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a b s t r a c t

This paper studies planning problems for a group of heating systems which supply the hot water demand for

domestic use in houses. These systems (e.g. gas or electric boilers, heat pumps or microCHPs) use an external

energy source to heat up water and store this hot water for supplying the domestic demands. The latter

allows to some extent a decoupling of the heat production from the heat demand. We focus on the situation

where each heating system has its own demand and buffer and the supply of the heating systems is coming

from a common source. In practice, the common source may lead to a coupling of the planning for the group

of heating systems. On the one hand, the external supply of the energy for heating up the water may have

to be bought by an energy supplier on e.g. a day-ahead market. As the price of energy varies over time on

such markets, this supplier is interested in a planning which minimizes the total cost to supply the heating

systems with energy. On the other hand, the bottleneck to supply the energy also may be the capacity of the

distribution system (e.g. the electricity networks or the gas network). As this has to be dimensioned for the

maximal consumption, in this case it is important to minimize the maximal peak.

The two mentioned coupling constraints for supplying the energy for producing the heat, lead to two

different objectives for the planning of the group of heating systems: minimizing cost and minimizing the

maximal peak. In this paper, we study the algorithmic complexity of the two resulting planning problems. For

minimizing costs, a classical dynamic programming approach is given which solves the problem in polynomial

time. On the other hand, we prove that minimizing the maximal peak is NP-hard and discuss why this problem

is hard. Based on this, we show that this problem becomes polynomial if all heating systems have the same

consumption of energy when turned on. Finally, we present a Fix Parameter Tractable (FPT) algorithm for

minimizing the maximal peak which is linear in the number of time intervals.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In modern society, a significant amount of energy is consumed for

heating water (Aguilar, White, & Ryan, 2005). Almost every building

in developed countries is connected to a district heating system or

equipped with appliances for heating water locally. Typical appliances

for heating water are electrical and gas heating systems, heat pumps

and Combined Heat and Power units (microCHP). The resulting water

is stored in buffers to be prepared for demands of inhabitants.

A schematic overview of a local heating system is presented in

Fig. 1. It consists of

• a supply which represents some source of energy (electricity, gas),
• a converter which converts the energy into heat (hot water),
∗ Corresponding author.
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• a buffer which stores heat for later usage and
• a demand which represents the consumption profile of heat.

more formal definition of the used model for local heating and the

sed parameters and variables is given in Section 1.1. For the presen-

ation of the model electricity and heat is used to distinguish between

onsumed and produced energy, but the given model can handle arbi-

rary types of energy. Furthermore, even though the presented model

f the local heating system is quite simple, it cannot only be applied

or heating water but has many other applications, e.g. heating de-

and of houses, fridges and freezers and inventory managements.

ection 1.1 presents more details about those applications.

The combination of a heating device and a buffer gives some

reedom in deciding when the heat has to be produced. To use this

reedom in a proper way, different objectives may be considered in

ractice. On one hand, the electricity used to heat water has to be

ought. Although these prices are nowadays mostly fixed for private

ostumers, the supply companies delivering the electricity are faced

ith variable prices resulting e.g. from a day-ahead market. This leads

http://dx.doi.org/10.1016/j.ejor.2014.10.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.10.040&domain=pdf
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Fig. 1. Schematic picture of heating systems split into converters, buffers and demands.

A group of those heating systems is connected to a common supply of energy.
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o the objective of minimizing the total cost of electricity consumed

y all heating systems in the area of the supply company during the

lanning period. Note that in cost or auction based control algorithms

or Smart Grids, this objective is also used (see e.g. Molderink, Bakker,

osman, Hurink, & Smit, 2010). On the other hand, the energy used

or heating is transported from a supply to the heating systems by

lectrical networks or gas pipes. These transport media have to be

ble to transport all the used energy and therefore have to be dimen-

ioned for the maximal consumption peak of all houses connected to

he transport network. Thus, minimizing the maximal consumption

ver all these houses may decrease investments in the distribution

etworks.

The above mentioned aspects lead to two basic planning problems

or a group of heating systems which are both based on the same

odel but they differ in the objective function. The first problem is

alled minimizing cost. The second one is minimizing peak where

eak is the maximal consumption of electricity over the planning pe-

iod. Those problems are formally defined in Section 1.1. We show

hat the algorithmic complexity of those problems is substantially

ifferent, although the problems differ only by the objective func-

ion. The use of a classical dynamic programming approach (see e.g.

ormen, Leiserson, Rivest, & Stein, 2001) gives a simple polynomial-

ime algorithm. On the other hand, we proof that minimizing peak

s NP-hard and we discuss why minimizing peak makes the problem

ard. We show that minimizing peak becomes polynomial if all con-

erters have the same consumption of electricity when turned on.

e also present a dynamic programming algorithm for the general

ase of minimizing peak which is linear in the number of time in-

ervals and the multiplicative constant depends only on the number

f heating systems and the ratio between capacity and production of

he heating systems, meaning that the algorithm is a Fix Parameter

ractable (FPT) algorithm.

