Θi

)
< d

(
0n+1, H(a, b)

)
.

Then, there exist ε0 > 0, with ε0 < ‖(a, b)‖, and (â, b̂) ∈ bdΘi such

that d̃
(
(a, b), (â, b̂)

)
= d̃

(
(a, b),Θi

)
< ‖(a, b)‖ − ε0. Then, one can find

{(âk, b̂k)}k∈N ⊂ Θi such that (âk, b̂k) → (â, b̂). So, Lemma 1 gives us that

(0n, 1) ∈ cl cone{(âkj , b̂
k
j ) : j = 1, ..., p} = cone{(âkj , b̂

k
j ) : j = 1, ..., p}.
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Thus, there exist λk
j ≥ 0 such that (0n, 1) =

∑p

j=1 λ
k
j (â

k
j , b̂

k
j ). Note that∑p

j=1 λ
k
j > 0, and so,

0n+1 =

p∑

j=1

λk
j∑p

j=1 λ
k
j

(âkj , b̂
k
j ) +

1∑p
j=1 λ

k
j

(0n,−1).

Then as k → ∞,

‖

p∑

j=1

λk
j∑p

j=1 λ
k
j

(âj , b̂j) +
1∑p

j=1 λ
k
j

(0n,−1)‖ = ‖

p∑

j=1

λk
j∑p

j=1 λ
k
j

(âj − âkj , b̂j − b̂kj )‖ → 0.

So, 0n+1 ∈ clH(â, b̂) = H(â, b̂). It then follows that there exist λj ≥ 0 with∑p

j=1 λj = 1 and µ ≥ 0 such that

0n+1 =

p∑

j=1

λj(âj , b̂j) + µ(0n,−1).

Thus, we have

‖
∑p

j=1 λj(aj , bj) + µ(0,−1)‖

= ‖
(∑p

j=1 λj(aj, bj) + µ(0,−1)
)
−
(∑p

j=1 λj(âj , b̂j) + µ(0n,−1)
)
‖

= ‖
∑p

j=1 λj

(
(aj, bj)− (âj, b̂j)

)
‖

≤ d̃
(
(a, b), (â, b̂)

)
< ‖(a, b)‖ − ε0,

where the first inequality follows from the definition of d̃ and λj ≥ 0 with∑p

j=1 λj = 1. Note that
∑p

j=1 λj(aj , bj) + µ(0n,−1) ∈ H(a, b). We see that

H(a, b)∩(‖(a, b)‖−ε0)Bn+1 6= ∅. This shows that d(0n+1, H(a, b)) ≤ ‖(a, b)‖−
ε0 which contradicts the fact that d(0n+1, H(a, b)) = ‖(a, b)‖. Therefore, (5)
holds.

Let α ∈ R+ so that (PC) is feasible for α. Then, (a, b) ∈ Θi implies

that d̃
(
(a, b), (a, b)

)
> α. Therefore, (5) gives us that d

(
0n+1, H(a, b)

)
=

d̃
(
(a, b),Θi

)
≥ α. Thus, ρ(V) ≤ d

(
0n+1, H(a, b)

)
.

We now show that ρ(V) = d
(
0n+1, H(a, b)

)
. To see this, we proceed by

the method of contradition and suppose that ρ(V) < d
(
0n+1, H(a, b)

)
. The,

there exists δ > 0 such that ρ(V)+2δ < d
(
0n+1, H(a, b)

)
. Let α0 := ρ(V)+δ.

Then, by the definition of ρ(V), (Pα0) is not feasible, that is,

{x ∈ Rn : a⊤x ≥ b, (a, b) ∈

p⋃

j=1

{
(aj , bj) + αBn+1

}
} = ∅.
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Hence, it follows from Lemma 1 that

(0n, 1) ∈ clcone{

p⋃

j=1

{
(aj, bj) + αBn+1

}
}.

By applying Lemma 2, we can find µj ≥ 0 and (zj , tj) ∈ Bn+1, j = 1, ..., p,
such that

(0n, 1) =

p∑

j=1

µj

(
(aj, bj) + (α0 + δ) (zj , tj)

)
.

