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Abstract: In this paper we consider a scheduling problem where jobs consume a perishable

resource stored in vials. It leads to a new scheduling problem, with two-dimensional jobs, one

dimension for the duration and one dimension for the consumption. Jobs have to be finished before

a given due date, and the objective is to schedule the jobs on a single machine so that the maximum

lateness does not exceed a given treshhold and the number of vials required for processing all the jobs

is minimized. We propose a two-step approach embedding a Recovering Beam Search algorithm to

get a good-quality initial solution reachable in short time and a more time consuming matheuristic

algorithm. Computational experiments are performed on the benchmark instances available for

the two-constraint bin packing problem integrated with additional due dates to take into account

the maximum lateness constraints. The computational results show very good performances of the

proposed approach that remains effective also on the original two-constraint bin packing instances

without due dates where 7 new bounds are obtained.

Keywords: scheduling, two-constraint bin packing, recovering beam search, matheuristic.
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1 Introduction

Scheduling problems are well studied in the literature since the 50’s and several books and recent

review papers show the wide variety of problems considered today [Brucker, 2007, Pinedo, 2012,

Ruiz and Vázquez-Rodrguez, 2010, Hartman and Briskorn, 2010]. In the same way, bin packing

problems have received a great attention in the literature and some survey papers are dedicated to

these problems [Lodi et al., 2002, De Carvalho, 2002]. In this paper, we introduce a new category

of scheduling problems where bin packing constraints have to be considered together with the

scheduling problem.

The origin of the problem comes from the production of chemotherapy drugs for cancer treat-

ment by intravenous injection. In [Mazier et al., 2010], the authors describe this particular pro-

duction environment and present a resolution method for a static or dynamic environment. In

this production environment, the jobs to perform are called ’preparations’ and the raw materials

are called monoclonal antibodies (’products’ in the following). The monocolonal antibodies bind to

specific cancer cells and induce an immunological response against the target cell. These products

can be stored in vials for a long time before use, under specific storage temperatures and conditions.

For some antibodies, freezing at −20◦C or −80◦C in small aliquots is the optimal storage condition.

However, once a vial is opened or once the active agent has been mixed with a solute, it must be

used before a given time limit, in order to keep intact the properties of the anticancer active agents.

The maximum delay of use after opening depends on the agent and may vary between several hours

to several days. In the mean time, the product has to be stored in a freezer or in a fridge for tem-

perature and darkness reasons. If the time limit of use is exceeded, the monoclonal antibodies have

lost their properties and they have to be destroyed according to a specific process. In other words,

the time period between the starting time of the first preparation using a product in a vial and

the completion time of the last preparation assigned to the same vial cannot be greater than the

life time of the product. Furthermore, it is clear that the total consumption associated to one vial

cannot be greater than the total volume of the vial. We have here the two constraints of the bin

packing problem.

The cost of these products is very important. In Tours, the UBCO production center (described

in [Mazier et al., 2010]) produces around 150 preparations per day. A preparation has an average

cost of 400 euros, but it can reach 15,000 euros in certain cases. It is clear that the saving of these

products may have an economic impact, absolutely not negligible. In the problem that we consider,
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one objective function is related to the waste of products, that we want to minimize. Notice that

in such a context, the deadline for the use of the raw material becomes a variable of the problem,

which is directly related to the production scheduling decisions: each time the life duration or the

capacity of the vial is exceeded, a new vial is opened. Another version of this problem has been

studied in [Billaut et al., 2011, Billaut, 2011].

Furthermore, because each preparation has to be delivered to a patient for a given due date,

another objective of the problem is to minimize the maximum lateness related to these due dates.

The same type of problem arises in concrete production because once prepared, the concrete

has to be used within a given amount of time. Similarly, in food production, after the food is out of

the freezer, it has to be used within a given time limit. Another possible application of this study

arises for the resources management in the cloud environment [Padhy and Patra, 2013]. For cloud

providers, the problem is to allocate resources dynamically in the form of virtual machines to end

users. Each task needs a virtual machine, i.e. a given quantity of RAM and of CPU. The tasks

assigned to a resource cannot require more RAM and more CPU than the available quantity. Our

problem, while different, presents also some similarities with parallel batch scheduling problems.