.1. Problem statement and results

In this section we present a mathematical description of the stud-

ed model, possible applications of this model and a summary of the
esults of this paper. The used parameters and decision variables are

ummarized the following table.

C set of heating systems

T set of time intervals

Ec consumed electricity of converter c if turned on

Hc produced heat of converter c if turned on

Dc,t heat demand from the heating system c in time interval t

Pt price of electricity in time interval t

Lc,t lower bound on the state of charge of buffer c in time

interval t

Uc,t upper bound on the state of charge of buffer c in time

interval t

xc,t operational state of the converter xc,t

sc,t state of charge of buffer c in the beginning of time interval t

First of all, we consider a discrete time model for the considered

roblem, meaning that we split the planning period into T time inter-

als of the same length. We consider sets C = {1, . . . , C} of C heating

ystems and T = {1, . . . , T} of T time intervals. In this paper, the letter

is always an index of a heating system and t is an index of a time in-

erval. For mathematical purposes, we separate a heating system into

converter, a buffer and a demand; see Fig. 1. We say “a converter c”

r “a buffer c” or “a demand c” to refer to the devices of the heating

ystem c ∈ C.

We consider a simple converter which has only two states: In

very time interval the converter is either turned on or turned off. The

mount of consumed electricity is Ec and the amount of produced heat

or any other form of energy) is Hc during one time interval in which

he converter c ∈ C is turned on. If the converter is turned off, then

t consumes and produces no energy. Let xc,t ∈ {0, 1} be the variable

ndicating whether the converter c ∈ C is running in time interval

∈ T .

The state of charge of a buffer c ∈ C at the beginning of time interval

∈ T is denoted by sc,t which represents the amount of heat in the

uffer. Note that sc,T+1 is the state of charge at the end of planning

eriod. The state of charge sc,t is limited by a lower bound Lc,t and an

pper bound Uc,t . Those two bounds are usually constant over time:

he upper bound Uc,t is the capacity of buffer and the lower bound

c,t is mostly zero. But it may be useful to allow different values, e.g.

given initial state of charge can be modeled by setting Lc,1 and Uc,1

qual to the initial state. In this paper, we assume that Lc,1 = Uc,1, so

he initial state of charge sc,1 is fixed.

The amount of consumed heat by the inhabitants of the house

rom heating system c ∈ C during time interval t ∈ T is denoted

y Dc,t . This amount is assumed to be given and is called the de-

and of heating system c. Furthermore, the price of a unit of elec-

ricity consumed by a converter in time interval t ∈ T is denoted

y Pt . We discuss in Section 5 that different prices of electric-

ty for different converters do not influence the developed algo-

ithms. In this paper, we study off-line problems, so we assume that

oth demands Dc,t and prices Pt are given for the whole planning

eriod.

The operational variables of the converters xc,t and the states of

harge of buffers sc,t are restricted by the following invariants.

c,t+1 = sc,t + Hcxc,t − Dc,t for c ∈ C, t ∈ T (1)

Lc,t ≤ sc,t ≤ Uc,t for c ∈ C, t ∈ T ∪ {T + 1} (2)

xc,t ∈ {0, 1} for c ∈ C, t ∈ T (3)

q. (1) is the charging equation of the buffer. During time interval

∈ T , the state of charge sc,t of a buffer c ∈ C is increased by the

roduction of the converter which is Hcxc,t and it is decreased by the

emand Dc,t . Eqs. (2) and (3) ensure that the domains of variables sc,t

nd xc,t , respectively, are taken into account.
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In this paper, we compare the complexity of the following two

objective functions.

Minimizing cost: minimize
∑
c∈C

Ec

∑
t∈T

Ptxc,t (4)

Minimizing peak: minimize m (5)

where m ≥
∑
c∈C

Ecxc,t for t ∈ T (6)

Since Ecxc,t is the amount of consumed electricity by a converter c

in time t and EcPtxc,t is the cost for this electricity, the sum in (4) is

the cost for electricity consumed by all converters during the whole

planning period. Furthermore, since the sum
∑

c∈C Ecxc,t is the amount

of electricity consumed by all converters in time t, the inequality (6)

and the objective function (5) guarantee that the value of the variable

m is the maximal consumption of electricity during one time period

within the whole planning period.

The contribution of this paper are as follows. First, we prove that

minimizing peak is NP-hard even for two time intervals (T = 2) and

it is strongly NP-hard if the number of time intervals T is a part of

input (Section 3). To make it easier to get more insight in the differ-

ences between the two objectives, in Section 4 some preprocessing

methods for the input data are presented. They, both, simplify the

mathematical model and decrease the computation time if a Mixed

Integer Linear Programming solver is used for minimizing peak. After-

wards, in Section 5, a classical dynamic programming approach (see

e.g. Cormen et al., 2001) is given, which results in a polynomial-time

algorithm for minimizing cost. This leads to the question which ele-

ments of the problem make the objective to minimize peak hard. The

polynomial reduction presented in Section 3 sets up parameters Hc,

Lc,t , Uc,t and Dc,t in such a way that every converter has to run exactly

once and the consumption of converters Ec is used for partitioning

integers into time intervals. Therefore, partitioning the consumption

of converters Ec makes minimizing peak hard. Thus, we investigate

the special case where the consumption values Ec of all converters

are equal, since in this case partition is trivial. We show that mini-

mizing peak is also easy in this case by presenting a polynomial time

algorithm (Section 6).