Let (aj , bj) = (aj, bj)+(α0 + δ) (zj , tj) , j = 1, . . . , p, a := (a1, . . . , ap) ∈ (Rn)p

and b := (b1, . . . , bp) ∈ Rp. Then, d̃
(
(a, b), (a, b)

)
≤ α0 + δ and

(0n, 1) =

p∑

j=1

µj (aj , bj) ∈ cone {(aj , bj) , j = 1, ..., p} .

So, Lemma 1 implies that {x ∈ Rn : (aj , bj) , j = 1, ..., p} = ∅ and hence
(a, b) ∈ Θi. Thus,

d̃
(
(a, b),Θi

)
≤ d̃

(
(a, b), (a, b)

)
≤ α0 + δ = ρ(V) + 2δ.

Thus, from (5), we see that d
(
0n+1, H(a, b)

)
≤ d̃

(
(a, b),Θi

)
≤ ρ(V) +

2δ. This contradicts the fact that ρ(V) + 2δ < d
(
0n+1, H(a, b)

)
. So, the

conclusion follows. �

Remark 4. We would like to note that we have given a self-contained and
simple proof for Theorem 3 by exploiting the finitness of the linear inequality
system. A semi-infinite version of Theorem 3 under a regularity condition
was presented in [8, Theorem 3.3], where the proof relies on several results
in [3] and [4].

In the following example we show how the radius of robust feasibility of
(Pα) can be calculated using Theorem 3.

Example 5. (Calculating radius of robust feasibility) Consider (Pα)
with n = 3, p = 5 and Vα

j as in ( (1)), with

{
(aj , bj), j = 1, . . . , 5

}
=








−2
−1
−2
−6


 ,




−1
−2
−2
−6


 ,




−1
0
0
−3


 ,




0
−1
0
−3


 ,




0
0
−1
−3








.

(6)
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The minimum of ‖·‖2 on H(a, b), whose linear representation





x1 + x2 − x3 ≥ −1
3x1 + 3x2 + 3x3 − 4x4 ≥ 9
−x1 − x2 − x3 ≥ 1
−3x1 + x2 + x3 ≥ −1
x1 − 3x2 + x3 ≥ −1
−x1 − x2 + 3x3 ≥ −3






is obtained from (3) and (6) by Fourier-Motzkin elimination, is attained at(
−1

3
,−1

3
,−1

3
,−3

)
. So,

ρ(V) =

∥∥∥∥
(
−
1

3
,−

1

3
,−

1

3
,−3

)∥∥∥∥ =

√
28

3
.

3 Rank-1 Objective Matrix Uncertainty

In this section we assume that the matrix C in the objective function is
uncertain and it belongs to the one-dimensional compact convex uncertainty
set in Rm×n given by

U = {C + ρuv⊤ : ρ ∈ [0, 1]},

where C is a given m×n matrix while u ∈ Rm
+ and v ∈ Rn are given vectors.

This data uncertainty set was introduced and examined in [11, Section 3].
Recall that the normal cone of a closed convex set X at x ∈ X is

N(X, x) := {u ∈ Rn : u⊤(x− x) ≤ 0, ∀x ∈ X}.

Moreover, the simplex ∆m is defined as ∆m := {λ ∈ Rm
+ :

∑m

i=1 λi = 1}.
Recall that given x, y ∈ Rm, we write x ≦ y (x < y) when xi ≤ yi (xi < yi,
respectively) for all i ∈ I := {1, . . . , m}. Moreover, we write x ≤ y when
x ≦ y and x 6= y.

Robust efficiency means in [12] and [11, Section 4], where the constraints
are deterministic, the preservation of the corresponding property for all C ∈
U . So, this concept is very restrictive unless the uncertainty set U is small in
some sense (e.g. segments emanating from C). In our general framework of
uncertain objectives and constraints the following definition of robust weak
efficiency is referred to the set X of robust feasible solutions.

Definition 6 (Robust weakly efficient solution). We say that x ∈ Rn is
a robust weakly efficient solution of (PC) if there is no x ∈ X such that
Cx < Cx, for all C ∈ U .

9



The next characterization of the robust weakly efficient solutions in terms
of multipliers involves the so-called characteristic cone ([9, p. 81]) of the
constraint system of (PC), defined as

C (V) := cone

(
p⋃

j=1

Vj

)
+ R+ {(0n,−1)} .

If Vj is a polytope for all j = 1, . . . , p, then C (V) is generated by the
extreme points of the sets Vj, j = 1, . . . , p, together with the vector (0n,−1) .
So, C (V) is a polyhedral convex cone.

