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RISK-SENSITIVE DIVIDEND PROBLEMS

NICOLE BÄUERLE∗ AND ANNA JAŚKIEWICZ ‡

Abstract. We consider a discrete time version of the popular optimal dividend payout problem
in risk theory. The novel aspect of our approach is that we allow for a risk averse insurer, i.e.,
instead of maximising the expected discounted dividends until ruin we maximise the expected
utility of discounted dividends until ruin. This task has been proposed as an open problem
in [13]. The model in a continuous-time Brownian motion setting with the exponential utility
function has been analysed in [14]. Nevertheless, a complete solution has not been provided. In
this work, instead we solve the problem in discrete time setup for the exponential and the power
utility functions and give the structure of optimal history-dependent dividend policies. We make
use of certain ideas studied earlier in [6], where Markov decision processes with general utility
functions were treated. Our analysis, however, include new aspects, since the reward functions
in this case are not bounded.
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1. Introduction

The dividend payout problem in risk theory has been introduced by de Finetti [10] and has
since then been investigated under various extensions during the decades up to now; see, for
instance, [9, 14]. The task is to find in a given model for the free surplus process of an insurance
company, a dividend payout strategy that maximises the expected discounted dividends until
ruin. Typical models for the surplus process are compound Poisson processes, diffusion processes,
general renewal processes or discrete time processes. The reader is referred to [2] and [4], where
an excellent overview of recent results is provided.

In [13] the authors propose the problem of maximising the expected utility of discounted
dividends until ruin instead of maximising the expected discounted dividends until ruin. This
means that an insurance company is equipped with some utility function that helps it to measure
the accumulated dividends paid to the shareholders. If this utility is increasing and concave,
the company is risk averse (see Remark 2.2). To the best of our knowledge, there is only one
work [14], in which this idea was taken up. More precisely, the authors in [14] consider a linear
Brownian motion model for the free surplus process and apply the exponential utility function
to evaluate the discounted dividends until ruin. It turns out that the mathematics involved in
the analysis of this problem is quite different from the one used in the risk neutral case and only
partial results could be obtained. In contrast to the same problem with a risk neutral insurance
company, where the optimal dividend payout strategy is a barrier strategy (see e.g., [3]), the
authors in [14] are not able to identify the structure of the optimal dividend policy rigorously.
They show imposing some further assumptions that there is a time dependent optimal barrier.

We study the same problem but with a discrete time surplus process. The risk neutral
problem within such a framework can be found in Section 9.2 in [5] or in Section 1.2 in [21].
By making use of the dynamic programming approach the authors in [5] and [21] prove that
the optimal dividend payout policy is a stationary band-strategy. In [1], on the other hand,
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the authors consider a discrete time model that is formulated with the aid of a general Lévy
surplus process but the dividend payouts are allowed only at random discrete time points. This
version can again be solved by the dynamic programming arguments. However, the problem
with a general utility function is more demanding. Like in the continuous time setting [14], it
requires a sophisticated analysis. It is worth mentioning that Markov decision processes with
general utility functions have been already studied in [6, 17]. Moreover, there are also some
papers, where the specific utility functions are considered. For example, Jaquette [15, 16] and
Chung and Sobel [8] are among the first who examined discounted payoffs in Markov decision
processes with the decision maker that is equipped with a constant risk aversion, i.e., grades her
random payoffs with the help of the exponential utility function. The common feature of all the
aforementioned papers is the fact that they deal with bounded rewards or costs. Therefore, their
results cannot be directly applied to our case, where the payoffs are unbounded. We make use
of the special structure of the underlying problem and show that the optimal dividend payout
policy is a time dependent band-strategy. The value function itself can be characterised as a
solution to a certain optimality equation. Furthermore, we also study the dividend payout model
with the power utility function. As noted in [6], the original Markov decision process can then
be viewed as a Markov decision process defined on the extended state space. We employ these
techniques to solve our model, but only in the first step, where we use an approximation of
the value function in the infinite time horizon by value functions in the finite time horizons. In
contrast to the exponential utility case, we can only partly identify the structure of the optimal
dividend payout policy. However, we are able to show that there is a barrier such that when
the surplus is above the barrier, it is always optimal to pay down to a state below the barrier.
The value function is again characterised as a solution to some optimality equation. Summing
up, the optimal dividend payout problem with the exponential utility function can be solved
completely in the discrete time case, in contrast to the continuous-time problem in [14], whilst
for the case with the power utility function we are at least able to identify the important global
structure of the optimal policy.

The paper is organised as follows. In the next section we introduce the model together with
mild assumptions and general history-dependent policies. Section 3 is devoted to a study of the
exponential utility case. We show first that the value function J for discounted payoffs satisfies
an optimality equation and give a lower and an upper bound for J . Then, we identify properties
of the minimiser of the right-hand side of the optimality equation. This enables us to show that
the minimiser indeed defines an optimal policy, which is a non-stationary band-policy. The non-
stationarity is based only on the time-dependence. The power utility case is treated in Section
4. We pursue here a little different approach, but it also leads to an optimality equation. The
policies obtained in this setting are really history-dependent. Nonetheless, we are still able to
show that the optimal policy is of a barrier-type. In Section 5 we provide the policy improvement
algorithm for the model with the exponential utility. Finally, Section 6 is devoted to concluding
remarks and open issues.

2. The Model

We consider the financial situation of an insurance company at discrete times, say n ∈ N0 :=
0, 1, 2, . . . . Assume there is an initial surplus x0 = x ∈ X := Z and x0 ≥ 0. The surplus xn+1 at
time n+ 1 evolves according to the following equation

xn+1 = xn − an + Zn+1, if xn ≥ 0 and xn+1 = xn, if xn < 0. (2.1)

Here an ∈ A(xn) := {0, . . . , xn} denotes the dividends paid to the shareholders at time n, and
Zn+1 represents the income (possibly negative) of the company during the time interval from n
to n+1. More precisely, Zn+1 is the difference between premium and claim sizes in the (n+1)-st
time interval. Further, we assume that Z1, Z2, . . . are independent and identically distributed
integer-valued random variables with distribution (qk)k∈Z, i.e., P(Zn = k) = qk, k ∈ Z. A
dividend payout problem in the risk theory can be viewed as a Markov decision process with the
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state space X, the set of actions A(x) available in state x (for completeness, we put A(x) = {0}
for x < 0) and the transition probability q(·|x, a) of the next state, when x is the current state
and a is the amount of dividend paid to the shareholders. Note that the dynamics of equation
(2.1) implies that q(y|x, a) = qy−x+a for x ≥ 0 and q(x|x, a) = 1 if x < 0. For the set of admissible
pairs D := {(x, a) : x ∈ X, a ∈ A(x)} we define the function r : D 7→ R as r(x, a) = a for
x ∈ X.

The feasible history spaces are defined as follows Ω0 = X, Ωk = Dk ×X and Ω∞ = D∞. A
policy π = (πk)k∈N0 is a sequence of mappings from Ωk to A such that πk(ωk) ∈ A(xk), where
ωk = (x0, a0, . . . , xk) ∈ Ωk. Let Γ be the class of all functions g : X 7→ A such that g(x) ∈ A(x).
A Markov policy is π = (gk)k∈N0 where each gk ∈ Γ. By Π and ΠM we denote the set of all
history-dependent and Markov policies, respectively. By the Ionescu-Tulcea theorem [19], for
each policy π and each initial state x0 = x, a probability measure Pπx and a stochastic process
(xk, ak)k∈N0 are defined on Ω∞ in a canonical way, where xk and ak describe the state and the
decision at stage k, respectively. By Eπx we denote the expectation operator with respect to the
probability measure Pπx.

Ruin occurs as soon as the surplus gets negative. The epoch τ of ruin is defined as the smallest
integer n such that xn < 0. The question arises as to how the risk-sensitive insurance company,
equipped with some utility function will choose its dividend strategy. More precisely, we shall
consider the following optimisation problem

sup
π∈Π

Eπx Uγ

( ∞∑
k=0

βkr(xk, ak)

)
= sup

π∈Π
Eπx Uγ

(
τ−1∑
k=0

βkak

)
, x ≥ 0,

where β ∈ (0, 1) is a discount factor and either

(1) Uγ is the exponential utility function, i.e., Uγ(x) = 1
γ e

γx with γ < 0, or

(2) Uγ is the power utility function, i.e., Uγ(x) = xγ with γ ∈ (0, 1).