But to the best of our knowledge, the problem that we consider in this paper has never been

considered in the literature before.

The paper is organized as follows. In Section 2, the notations are introduced and the prob-

lem is formally defined. A MILP model is given. In Section 3, a recovering beam search and

a matheuristic algorithm are proposed. These methods are tested on two-constraint bin packing

benchmark instances with due dates considerations and without due dates for a comparison with

methods dedicated to the classical two-constraint bin packing problem. The results presented in

Section 4 show that the proposed methods have very good performances, even without due date

considerations. In this latter case where 7 new bounds are obtained with respect to the available

literature. Section 5 presents the conclusions and some future research directions.

2 Problem statement and notations

We consider a simplified version of the problem of chemotherapy drugs production, assuming that

there is only one machine and only one type of product (raw material). We have a set of n jobs

to schedule on a single machine. To each job Jj ∈ {1, ..., n} is associated a processing time pj , a
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consumption bj and a due date dj . Without loss of generality, the jobs are supposed to be numbered

in EDD order, i.e. d1 ≤ d2 ≤ ... ≤ dn. The life duration of the product after opening is equal to T

and the volume of one vial is equal to V . We assume without loss of generality that pj < T and

bj < V , ∀j, 1 ≤ j ≤ n. The number of vials is not limited but supposed to be bounded by n. We

denote by Cj the completion time of Jj , Lj the lateness defined by Lj = Cj −dj and the maximum

lateness is defined by Lmax = max1≤j≤n Lj . We assume that the maximum lateness is bounded by

a given value Q.

Lmax ≤ Q (1)

We also assume that the remaining quantity of product in the last opened vial is lost at the end

of the time horizon. Therefore, minimizing the quantity of lost product is equivalent to minimizing

the number of vials that are opened. That is the reason why the problem is a mixed between

a scheduling problem and a two-constraint bin packing problem. Without due dates (or with

extremely large due dates), the problem is exactly a two-constraint bin packing problem and thus

clearly strongly NP-hard. With a big value of T and a big value of V , the problem is the classical

single machine problem with the Lmax minimization. In the following, we call a bin, the set of jobs

performed with the same vial. It is well known from the literature that a trivial lower bound on

the number of bins is the following

LB = max


n∑
j=1

pj/T

 ,


n∑
j=1

bj/V


 . (2)

We illustrate the problem by a numerical example.

Example

We consider a set of six jobs, T = 10 and V = 10.

j 1 2 3 4 5 6

pj 3 4 4 5 3 1

bj 1 2 5 3 1 4

dj 7 9 11 13 14 16

Schedule (J1, J3, J5, J2, J4, J6) is represented in Fig. 1. In this two dimensional Gantt chart,

a job Jj is represented by a rectangle with the duration pj on the x-axis and the consumption

bj on the y-axis. Jobs of the same bin are connected by the south-west corner of the rectangle.
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The first job of a bin is put on the x-axis. In Fig. 1, one can see that job J1 is the first job

of the bin composed by jobs {J1, J3, J5} and job J2 is the first job of the bin composed by jobs

{J2, J4, J6}. Job J2 cannot be included in the first bin because the duration of this bin would

exceed T . The maximum lateness of this sequence is equal to Lmax = max(−4, 5,−4, 6,−4, 4) = 6

and this schedule requires two bins. Notice that schedule (J1, J2, J3, J4, J5, J6) is optimal for the

Lmax, but requires three bins (see Fig. 2).
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Figure 1: Two-dimensional Gantt chart representation of schedule (J1, J3, J5, J2, J4, J6)
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Figure 2: Two-dimensional Gantt chart representation of schedule (J1, J2, J3, J4, J5, J6)

Dominance condition

Proposition 1 In a bin, the jobs are scheduled in EDD order.
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This condition is clear because the order in a bin does not modify the number of bins that are

used, and tends to improve the Lmax value.