However, as the assumption that all converters have the same con-

sumption is not really practical. Therefore we consider which other

restriction makes minimizing peak tractable. As minimizing peak is

NP-hard already for two time interval and practical study cases often

have a fixed number of heating systems but a long planning period, it

would be useful to have a FPT algorithm for minimizing peak which is

polynomial in the number of time intervals T if the number of heating

systems C is fixed. We present such an algorithm which is polynomial

in T if C and a radio between capacity of buffers and production of

converters is fixed (Section 5).

Furthermore, Section 4 presents some preprocessing methods for

the input data which both simplifies the mathematical model and

decreases computation time if a Mixed Integer Linear Programming

solver is used for minimizing peak.

1.2. Motivation

The considered problems originate from a project called Meppe-

lEnergie which plans to build a group of houses and a biogas station

in Meppel, a small city in the Netherlands1. In this project, the houses

will have a heat pump for space heating and tap demands. Due to

Dutch legislation, the biogas station will provide electricity only to

those heat pumps. Therefore, the heat pumps should be scheduled in

such a way that they only consume, if possible, the electricity pro-
1 For more details, see websites http://www.utwente.nl/ctit/energy/projects/

meppel.html and http://www.meppelwoont.nl/nieuwveense-landen/.

s

a

w

p

uced by the biogas station. If this is not possible, the remaining

nergy has to be bought on the electricity market at minimal cost.

The study (Fink, van Leeuwen, Hurink, & Smit, 2014) shows that

ome central control of all heat pumps is necessary to avoid large

eak loads. Therefore, our task is to design one or more algorithms to

ontrol all heat pumps. The first of our proposed algorithms is called

lobal MILP control which uses an Mix Integers Linear Programming

olver to find an optimal (or near to optimal) solution of the mini-

izing peak problem. The paper (Fink et al., 2014) shows that this

pproach can be used only for small number of houses. For larger

umber of houses, a faster algorithm for the minimizing peak prob-

em is necessary but the problem is NP-hard. Therefore, we try to

nd an easier problem which can be solved faster (polynomial algo-

ithm for the case where all heat pump consume the same amount

f energy; FPT algorithm for the general case). In practice, it may be

ufficient to find a solution which is close to the optimum. One such

pproximation algorithm is presented in Fink et al. (2014).

Other approach is a cost-based control where a central controller

istributes prices for every time and every heat pump computes elec-

rical consumption minimizing cost. This cost-based approach can

e used by TRIANA methodology (Toersche et al., 2012) or multi-

ommodity auction where the auctioneer’s goal is to find a price for

very time interval which minimizes peak of the total consumption

f electricity. In both cases, controllers of heat pumps are required to

olved the minimizing cost problem.

In the time of writing this paper, the first group of houses of the

roject MeppelEnergie is being built. When the biogas station and suf-

ciently many houses will be finished, we will show practical results

f our theoretical study.

The remaining of the paper is organized as follows. Section 2 gives

pplications of our results and related literature. The hardness of

he problem of minimizing peak is proved in Section 3. Section 4

resents a simpler form of our problem which is used in later sections.

ynamic programming is used in Section 5 to present polynomial

lgorithm for minimizing cost and a FPT algorithm for minimizing

eak. A polynomial algorithm for a special case of minimizing peak is

resented in Section 6.

. Related works and applications

In the following we present related literature and give some pos-

ible applications of this model.

Some related works can be found in inventory management

nd lot-sizing literature (see e.g. Drexl & Kimms, 1997; Karimi,

atemi Ghomi, & Wilson, 2003 for reviews). In inventory control

roblems (see Sven, 2006) a buffer may represent an inventory of

tems, whereby a converter represent the production of items and

emand represent the ordered quantities. Note, that on a first view

he buffer constraint (1) and (2) seem to be identical to the classical

nventory holding constraints. However, there are a few differences.

n the one hand, in inventory problems the lower bounds are in

eneral 0. On the other hand, inventory control problems with dif-

erent production facilities (in our case the converters) consider the

ituation that several production facilities share an inventory (since

therwise the problem decouples in independent problems). How-

ver, the main difference between the problem considered in this

aper and inventory problems is in the objective. In our case the ob-

ective does not contain any holding costs or fixed costs for starting

he production in a certain time period. In case of peak minimiza-

ion thereby the objective is the only binding element between the

ifferent heating systems and makes that the problem is quite differ-

nt to inventory problems. In case of cost minimization, the problem

plits into independent problems for the different heating systems

nd in Section 5 we present a dynamic program to solve this problem

hich is in its base similar to dynamic programs for specific inventory

roblems.

http://www.utwente.nl/ctit/energy/projects/meppel.html
http://www.meppelwoont.nl/nieuwveense-landen/
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One other related area is vehicle routing and scheduling (see e.g.

aporte, 1992 for an overview of this area). For example, Lin, Gertsch,

nd Russell (2007) studied optimal vehicle refueling policies. In their

odel, a refueling station can provide an arbitrary amount of gas

hile our converter is restricted into two possible states of heat

eneration. Other papers on vehicle refueling policies are more dis-

ant from our research since a car is routed on a graph (see e.g. Lin,

008; Sweda & Klabjan, 2012).

