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Highlights

• We identify the limits of the existing Improved Primal Simplex (IPS).

• We revise every step of the dynamic reduction implemented in IPS.

• We show how basic solutions can be built to warm start the solution of each problem.

• A simple and fast procedure can test the potential for improvement of the algorithm.

• The algorithm outperforms IPS and CPLEXs primal simplex on a large benchmark.
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Abstract

The improved primal simplex (IPS) was recently developed by Elhalaloui et al. to take advantage of degeneracy
when solving linear programs with the primal simplex. It implements a dynamic constraint reduction based on the
compatible columns, i.e., those that belong to the span of a given subset of basic columns including the nondegenerate
ones. The identification of the compatible variables may however may be computationally costly and a large number
of linear programs are solved to enlarge the subset of basic variables. In this article, we first show how the positive edge
criterion of Raymond et al. can be included in IPS for a fast identification of the compatible variables. Our algorithm
then proceeds through a series of reduction and augmentation phases until optimality is reached. In a reduction
phase, we identify compatible variables and focus on them to make quick progress toward optimality. During an
augmentation phase, we compute one greatest normalized improving direction and select a subset of variables that
should be considered in the reduced problem. Compared with IPS, the linear program that is solved to find this
direction involves the data of the original constraint matrix. This new algorithm is tested over Mittelmann’s benchmark
for linear programming and on instances arising from industrial applications. The results show that the new algorithm
outperforms the primal simplex of CPLEX on most highly degenerate instances in which a sufficient number of
nonbasic variables are compatible. In contrast, IPS has difficulties on the eleven largest Mittelmann instances.

Keywords: Linear programming, Degeneracy, Improved primal simplex, Decomposition, Primal algorithms

1. Introduction

We consider a linear program (LP) in standard form:


min cT x

s.t. Ax = b

x ≥ 0,

(P)

where x, c ∈ Rn , b ∈ Rm, and A ∈ Rm×n. We assume that A is of full rank m with m ≤ n and that the feasible domain
FP = {x ≥ 0 : Ax = b} is nonempty. A basis is a set of m independent columns of A, and the associated variables
are said to be basic. Starting from the indices B of the basic variables and N of the remaining nonbasic variables, the
associated basic solution is obtained by setting

xB = A−1·Bb and xN = 0, (1)

where for any set of indices J , A·J is the set of columns of A indexed by J , and xJ is the corresponding subvector
of variables. More generally, the submatrix of A containing the rows indexed by I and the columns indexed byJ will
be denoted AIJ . The basic solution is feasible if and only if xB ≥ 0. If { j ∈ B : x j = 0} is not empty, the solution is
said to be degenerate, and all the variables indexed by this set are degenerate. The remaining nonzero basic variables
are the nondegenerate variables.
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1.1. Dealing with degeneracy in the primal simplex

Starting from a basic feasible solution, the primal simplex algorithm (see [4]) monotonically improves the ob-
jective value by going through a sequence of neighboring feasible bases until optimality is reached. One theoretical
limitation of the algorithm is that an iteration may not lead to any progress in the objective value if the solution is
degenerate. Geometrically, a degenerate vertex of the n-dimensional feasible polytope of an LP is the intersection of
more than n constraints of this LP. In terms of the simplex algorithm, this means that a single vertex can correspond
to several bases. The difficulty is that sometimes many iterations move from one basis to another associated with the
same vertex. As a consequence, the theoretical convergence of the simplex cannot be guaranteed without a pivoting
rule such as those described in [2, 3].

Although cycling is rarely an issue in practice, the risk of stalling is real. Several techniques have been developed
to limit the negative effects of degeneracy [1, 3, 9, 10, 13], but recently there has been a growing interest in methods
that take advantage of degeneracy. These studies all rely on the idea that degeneracy corresponds to a local excess
of information, since degenerate basic variables are not needed to characterize a vertex of the polytope. Perold [22]
exploits this to develop a degeneracy structure in the LU decomposition of the basis, which involves fewer calculations
when performing degenerate pivots. Pan [18] took another important step in this direction by generalizing the concept
of a basis. He defines a deficient basis to be a set of less than m independent columns of A whose range contains
b. If the current solution is degenerate, it is sufficient to consider the deficient basis that contains only the positive
variables. Degeneracy therefore becomes a potential opportunity to solve smaller linear systems at each iteration.
Using deficient bases, Pan develops a simplex-like algorithm [20] and a dual projective algorithm [19] that show
promising results in an experimental comparison with MINOS 5 [16].