MILP formulation

We now propose an MILP formulation of the problem.

We denote by uk ∈ {0, 1} a boolean variable equal to 1 if bin k is used, and 0 otherwise and

by xj,k ∈ {0, 1} a boolean variable equal to 1 if job Jj is assigned to bin k, and 0 otherwise. The

problem can be formalized by a binary linear program as follows.

minimize
n∑
k=1

uk (3)

subject to

n∑
k=1

xj,k = 1, ∀j ∈ {1, ..., n} (4)

n∑
j=1

pjxj,k ≤ Tuk, ∀k ∈ {1, ..., n} (5)

n∑
j=1

bjxj,k ≤ V uk, ∀k ∈ {1, ..., n} (6)

k−1∑
h=1

n∑
i=1

pixi,h +

j∑
i=1

pixi,k ≤ dj +Q+M(1− xj,k), ∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n} (7)

uk+1 ≤ uk, ∀k ∈ {1, ..., n} (8)

Constraints (4) ensure that each job is performed by using one vial (is assigned to one bin).

Constraints (5) and (6) correspond to the temporal and capacity limits. Constraints (7) suppose

that job Jj is in bin k and correspond to the bound on the Lmax:
∑k−1

h=1

∑n
i=1 pixi,h is the completion

time of the k − 1th bin,
∑j

i=1 pixi,k is the completion time of job Jj in its bin (remember that the

jobs are numbered in EDD order). Constraints (8) ensure that the bins are used in their index

increasing order. This model contains n(n+ 1) binary variables and n2 + 4n constraints.

3 Resolution methods

Two original resolution methods are proposed for solving the problem. The first one is a recovering

beam search algorithm and the second one is a matheuristic algorithm.
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3.1 Recovering beam search algorithm

The Beam Search algorithm is a truncated branch-and-bound method where a subset of w nodes

at each level are selected for branching. w is called the beam width. This method was first proposed

in [Ow and Morton, 1988]. For the selection of nodes, each node is evaluated by a combination of a

lower bound (LB) and an upper bound (UB), generally a weighted sum WS = (1−α)LB+αUB.

Because the selected nodes are not necessarily the bests at a given level of the tree, among the

set of possible nodes of a pure branch-and-bound algorithm, a recovering phase is applied in the

Recovering Beam Search algorithm (RBS). The aim of this phase is to recover from wrong decisions

jumping to a better node at the same level of the search tree. For a detailed description of RBS

we refer to [Della Croce et al., 2004]. Fig. 3 illustrates the exploration of the tree in RBS with a

beam width of 2.
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Figure 3: RBS exploration

The RBS method has already been successfully used in the literature for solving scheduling problems

[Della Croce et al., 2004], [Dong et al., 2009], [Rakrouki et al., 2012], [Valente, 2010], [Esteve et al., 2006],

[Ghirardi and Potts, 2005]. In order to apply the RBS approach, it is necessary to specify its main

components, namely: branching scheme, lower bound, upper bound and recovering step. In this

problem, a node of the search tree is defined by a partial sequence S(σ) of the set σ of scheduled

jobs, a set σ of unscheduled jobs, a lower bound LB(σ), and an upper bound UB(σ). At the root

node, the initial sequence of unscheduled jobs is determined as follows. Starting from the EDD

sequence, a steepest descent algorithm is used to reduce the number of bins, without violating the

constraint on the Lmax. The branching scheme is the typical n-ary branching: the sequence is

constructed by adding one job at a time starting from position 1 and the search tree is such that a

node at level k indicates which is the job placed in position k. For the lower bound computation, we

denote by Bin(S) a function that computes in O(n) the number of bins used by a partial sequence

S and the sum of jobs processing times and of jobs consumptions in the last bin (respectively called
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RestP (S) and RestB(S)). The following algorithm 1 provides the lower bound value computed at

a generic node of the search tree.