As our problem consists of only one commodity, also the single

tem lot-sizing problems somehow related (see Brahimi, Dauzere-

eres, Najid, & Nordli, 2006 for a review). Wagner and Whitin (1958)

resented an O(T2) algorithm for the uncapacitated lot-sizing prob-

em which was improved by Federgruen and Tzur (1991), Wagelmans,

an Hoesel, and Kolen (1992) and Aggarwal and Park (1993) to

(T log T). On the other hand, Florian, Lenstra, and Rinnooy Kan

1980) proved that the lot-sizing problem with upper bounds on pro-

uction and order quantities is NP-hard. Computational complexity

f the capacited lot-sizing problems is studied in Bitran and Yanasse

1982). Our problem is a special case of capacited single item lot-sizing

roblem which does not seem to be considered in the literature.

A problem somewhat similar to the problem in this paper was con-

idered by Bosman, Bakker, Molderink, Hurink, and Smit (2009, 2011)

ho studied a microCHP planning problem and proved that mini-

izing peak is NP-hard in their model (Bosman, Bakker, Molderink,

urink, & Smit, 2010). Bosman (2010) also presents a dynamic pro-

ramming algorithm for the microCHP planning problem whose time

omplexity is O(T3C+1)where T is the number of time intervals and C

s the number of microCHPs.

In the following we give some possible applications of a model

resented in this paper.

Hot water: Converter and buffer form a model of a simple elec-

trical or gas boiler. Demand represents the consumption of hot

water in a house.

House heating: The model may be used to express a very simple

model for house heating. The converter represents a simple

heater. The capacity of the buffer corresponds to thermal ca-

pacity of the heating system (e.g. hot water buffer or thermal

capacity of concrete floors and walls) and the state of charge of

the buffer is related to the temperature inside the house. Heat

losses of the house may be modeled using the demand if we

assume that the temperature difference inside the house does

not have significant influence on the losses. More details about

using thermal mass as a buffers are presented in van Leeuwen,

Fink, de Wit, and Smit (2014) and computing heat demands are

explained in Fink et al. (2014).

Fridges and freezers: A fridge essentially works in the opposite

way than heating, so it may be modeled similarly. However,

we have to be careful with the correct interpretation of all

parameters. The state of charge of the buffer again represents

the temperature inside the fridge, but a higher state of charge

means a lower temperature. The converter does not produce

heat to the fridge but it decreases the temperature inside the

fridge, so the converter increases the state of charge of the

buffer (fridge). The demand decreases the state of charge of the

fridge due to thermal loss and usage of the fridge by humans.

. Minimizing peak

In this section, we prove that minimizing peak is NP-hard. We

resent two polynomial reductions. In the first reduction we use the

artition problem to prove that minimizing peak is already NP-hard

or problems with only two time intervals. In the second reduction we

se the 3-partition to prove that minimizing peak is strongly NP-hard

f the number of time intervals is part of the input.
The problem of minimizing peak is an optimization problem. The

orresponding decision problem is a question whether for a given M

here exists a solution satisfying conditions (1), (2) and (3) such that

he maximal peak is at most M, that is M ≥ ∑
c∈C Ecxc,t for all t ∈ T .

his problem belongs to NP since for given values of binary variables

c,t for c ∈ C and t ∈ T we can easily compute states of charges sc,t by

he recurrence formula (1) and check whether capacity conditions (2)

re satisfied.

For the first reduction we use the partition problem where the

ecision whether a given multiset of N positive integers {I1, . . . , IN}
an be partitioned into two subsets S1 and S2 such that the sum of

he numbers in S1 equals the sum of the numbers in S2. Although the

artition problem is NP-complete, there is a pseudo-polynomial time

ynamic programming solution, and there are heuristics that solve

specific versions of) the problem, either optimally or approximately,

ee Kellerer, Pferschy, and Pisinger (2004).

The instance of the peak minimization problem in the reduction

as exactly T = 2 time intervals. All demands are unitary, that is Dc,1 =
c,2 = 1 for c ∈ C, all buffers have the capacity 2 and the initial state of

harge is 1, i.e. Lc,1 = Uc,1 = 1, Lc,2 = Lc,3 = 0 and Uc,2 = Uc,3 = 2 for

∈ C. Furthermore, the production of all converters c is Hc = 2. Note

hat this choice of the parameters implies that the capacity constraints

1) and (2) of the buffers are satisfied if and only if every converter

uns exactly once. Finally, the number of converters C is chosen to be

qual to the number of integers N and the consumption of converters

orresponds to the integers of the partition problem, i.e. Ec = Ic for

∈ C. We ask for a solution where the maximal peak is at most the

alf of the sum of integers I1, . . . , IN .