Elhallaoui et al. [8, 7] also take advantage of degeneracy to speed up the solution of set partitioning problems by
aggregating the original constraints into clusters of constraints. The feasibility of the solution is ensured by keeping
only the variables that are compatible with the clusters, i.e., the variables that are either present in or absent from
every constraint of each cluster. When no improvement can be made by considering the compatible variables, some
clusters are broken up or combined to include new improving directions in the aggregated problem. The strength
of this dynamic constraint aggregation is the focus on a problem with many fewer constraints than the original one.
The improved primal simplex (IPS) [6] extends this approach to general linear programming. A reduced problem is
formed by keeping only the nondegenerate and compatible variables. In this context, a variable is compatible when
the corresponding column of A is in the range of the p nondegenerate columns. With the incompatible variables
removed, m − p constraints are redundant and thus ignored. Once the optimal solution of the reduced problem has
been found, a complementary problem is solved to prove the optimality of the original LP or to identify a sequence
of pivots ending with an improvement in the objective value. The authors report that IPS significantly outperforms
CPLEX1 on flight assignment (FA), combined vehicle and crew scheduling (VCS), and uncapacitated facility location
(UFL) problems, and Raymond et al. [24] describe implementation techniques that improve the performance of the
algorithm.

One important limitation of IPS is that compatible variables are identified through costly algebraic operations
similar to those performed when computing a simplex tableau. As highlighted by Omer et al. [17], these operations
are also useful when solving the complementary problem since they allow us to search for an improving direction in a
reduced space, as is done in reduced gradient methods [15]. However, their tests on a diversified benchmark show that
these operations cause IPS not to perform well on every highly degenerate LP. Raymond et al. [23] address this issue
with a stochastic test requiring as many operations as the computation of a reduced cost to identify all the compatible
variables. The authors apply this test to develop a partial pricing algorithm focusing on the compatible variables first.
They report good results on the aforementioned VCS and FA instances, but their procedure struggles with two families
of instances represented in Mittelmann’s benchmark. Based on this test, Towhidi et al. [26] implement the positive
edge pricing criterion within COIN-OR LP solver2 (CLP). Their results show significant improvement with regards to
the devex pricing criterion [14] for the most degenerate Mittelmann instances, but their comparison focuses on CLP,
which is known to be less efficient than most commercial LP solvers. More importantly, the articles by Towhidi et

1CPLEX is freely available for academic and research purposes under the IBM academic initiative: http://www-03.ibm.com/ibm/

university/academic
2https://projects.coin-or.org/Clp
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al. [26] and Raymond et al. [23] show how a fast compatibility test can be used to cope with degeneracy, but they do
not take advantage of degeneracy, since the size of the linear system solved at each simplex pivot is not reduced.

1.2. Contribution statement

Although the dual simplex and barrier algorithms often solve LPs more efficiently than the primal simplex, the
latter has a strong advantage when a good feasible solution is available. As a consequence, the primal simplex is still
used for reoptimization after modifications in the objective function, or after adding columns in the master problem
in a column-generation procedure. Our work thus focuses on improving the primal simplex by taking advantage of
degeneracy.

Our main contribution is a new dynamic reduction algorithm that overcomes the difficulties that IPS encounters
on large instances. This algorithm not only yields substantial improvement on many degenerate instances but also
provides a fast procedure to test the potential for improvement in advance. To achieve this, we modify IPS to include
the fast compatibility test described in [23]. One negative effect is that the complementary problem cannot be reduced
without doing the algebraic operations that we are trying to avoid. The algorithm thus focuses on a complementary
problem involving the original constraints of P, and it involves a new mode of alternation between the reduced and the
complementary problems that is more efficient on large LPs. We then show how good basic solutions can be built to
warm-start both the reduced and the complementary problems. The practical impact of these modifications is studied
on a large benchmark including the VCS, FA, and UFL instances used in [17] and fourty-five Mittelmann instances.
The purpose is to evaluate our new algorithm by comparing it with IPS and the primal simplex of CPLEX, and to
show that it is possible to identify quickly the instances that offer a strong potential for faster solution. The results
show the potential of the algorithm for an implementation as an adaptive strategy in a state-of-the-art primal simplex
code.