Algorithm 1 LB(σ)

NbBins = Bin(S(σ))− 1

SumP = RestP (S(σ)) +
∑

j∈σ pj

SumB = RestB(S(σ)) +
∑

j∈σ bj

NbBins = NbBins+ max(dSumP/T e, dSumB/V e)

Return(NbBins)

Basically the lower bound is the trivial lower bound expressed by equation (2) updated in order

to take into account the set of bins already filled by the partial sequence.

For the upper bound computation, let the following algorithm 2 provides the upper bound

value computed at a generic node of the search tree where a partial sequence S(σ) has already

been defined. Let Sfather(σ) denote the sequence of the jobs in σ obtained by keeping for these

jobs the same order they had in the upper bound of the father node in the search tree. Also, let

S(σ)//Sfather(σ) denote the concatenation of subsequences S(σ) and Sfather(σ).

Algorithm 2 UB(σ)

S′(σ) = S(σ)//Sfather(σ)

If S′(σ) is unfeasible (constraint on Lmax violated), then NbBins =∞

Else NbBins = Bin(S′(σ))

Return(NbBins)

The rationale here is to keep for the jobs in σ the same order they had in the previous branch

of the search tree. If the sequence provided by the upper bound computation is unfeasible, then,

UB(σ) = ∞ and correspondingly the related search tree node is discarded. The evaluation of a

node is given by V (σ) = (1− α)LB(σ) + αUB(σ). Preliminary testing indicated that best results

were obtained with α = 0.2. Typically, there is a huge number of solutions with the same value of

upper and lower bounds. In order to make a difference between solutions having the same value at

a level of the tree, a second-level evaluation has been used. Let us define the “surface of a bin”,

denoted by Surf(k), as follows:

Surf(k) =
∑
Jj∈Bk

pjbj

. Whenever two sequences have the same value of V (σ), we break ties by selecting the sequence
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with the smallest surface of the last bin.

The recovering phase is composed by two types of neighborhood called SWAP and EBSR

(extraction and backward shift reinsertion) [Della Croce et al., 2004]. Let consider two jobs Ji and

Jj in S(σ) = π1Jiπ2Jjπ3, with Ji before Jj . SWAP generates sequence π1Jjπ2Jiπ3 and EBSR

generates sequence π1JjJiπ2π3.

3.2 Matheuristic algorithm

Matheuristics constitute a combination of exact methods and metaheuristics that exploit the

strength of both approaches within a “hybrid” procedure. A distinguishing feature is the ex-

ploitation of nontrivial mathematical programming tools as part of the solution process. We refer

to [Della Croce et al., 2013] for a general description of matheuristics.

Here, we propose a Variable Partitioning Local Search (VPLS) procedure which can be seen

as a matheuristic neighborhood search approach based on a partial re-optimization of a variables

partitioning. This approach can be also considered as a generalized k − opt neigborhood search

procedure. The VPLS framework can be seen as a local search approach for MIPs, expecially suited

for 0− 1 variables, using a generalization of the k-exchange neighborhood.

Consider a general MIP formulation

min cTX s.t. AX ≤ b, X ∈ {0, 1}

where Xt = (x1, x2, .., xn) is a vector of n variables of the problem and X̄t = (x1, x2, .., xn)

is a feasible solution to the MIP. If this is the case, it is always possible to define a subset S of

a defined size of variables indices {1, 2, .., n}. The neighborhood N(X̄) consists of all solutions

of the MIP where the jth variable is equal to the value of the jth variable in X̄ for all j /∈ S,

namely N(X̄) = {X | xj = xj , ∀j /∈ S}. The resulting neighborhoods N(X̄) can then be searched

for an improving solution using a MIP-solver both optimally or approximately. The main idea

stems in representing the MIP as a permutation problem where variables belonging to the current

solution are partitioned into two sets. A first set S is then reoptimized by means of an MILP

solver generating a permutated assignment, while variables in the second set X̄ \ S keep the same

assignment as in the current solution.