Since every converter has to run exactly once, we have a one-to-

ne correspondence between assigning integers I1, . . . , IN into subsets

1 and S2 and scheduling the converters in the two time intervals 1 and

. Therefore, the integers I1, . . . , IN can be partitioned into two subsets

f equal sum if and only if there exists a scheduling of the converters

uch that the consumption of electricity in both time intervals is equal.

his completes the proof that minimizing peak is NP-hard even for

wo time intervals.

In the following we consider an arbitrary number of time inter-

als and prove that this makes the problem of minimizing the peak

trongly NP-hard using a reduction from the 3-partition problem.

he decision question in the 3-partition problem is whether a given

equence I1, . . . , I3N of 3N positive integers can be partitioned into N

ets S1, . . . , SN such that every number of the sequence is contained in

xactly one set and the sums of the numbers in each subset are equal.

he 3-partition problem is a well-known strongly NP-complete prob-

em and it remains hard even if some restrictions are set up on the

ntegers (Garey & Johnson, 1979).

The reduction of the 3-partition problem to the problem of min-

mizing peaks is similar to the reduction presented above. For this,

he number of time intervals T is the number of subsets N and the

umber of converters C is 3N. We again choose the parameters for

he buffers and demands in such a way that every converter has to

un exactly once:

• demands are unitary, i.e. Dc,t = 1 for c ∈ C and t ∈ T ,
• the initial state of charge is T − 1, i.e. Uc,1 = Lc,1 = T − 1 for c ∈ C,
• buffers have the capacity 2T − 2, i.e. Uc,t = 2T − 2 and Lc,t = 0 for

c ∈ C and t ∈ {2, . . . , t + 1},
• and the productions of all converters is Hc = T.

he choice implies that if some converter c does not run during the

lanning period, then the final state of charge of the corresponding

uffer gets sc,T+1 = −1 which violates its capacity constraints (2). If

ome converter c runs twice (or more times), then the final state

f charge sc,T+1 of its buffer is (at least) 2T − 1 which also violates its

apacity constraints (2). Therefore, the capacity constraints (1) and (2)

f all buffers are satisfied if and only if every converter runs exactly
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Finally, the C numbers of the partitioning problem are assigned

as consumption values to the converters, that is Ec = Ic for c ∈ C. The

decision question is whether there exists a scheduling of converters

such that the peak is at most M = 1
T

∑
c∈C Ic. Since every converter

has to run exactly once, we have one-to-one correspondence be-

tween assigning integers into subsets and scheduling of converters

in the different time intervals. Therefore, integers can be partitioned

into T subsets of equal sum if and only if there exists schedule for the

converters such that the consumptions of electricity is constant over

the planning period. This completes the proof that minimizing peak

is strongly NP-hard for an arbitrary number of time intervals.

4. Reformulation

In this section, we simplify the problem presented in Section 1.1.

We show that conditions (1) and (2) can be replaced by one condition

(11). This simpler formulation is used in the following sections.

First, we expand the recurrence formula (1) into an explicit equa-

tion.

sc,t+1 = sc,1 +
t∑

i=1

Hcxc,i −
t∑

i=1

Dc,i

Since we assume that the initial state of charge satisfies sc,1 = Lc,1 =
Uc,1, we can replace sc,1 by Lc,1 and substitute into inequalities (2).

Lc,t+1 ≤ Lc,1 + Hc

t∑
i=1

xc,i −
t∑

i=1

Dc,i ≤ Uc,t+1

which can be rewritten as

Lc,t+1 − Lc,1 + ∑t
i=1 Dc,i

Hc
≤

t∑
i=1

xc,i ≤ Uc,t+1 − Lc,1 + ∑t
i=1 Dc,i

Hc

Since the sum
∑t

i=1 xc,i is an integer between 0 and t we obtain the

following simple condition

A′
c,t ≤

t∑
i=1

xc,i ≤ B′
c,t for c ∈ C, t ∈ T (7)

where

A′
c,t = max

{
0,

⌈
Lc,t+1 − Lc,1 + ∑t

i=1 Dc,i

Hc

⌉}
, (8)

B′
c,t = min

{
t,

⌊
Uc,t+1 − Lc,1 + ∑t

i=1 Dc,i

Hc

⌋}
. (9)

The values of A′
c,t and B′

c,t for all c ∈ C and t ∈ T can be easily

computed in timeO(CT). In the rest of this section we study properties

of sequences A′
c,1, . . . , A′

c,T and B′
c,1, . . . , B′

c,T which are shortly denoted

by (A′
c,t)t and (B′

c,t)t , respectively.