In Section 2 we describe IPS as a necessary background for the rest of the article. The new algorithm based on a
fast compatibility test is developed in Section 3. The results of the experimental tests are presented and analyzed in
Section 4, and in Section 5 we discuss directions for future research.

2. The improved primal simplex

In this section, we summarize the theoretical foundations and the practical implementation of IPS as a background
for the new algorithm developped in Section 3. Although efficient implementations of linear programming algorithms
should focus on LPs with bounded variables, we consider an LP in standard form to clarify and shorten the presen-
tation. Omer et al. [17] show the generalization to an LP with bounded variables, and the implementations tested in
Section 4 use this generalization.

Let x ∈ FP be a basic feasible solution of P. The variables’ indices can be partitioned into two sets P = { j : x j > 0}
and L = { j : x j = 0}. Since x is a basic solution, the variables indexed by P are basic, and the columns of A·P are
linearly independent. The cardinality of P, p = |P|, thus satisfies p ≤ m. Moreover, xL = 0, so the range of A·P
contains b.

Remark 1. If p < m, A·P satisfies the definition of a deficient basis given by Pan [18].

2.1. A primal decomposition for degenerate problems

Assuming that x ∈ FP, a primal algorithm iteratively improves the objective value by following a sequence of
feasible improving directions as introduced below.

Definition 1 (feasible direction). d ∈ Rn is a feasible direction at x if there exists ρ > 0 such that x + ρ · d ∈ FP.

Definition 2 (improving direction). d ∈ Rn is an improving direction if cT d < 0, i.e., if taking a positive step along
d yields an improvement in the objective value.

An improving vector is characterized by any pair (d, ρ) such that d is a feasible improving direction and ρ > 0. d
can thus be normalized at will as long as ρ is chosen to satisfy x+ρ ·d ∈ FP. One way to make a step toward optimality

4
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is to follow a normalized feasible improving direction that maximizes the rate of improvement in the objective value.
The greatest normalized improvement (GNI) program finds one of these directions:



min
d

cT d

s.t. Ad = 0

wT
LdL ≤ 1

dL ≥ 0,

(Gni)

where wL > 0 is a normalization vector.

Proposition 1. Gni has an optimal solution d?. Moreover, denoting I− = {i ∈ P : d?i < 0},
• x is an optimal solution of P if and only if cT d? = 0;

• d? is an optimal ray of P if and only if cT d? < 0 and I− = ∅;
• if cT d? < 0 and I− , ∅, the maximal feasible step along d? is performed by setting x← x + ρmax · d?, where

ρmax = min
i∈I−

{
xi

di

}
. This step leads to an improvement ρmaxcT d? in the objective value.

Proof. d = 0 is feasible, so Gni is feasible. Assuming that Gni is unbounded, it admits a feasible ray r with cT r < 0.
∀λ ≥ 0, λ · r is feasible, so λwT

LrL ≤ 1, with rL ≥ 0 and wL > 0, hence rL = 0. It follows that A·PrP = 0, with A·P
of full rank, so rP = 0. This contradicts cT r > 0. Gni is thus bounded and has an optimal solution d?.

Next, assume that cT d? < 0. d? is an optimal ray of P if and only if d? ≥ 0, or equivalently ⇔ I− = ∅. If
I− , ∅, it is easy to verify that ρmax > 0 is the largest step such that x + ρmaxd? ≥ 0 is feasible, and that it leads to an
improvement ρmaxcT d? < 0 in the objective value. x is not an optimal solution of P, so x optimal⇒ d? ≥ 0.

Finally, if cT d? ≥ 0, no improving feasible direction exists at x, so x is an optimal solution of P if and only if
cT d? = 0.