For the considered problem, the incumbent solution returned by the RBS algorithm induces

correspondingly a sequence of the bins where we assume that γ bins are used. The neighborhood

exploration works as follows. Starting with the first bin, consider the r-th bin in the sequence
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along with bins r + 1, r + 2,..., r + H − 1 with item set S = Sr ∪ Sr+1 ∪ ... ∪ Sr+H−1. Solve the

problem of rescheduling the items in S so that w(Sr+H−1) =
∑

j∈Sr+H−1
wj is minimized, where we

use wj = max{bj , pj} (this performance measure has been selected experimentally).

The rationale is to empty as much as possible bin r+H−1. If a (sub)sequence with w(Sr+H−1) =

0 is obtained, then one bin is saved, γ is reduced by one unit and the process can restart with r = 1.

Alternatively, the new subsequence is kept anyway as the space of bin Sr+H−1 has been optimized

and will be used in the next iterate. The approach is then iterated for r = 1, 2, ..., γ − H + 1.

Whenever r = γ −H + 1 is reached, the process restarts with r = 1 until a time limit is exceeded.

The problem of rescheduling the items in S is done by solving by means of an ILP solver the

following ILP model adapted from the one above in order to take into account the fact that bins

1, ...r − 1 and r + H, ..., γ are not rescheduled and that the objective is to minimize the weight of

the items assigned to bin r +H − 1.

minimize z (9)

subject to

γ∑
k=1

xj,k = 1, ∀j ∈ {1, ..., n} (10)

n∑
j=1

pjxj,k ≤ T, ∀k ∈ {1, ..., γ} (11)

n∑
j=1

bjxj,k ≤ V, ∀k ∈ {1, ..., γ} (12)

n∑
j=1

wjxj,rk̄ ≤ z (with k̄ = r +H − 1) (13)

xj,k = x̄j,k, ∀j ∈ {1, ..., n}, ∀k ∈ {(1, ..., r − 1) ∪ (r +H, ..., γ)} (14)

k−1∑
h=1

n∑
i=1

pixi,h +

j∑
i=1

pixi,k ≤ dj +Q+M(1− xj,k), ∀j ∈ {1, ..., n},∀k ∈ {1, ..., γ} (15)

with wj = max{pj , bj}, ∀j, 1 ≤ j ≤ n.

Constraints (10) ensure that each job is performed by using one of the γ vials and correspond

to constraints (4) of the previous model. Constraints (11)–(12) indicate the temporal and capacity

limits of the γ vials and correspond to constraints (4)–(5) of the previous model. Constraints (13)

link to the objective function z temporal and capacity consumption of vial r+H − 1. Constraints
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(14) indicate that the assignment of items to bins 1, ..., r − 1 and r +H, ..., γ is kept as it is in the

incumbent solution. Finally, (15) match constraints (7) of the previous model.

Figure 4 displays the matheuristic neighborhood search approach proposed.

... ...

bin r − 1 -�
Bins r, ..., r +H − 1

... ...

bin r − 1

?

?

optimize

bin r +H

bin r +H?

quantity maximized

Figure 4: Illustration of the matheuristic algorithm

A pseudo-code of this procedure is depicted below.

Algorithm 3 Search(H, γ, x̄, z̄)

repeat

Set r := 1;

Set improved[k] := true for each k = 1, . . . , γ;

while r ≤ n−H + 1 and z∗ > 0 do

Solve model (9)–(14) with optimumz∗, x∗;

if z∗ = 0 then

x̄ := x∗, z̄ := z∗;

γ := γ − 1;

end if

Set improved[r +H − 1] = true iff z∗ <
∑n

j=1wj x̄j,r+H−1;

Set r := r + 1 (mod γ +H − 1);

end while

until not
(∨γ

k=1 improved[k]
)
or 〈time limit expired〉;
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4 Computational experiments