If Vj is a compact convex set for all j = 1, . . . , p and the strict robust
feasibility condition

{x ∈ Rn : a⊤j x > bj , ∀(aj , bj) ∈ Vj , j = 1, . . . , p} 6= ∅ (7)

holds, then, according to [9, Theorem 5.3 (ii)], cone
(⋃p

j=1 Vj

)
is closed, an

this in turn implies that C (V) is closed too.

Theorem 7 (Robust weakly efficient solutions). The point x ∈ X is a robust
weakly solution of (PC) if and only if there exist λ, λ̃ ∈ ∆m such that

C
⊤
λ ∈ −N(X, x) and (C + uv⊤)⊤λ̃ ∈ −N(X, x).

Moreover, if Vj is convex, j = 1, . . . , p, and C (V) is closed, then the robust
weak efficiency of x ∈ X is further equivalent to the condition that there exist
λ, λ̃ ∈ ∆m and (aj, bj), (ãj, b̃j) ∈ Vj, µj, µ̃j ≥ 0, j = 1, . . . , p, such that

C
⊤
λ =

p∑

j=1

µjaj and µj(a
⊤
j x− bj) = 0, j = 1, . . . , p,

and

(C + uv⊤)⊤λ̃ =

p∑

j=1

µ̃jaj and µ̃j(ã
⊤
j x− b̃j) = 0, j = 1, . . . , p.

Proof. Let x ∈ X be a robust weakly efficient solution. Then, we have for
each C ∈ U , there exist no x ∈ X such that Cx < Cx. By [7, Prop. 18 (iii)],
this is equivalent to the fact that

(∀C ∈ U), (∃λ ∈ Rm
+� {0m})(C

⊤λ ∈ −N(X, x)).
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As N(X, x) is a cone, by normalization, we may assume that λ ∈ ∆m, and
so, x is a robust weakly efficient solution if and only if

(∀C ∈ U), (∃λ ∈ ∆m)(C
⊤λ ∈ −N(X, x)). (8)

To see the first assertion, it suffices to show that (8) is further equivalent to

(∃λ, λ̃ ∈ ∆m)(C
⊤
λ ∈ −N(X, x) and (C + uv⊤)⊤λ̃ ∈ −N(X, x)). (9)

To see the equivalence, we only need to show that (9) implies (8) when u 6= 0m
(otherwise U is a singleton set). To achieve this, suppose that (9) holds and
fix an arbitrary C ∈ U . Then there exists α ∈ [0, 1] such that C = C+αuv⊤.

Define τ := (1−α)λ̃⊤u

(1−α)λ̃⊤u+αλ⊤u
and γ := τλ + (1− τ) λ̃ ≥ 0m. As λ, λ̃ ∈ ∆m

and u ∈ Rm
+ , we see that τ ∈ [0, 1] and γ ∈ ∆m. Moreover, we have

τα(uv⊤)⊤λ− (1− α)(1− τ)(uv⊤)⊤λ̃

= (1−α)λ̃⊤u

(1−α)λ̃⊤u+αλ⊤u
α(uv⊤)⊤λ− αλ⊤u

(1−α)λ̃⊤u+αλ⊤u
(1− α)(uv⊤)⊤λ̃

= (1−α)λ̃⊤u

(1−α)λ̃⊤u+αλ⊤u
α(u⊤λ)v − αλ⊤u

(1−α)λ̃⊤u+αλ⊤u
(1− α)(u⊤λ̃)v = 0m. (10)

Now,

C⊤γ =
(
C + αuv⊤

)⊤
(τλ + (1− τ) λ̃)

= τC
⊤
λ+ τα(uv⊤)⊤λ+ (1− τ)

(
C + αuv⊤

)⊤
λ̃

= τC
⊤
λ+ τα(uv⊤)⊤λ+ (1− τ)(C + uv⊤)⊤λ̃− (1− α)(1− τ)(uv⊤)⊤λ̃

= τC
⊤
λ+ (1− τ)(C + uv⊤)⊤λ̃ ∈ N(X, x).

where the fourth equality follows from (10) and the last relation follows from
(9) and the convexity of N(X, x).