Observe that the sequence of partial sums
∑t

i=1 xc,i for t = 1, . . . , T

is non-decreasing and the difference of two consecutive elements is

at most 1. We say that a sequence (Zt)t of T integers satisfies (10) if

Z1 ∈ {0, 1} ,

Zt ≤ Zt+1 ≤ Zt + 1 for all t = 1, . . . , T − 1.
(10)

We show that we can replace parameters A′
c,t and B′

c,t by parameters

Ac,t and Bc,t in such a way that sequences (Ac,t)t and (Bc,t)t satisfy (10)

and binary variables xc,t satisfy (7) if and only if they satisfy

Ac,t ≤
t∑

i=1

xc,i ≤ Bc,t for c ∈ C, t ∈ T . (11)

We present an algorithmic approach to obtain the required sequences

(Ac,t)t and (Bc,t)t . Hereby, we process the heating systems C one by

one. Throughout this approach, binary variables xc,t satisfy (7) if and

only if they satisfy (11). In the end of the approach, sequences (Ac,t)t

and (Bc,t)t satisfy (10). We start by setting Ac,t = A′
c,t and Bc,t = B′

c,t for

all t ∈ T .
We first process the sequence (Ac,t)t . Note that if demand Dc,t+1

s negative or the upper bound (Uc,t)t is not constant over time, then

t can happen that Ac,t > Ac,t+1. However, the sum
∑t

i=1 xc,t cannot

e greater than
∑t+1

i=1 xc,t , so in this case we can replace the value of

c,t+1 by Ac,t . Next note, that if demand Dc,t+1 is greater than pro-

uction Hc or (Uc,t)t is not constant over time, then it can happen

hat Ac,t+1 ≥ Ac,t + 2. Since the state of charge of the buffer needs

o be prepared for this large demand, the sum
∑t

i=1 xc,t has to be

t least Ac,t+1 − 1, meaning that we can replace the value of Ac,t by

c,t+1 − 1. We iteratively correct the sequence (Ac,t)t until there is

o t such that Ac,t > Ac,t+1 or Ac,t+1 ≥ Ac,t + 2. Then, the sequence

Ac,t)t satisfies (10). Note that one change of a value Ac,t may enforce

any other changes but all those changes can be processed in linear

ime.

In an analogous way, we can obtain Bc,t from B′
c,t . If Bc,t > Bc,t+1,

hen we replace Bc,t by Bc,t+1. If Bc,t+1 ≥ Bc,t + 2, then we replace Bc,t+1

y Bc,t + 1.

The preprocessing presented above gives us a simple system to

nswer the natural question whether a feasible solution satisfying

onstraints (1), (2) and (3) exists. It is now easy to see that there

xists binary xc,t satisfying (11) if and only if Ac,t ≤ Bc,t for every c ∈ C
nd t ∈ T . Obviously, this condition is necessary. The condition is

lso sufficient, since in this case xc,1 = Ac,1 and xc,t = Ac,t − Ac,t−1 for

= 2, . . . , T gives a feasible solution.

It may be interesting to notice that all changes presented in

his section are essentially based on Gomory–Chvátal cutting planes

Cook, Cunningham, Pulleyblank, & Schrijver, 1997) which may speed

p branch-and-bound. Our experiments show that those changes de-

rease computation time if Integer Linear Programming solvers are

sed to find the minimal peak.

. Dynamic programming

In this section we present dynamic programming algorithms for

inimizing cost and minimizing peak. The classical dynamic pro-

ramming algorithm (Cormen et al., 2001) for minimizing cost is used

nd it is presented here for completeness and for easier understanding

f the dynamic programming algorithm for minimizing peak. Those

wo algorithms are similar, so we first describe both algorithms to-

ether and then we determine their time complexity.

The substantial reason why minimizing cost is polynomial is that

very heating system can be solved separately because there is no

utual restriction between the variables of different heating systems.

herefore, feasible solutions of the different heating systems can be

oined to achieve a feasible solution of the whole model and vice

ersa. Furthermore, the sum of costs of the separate solutions of all

eating systems equals the total cost of the whole model. Hence, an

ptimal solution of the whole model can be composed from optimal

olutions of the separated heating systems. The main concern is to

escribe a polynomial time algorithm for minimizing cost of a single

eating system. The problem of minimizing cost of a single heating

ystem c ∈ C is given as

inimize
∑

t∈T Pc,txc,t

such that Ac,t ≤ ∑t
i=1 xc,i ≤ Bc,t for t ∈ T

xc,t ∈ {0, 1} for t ∈ T .

ote that the amount of consumed electricity Ec by the converter c is

ot important.

We describe a simple dynamic programming algorithm for this

roblem which is in its base similar to dynamic programs for spe-

ial lot-sizing problems. The algorithm uses a function f (t, n) which

enotes the minimal cost of energy for time intervals 1, . . . , t if the

onverter is running exactly n times during those intervals and con-

traint (11) is satisfied. The dynamic programming is based on the
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ecursive formula

(t, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min {f (t − 1, n), f (t − 1, n − 1)+ Pt} if t ∈ T and

Ac,t ≤ n ≤ Bc,t

0 if t = n = 0

∞ otherwise.