As there are no known instances for this problem, we present computational experiments on the

set instances from the literature for the two-constraint bin packing problem to which we added

correspondingly the jobs due dates. . The instances introduced by [Caprara and Toth, 2001] are

grouped in 5 main classes, each class containing 10 instances for each value of n (30 instances per

class in total with n ∈ {50, 100, 200}), which makes a total of 150 instances. These instances are

available at:

www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm

For each instance, the value in the first column is associated to the processing time and the

value in the second column is associated to the vial consumption. Due dates have been randomly

generated. We denote by P the sum of processing times: P =
∑n

j=1 pj . For each job Jj , a due date

is randomly generated in [αP (1− β), αP (1 + β)] with α ∈ [0, 1] and β ∈ [0, 1] two coefficients. For

the generation of the due dates, α and β have been fixed to 0.5.

For each data set, the EDD sequence has been computed for finding L∗max, the optimal value

of the maximum lateness. For each instance, the bound Q is defined by Q = γL∗max with a given

coefficient γ ∈ {1, 1000}. The value of γ = 1 imposes that the solution is optimal regarding the

Lmax. On the other side, the large value for γ is equivalent to neglect the constraint on the Lmax and

the problem becomes equivalent to the original two-constraint bin packing problem. We denoted

by RBS the results of the recovering beam search algorithm standalone and by “RBS-MH” the two-

phase approach applying first RBS and then the matheuristic algorithm using the RBS solution as

initial solution.

Table 1 reports the computational results for γ = 1. In this case, the solution has to be

optimal for the maximum lateness. For each class and for each value of n, columns LB∗ and

UB∗ of the table denote the best known lower and upper bounds respectively available for the

two-constraint bin packing problem with no constraint on Lmax. These bounds were taken from

[Monaci and Toth, 2006]. Also, column UB indicates the sum of the number of bins obtained for

the 10 instances by the related method, column CPU(s) for RBS indicates the average computation

time and column Ttb(s) for RBS-MH indicates the average time for obtaining the best solution

(time-to-best). Note that for RBS a time limit of 120 seconds has been imposed while for the

matheuristic algorithm a time limit of 1800 has been imposed, so that globally RBS-MH runs at

most for 1920 seconds. Enlarging such limit does not seem to improve substantially the solution
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quality. Note also that for each iteration of the matheuristic algorithm a time limit of 60 seconds

is imposed.

γ = 1 RBS RBS-MH

Class n LB∗ UB∗ UB CPU(s) UB Ttb(s)

1 50 135 135 144 0.9 136 1.3

100 255 260 287 25.8 260 10.8

200 503 510 571 120 511 98.0

6 50 214 215 242 0.8 221 2.2

100 405 410 483 11.6 426 40.5

200 803 811 988 120 821 437.8

7 50 196 197 219 0.9 203 1.2

100 398 405 444 17.6 412 5.0

200 799 802 927 120 808 170.9

9 50 144 145 160 0.97 147 1.2

100 257 267 297 18.8 268 15.7

200 503 513 582 120 514 235.4

10 50 170 170 207 1.1 185 5.6

100 330 330 396 16.9 350 20.9

200 670 670 840 120 680 277.7

Table 1: Results of the algorithms for the two-constraint bin packing instances with due dates

(γ = 1)

From the results, if we compare the values of the proposed approaches to the best feasible

solutions (indicated by the entry UB∗) known for the two-constraint bin packing problem, we

notice that the solution quality of the combined RBS-MH method is particularly good on classes

1, 9, still well performing on class 7 and with partial degradation on classes 6, 10. Also, the time-

to-best is typically significantly inferior to the 600 seconds of CPU time. Notice, however, that the

strong constraint on Lmax does not necessarily guarantee that the UB∗ values are reachable. The

performance of RBS standalone are weaker, but require limited time. Notice also, that additional

tests not reported here indicate that the performances of RBS are much better than the standard

list scheduling EDD (earliest due date) sequence.
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4.1 Instances without due dates