To see the second assertion, we assume that Vj is convex, j = 1, . . . , p,
and C (V) is closed. We only need to show

N(X, x) =

{
−

p∑

j=1

µjaj : (aj, bj) ∈ Vj, µj ≥ 0 and µj(a
⊤
j x− bj) = 0, j = 1, . . . , p

}
.

The system
{
a⊤x ≥ b, (a, b) ∈ T

}
, with T =

(⋃p

j=1 Vj

)
, is a linear rep-

resentation of X. Thus, u ∈ N(X, x) if and only if the inequality −u⊤x ≥

11



−u⊤x is consequence of
{
a⊤x ≥ b, (a, b) ∈ T

}
if and only if (by the Farkas

Lemma, [9, Corollary 3.1.2])

−
(
u, u⊤x

)
∈ coneT + R+ {(0n,−1)} .

This is equivalent to assert the existence of a finite subset S of T, correspond-
ing non-negative scalars λs, s ∈ S, and µ ≥ 0, such that

−
(
u, u⊤x

)
=
∑

(a,b)∈S
λ(a,b) (a, b) + µ (0n,−1) . (11)

Multiplying by (x,−1) both members of (11) we get µ = 0, so that (11) is
equivalent to

− u =
∑

(a,b)∈S
λ(a,b)a and λ(a,b)(a

⊤x− b) = 0, (a, b) ∈ S. (12)

Finally, since S ⊂
⋃p

j=1 Vj , we can write S =
⋃p

j=1 Sj , with Sj ⊂ Vj , j =
1, . . . , p, and Si ∩ Sj = ∅ when i 6= j. Let µj :=

∑
(a,b)∈Sj

λ(a,b), j = 1, . . . , p.
If µj 6= 0 one has, by convexity of Vj,

(aj, bj) :=

∑
(a,b)∈Sj

λ(a,b)(a,b)

µj
∈ Vj .

Take (aj , bj) ∈ Vj arbitrarily when µj = 0. Then we get from (12) that

−u =

p∑

j=1

µjaj and µj(a
⊤
j x− bj) = 0, j = 1, . . . , p.

Thus, the conclusion follows. �

In the definition of the rank-1 objective data uncertainty set, U = {C +
ρuv⊤ : ρ ∈ [0, 1]}, we require that u ∈ Rm

+ . The following example (inspired
in [11, Example 3.3]) illustrates that if this non-negativity requirement is
dropped, then the above solution characterization in Theorem 7 may fail.

Example 8 (Non-negativity requirement for rank-1 objective data uncer-
tainty). Let

C =

(
−3 −1 −2
0 −1 −2

)
, u =

(
−1
1

)
/∈ R2

+ and v =




0
−3
0


 .

Consider the uncertain multiobjective optimization problem

V-min
{
Cx : a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj, j = 1, . . . , 4

}
, (13)

12



where the objective data matrix C is an element of

{C+ρuv⊤ : ρ ∈ [0, 1]} =

{(
−3 −1 −2
0 −1 −2

)
+ ρ

(
0 3 0
0 −3 0

)
: ρ ∈ [0, 1]

}

and the uncertainty sets for the constraints are the convex polytopes

V1 = conv









−2
−1
−2
−6


 ,




−1
−2
−2
−6








and V2 = conv









−1
0
0
−3


 ,




0
−1
0
−3


 ,




0
0
−1
−3








.

Note that the robust feasible set is

X = {x ∈ Rn : a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj , j = 1, 2} =
{
a⊤j x ≥ bj, j = 1, ..., 5

}
,

where
{
a⊤j x ≥ bj, j = 1, ..., 5

}
is the set in (6). It can be checked that x =

(1, 1, 3/2) ∈ X and so,

N(X, x) =



µ1




2
1
2


 + µ2




1
2
2


 : µ1 ≥ 0, µ2 ≥ 0



 .

Let λ = (2/3, 1/3)⊤ and λ̃ = (1/3, 2/3)⊤. Then, we have

C
⊤
λ ∈ −N(X, x) and (C + uv⊤)⊤λ̃ ∈ −N(X, x).

On the other hand, for

C =

(
−3 −1 −2
0 −1 −2

)
+

1

2

(
0 3 0
0 −3 0

)
=

(
−3 1

2
−2

0 −5
2

−2

)
∈ U ,

and x = (0, 0, 3)⊤ ∈ X, we see that

Cx =

(
−6
−6

)
<

(
−11

2

−11
2

)
= Cx.