Let Z be a random variable with the same distribution as Z1. Throughout the paper the
following assumptions will be supposed to hold true.

(A1) EZ+ < +∞, where Z+ = max{Z, 0};
(A2) P(Z < 0) > 0.

Assumption (A2) allows to avoid a trivial case, when the ruin will never occur under any policy
π ∈ Π.

Remark 2.1. In our study, we assume that the random variables {Zn} only take integer values
and the initial capital is also integer. From the proof of Lemma 1.9 in [21], it follows that in our
problem we can restrict without loss of generality to the integer dividend payments.

Remark 2.2. If the function Uγ is strictly concave and increasing as in our case, then the
quantity U−1

γ

(
E[Uγ(X)]

)
is called a certainty equivalent of the random variable X. From the

optimisation’s point of view it does not matter which value U−1
γ

(
E[Uγ(X)]

)
or E[Uγ(X)] we

study, because the inverse function U−1
γ is monotonic. However, the certainty equivalent has

an important meaning. If we apply the Taylor expansion, then the certainty equivalent can be
written as follows

U−1
γ

(
E
[
Uγ(X)

])
≈ EX − 1

2
l(EX)V ar[X],

where

l(y) = −
U ′′γ (y)

U ′γ(y)

is called the Arrow-Pratt function of absolute risk aversion. Hence, the second term accounts
for the variability of X (for a discussion see [7]). If Uγ is concave like in our case, then l(·) ≥ 0
which means that the variance is subtracted. This fact implies that the decision maker is risk
averse.
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3. The Exponential Utility Function

In this section we assume that the insurer is risk averse and grades her random payoffs
by taking the expectations of the exponential utility function of these random rewards. More
precisely, we assume that the decision maker is equipped with the constant risk coefficient γ < 0.
The objective of the risk averse insurer is to maximise the expected discounted payoff function:

J̃π(x) = Eπx Uγ

( ∞∑
k=0

βkr(xk, ak)

)
and to find a policy π∗ ∈ Π (if exists) such that

J̃(x) := J̃π∗(x) = sup
π∈Π

J̃π(x) (3.1)

for all x ∈ X. It is obvious that the optimal policy π∗ would depend on γ and β. Clearly,

J̃(x) = 1
γ for every x < 0.

3.1. Optimality equation and the properties of its largest minimiser. Our discounted
model with the exponential utility function reveals some kind of non-stationarity that is implied

by a discount factor. Therefore, one can extend the state space in the following way X̃ := X×I,
with I := [γ, 0) (cf. also [11], [6]). If the process is in the state (x, θ) and the insurer selects an
action a ∈ A(x), then the probability of moving to a next state (x′, θ′) is q(x′|x, a), if θ′ = θβ
and is 0, if θ′ 6= θβ. The second component of the state space keeps the track of the discount
factor that changes over time in a deterministic way.

Furthermore, we can define an extended history-dependent policy σ = (σk)k∈N0 , where σk is a
mapping from the set of extended feasible histories up to the kth day to the action set A such
that σk(hk) ∈ A(xk) with hk = (x0, θ, a0, . . . , ak−1, xk, θβ

k), k ≥ 1 and h0 = (x0, θ). Recall that
(xm, am) ∈ D for m ∈ N0. Let Ξ be the set of all extended history-dependent policies. Note that
for any σ ∈ Ξ (θ ∈ I is fixed), there exists a policy π ∈ Π that is equivalent to σ in the following
sense:

πk(·|ωk) := σk(·|hk), k ∈ N0.

Obviously, π depends on θ ∈ I. Therefore, for simplicity of notation we shall still use the original
policies π ∈ Π, and the expectation operator Eπx, where x is the first component of the initial
state. The dependence on θ ∈ I will be denoted by adding the second variable to the value
function.

For any initial state (x, θ) ∈ X̃ we define

J(x, θ) := inf
π∈Π

Jπ(x, θ), where Jπ(x, θ) := Eπx

(
exp

{
θ

∞∑
k=0

βkr(xk, ak)

})
for π ∈ Π. Obviously, 0 ≤ Jπ(x, θ) ≤ 1 for all x ∈ X, θ ∈ I and π ∈ Π. Observe next that our
optimisation problem (3.1) is equivalent to the problem of minimising Jπ(x, γ) over π ∈ Π. By

C(X̃) we denote the space of bounded continuous real-valued functions on X̃.

Theorem 3.1. For every (x, θ) ∈ X̃ the function J is a solution to the following discounted
optimality equation

J(x, θ) = min
a∈A(x)

[
eθr(x,a)

∑
x′∈X

J(x′, θβ)q(x′|x, a)

]
(3.2)

= min
a∈{0,...,x}

[
eθa

( ∞∑
k=a−x

J(x− a+ k, θβ)qk +
a−x−1∑
k=−∞

qk

)]
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Proof. Clearly, J(x, θ) = 1 for x < 0 and all θ ∈ I. Consider the truncated payoff functions
rm(x, a) = min{m, r(x, a)} with m ∈ N. From Proposition 3.1 in [11] there is a unique function

wm ∈ C(X̃) such that

wm(x, θ) = min
a∈A(x)

[
eθrm(x,a)

∑
x′∈X

wm(x′, θβ)q(x′|x, a)

]
(3.3)

and wm(x, θ) = Jm(x, θ) for all (x, θ) ∈ X̃. Here, Jm(x, θ) denotes the optimal discounted
payoff function with r replaced by rm in of J(x, θ). Clearly, the sequence (wm(x, θ))m∈N is

non-increasing for each (x, θ) ∈ X̃. Therefore, limm→∞wm(x, θ) =: w(x, θ) exists. It is obvious
that

wm(x, θ) = Jm(x, θ) ≥ J(x, θ), for (x, θ) ∈ X̃.
Hence,

w(x, θ) ≥ J(x, θ), for (x, θ) ∈ X̃. (3.4)

On the other hand, letting m→∞ in (3.3), making use of the dominated convergence theorem
and the fact that A(x) is finite for each x ∈ X, we infer that

w(x, θ) = lim
m→∞

min
a∈A(x)

[
eθrm(x,a)

∑
x′∈X

wm(x′, θβ)q(x′|x, a)

]

= min
a∈A(x)

[
eθr(x,a)

∑
x′∈X

w(x′, θβ)q(x′|x, a)

]
(3.5)

for (x, θ) ∈ X̃. Hence, for any a ∈ A(x)

w(x, θ) ≤ eθr(x,a)
∑
x′∈X

w(x′, θβ)q(x′|x, a).

Iterating this inequality (n− 1) times we conclude that

w(x, θ) ≤ Eπx

(
exp

{
θ
n−1∑
k=0

βkr(xk, ak)

}
w(xn, θβ

n)

)
.

Since w ≤ wn ≤ 1, we have that

w(x, θ) ≤ Eπx

(
exp

{
θ
n−1∑
k=0

βkr(xk, ak)

})
.

Letting n→∞ and applying the dominated convergence theorem we have that w(x, θ) ≤ Jπ(x, θ)

for (x, θ) ∈ X̃. Since the policy π was chosen arbitrarily, we get that

w(x, θ) ≤ J(x, θ), for (x, θ) ∈ X̃. (3.6)

Now the assertion follows from (3.4) and (3.6). �

Remark 3.2. Among all functions w which satisfy equation (3.2) and have the property that

w(x, θ) = 1 for x < 0 and w(x, θ) ∈ (0, 1] for all (x, θ) ∈ X̃, the value function J is the largest
solution. This fact follows from the last part of the proof.

Remark 3.3. Theorem 3.1 was proved in the literature for the general state space, weakly
continuous transition probabilities and bounded costs or rewards [6, 11]. However, we deal with
unbounded payoffs, therefore we have to truncate them at the level m and then let m tend to
infinity. Such a procedure may have a meaning from the numerical point of view.