(12)

he term f (t − 1, n) represents the case that it is possible to turn

ff the converter in the time interval t. The term f (t − 1, n − 1)+ Pt

epresents the case that the converter is turned on and we have to

ay for electricity in the time interval t. The initial conditions for this

ecurrence are f (0, 0) = 0 and f (n, t) = ∞ if the converter cannot run

times during the first t time intervals (e.g. the term n − 1 in the

ecursive formula can be negative).

In the following, we present the algorithm for minimizing peak.

he algorithm uses a similar state space as above. Each state is de-

ermined by a time interval t and numbers nc giving the number of

uns of the converters c ∈ C up to time interval t. We use a recursive

ormula similar to (12) and the boundary condition (11) for every

eating system.

Formally, a state is a pair (t, 	n) where t is a time interval and 	n =
n1, . . . , nC) is a vector where nc is the number of runs of a converter

∈ {1, . . . , C} up to time interval t. Note that a state is feasible if

c,t ≤ nc ≤ Bc,t for all c ∈ C (13)

hich means that condition (11) is satisfied for all c ∈ C. We introduce

function F(t, 	n) which denotes the minimal peak during time inter-

als 1, . . . , t if the converter c runs exactly nc-times during intervals

, . . . , t for every c ∈ C. The function F is determined by the recursive

unction

(t, 	n) =

min
	y∈{0,1}C

max

{∑
c∈C

Ecyc, F(t − 1, 	n − 	y)
}

if t ∈ T and (13) holds

0 if t = 0 and 	n = 	0
∞ otherwise.

(14)

here 	y = (y1, . . . , yC) ∈ {0, 1}C are all combinations to turn on and

urn off converters in time interval t. The initial condition of the re-

ursion are F(0, 	0) = 0 and F(t, 	n) if the state (t, 	n) is infeasible.

It remains to determine the time complexity of the dynamic pro-

ramming algorithms. For minimizing cost of a single heating system,

ormula (12) can be evaluated in constant time. The time complexity

epends on the number of pairs (t, n) that satisfies the condition

c,t ≤ n ≤ Bc,t. (15)

or a fixed time t the number of n satisfying (15) can be bounded in

wo ways. The first way uses constraints 0 ≤ n ≤ t ≤ T which implies

hat the number of n satisfying (15) is O(T), so the number of pair

t, n) is O(T2). Hence, the overall time complexity of the dynamic

rogramming algorithm for minimizing cost for all heating systems

s O(CT2).
In the second way, we use the fact that number of n satisfying

15) is Bc,t − Ac,t + 1. In order to estimate the difference Bc,t − Ac,t , we

ubstitute formula’s (8) and (9) to obtain

c,t − Ac,t ≤ B′
c,t − A′

c,t ≤ Uc,t+1 − Lc,t+1

Hc
.

sing this estimate we can upper bound the number of n satisfying

15) by Rc which is given by

c = max
t∈T

⌊
Uc,t+1 − Lc,t+1

H

⌋
+ 1.
c T
herefore, time complexity of the dynamic programming algorithm

or minimizing cost of a single heating system c ∈ C isO(T min {T, Rc})
nd time complexity for whole model is O(TC min {T, R}) where

= maxc∈C Rc.

Similarly in the algorithm for minimizing peak, we have at most
C states for every time interval t, so the total number of states is

t most RCT. The complexity of evaluation the recursive formula for

ne state is O(2C), thus the total time complexity of this dynamic

rogramming algorithm is O((2R)C · T). Therefore, the algorithm is

inear in the number of time intervals T if the number of heating

ystems C and the ratio R are fixed. In summary, the algorithm is FPT

lgorithm where the fixed parameters are C and R.

. Equal consumption of converters

In this section we consider the special case of the problem of min-

mizing peak where all converters have the same consumption. This

ssentially means that the objective is minimizing the maximal num-

er of simultaneously running converters. Furthermore, it is sufficient

o solve the decision problem whether there exists a feasible plan-

ing of all converters such that at most M converters are running in

very time interval for given M. Based on that, we can find the optimal

alue of M by binary search in at most log(C) steps. In this section, we

resent a polynomial time algorithm which decides whether there

xists xc,t ∈ {0, 1} for t ∈ T and c ∈ C such that∑
c∈C

xc,t ≤ M for t ∈ T and

Ac,t ≤
t∑

i=1

xc,i ≤ Bc,t for c ∈ C, t ∈ T
(16)

olds. We reformulate this problem as a job scheduling and a network

ow problem.

We assume that sequences (Ac,t)t and (Bc,t)t satisfy (10). Observe

hat if there exists xc,t satisfying (16), then there exists another so-

ution x′
c,t satisfying (16) and

∑
t∈T x′

c,t = Ac,T . So, we can decrease

he upper bound Bc,t to min {Bc,t, Ac,T} without influencing feasibil-

ty of (16). Therefore, without loss of generality we also assume that

c,T = Bc,T .