So, x is not a weakly efficient solution of (13). Thus, the above solution
characterization fails.

In the case where the constraints are uncertainty free, i.e. the sets Vj are
all singletons, we obtain the following solution characterization for robust
multiobjective optimization problem with rank-one objective uncertainty.

13



Corollary 9. Let Vj =
{
(aj , bj)

}
, j = 1, . . . , p, and x ∈ X. Then, the

following statements are equivalent:
(i) x is a robust weakly efficient solution;
(ii) there exist λ, λ̃ ∈ ∆m such that

C
⊤
λ ∈ −N(X, x) and (C + uv⊤)⊤λ̃ ∈ −N(X, x);

(iii) there exist λ, λ̃ ∈ ∆m and µj , µ̃j ≥ 0, j = 1, . . . , p, such that

C
⊤
λ =

p∑

j=1

µjaj and µj(a
⊤
j x− bj) = 0, j = 1, . . . , p,

and

(C + uv⊤)⊤λ̃ =

p∑

j=1

µ̃jaj and µ̃j(a
⊤
j x− bj) = 0, j = 1, . . . , p;

(iv) x is a weakly efficient solution for the problems

(P0) V-min Cx

s.t. a⊤j x ≥ bj, j = 1, . . . , p,

and
(P1) V-min (C + uv⊤)x

s.t. a⊤j x ≥ bj, j = 1, . . . , p.

Proof. Let Vj = {
(
aj , bj

)
}, j = 1, . . . , p. The equivalences (i)⇔(ii)⇔(iii)

come from Theorem 7, taking into account that all the uncertainty sets Vj

are polytopes. Note that (i)⇒(iv) always holds. Finally, the implication
(iv)⇒(ii) is immediate by the usual characterization for weakly efficient so-
lutions (e.g. see [7, Prop. 18(iii)]). Thus, the conclusion follows. �

Remark 10. The equivalence (i)⇔(iii) in Corollary 9, on robust weakly
efficient solutions of uncertain vector linear programming problems, can be
seen as a counterpart of [11, Theorem 3.1], on robust efficient solutions of
the same type of problems.

4 Tractable Classes of Robust Multi-Objective

LPs

In this Section, we provide various classes of commonly used uncertainty sets
determining the robust feasible set

X = {x ∈ Rn : a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj , j = 1, . . . , p},
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under which one can numerically check whether a robust feasible point is a
robust weakly efficient solution or not. Throughout this Section we assume
that the objective function of (PC) satisfies the rank-1 matrix data uncer-
tainty, as defined in Section 3. We begin with the simple box constraint data
uncertainty.

4.1 Box constraint data Uncertainty

Consider
Vj = [aj, aj ]× [bj , bj ], (14)

where aj, aj ∈ Rn and bj , bj ∈ R, j = 1, . . . , p. Denote the extreme points of

[aj, aj ] by {â
(1)
j , . . . , â

(2n)
j }.

Theorem 11. Let Vj be as in (14), j = 1, . . . , p. The point x ∈ X is a
robust weakly efficient solution of (PC) if and only if there exist λ, λ̃ ∈ ∆m

and µ
(l)
j , µ̃

(l)
j ≥ 0 such that

C
⊤
λ =

p∑

j=1

2n∑

l=1

µ
(l)
j â

(l)
j and µ

(l)
j

(
(â

(l)
j )⊤x−bj

)
= 0, j = 1, . . . , p, l = 1, . . . , 2n,

and

(C+uv⊤)⊤λ̃ =

p∑

j=1

2n∑

l=1

µ̃
(l)
j â

(l)
j and µ̃

(l)
j

(
(â

(l)
j )⊤x−bj

)
= 0, j = 1, . . . , p, l = 1, . . . , 2n.

Proof. Let x be a robust weakly efficient solution of (PC). Note that X can
be rewritten as

X =
{
x ∈ Rn : a⊤j x− bj ≥ 0 for all (aj, bj) ∈ [aj , aj ]× [bj , bj ]

}

=
{
x ∈ Rn : (a

(l)
j )⊤x− bj ≥ 0, l = 1, . . . , 2n, j = 1, . . . , p

}
.

Then, we have

N(X, x) =

{
−

p∑

j=1

2n∑

l=1

µ
(l)
j â

(l)
j : µ

(l)
j

(
(â

(l)
j )⊤x− bj

)
= 0, µ

(l)
j ≥ 0, ∀l, ∀j

}
.