Let us now consider the policy π+ = (g, g . . .), where g(x) = x+ for every x ∈ X. Hence, this
policy asks the insurer to pay out everything at each time point until ruin occurs. Denote by ~π
the “1-shifted” policy for π = (πk)k∈N0 , that is, ~π = (~πk)k∈N0 , where

~πk(·|ωk) = πk+1(·|x0, a0, ωk) for ωk ∈ Ωk and k ∈ N0. (3.7)
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Lemma 3.4. For any x ≥ 0 and θ ∈ I the following inequalities hold

eθxh(θ) ≤ J(x, θ) ≤ eθxh(θ),

with

h(θ) :=
∞∏
k=1

E
(

exp{θβkZ+
k }
)

and h(θ) :=
∞∑

m=−∞
Eπ

+

m

(
exp

{
θ
τ−1∑
k=1

βkxk

})
qm,

where x1 = m and the empty sum is 0.

Proof. We start with the upper bound. Since x ≥ 0, then τ ≥ 1. For the policy π+ we have that

J(x, θ) ≤ Jπ+(x, θ) = Eπ
+

x

(
exp

{
θ

τ−1∑
k=0

βkxk

})
= eθx Eπ

+

x

(
exp

{
θ

τ−1∑
k=1

βkxk

})

= eθx Eπ
+

x

[
Eπ

+

x

(
exp

{
θ

τ−1∑
k=1

βkxk

}∣∣∣a0, x1

)]
(under π+ we have that x1 = Z1)

= eθx Eπ
+

x

[
E~π

+

Z1

(
exp

{
θ
τ−1∑
k=1

βkxk

})]

= eθx

( ∞∑
m=−∞

Eπ
+

m

(
exp

{
θ
τ−1∑
k=1

βkxk

})
qm

)
,

where in the last equality we make use of the fact that P(Z1 = m) = qm and ~π+ = π+.
On the other hand, the lower bound can be obtained as follows. First, we claim that for π ∈ Π

and (x, θ) ∈ X̃ with x ≥ 0

eθx
n−1∏
k=1

E
(

exp{θβkZ+
k }
)
≤ Eπx

(
exp

{
θ
n−1∑
k=0

βkr(xk, ak)

})
. (3.8)

We proceed by induction. Clearly, eθx ≤ mina∈A(x) e
θr(x,a). Assume now that (3.8) holds for

some n ≥ 1 and every x ≥ 0 and θ ∈ I. Let π = (πn)n∈N0 be any policy. Then, it follows that

Eπx

(
exp

{
θ

n∑
k=0

βkr(xk, ak)

})
≥ eθr(x,π0(x)) Eπx

[
Eπx

(
exp

{
θ

n∑
k=1

βkr(xk, ak)

}∣∣∣a0, x1

)]

≥ min
a∈A(x)

eθr(x,a) Eπx

[
1[x1 ≥ 0]E~πx1

(
exp

{
θ

n∑
k=1

βkr(xk, ak)

})
+ 1[x1 < 0]

]

≥ min
a∈A(x)

eθa Eπx

[
1[x1 ≥ 0]eθβx1

n∏
k=2

E
(

exp{θβkZ+
k }
)

+ 1[x1 < 0]

]
(by (3.8))

≥ min
a∈A(x)

eθa Eπx
[
1[x1 ≥ 0]eθβx1 + 1[x1 < 0]

] n∏
k=2

E
(

exp{θβkZ+
k }
)
.
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Furthermore, we have that

min
a∈A(x)

eθa Eπx
[
1[x1 ≥ 0]eθβx1 + 1[x1 < 0]

]
≥ min

a∈A(x)
eθa
( ∞∑
k=a−x

eθβ(x−a+k)qk +
a−x−1∑
k=−∞

qk

)

≥ min
a∈A(x)

eθa
( ∞∑
k=1

eθβ(x−a+k)qk +
0∑

k=−∞
eθβ(x−a)qk

)

= min
a∈A(x)

eθa(1−β)
( ∞∑
k=1

eθβ(x+k)qk +
0∑

k=−∞
eθβxqk

)
= eθx(1−β)eθβx E eθβZ

+
1 = eθx E eθβZ

+
1 .

Hence, we conclude that

Eπx

(
exp

{
θ

n∑
k=0

βkr(xk, ak)

})
≥ eθx E eθβZ

+
1

n∏
k=2

E
(

exp{θβkZ+
k }
)

= eθx
n∏
k=1

E
(

exp{θβkZ+
k }
)
.

Therefore, (3.8) holds for every n ∈ N, x ≥ 0, θ ∈ I and π ∈ Π. Now letting n→∞ in (3.8) and
making use of the dominated convergence theorem we obtain the lower bound for J(x, θ). �

Remark 3.5. Note that since β < 1, we obtain by Jensen’s inequality and assumption (A1)
that

h(θ) ≥ exp

(
θ
∞∑
k=1

βk EZ+
k

)
> 0, θ ∈ I.

This observation is essential in Theorem 3.8, where we have to take the logarithm of h. Also
note that h̄(θ) ≤ 1 since θ ∈ I.

Let x ≥ 0. For any θ ∈ I let us denote

G(x, θ) :=

∞∑
k=−x

J(x+ k, θ)qk +

−x−1∑
k=−∞

qk,

then

J(x, θ) = min
a∈A(x)

[
eθaG(x− a, θβ)

]
, x ≥ 0. (3.9)

Lemma 3.6. The function J(·, θ) is decreasing for each θ ∈ I and

J(x, θ) ≤ eθ(x−v)J(v, θ)

for x ≥ v ≥ 0.

Proof. Suppose 0 ≤ v < x. Then, it follows that

J(x, θ) = min
{
G(x, θβ), . . . , eθ(x−v−1)G(v + 1, θβ),min

{
eθ(x−v)G(v, θβ), . . . , eθ(x−0)G(0, θβ)

}}
= min

{
G(x, θβ), . . . , eθ(x−v−1)G(v + 1, θβ), eθ(x−v)J(v, θ)

}
≤ eθ(x−v)J(v, θ).

Observe that for v = x− 1 we obtain from the above inequality that

J(x, θ) ≤ eθJ(x− 1, θ) < J(x− 1, θ).

This fact finishes the proof. �
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Now let f∗ : X̃ 7→ A be the largest minimiser of the right-hand side in (3.9) for x ≥ 0 and let
f∗(x, θ) = 0 for x < 0 and all θ ∈ I. Then, f∗(·, θ) ∈ Γ.

Lemma 3.7. For x ≥ 0 it holds that f∗(x− f∗(x, θ), θ) = 0 and

J(x, θ) = eθf
∗(x,θ)J(x− f∗(x, θ), θ).

Proof. By (3.9) we have that J(x − f∗(x, θ), θ) ≤ G(x − f∗(x, θ), θβ). By Lemma 3.6 (set v :=
x− f∗(x, θ)) it follows that

J(x, θ) = eθf
∗(x,θ)G(x− f∗(x, θ), θβ) ≥ eθf∗(x,θ)J(x− f∗(x, θ), θ)

≥ J(x, θ).

Thus we have equality and, in particular, J(x− f∗(x, θ), θ) = G(x− f∗(x, θ), θβ), which implies
that a = 0 minimises the expression eθaG(x− f∗(x, θ)− a, θβ). We claim that a = 0 is the only
minimiser of the above expression. Note that, if f∗(x, θ) = x, then J(x − f∗(x, θ), θ) = J(0, θ)
and the result holds true. If, on the other hand, f∗(x, θ) < x, then

J(x, θ) = eθf
∗(x,θ)G(x− f∗(x, θ), θβ) < eθ(f

∗(x,θ)+a)G(x− f∗(x, θ)− a, θβ)

for a = 1, . . . , x − f∗(x, θ). This fact implies that a = 0 is indeed the only minimiser and,
consequently, f∗(x− f∗(x, θ), θ) = 0. �

Theorem 3.8. Let ξ(θ) := sup{x ∈ N0 : f∗(x, θ) = 0}. Then ξ∗ := supθ∈I ξ(θ) <∞ and

f∗(x, θ) = x− ξ(θ), for all x > ξ(θ).