To take advantage of degeneracy, Omer et al. [17] decompose Gni by referring to the following concept of com-
patibility.

Definition 3 (compatible variable). A variable x j is compatible with a deficient basis P if and only if the correspond-

ing column in A, a j, is in Span
(
A·P

)
.

The zero variables can then be partitioned into compatible and incompatible variables whose sets of indices are
respectively denoted C and I. Based on this partition, Gni is decomposed into the reduced-Gni (R-Gni) and the
complementary-Gni (C-Gni) that respectively focus on the compatible and incompatible variables:

min
(dP,dC)

cT
PdP + cT

CdC

s.t. A·PdP + A·CdC = 0
wT
CdC ≤ 1

dC ≥ 0

(R-Gni)

min
(dP,dI)

cT
PdP + cT

IdI

s.t. A·PdP + A·IdI = 0
wT
IdI ≤ 1

dI ≥ 0.

(C-Gni)

The validity of this decomposition is justified by the following theorem of Omer et al. [17], which extends to general
LPs a result proved by Rosat et al. [25] for set partitioning problems.
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Theorem 1. Let z?Gni, z?R-Gni, and z?C-Gni be the optimal objective values of Gni, R-Gni, and C-Gni; then we have

z?Gni = min
{
z?R-Gni, z

?
C-Gni

}
.

Theorem 1 ensures that an optimal solution of Gni can be found by solving R-Gni and C-Gni separately.
One key feature of the decomposition is that R-Gni can be further reduced. If the current solution is degenerate, i.e.,

if p < m, the rank of the constraint matrix of R-Gni (p) is lower than the number of constraints (m), so m−p constraints
of R-Gni are redundant. Assume that the rows and columns are permuted so that the first p columns correspond to the
nonzero variables and the first p rows correspond to independent rows of A·P; then R-Gni is equivalent to

min
(dP,dC)

cT
PdP + cT

CdC

s.t. APPdP + APCdC = 0
wT
CdC ≤ 1

dC ≥ 0

The practical benefit of the decomposition is that an efficient solution process can focus on the easy subproblem R-Gni
until z?R-Gni = 0, and then solve C-Gni to find an improving direction involving several incompatible variables or to
prove the optimality of the current solution.

2.2. A practical implementation: IPS

One important step of the decomposition is the identification of the compatible variables. In IPS, the deficient
basis A·P is completed with m − p independent vectors to form a basis B of Rm. Let P = {1, . . . ,m} \ P. The
compatible variables are then identified using the following result.

Proposition 2. v ∈ Rm is compatible with P if and only if
(
B−1v

)
P = 0.

Proof. v ∈ Rm is written uniquely in the basis B as
((

B−1v
)
P ,

(
B−1v

)
P
)
.
(
B−1v

)
P ∈ Span(A·P) gives the coordinates

of v corresponding to A·P, so v ∈ Span(A·P) if and only if
(
B−1v

)
P = 0.

A computationally efficient completion of A·P uses vectors of the canonical basis of Rm. Assuming a convenient
reordering of the rows, B and its inverse are given by

B =

[
APP 0
APP Im−p

]
⇔ B−1 =

[
A−1
PP 0

−APPA−1
PP Im−p

]
.

The compatible variables of L are thus identified by searching for the zero columns of

Ā = −APPA−1
PPAPL + APL.

Ā is a restriction of the simplex tableau to the m− p rows of P, and it is well known that the tableau version of the
simplex had to be abandoned because of these algebraic operations. A practical implementation of IPS thus requires
us to limit the number of times that the compatible variables are identified, and to take advantage of the knowledge of
Ā.