Since Vj is a convex polytope for j = 1, . . . , p, the conclusion follows from
Theorem 7. �

It is worth noting, from Theorem 11, that one can determine whether
or not a given robust feasible point x of (PC) under the box constraint data
uncertainty is a robust weakly efficient solution by solving finitely many linear
equalities.
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4.2 Norm constraint data uncertainty

Consider the constraint data uncertainty set

Vj = {aj + δjvj : vj ∈ Rn, ‖Zjvj‖s ≤ 1} × [bj , bj], (15)

where aj ∈ Rn, bj ∈ R, Zj is an invertible symmetric (n × n) matrix, j =
1, . . . , p, and let ‖ · ‖s denote the s-norm, s ∈ [1,+∞], defined by

‖x‖s =

{
s
√∑n

i=1 |xi|s if s ∈ [1,+∞),

max{|xi| : 1 ≤ i ≤ n} if s = +∞.

Moreover, we define s∗ ∈ [1,+∞] to be the number so that 1
s
+ 1

s∗
= 1. The

following simple facts about s-norms will be used later on. First, the dual
norm of the s-norm is the s∗-norm, that is,

sup
‖x‖s≤1

u⊤x = ‖u‖s∗ for all u ∈ Rn.

Second, ∂(‖ · ‖s∗)(u) = {v : ‖v‖s ≤ 1, v⊤u = ‖u‖s∗} where ∂f(x) denotes the
usual convex subdifferential of a convex function f : Rn → R at x ∈ Rn, i.e.

∂f(x) = {z ∈ Rn : z⊤(y − x) ≤ f(y)− f(x) ∀ y ∈ Rn}.

In this case, we have the following characterization of robust weakly efficient
solutions.

Theorem 12. Let Vj be as in (15), j = 1, . . . , p, and suppose that there
exists x0 ∈ Rn such that

a⊤j x0 − bj − δ‖Z−1
j x0‖s∗ > 0, j = 1, . . . , p. (16)

Then, a point x ∈ X is a robust weakly efficient solution of (PC) if and only
if there exist λ, λ̃ ∈ ∆m, µ, µ̃ ∈ R

p
+ and wj, w̃j ∈ Rn, with ‖wj‖s ≤ 1 and

‖w̃j‖s ≤ 1, such that

−λ⊤Cx =

p∑

j=1

µjbj and C
⊤
λ+

p∑

j=1

µj(aj − δZ−1
j wj) = 0n.

and

−λ̃⊤(C+uv⊤)x =

p∑

j=1

µ̃jbj and (C+uv⊤)⊤λ̃+

p∑

j=1

µ̃j(aj − δZ−1
j w̃j) = 0n.
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Proof. Note that X can be rewritten as

X =
{
x ∈ Rn : a⊤j x− bj + δ(vj)

⊤x ≥ 0 for all ‖Zjvj‖s ≤ 1, bj ∈ [bj , bj], j = 1, . . . , p
}

=
{
x ∈ Rn : a⊤j x− bj + δ(Z−1

j uj)
⊤x ≥ 0 for all ‖uj‖s ≤ 1, bj ∈ [bj, bj ], j = 1, . . . , p

}

=
{
x ∈ Rn : a⊤j x− bj − δ‖Z−1

j x‖s∗ ≥ 0, j = 1, . . . , p
}
.

Since Vj is a compact convex set for j = 1, . . . , p and the strict robust
feasibility condition (7) holds as a consequence of (16), the conclusion will
follow from Theorem 7 if we show that

N(X, x) =

{
u : ∃µj ≥ 0, ‖wj‖s∗ ≤ 1 s.t. − u⊤x =

p∑

j=1

µjbj and u+

p∑

j=1

µj(aj − δZ−1
j wj) = 0n

}
.

To see this, let u ∈ N(X, x). Then, x is a solution of the following convex
optimization problem:

min
{
−u⊤x : a⊤j x− bj − δ‖Z−1

j x‖s∗ ≥ 0, j = 1, . . . , p
}

As the strict feasibility condition (16) holds, by the Lagrangian duality, there
exist µj ≥ 0, j = 1, . . . , p, such that

−u⊤x = min
x∈Rn

{
(−u⊤x) +

p∑

j=1

µj

(
−a⊤j x+ bj + δ‖Z−1

j x‖s∗
)
}
.