Proof. Fix θ ∈ I and let x ≥ 0 be such that f∗(x, θ) = 0. Note that such x exists for each θ ∈ I,
because f∗(0, θ) = 0 for all θ ∈ I. From (3.9) we obtain that

J(x, θ) =

∞∑
k=−x

J(x+ k, θβ)qk +

−x−1∑
k=−∞

qk. (3.10)

Furthermore, by (3.10), Lemmas 3.4 and 3.6 we have that

J(x, θ) ≥
∞∑
k=1

J(x+ k, θβ)qk +
0∑

k=−∞
J(x, θβ)qk

≥
∞∑
k=1

eθβ(x+k)h(θβ)qk +

0∑
k=−∞

eθβxh(θβ)qk

= eθβxh(θβ)

( ∞∑
k=1

eθβkqk +

0∑
k=−∞

qk

)
= eθβxh(θ).

Hence,

eθβxh(θ) ≤ J(x, θ) ≤ eθxh(θ),

which implies that

x ≤ lnh(θ)− lnh(θ)

θ(β − 1)
=: s(θ).

The function s(·) is continuous on I and is finite for each θ ∈ I. Additionally,

lim
θ→0−

s(θ) = lim
θ→0−

(
h
′
(θ)

h(θ)
− h′(θ)

h(θ)

)
/(β − 1)

=

( ∞∑
k=1

βk E(Z+
k )−

∞∑
m=0

Eπ
+

m

(
τ−1∑
k=1

βkxk

)
qm

)
/(1− β) < +∞,
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which follows by assumption (A1). Thus, we have shown that supθ∈I ξ(θ) < +∞. Now let
x > ξ(θ). We know from Lemma 3.7 that f∗(x− f∗(x, θ), θ) = 0, which implies by definition of
ξ(θ) that f∗(x, θ) ≥ x− ξ(θ). On the other hand, by (3.9) we obtain that

J(ξ(θ), θ) ≤ eθ(f
∗(x,θ)−(x−ξ(θ)))G

(
ξ(θ)− f∗(x, θ) +

(
x− ξ(θ)

)
, θβ
)

= J(x, θ)e−θ(x−ξ(θ)) ≤ J(ξ(θ), θ),

where the last inequality follows from Lemma 3.6. Thus, because f∗ is the largest minimiser of
(3.9), we obtain

0 = f∗(ξ(θ), θ) ≥ f∗(x, θ)− (x− ξ(θ)) ≥ 0,

which implies that f∗(x, θ) = x− ξ(θ). �

Lemma 3.9. Let x0 ≥ 0. If f∗(x0, θ) = a0 and f∗(x0 + 1, θ) > 0, then f∗(x0 + 1, θ) = a0 + 1.

Proof. By definition of f∗ we have that

J(x0, θ) = eθa0G(x0 − a0, θβ)

{
≤ eθaG(x0 − a, θβ), for a = 0, . . . , a0

< eθaG(x0 − a, θβ), for a = a0 + 1, . . . , x0,

which further yields that

eθ(a0+1)G(x0 − a0, θβ)

{
≤ eθ(a+1)G(x0 − a, θβ), for a = 0, . . . , a0

< eθ(a+1)G(x0 − a, θβ), for a = a0 + 1, . . . , x0.

Again from the definition of f∗ we obtain that

J(x0 + 1, θ) = min
a∈A(x0+1)

eθaG(x0 + 1− a, θβ)

= min
{
G(x0 + 1, θβ), min

a∈A(x0)
eθ(a+1)G(x0 − a, θβ)

}
.

Since f∗(x0 + 1, θ) > 0, it holds that

G(x0 + 1, θβ) ≥ min
a∈A(x0)

eθ(a+1)G(x0 − a, θβ).

This fact, in turn, together with the previous observation yields by shifting the index that

eθ(a0+1)G(x0 − a0, θβ)

{
≤ eθaG(x0 + 1− a, θβ), for a = 0, . . . , a0 + 1
< eθaG(x0 + 1− a, θβ), for a = a0 + 2, . . . , x0 + 1.

Thus, it follows that f∗(x0 + 1, θ) = a0 + 1. �

3.2. Optimal policy and its structure. Recall now that γ is a constant risk averse coefficient
of the insurer. Consider the following policy π∗ := (g̃0, g̃1, . . .), where g̃n(·) := f∗(·, γβn). We
note that π∗ ∈ ΠM . Clearly, since γ ∈ I, then γβn ∈ I for all n ∈ N0.

Corollary 3.10. Under policy π∗ the ruin occurs with probability 1, i.e., Pπ∗x (τ < +∞) = 1 for
every x ∈ X.

Proof. Assume that the surplus process equals x0 ∈ X. If x0 ≥ 0, then either x0 ≤ ξ(γ) or
x0 > ξ(γ). However, from Theorem 3.8 we know that in both cases the risk reserve (surplus)
just after dividend payment is always less or equal to ξ(γ) ≤ ξ∗. Therefore, the ruin will occur,
if there appears a sequence of length ξ∗ + 1 of negative incomes. But the probability that such
a sequence appears, equals

P(Z1 < 0, . . . , Zξ∗+1 < 0) =

( −1∑
m=−∞

qm

)ξ∗+1

, (3.11)

which is positive by (A2). If the ruin has not occurred up to the lth day, where l := ξ∗ + 1,
then again xl ≤ ξ(γβl) or xl > ξ(γβl). But from Theorem 3.8 in both cases the risk reserve
just after dividend payment is always less or equal to ξ(γβl) ≤ ξ∗. The probability that there
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exists a sequence of length ξ∗ + 1 of negative incomes is
(∑−1

m=−∞ qm

)ξ∗+1
. Thus, considering

the states xk(ξ∗+1), k ∈ N0, we may define the following events

Ak = {Zk(ξ∗+1)+1 < 0, Zk(ξ∗+1)+2 < 0 . . . , Z(k+1)(ξ∗+1) < 0}, k ∈ N0.

By the second Borel-Cantelli lemma P(Ak i.o.) = 1. Therefore, the ruin must occur. �

Theorem 3.11. The Markov policy π∗ is optimal, i.e.,

J̃(x) = J̃π∗(x) =
1

γ
Jπ∗(x, γ) =

1

γ
J(x, γ)

for x ∈ X.

Proof. From Theorem 3.1 and the definition of π∗ we obtain for every x ∈ X that

J(x, γ) = min
a∈A(x)

[
eγr(x,a)

∑
x′∈X

J(x′, γβ)q(x′|x, a)

]
= eγg̃0(x)

∑
x′∈X

J(x′, γβ)q(x′|x, g̃0(x)).

Assume that x ≥ 0. Iterating the last equality n times under the Markov policy π∗, we obtain
that

J(x, γ) = Eπ
∗
x

exp

γ
(τ−1)∧(n−1)∑

k=0

βkak

 (J(xn, γβ
n)1[τ ≥ n] + 1[τ < n])

 . (3.12)

Observe now that

0 ≤ Eπ
∗
x

exp

γ
(τ−1)∧(n−1)∑

k=0

βkak

 J(xn, γβ
n)1[τ ≥ n]

 ≤ Eπ
∗
x 1[τ ≥ n] = Pπ

∗
x (τ ≥ n).

But by Corollary 3.10, Pπ∗x (τ ≥ n)→ 0 as n→∞. Hence, letting n→∞ in (3.12) and making
use of the dominated convergence theorem we obtain that

inf
π∈Π

Jπ(x, γ) = J(x, γ) = Eπ
∗
x

(
exp

{
γ
τ−1∑
k=0

βkak

})
= Jπ∗(x, γ)

for x ∈ X. The conclusion follows by multiplying the above display by the number 1/γ. �

Definition 3.12. A function g ∈ Γ is called a band-function, if there exists numbers n ∈ N0

and c0, . . . , cn, d1, . . . , dn ∈ N0 such that dk− ck−1 ≥ 2 for k = 1, . . . , n, 0 ≤ c0 ≤ d1 ≤ c1 ≤ d2 ≤
. . . ≤ dn ≤ cn and

g(x) =


0, if x ≤ c0

x− ck, if ck < x < dk+1

0, if dk ≤ x ≤ ck
x− cn, if x > cn.