Now, we reformulate our decision problem as a job scheduling

roblem. For every heating system c we introduce Ac,T jobs. Each job

s a pair (c, j) where c ∈ C is a heating system and j ∈ {1, . . . , Ac,T}
enotes one of the Ac,T runs of the converter c. The aim is to assign a

ime interval zc,j for every job (c, j), meaning that
{
zc,j ; j = 1, . . . , Ac,T

}
s the set of time intervals in which converter c is running. As two jobs

f the same converter cannot be assigned to the same time interval,

he sequence (zc,j)
Ac,T

j=1
is assumed to be increasing which means that

obs of every heating system have a chain dependency.

In order to satisfy the upper bounds of a buffer c we introduce a

elease time rc,j for every job (c, j) which is the minimal t such that

c,t = j. Similarly for the lower bound, we introduce a deadline dc,j

or every job (c, j) which is the minimal t such that Ac,t = j. Since at

ost M converters can be running in every time interval, jobs have

o be scheduled on M parallel machines. Note that all jobs have unit

rocessing time and all parallel machines are identical.

This problem can be solved using the more general schedul-

ng problem Pm|ri, pi = 1, chains|Lmax. Dror, Kubiak, and Dell’Olmo

1998) established that Pm|ri, pi = 1, chains|Lmax can be solved in

olynomial time. For completeness of the paper, we present the re-

uction of the problem of minimizing peak into a network flow prob-

em. This reduction is based on a construction presented by Baptiste,

rucker, Knust, and Timkovsky (2004) who consider the problem

m|ri, pi = 1, chains|∑ fi.

The network consists of vertices of five types. First, the network

as one source vertex v1. Second, every job (c, j) has one vertex v2
c,j

.

hird, for every heating system c and time t the network has one
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vertex v3
c,t . Fourth, every time t has one vertex v4

t . Fifth, the network

has one sink vertex v5.

The network consists of oriented edges of four types. First, the

source vertex v1 is connected to every job vertex v2
c,j

. Second, every

job vertex v2
c,j

is connected to a vertex v3
c,t if job (c, j)can be processed

in time t; that is rc,j ≤ t ≤ dc,j. Third, every vertex v3
c,t is connected to

the time vertex v4
t . Fourth, every time vertex v4

t is connected to the

sink v5. The capacity of edges from time vertices to the sink is M and

other edges have capacity 1. The decision problem in this network is

whether there exists flow from the source to the sink of size
∑

c∈C Ac,T

which is the total number of jobs.

We describe the correspondence between flow in the network and

assignments of jobs to machines. The supply in the sink equals to the

total number of jobs, so every edge from the source has to be saturated

in a desired flow. A job (c, j) runs in time t if the edge from job vertex

v2
c,j

to the vertex v3
c,t is saturated. Since job vertex v2

c,j
has exactly one

saturated incoming edge, every job has to be assigned to exactly one

time t. Since every vertex v3
c,t has exactly one outgoing edge, at most

one incoming edge can be saturated, so two jobs of the same heating

system cannot be assigned to the same time interval. Hence, every

machine c is processing at most one job in every time interval. Every

time vertex v4
t has at most M saturated incoming edges since it has

exactly one outgoing edge which has capacity M. Hence, at most M

converters are running in every time interval.

Since the number of vertices of the network flow instance isO(CT),
the problem of minimizing peak for converters with equal consump-

tion is polynomially solvable. Note that we can assign different ca-

pacities to edges from time vertices v4
t to the sink v5 which can be

useful in practice to fulfill a given electrical profile.

7. Conclusion

This paper investigates the complexity of minimizing peak and

minimizing cost for a heating problem for a group of heating systems.

We prove that minimizing peak is strongly NP-hard in general and

it remains NP-hard if the number of time intervals T is fixed and at

least two. On the other hand, minimizing peak becomes polynomial if

the number of heating systems C and parameters of buffers and con-

verters are fixed. The time complexity of our dynamic programming

algorithm is O((2R)C · T) where R is a ratio between the capacity of a

buffer and the production of a converter. However, in practical study

cases, different lengths of the time intervals may be of interest. Since

shortening a time interval decreases the production of heat by the

converter, the ratio R is increased, and thus the time complexity of

our algorithm is strongly influenced by the change of the lengths of

the time intervals. Therefore, it would be better to have an algorithm

for minimizing peak which is polynomial in T and whose multiplica-

tive constant depends only on C. We are especially interested whether

there exists an algorithm whose time complexity is O(DC · T) where

D is a constant.

In contrast to minimizing peak, we prove that minimizing cost is

polynomially solvable by a dynamic programming algorithm of run-

ning time O(RTC) which can also be bounded by O(T2C). Algorithms

for minimizing cost are important for cost and auction base control of

Smart Grids (Molderink et al., 2010). This leaves an interesting open

problem whether there exists faster algorithm for minimizing cost

of a single heating system than the dynamic programming algorithm

presented in this paper. Finally, note that practical converters may

have more operation modes (Toersche et al., 2012). The presented

dynamic programming algorithm can be adopted for such a situation,

but the computation time is increased, so faster algorithms would

also be useful in this case.
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