As x ∈ X , this implies that µj

(
−a⊤j x+ bj + δ‖Z−1

j x‖s∗
)
= 0, j = 1, . . . , p,

and so, the function h(x) := (−u⊤x) +
∑p

j=1 µj

(
−a⊤j x+ bj + δ‖Z−1

j x‖s∗
)

attains its minimum on X at x and minx∈Rn h(x) = −u⊤x. This implies
that 0n ∈ ∂h(x), and so, there exist wj ∈ Rn with ‖wj‖s ≤ 1 such that
w⊤

j (Z
−1
j x) = ‖Z−1

j x‖s∗ and

u+

p∑

j=1

µj

(
aj − δZ−1

j wj

)
= 0n.

This together with h(x) = −u⊤x gives us that −u⊤x =
∑p

j=1 µjbj . Then, we
have

N(X, x) ⊂

{
u : ∃µj ≥ 0, ‖wj‖s∗ ≤ 1 s.t. − u⊤x =

p∑

j=1

µjbj and u+

p∑

j=1

µj

(
aj − δZ−1

j wj

)
= 0n

}
.

To see the reverse inclusion, let u ∈ Rn with −u⊤x =
∑p

j=1 µjbj and u +∑p

j=1 µj

(
aj − δZ−1

j wj

)
= 0n for some µj ≥ 0, ‖wj‖s∗ ≤ 1. Then, for all
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x ∈ X ,

u⊤(x− x) = u⊤x+

p∑

j=1

µjbj = −

(
p∑

j=1

µj(aj − δZ−1
j wj)

)⊤

x+

p∑

j=1

µjbj

=

p∑

j=1

µj

(
− a⊤j x+ bj + δ

(
Z−1

j wj

)⊤
x
)

≤

p∑

j=1

µj

(
− a⊤j x+ bj + δ‖Z−1

j x‖s∗
)
≤ 0,

where the inequality follows from ‖wj‖s∗ = max‖u‖s≤1w
⊤
j u (and hence, w⊤

j v ≤
‖wj‖s∗‖v‖s ≤ ‖v‖s for all v ∈ Rn). So, u ∈ N(X, x) and hence, the conclu-
sion follows. �

Theorem 12 shows that one can determine whether a robust feasible point
x under norm data uncertainty is a robust weakly efficient solution or not by
solving finitely many sth-order cone systems (that is, linear equations where
the variable lies in the ball determined by the ‖ · ‖s-norm) as long as the
strict feasibility condition (16) is satisfied.

4.3 Ellipsoidal constraint data uncertainty

In this subsection we consider the case where the constraint data are uncer-
tain and belong to the ellipsoidal constraint data uncertainty sets

Vj = {a0j +

qj∑

l=1

vlja
l
j : ‖(v

1
j , . . . , v

qj
j )‖ ≤ 1} × [bj , bj ], (17)

where alj ∈ Rn, l = 0, 1, . . . , qj, qj ∈ N and bj, bj ∈ R, j = 1, ..., p.

Theorem 13. Let Vj, j = 1, . . . , p, be as in (17) and suppose that there
exists x0 ∈ Rn such that

(a0j)
⊤x0 − bj − ‖

(
(a1j)

⊤x0, . . . , (a
qj
j )

⊤x0

)
‖ > 0, j = 1, . . . , p. (18)

Then, a point x ∈ X is a robust weakly efficient solution of (PC) if and only
if there exist λ, λ̃ ∈ ∆m, µ, µ̃ ∈ R

p
+ and w, w̃ ∈ Rn with ‖w‖ ≤ 1 and ‖w̃‖ ≤ 1

such that

−λ⊤Cx =

p∑

j=1

µjbj and − C
⊤
λ−

p∑

j=1

µj(a
0
j − yj) = 0m
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and

−λ⊤(C + uv⊤)x =

p∑

j=1

µjbj and − (C + uv⊤)⊤λ−

p∑

j=1

µj(a
0
j − yj) = 0m,

where yj =
(
(a1j)

⊤w, . . . , (a
qj
j )

⊤w
)⊤

.