A Markov policy π = (gm)m∈N0 is called a band-policy, if gm is a band-function for every n ∈ N0.

Theorem 3.13. The optimal Markov policy π∗ is a band-policy.

Proof. Recall that g̃n(·) = f∗(·, γβn) for n ∈ N0. By Theorem 3.8 we have g̃n(x) = x − ξ(γβn)
for all x > ξ(γβn). For x ≤ ξ(γβn) we have to distinguish different cases. If g̃n(x) = 0 for all
x = 0, . . . , ξ(γβn), then clearly g̃n is a band-function. If there exists an 0 < x0 ≤ ξ(γβn) such
that g̃n(x) = 0 for x = 0, . . . , x0 − 1 and g̃n(x0) > 0, then by Lemma 3.9 g̃n(x0) = 1. If further
g̃n(x0 +m) > 0 for m = 1, . . . , ξ(γ)− x0 − 1 then by induction

g̃n(x0 +m) = g̃n(x0 +m− 1) + 1 = . . . = g̃n(x0) +m = m+ 1.
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If g̃n(x0 + 1) = 0 we either have g̃n(x) = 0 for x = x0 + 1, . . . , ξ(γβn) or there exists an x1 such
that x0 < x1 ≤ ξ(γβn) and g̃n(x0 + m) = 0 for m = 1, . . . , x1 − x0 − 1 and g̃n(x1) > 0. Now
we proceed in the same way as with x0. After a finite number of steps we reach ξ(γβn). In any
case g̃n is a band-function. �

Remark 3.14. In the risk neutral dividend payout problem, the optimal policy is a stationary
band-policy, i.e., it consists of the same band-function at all time points. The risk neutral
problem can formally be obtained as a limit limγ→0

1
γ (eγx − 1). Hence, the exponential utility

function only implies some kind of non-stationarity of the optimal policy and thus does not
really make it necessary to consider history-dependent policies.

4. The Power Utility Function

In this section we assume that the insurer is equipped with the power utility function Uγ(x) =
xγ , where γ is a fixed number from the interval (0, 1). The decision maker wishes to maximise
the following expected discounted payoff

Ĵπ(x) := Eπx Uγ

( ∞∑
k=0

βkr(xk, ak)

)
and to find a policy π∗ ∈ Π (if exists) such that

Ĵ(x) := sup
π∈Π

Ĵπ(x) = Ĵπ∗(x) (4.1)

for all x ∈ X. Clearly, Ĵ(x) = 0 for x < 0. In Lemma 4.4 we show that under our assumptions

Ĵ(x) < +∞ for each x ≥ 0. Moreover, note that for x ≥ 0

Ĵ(x) := sup
π∈Π

Eπx Uγ

(
τ−1∑
k=0

βkak

)
.

4.1. Optimality equation and the properties of its largest maximiser. Contrary to the
exponential utility function, the power utility function reveals certain non-separability, that is
implied by the fact that the expectation operator is only linear. Therefore, we again extend the

state space by defining the new state space X̂ := X × [0,∞) (cf. [6]). In this case, the second
component is responsible for the accumulated payoffs so far. If the process is in the state (x, y)
and the insurer selects an action a ∈ A(x), then the probability of moving to a next state (x′, y′)
is q(x′|x, a), if y′ = y+a

β and is 0, if y′ 6= y+a
β . Hence, we can observe that the second component

is again established in a deterministic way, but it differs from the previous case, since y′ depends
on the action chosen by the insurer.

Let us define the feasible extended histories of the process up to the kth day as follows 1

h0 = (x0, y0) and hk = (x0, y0, a0, x1, y1, . . . , ak−1, xk, yk), k ≥ 1,

where (xm, am) ∈ D for each m ∈ N0 and with ym+1 given by the recurrence equation

ym+1 :=
ym + am

β
, m ∈ N0.

Then, we can define, as usual, an extended history-dependent policy σ = (σk)k∈N0 , where σk is a
mapping from the set of feasible extended histories up to the kth day to the action set A such
that σk(hk) ∈ A(xk) with hk defined above. Let Ξ be the set of all such policies. Note that for
any σ ∈ Ξ (y ≥ 0 is fixed), there exists a policy π ∈ Π that is equivalent to σ in the following
sense:

πk(·|ωk) := σk(·|hk), ωk ∈ Ωk, k ∈ N0.

1We use the same symbol hk as in the previous section to denote an extended feasible history of the process
up to the kth day. But there is no confusion, since hk in this subsection refers only to the power utility case. The
same remark applies to the policy σ, the set Ξ and the functions J and Jπ defined below.
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Obviously, π must depend on y. Thus again, for simplicity of notation we shall still use the
original set of policies Π, and the expectation operator Eπx, where x is the first component of
the initial state. The dependence on y ≥ 0 of a policy will be indicated by writing the second
variable to the value function.

In what follows, we put for n ∈ N, π ∈ Π, x ≥ 0 and y ≥ 0

Jn,π(x, y) := Eπx

(n−1)∧(τ−1)∑
k=0

βkr(xk, ak) + y

γ

= Eπx

(n−1)∧(τ−1)∑
k=0

βkak + y

γ

and
Jn(x, y) := sup

π∈Π
Jn,π(x, y).

Moreover, for π ∈ Π, x ≥ 0 and y ≥ 0 we set

J(x, y) = sup
π∈Π

Jπ(x, y), where Jπ(x, y) = Eπx

(
τ−1∑
k=0

βkak + y

)γ
.

If x < 0, then J(x, y) = yγ for y ≥ 0. Obviously, J(x, 0) = Ĵ(x).

Before we formulate our first result, we introduce a specific subset of policies Π̂ ⊂ Π. Let F

be the set of functions f : X̂ 7→ A such that f(x, y) ∈ A(x) for all y ≥ 0 and let (fk)k∈N0 be a

sequence of functions with fk ∈ F. Then, Π̂ is the set of all policies π = (πk)k∈N0 defined in the
following way

πk(ωk) := fk(xk, yk), ωk ∈ Ωk, k ∈ N0,

where yk :=
yk−1+ak−1

β , k ∈ N, and y0 := y ≥ 0 is a fixed number. Furthermore, we shall identify

a policy π ∈ Π̂ with the sequence (fk)k∈N0 by writing π = (fk)k∈N0 .

Next for any function h : X̂ 7→ R we define an operator T as follows

Th(x, y) := βγ max
a∈A(x)

[∑
x′∈X

h

(
x′,

a+ y

β

)
q(x′|x, a)

]
. (4.2)

Let f ∈ F be the maximiser of the right-hand side in (4.2), i.e., f(x) attains the maximum on
the right-hand side of (4.2) for all x ∈ X. We also set

Tfh(x, y) := βγ
∑
x′∈X

h

(
x′,

f(x, y) + y

β

)
q(x′|x, f(x, y)).

Note that Tfh = Th.

Theorem 4.1. For each n ∈ N0 the value function Jn satisfies the equation

Jn+1 = TJn (4.3)

with Jn(x, y) = yγ for x < 0 and J0(x, y) = yγ. Let f̄l ∈ F be such that Jl+1 = Tf̄lJl for

l = 0, . . . , n. Then, π̄ = (f̄n, . . . , f̄0) is optimal for Jn+1, i.e., Jn+1 = Jn+1,π̄.

Proof. Let n = 1. Then, by the definition of J1 we have that

J1(x, y) = sup
π∈Π

Eπx(β0a0 + y)γ = max
a∈A(x)

(a+ y)γ = (x+ y)γ .