We consider in this subsection the case γ = 1000. In this case, due dates are not considered

and hence the original bin packing instances are solved. Correspondingly, constraint (15) becomes

redundant and the bins selected for rescheduling are no more required to be consecutive. Hence,

the following simpler ILP model can be considered in the matheuristic.

minimize z (16)

subject to (10), (11), (12), (14) and

n∑
j=1

wjxj,k̄ ≤ z for a chosen k̄ ∈ I (17)

Also, a more general matheuristic approach could be devised as no sequencing constraint are

present anymore. The approach works as follows. First, H disjoint subsets of bins with H bins

in each subset are selected and optimized in order to empty as much as possible one bin in each

subset. Then the H disjoint emptied bins are re-optimized always trying to empty as much as

possible one of them. The approach is iterated until a time limit expires. A pseudo-code of this

approach is depicted below.

Algorithm 4 Search-BP(H, γ, x̄, z̄)

repeat

N = {1, . . . , γ};

Randomly select H disjoint index sets I1, . . . , IH ⊂ N with |I1| = · · · = IH = H;

for each Ir, r = 1, . . . ,H do

Solve model (16)–(17) for Ir, with optimum z∗, x∗;

end for

Let I ′ = {k : k = arg min{
∑n

j=1wjx
∗
j,k, k ∈ Ir, r = 1, . . . ,H}};

Solve model (16)–(17) for I ′, with optimum z′, x′;

if z′ = 0 then

Set γ := γ − 1;

end if

until 〈time limit expired〉;

Table 2 provides the same entries of Table 1 for the original two-constraint bin packing problem

that is the case with no constraints on the due dates. The results show that RBS-MH is competitive
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with the state of the art procedures being superior on class 1, comparable on classes 7, 9 and inferior

on classes 6, 10. We point out, in particular, that as far as class 1 is concerned, 2 new upper

bounds were established for n = 100 and 5 new upper bounds were established for n = 200. The

corresponding solutions are available at ... Also, the CPU time required by RBS-MH is on the

average is wee below 400 seconds.

γ = 1000 RBS RBS-MH

Class n LB∗ UB∗ UB CPU(s) UB Ttb(s)

1 50 135 135 139 3.7 135 0.1

100 255 260 263 98.4 258 14.3

200 503 510 527 120 505 190.9

6 50 214 215 219 3.0 215 0.5

100 405 410 421 30.6 410 48.1

200 803 811 847 120 819 233.2

7 50 196 197 201 3.8 198 1.1

100 398 405 406 23.7 405 0.1

200 799 802 810 120 803 134.5

9 50 144 145 146 2.7 145 0.1

100 257 267 274 48.7 267 0.5

200 503 513 533 120 513 7.3

10 50 170 170 187 4.2 180 0.4

100 330 330 351 28.4 340 2.5

200 670 670 713 120 680 30.7

Table 2: Results of the algorithms for the two-constraint bin packing instances without due dates

(γ = 1000)

5 Conclusions

We considered the problem of scheduling activities which consume perishable raw materials that

induce a deadline on their use once started where the deadline is a part of the decision process. The

problem has been modeled as a single machine scheduling problem with additional duration and

consumption constraints. The problem can also be seen as a two-constraint bin packing problem
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combined to the single machine problem with the requirement that the maximum lateness of the

resulting single machine sequence does not exceed a given threshold. A two-phase procedure has

been proposed where in the first phase a fast Recovering Beam Search approach has been applied

and in the second phase a more time consuming matheuristic procedure using the RBS solution

as initial solution has been proposed. The two procedures have been tested showing very good

performances within reasonable time on benchmark two-constraint bin packing instances suitably

integrated to handle the maximum lateness requirement. The proposed procedures have also been

tested on the original two-constraint bin packing instances showing to be competitive with the

state of the art procedures and finding 8 new best bounds. As a future research direction, it would

be worthy to adapt the proposed approach to the perishable raw material version of the original

problem discussed in [Mazier et al., 2010].
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