Proof. Note that X can be rewritten as

X = {x ∈ Rn : (a0j)
⊤x− bj +

∑qj

l=1
vlj(a

l
j)

⊤x) ≥ 0 for all

‖(v1j , . . . v
qj
j )‖ ≤ 1, bj ∈ [bj , bj ], j = 1, . . . , p

)
}

=
{
x ∈ Rn : (a0j )

⊤x− bj − ‖
(
(a1j )

⊤x, . . . , (a
qj
j )

⊤x
)
‖ ≥ 0, j = 1, . . . , p

}
.

The conclusion will follow from Theorem 7 if we show that

N(X, x) =

{
u ∈ Rn : ∃µj ≥ 0, ‖w‖ ≤ 1 s.t. − u⊤x =

p∑

j=1

µjbj and − u−

p∑

j=1

µj(a
0
j − yj) = 0m

}
.

To see this, let u ∈ N(X, x). Then, x is a solution of the following convex
optimization problem:

min
{
−u⊤x : (a0j )

⊤x− bj − ‖
(
(a1j )

⊤x, . . . , (a
qj
j )

⊤x
)
‖ ≥ 0, j = 1, . . . , p

}
.

As the strict feasibility condition (18) holds, by the Lagrangian duality, there
exist µj ≥ 0, j = 1, . . . , p, such that

−u⊤x = min
x∈Rn

{
(−u⊤x) +

p∑

j=1

µj(−(a0j )
⊤x+ bj + ‖

(
(a1j )

⊤x, . . . , (a
qj
j )

⊤x
)
‖)

}
.

As x ∈ X , this implies that µj

(
(a0j )

⊤x − bj − ‖
(
(a1j)

⊤x, . . . , (a
qj
j )

⊤x
)
‖
)
=

0, j = 1, . . . , p, and so, the function h(x) := (−u⊤x) +
∑p

j=1 µj(−(a0j)
⊤x +

bj + ‖
(
(a1j )

⊤x, . . . , (a
qj
j )

⊤x
)
‖) attains its minimum at x and minx∈Rn h(x) =

−u⊤x. This implies that 0n ∈ ∂h(x), and so, there exists w ∈ Rn with
‖w‖ ≤ 1 such that

−u⊤x =

p∑

j=1

µjbj and − u−

p∑

j=1

µja
0
j +

p∑

j=1

µjyj = 0n,

where yj =
(
(a1j )

⊤w, . . . , (a
qj
j )

⊤w
)⊤

. Then, we have

N(X, x) ⊂

{
u ∈ Rn : ∃µj ≥ 0, ‖w‖ ≤ 1 s.t. − u⊤x =

p∑

j=1

µjbj and − u−

p∑

j=1

µj(a
0
j − yj) = 0n

}
.
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To see the reverse inclusion, let u ∈ Rn be such that−u⊤x =
∑p

j=1 µjbj and −

u−
∑p

j=1 µj(a
0
j − yj) = 0n for some µj ≥ 0, j = 1, ..., p, and ‖w‖ ≤ 1. Then,

for all x ∈ X ,

u⊤(x−x) =

p∑

j=1

µjbj−

p∑

j=1

µj(a
0
j−yj)

⊤x ≤

p∑

j=1

µj(−(a0j)
⊤x+bj+‖

(
(a1j )

⊤x, . . . , (a
qj
j )

⊤x
)
‖) ≤ 0.

Thus, u ∈ N(X, x) and so, the conclusion follows. �

The above robust solution characterization under the constraint ellip-
soidal data uncertainty shows that one can determine whether a robust fea-
sible point is a robust weakly efficient solution point or not by solving finitely
many second order cone systems as long as the strict robust feasibility con-
dition (18) is satisfied.

Finally, it should be noted that there are other approaches in defining
robust solutions for uncertain multiobjective optimization when the data
uncertainty U ⊂ Rm×n in the objective matrix is a columnwise objective data
uncertainty, that is, U =

∏m

i=1 Ui where Ui ⊂ Rn. In this case, one can define
a robust solution of the uncertain multi-objective optimization problem as the
solution of the following deterministic multiobjective optimization problem

V-min

{(
max
c1∈U1

c⊤1 x, . . . , max
cm∈Um

c⊤mx

)
: a⊤j x ≥ bj , ∀(aj , bj) ∈ Vj, j = 1, . . . , p

}
.

This approach has been recently examined in the paper [8] for uncertain
multiobjective optimization with semi-infinite constraints under columnwise
objective data uncertainty.
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