On the other hand,

TJ0(x, y) = βγ max
a∈A(x)

(
a+ y

β

)γ
= (x+ y)γ = Tf̄0J0(x, y)

with f̄0(x, y) = x.
Assume now that Jl = TJl−1 = Tf̄l−1

Jl−1 with f̄l−1 ∈ F for all l = 1, . . . , n and let

(f̄n−1, . . . , f̄0) be an optimal policy for Jn. We show that Jn+1 = TJn = Tf̄nJn and (f̄n, . . . , f̄0)
is optimal for Jn.
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We have that

Jn+1(x, y) = sup
π∈Π

Eπx

n∧(τ−1)∑
k=1

βkak + a0 + y

γ

with the convention that the empty sum equals 0 (when τ = 1). Recall that ~π denotes a
“1-shifted” policy, see (3.7). We further get the following

Jn+1(x, y) = βγ sup
π∈Π

Eπx

n∧(τ−1)∑
k=1

βk−1ak +
a0 + y

β

γ

(4.4)

= βγ sup
π∈Π

Eπx

Eπx
n∧(τ−1)∑

k=1

βk−1ak +
a0 + y

β

γ ∣∣∣a0, x1


≤ βγ sup

a0∈A(x)

 ∞∑
m=−∞

sup
~π∈Π

E~πx−a0+m

n∧(τ−1)∑
k=1

βk−1ak +
a0 + y

β

γ

qm


= βγ max

a∈A(x)

[ ∞∑
m=−∞

Jn

(
x− a+m,

a+ y

β

)
qm

]
= TJn(x, y).

Let f̄n be such that TJn(x, y) = Tf̄nJn(x, y). Put π̄ = (f̄n, f̄n−1, . . . , f̄0). By induction assumption
~̄π = (f̄n−1, . . . , f̄0) is optimal for Jn. Hence, it follows that

TJn(x, y) = βγ max
a∈A(x)

[ ∞∑
m=−∞

Jn~̄π

(
x− a+m,

a+ y

β

)
qm

]
(4.5)

= max
a∈A(x)

βγ
∞∑

m=−∞
E~̄πx−a+m

(n−1)∧(τ−1)∑
k=0

βkak+1 +
y + a

β

γ

qm

= max
a∈A(x)

∞∑
m=−∞

E~̄πx−a+m

(n−1)∧(τ−1)∑
k=0

βk+1ak+1 + y + a

γ

qm

≤ sup
π∈Π

Eπx

n∧(τ−1)∑
k=0

βkak + y

γ

= Jn+1(x, y).

Thus, (4.4) and (4.5) yield that Jn+1 = TJn. The fact that π̄ defined above is optimal for Jn+1

follows from repeating the calculations in (4.5) applied to Tf̄nJn. �

The next result can be concluded from Theorem 4.1.

Theorem 4.2. The function J satisfies the following equation

J(x, y) = βγ max
a∈A(x)

[∑
x′∈X

J

(
x′,

a+ y

β

)
q(x′|x, a)

]
(4.6)

= βγ max
a∈A(x)

[ ∞∑
k=−∞

J

(
x− a+ k,

a+ y

β

)
qk

]
for x ∈ N0 and y ≥ 0.

Proof. It is obvious that the sequence of functions (Jn(x, y))n∈N0 is increasing for each (x, y) ∈ X̂.
Hence, w(x, y) := limn→∞ Jn(x, y) exists for every (x, y) ∈ X̂. Since Jn ≤ J, then it follows that
w ≤ J. On the other hand, for any policy π ∈ Π we obtain that Jn,π ≤ Jn. Letting n → ∞,
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making use of the monotone convergence theorem and taking the supremum over π ∈ Π, it is
easily seen that

J(x, y) = sup
π∈Π

Eπx

(
τ−1∑
k=0

βkak + y

)γ
≤ w(x, y).

Consequently, w = J. Equation (4.6) follows from (4.3) by letting n → ∞ and replacing the
maximum with the limit. �

Remark 4.3. The counterpart of Theorem 4.2 is Theorem 4.1(a) in [6]. However, again as in the
exponential case this theorem was proved for general state space, weakly continuous transitions
and bounded costs.

The next lemma provides the following bounds for the function J.

Lemma 4.4. For any x ∈ N0 and y ≥ 0 it follows that

(x+ y)γ ≤ J(x, y) ≤
(
x+ β

EZ+

1− β
+ y

)γ
.

Proof. Let π be a policy such that π0(·|ω0) = x and πk(·|ωk) = 0 for k ≥ 1. Then, J(x, y) ≥
Jπ(x, y) = (x + y)γ . The upper bound for the function J is due to the Jensen inequality and
Theorem 9.2.3(a) in [5] that gives the upper bound for the risk neutral setting. �

For simplicity for any x ∈ N0 and y ≥ 0 we define

G(x, y) :=

∞∑
k=−∞

J(x+ k, y)qk.

From (4.6) we obtain that

J(x, y) = βγ max
a∈A(x)

G

(
x− a, a+ y

β

)
, x ∈ N0, y ≥ 0. (4.7)

Lemma 4.5. For all 0 ≤ v ≤ x we have that J(x, y) ≥ J (x− v, y + v).

Proof. Suppose that 0 < v ≤ x. For part (b) observe that

J(x, y) = max

{{
βγG

(
x,
y

β

)
, . . . , βγG

(
x− v + 1,

y + v − 1

β

)}
,

max

{
βγG

(
x− v, y + v

β

)
, . . . , βγG

(
0,
y + x

β

)}}
= max

{{
βγG

(
x,
y

β

)
, . . . , βγG

(
x− v + 1,

y + v − 1

β

)}
,

βγ max
a∈A(x−v)

G

(
x− v − a, y + v + a

β

)}
≥ J (x− v, y + v) ,

where the last inequality is due to (4.7). �

In what follows let f∗ ∈ F be the largest maximiser of the right-hand side in (4.7). For
completeness, set f∗(x, y) = 0 for x < 0.

Lemma 4.6. For x ∈ N0 and y ≥ 0 it follows that f∗
(
x− f∗(x, y), y + f∗(x, y)

)
= 0.

Proof. By (4.7) we obtain J(x, y) ≥ βγG
(
x, yβ

)
, which implies that

J(x, y) = βγG

(
x− f∗(x, y),

y + f∗(x, y)

β

)
≤ J (x− f∗(x, y), y + f∗(x, y)) ≤ J(x, y),

where the second inequality follows from Lemma 4.5. Hence,

βγG

(
x− f∗(x, y),

y + f∗(x, y)

β

)
= J (x− f∗(x, y), y + f∗(x, y)) ,



RISK-SENSITIVE DIVIDEND PROBLEMS 15

which implies that a = 0 maximises the expression βγG(x− f∗(x, y)− a, y+f∗(x,y)+a
β ). We claim

that a = 0 is the only maximiser of this expression. Obviously, if f∗(x, y) = x, then the result
follows. If, on the other hand, f∗(x, y) < x, then

J(x, y) = βγG(x− f∗(x, y),
y + f∗(x, y)

β
) > βγG(x− f∗(x, y)− a, y + f∗(x, y) + a

β
)

for a = 1, . . . , x − f∗(x, y). This fact, in turn, implies that a = 0 is the only maximiser, which
concludes the proof. �

Lemma 4.7. Let ξ(y) := sup{x ∈ N0 : f∗(x, y) = 0}. Then ξ∗ := supy≥0 ξ(y) <∞.

Proof. Fix y ≥ 0. Let x ∈ N0 be such that f∗(x, y) = 0. Clearly, such x ∈ N0 exists. From (3.9)
we have that

J(x, y) = βγ

( ∞∑
k=−x

J
(
x+ k,

y

β

)
qk +

( y
β

)γ −x−1∑
k=−∞

qk

)

≤ βγ

( ∞∑
k=−x

(
x+ k +

β

1− β
EZ+ +

y

β

)γ
qk +

( y
β

)γ −x−1∑
k=−∞

qk

)
(by Lemma 4.4)

=
∞∑

k=−x

(
βx+ βk +

β2

1− β
EZ+ + y

)γ
qk + yγ

−x−1∑
k=−∞

qk

≤

( ∞∑
k=−x

(
βx+ βk +

β2

1− β
EZ+ + y

)
qk + y

−x−1∑
k=−∞

qk

)γ
(by the Jensen inequality)

≤
(
βx+ β EZ+ +

β2

1− β
EZ+ + y

)γ
=

(
βx+

β

1− β
EZ+ + y

)γ
.

On the other hand, making use again of Lemma 4.4 we have that J(x, y) ≥ (x + y)γ and,
consequently,

(x+ y)γ ≤
(
βx+

β

1− β
EZ+ + y

)γ
if and only if x ≤ β

(1−β)2
EZ+, which is independent of y and implies the result. �

The next result is a counterpart of Lemma 3.9 and provides further properties of the function
f∗ ∈ F.

Lemma 4.8. Let x0 ∈ N0 and y0 ≥ 1. If f∗(x0, y0) = a0 and f∗(x0 + 1, y0 − 1) > 0, then
f∗(x0 + 1, y0 − 1) = a0 + 1.

Proof. By definition of f∗ and (4.6) we have that

J(x0, y0) = βγG

(
x0 − a0,

y0 + a0

β

) ≥ β
γG
(
x0 − a, y0+a

β

)
, for a = 0, . . . , a0

> βγG
(
x0 − a, y0+a

β

)
, for a = a0 + 1, . . . , x0.

The above display implies that

βγG

(
x0 − a0,

y0 + a0

β

) ≥ β
γG
(
x0 − (a− 1), y0+a−1

β

)
, for a = 1, . . . , a0 + 1

> βγG
(
x0 − (a− 1), y0+a−1

β

)
, for a = a0 + 2, . . . , x0 + 1.

(4.8)

On the other hand, we also obtain that

J(x0 + 1, y0 − 1) = max
a∈A(x0+1)

βγG

(
x0 + 1− a, y0 − 1 + a

β

)
= max

{
βγG

(
x0 + 1,

y0 − 1

β

)
, max
a∈A(x0)

βγG

(
x0 − a,

y0 + a

β

)}
.
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Since f∗(x0 + 1, y0 − 1) > 0, we infer that

βγG

(
x0 + 1,

y0 − 1

β

)
≤ max

a∈A(x0)
βγG

(
x0 − a,

y0 + a

β

)
.

This fact and (4.8) yield that

βγG

(
x0 + 1− (a0 + 1),

y0 − 1 + (a0 + 1)

β

)
≥ βγG

(
x0 + 1− a, y0 − 1 + a

β

)
,

for a = 0, . . . , a0 + 1 and

βγG

(
x0 + 1− (a0 + 1),

y0 − 1 + (a0 + 1)

β

)
> βγG

(
x0 + 1− a, y0 − 1 + a

β

)
,

for a = a0 + 2, . . . , x0 + 1. Thus, it follows that f∗(x0 + 1, y0 − 1) = a0 + 1. �

4.2. Optimal policy. Let y0 ≥ 0 be fixed and let x0 ∈ X be the initial state. Consider the
following policy π∗ := (π∗k)k∈N0 generated by f∗ in the following way

π∗k(ωk) := f∗(xk, yk), ωk ∈ Ωk k ∈ N0, (4.9)

where

yk :=
yk−1 + f∗(xk−1, yk−1)

β
=
y0 +

∑k−1
m=0 β

mf∗(xm, ym)

βk
, k ∈ N. (4.10)

Obviously, π ∈ Π̂.

Corollary 4.9. Under policy π∗ ruin occurs with probability 1.

Proof. We proceed along similar lines as in the proof of Corollary 3.10. Let (x0, y0) ∈ X̂ with
x0 ≥ 0. Then, either x0 ≤ ξ∗ or x0 > ξ∗. Observe that in both cases the risk reserve just after the
dividend payment is less or equal to ξ∗. The first case is obvious. In the second case, we deduce
from Lemma 4.6 that f∗(x0 − f∗(x0, y0), y0 + f∗(x0, y0)) = 0, which means by Lemma 4.7 that
x0 − f∗(x0, y0) ≤ ξ(y0 + f∗(x0, y0)) ≤ ξ∗. Hence, the ruin occurs, if there appears a sequence of

length ξ∗ + 1 of negative incomes. The probability of such event equals
(∑−1

m=−∞ qm

)ξ∗+1
, see

also (3.11). If the ruin has not occurred up to the lth day with l = ξ∗ + 1, then either xl ≤ ξ∗

or xl > ξ∗. Now the remaining part follows from the proof of Corollary 3.10. �

Theorem 4.10. For every (x, y) ∈ X̂ it holds that J(x, y) = Jπ∗(x, y).

Proof. From Theorem 4.2 and the definition of π∗ given in (4.9) we have that

J(x, y) = βγ
∑
x1∈X

J(x1, y1)q(x1|x, f∗(x, y))

for x ∈ N0 and y ≥ 0 with y1 defined in (4.10) and y0 := y. Hence,

J(x, y) = βγ
∑
x1≥0

J(x1, y1)q(x1|x, f∗(x, y)) + βγ
∑
x1<0

(y1)γq(x1|x, f∗(x, y)) (4.11)

= βγ
∑
x1≥0

J(x1, y1)q(x1|x, f∗(x, y)) +
∑
x1<0

(y + f∗(x, y))γq(x1|x, f∗(x, y)).

Iterating (4.11) (n−1) times and making use of the policy π∗ we arrive at the following equation

J(x, y) = (βγ)n Eπ
∗
x (J(xn, yn)1[τ > n]) + (4.12)

Eπ
∗
x

y +

(n−1)∧(τ−1)∑
k=0

βkf∗(xk, yk)

γ

1[τ ≤ n]

 .
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From Lemma 4.4 and the concavity of x 7→ xγ , we obtain the following bound for the first term
in (4.12)

(βγ)n Eπ
∗
x (J(xn, yn)1[τ > n]) ≤ (βγ)n Eπ

∗
x

((
xn + yn +

β

1− β
EZ+

)γ
1[τ > n]

)
≤ (βγ)n Eπ

∗
x (xγn1[τ > n]) + (βγ)n

(
β

1− β
EZ+

)γ
+ (βγ)n Eπ

∗
x ((yn)γ1[τ > n]) (4.13)

By (4.10) the third term in (4.13) can be written as follows

(βγ)n Eπ
∗
x ((yn)γ1[τ > n]) = Eπ

∗
x

[(
y +

n−1∑
k=0

βkf∗(xk, yk)

)γ
1[τ > n]

]
. (4.14)

Next by (2.1) we get for the first term in (4.13) the following

0 ≤ (βγ)n Eπ
∗
x (xγn1[τ > n]) ≤

(
βn Eπ

∗
x (xn1[τ > n])

)γ
(4.15)

≤

(
βn Eπ

∗
x

[(
x−

n−1∑
k=0

f∗(xk, yk) +

n∑
k=1

Z+
k

)
1[τ > n]

])γ
≤

(
βnx+ βnnEZ+

)γ
.

By our assumption (A1) and (4.15) the first term in (4.13) converges to 0 as n → ∞. Observe
that the same remark also applies for the second term in (4.13). Summing up, from (4.12),
(4.13) and (4.14) we obtain that

J(x, y) ≤ lim
n→∞

Eπ
∗
x

y +

(n−1)∧(τ−1)∑
k=0

βkf∗(xk, yk)

γ

.

Now the monotone convergence theorem yields that J(x, y) ≤ Jπ∗(x, y). �

We close this section with a conclusion for our original model.

Corollary 4.11. Let y0 := 0. Then, π∗ is optimal for the original optimisation problem, i.e.,

Ĵ(x) = Ĵπ∗(x).

Remark 4.12. Note that in the case of a power utility, the optimal policy is history-dependent,
but depends on the history only through the accumulated discounted dividends given by (yk) in
(4.10).

Remark 4.13. It is well-known that the logarithmic utility function U(x) = log(x) can be
obtained as a limit from the power utility since

lim
γ→0

1

γ

(
xγ − 1

)
= log(x).

Indeed, the problem can then be treated for the logarithmic utility in a similar way. The
optimality equation is given by

J(x, y) = log(β) + max
a∈A(x)

[ ∞∑
k=−∞

J

(
x− a+ k,

a+ y

β

)
qk

]
and we can follow the same line of analysis. It is worth mentioning that the power and loga-
rithmic utility functions are examples of the so-called HARA (hyperbolic absolute risk aversion)
utilities, whereas the exponential utility function belongs to the CARA (constant absolute risk
aversion) class of utilities. The reader is referred, for instance, to [5, 6, 9, 12] and references
cited therein, for further properties of the aforementioned functions.
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5. Howard’s Policy Improvement

In this section we provide one numerical tool to solve these problems which is known under
the name Howard policy improvement. We restrict the presentation here to the exponential
utility function: Start with an arbitrary policy of the form π = (f(·, γ), f(·, γβ), . . .) induced by
a decision rule f where we assume that f is such that f(x, θ) ≥ x− s∗ for all x > s∗ and all θ.
Note that we define s∗ := supθ∈[γ,0) s(θ) (see Theorem 3.8). Take e.g. f(x, θ) = x+. We write

Jf := Jπ. Next we compute the largest minimizer h(x, θ) of the expression

a 7→ eθaGf (x− a, θβ), a ∈ {0, 1, . . . , x}
where

Gf (x, θ) :=
∞∑

k=−x
Jf (x+ k, θ)qk +

−x−1∑
k=−∞

qk.

We claim now that

Lemma 5.1. The new decision rule h and the corresponding value function Jh have the following
properties:

a) h
(
x− h(x, θ), θ

)
= 0 for all x and θ.

b) h(x, θ) ≥ x− s∗ for all x > s∗ and all θ.
c) eθxh(θ) ≤ Jh ≤ Jf ≤ eθxh(θ).

Proof. a) If h(x, θ) = 0 or h(x, θ) = x the statement is true. Now let 0 < h(x, θ) < x and
suppose that h

(
x− h(x, θ), θ

)
> 0, i.e. there is an a∗ > 0 s.t.

eθa
∗
Gf
(
x− h(x, θ)− a∗, θβ

)
≤ Gf

(
x− h(x, θ), θβ

)
.

On the other hand by the definition of h we have for all a > h(x, θ):

eθh(x,θ)Gf
(
x− h(x, θ), θβ

)
< eθaGf

(
x− a, θβ

)
.

Combining these inequalities leads to (note that x− h(x, θ)− a∗ ≥ 0)

eθh(x,θ)Gf
(
x− h(x, θ), θβ

)
< eθ(h(x,θ)+a∗)Gf

(
x− h(x, θ)− a∗, θβ

)
≤ eθh(x,θ)Gf

(
x− h(x, θ), θβ

)
which is a contradiction. Thus, the statement is shown.

b) We show first for x > s∗ and arbitrary θ that h(x, θ) > 0. In order to do this, consider
the expression eθaGf (x − a, θβ) for a = 0 and a = f(x, θ). By definition we obtain for
a = f(x, θ) that

eθf(x,θ)Gf
(
x− f(x, θ), θβ

)
= Jf (x, θ) ≤ eθxh̄(θ).

For a = 0 we obtain that

Gf (x, θβ) =

∞∑
k=−x

Jf (x+ k, θβ)qk +

−x−1∑
k=−∞

qk

≥ eθβxh(θβ)
( ∞∑
k=−x

eθβkqk +

−x−1∑
k=−∞

qk

)
= eθβxh(θβ)E eθβZ

+
= eθβxh(θ).

Furthermore, observe that

eθβxh(θ) ≥ eθxh̄(θ) ⇔ x > s(θ).

Thus, the inequality holds, in particular, if x ≥ s∗ = supθ∈[γ,0) s(θ). This implies that 0

cannot be a minimiser, so h(x, θ) > 0 for all x > s∗ and all θ. This fact and point (a)
imply the conclusion.



RISK-SENSITIVE DIVIDEND PROBLEMS 19

c) From the definition of h we obtain:

Jf (x, θ) = eθf(x,θ)Gf
(
x− f(x, θ), θβ

)
≥ eθh(x,θ)Gf

(
x− h(x, θ), θβ

)
.

Iterating this inequality yields

Jf (x, θ) ≥ Ehx
[

exp
(
γ

(τ−1)∧(n−1)∑
k=0

βkak

)
(Jf (xn, γβ

n)1[τ ≥ n] + 1[τ < n])
]
.

The property of h shown in b) now implies that ruin occurs with probability 1 under h
and thus as in the proof of Theorem 3.11 we obtain with n→∞ that Jf ≥ Jh.

�

From the proof it follows that in case f 6= h, the inequality Jh(x, θ) ≤ Jf (x, θ) is strict for
at least one (x, θ). Now suppose no improvement is possible, i.e. h = f . Hence Jf is another
solution of (3.2). By Remark 3.2 Jf ≤ J . On the other hand by the definition of J we have
Jf ≥ J which implies J = Jf .

Finally if the iteration does not stop we obtain a non-increasing sequence Jf0 ≥ Jf1 ≥ . . . ≥ J .
Denote J := limn→∞ Jfn . Obviously J ≥ J . Next from the definition of an improvement:

Jfk+1
(x, θ) ≤ min

a∈A(x)

[
eθaGfk(x− a, θβ)

]
≤ Jfk(x, θ).

Letting k → ∞ we obtain (note that lim and min can be interchanged since A(x) is always
finite):

J(x, θ) ≤ min
a∈A(x)

[
eθa

( ∞∑
k=a−x

J(x− a+ k, θβ)qk +
a−x−1∑
k=−∞

qk

)]
≤ J(x, θ)

hence J is another solution of (3.2) which implies that J = J .

6. Concluding remarks

In this paper, we study the discrete time problem, suggested by Gerber and Shiu [13], of
maximising the expected utility of discounted dividends until ruin. We restrict our attention to
the integer-valued surplus process and to integer payments. To the best of our knowledge, the
only paper that examines a similar issue (with the exponential utility) is [14], where the wealth
of insurance company is driven by a Brownian motion with drift. However, the authors have not
been able to solve the problem rigorously. Namely, assuming that a certain integral equation
for the barrier function b(t) has a desirable solution (see Standing Assumption in [14]), they
prove that b(t) is indeed the barrier they search for (a barrier function is a band function with
n = 0 in Definition 3.1). Moreover, the numerical experiments provided in Section 1.4 in [14]
are given without their convergence proofs. This fact and the lack of a complete solution in
continuous time and any solution in discrete time to Gerber and Shiu’s suggestion since 2004
indicate that the problem is not straightforward from the mathematical point of view. Firstly,
similar as in [6, 14] we note that the optimal strategy is time dependent in a certain way. In order
to get rid of non-stationarity we extend the state space to the two-dimensional space. Within
such a new framework our problem becomes stationary. Secondly, since our dividend payments
can be unbounded we cannot directly apply the results from [6, 11] to deduce that the value
function satisfies the corresponding Bellman equation for the exponential and power utility
functions. Nonetheless, we are able to show that in both cases the value iteration algorithm
works (see Theorem 3.1 and Theorem 4.1) and in the exponential function case the Howard’s
policy improvement algorithm works (see Section 5). These facts, in turn, may have a significant
meaning, when one thinks of numerical examples. Moreover, we are also able to describe the
structure of optimal strategies for both utility cases and to prove for the exponential function
case that the optimal policy is a band-policy.

Numerical experiments are difficult. Let us first recall that the maximisation of the expecta-
tion of discounted dividends in the model given by (2.1) with P(Z1 = 1) = p = 1−P(Z1 = −N),
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where p ∈ (0, 1) and N ∈ N, was a challenging analytical problem. The reader may find the
complete solution, for instance, in [18], where it was shown that the optimal policy is of barrier
type. Our problem, as already mentioned, is non-stationary and non-separable. Therefore, the
methods that solved analytically the risk neutral problem are useless here. Moreover, as was
noted by Gerber and Shiu [13], in contrast to the risk neutral problem one can expect that in
the model with exponential function the optimal policy is not of barrier type. This fact does
not make easier potential calculations. Obviously, since obtaining an analytical solution is a
challenge, one can think of numerical methods used in dynamic programming such as value
iteration, policy improvement or others, see [20]. However, our surplus process proceeds on the
space X = Z and even the simple aforementioned case (P(Z1 = 1) = p = 1 − P(Z1 = −1))
requires some truncation of the state space to a finite one in order to obtain numerical results.
In addition, in this model we meet one more obstacle that have not been treated so far, namely
the exponential and power utility functions that imply non-stationarity and non-separability.
Therefore, the problem of calculating numerically optimal strategies and value functions for
models with these or other utility functions is left open.
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