Omer et al. [17] show that solving R-Gni and following the resulting improving direction is equivalent to perform-
ing a simplex pivot in the original LP restricted to the nondegenerate and compatible variables, PC. The redundant
constraints of PC are identified by performing a LU decomposition of A·P using UMFPACK [5]. Denoting U the
upper triangle matrix provided by the decomposition, a set of dependent rows of A·P is deduced from the rows of U
with at least one nonzero element. After removing the redundant constraints, this reduced LP is



min cT
PxP + cT

CxC
s.t. APPxP + APCxC = bP

xP ≥ 0, xC ≥ 0

(PC)
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The variable pivoted into the basis minimizes the normalized pricing criterion c̄i/wi, where c̄T = cT − cT
PA−1
PPAPC. As

a consequence, if the partition (P,C,I) is not updated after the solution of R-Gni, this problem may be solved several
times by performing as many simplex pivots in PC. The drawback is that some basic variables may take a zero value,
in which case degenerate pivots may occur. However, this risk is compensated for by the time saved on the update
of Ā. Unless the optimal solution is found, the solution of PC is interrupted after an arbitrary number of pivots, and
(P,C,I) is updated if two conditions that formulate the expected benefit of a new partition are satisfied. In [17], IPS
interrupts the solution of PC every m iterations, and in order to update (P,C,I) it requires that at least 10% of the
basic variables of PC are degenerate and 30% of the nondegenerate variables do not belong to P.

Once an optimal solution of PC has been found, C-Gni is solved to find a new improving direction or to prove the
optimality of the current solution. In C-Gni, the linear constraints A·PdP + A·IdI = 0 can be interpreted as follows:
the weighted combination of the columns A·IdI that potentially enter the basis must be compatible. According to
Proposition 2, another way of putting this condition is Ā·IdI = 0. For a given dI satisfying this condition, the unique
vector dP satisfying A·PdP + A·IdI = 0 is then given by dP = −A−1

PPAPIdI. Since Ā·I was computed when the
compatible variables were identified, C-Gni can be modified without additional operations to search for an optimal
solution by solving a smaller LP that involves only the variables of dI:

z?C-Gni = min
dI

c̄T
IdI

s.t. Ā·IdI = 0
wT
IdI ≤ 1

dI ≥ 0

(Cr-Gni)

Algorithm 1: IPS

Data: P, a linear program, x0, a basic feasible solution of P.
Result: x, an optimal solution of P.

1 begin
2 x← x0; P ← the basis associated to x0; B+ ← { j : x0

j > 0}; Red← P; optimal← false;

3 while optimal = false do
4 while Red is not solved to optimality do
5 if |B+| ≤ 0.9 |P| and |P ∩ B+| ≤ 0.7 |P| then
6 Compute Ā to build the partition (P,C,I) corresponding to x;
7 Red← PC;
8 Solve Red for m iterations or until optimality;
9 if Red is found to be unbounded then

10 Complete an optimal ray of Red to get an optimal ray, x, of P; optimal← true;
11 else
12 Update x; B+ ← { j : x j > 0};
13 Solve Cr-Gni: d?I ← the optimal solution; z?Cr-Gni ← the optimal objective value;
14 if z?Cr-Gni ≥ 0 then
15 optimal← true;
16 else
17 I+ ← {i ∈ I : d?i > 0};
18 while z?Cr-Gni < 0 and |I+| ≤ 0.1 |I| do
19 Remove dI+ from Cr-Gni;
20 Solve Cr-Gni and update d?I and z?Cr-Gni;
21 I+ ← I+ ∪ {i ∈ I : d?i > 0}; ;
22 Add the columns indexed by I+ and the newly compatible ones to Red;

Let d?I be an optimal solution of Cr-Gni. If (P,C,I) is not updated before Cr-Gni is solved, the compatibility
of the combination A·IdI does not necessarily imply that the optimal solution of Cr-Gni corresponds to a feasible

7
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direction for P. This is not a real issue in IPS, because this solution is not used to produce a strict improvement in
the objective value but instead to select columns that should be added to the reduced problem. Since d?I indicates an
interesting direction in most cases, we select every variable indexed by I+ = { j ∈ I : d?j > 0}. Cr-Gni is then updated
by removing the variables indexed by I+ and solved several times until at least 10% of the variables of I are selected.

Algorithm 1 summarizes the overall procedure. In this procedure, IPS solves P using a dynamic reduction of the
problem. The algorithm performs major iterations (step 4–22) composed of a reduction phase (step 4–12) and an
augmentation phase (step 13–22), until optimality is reached. At each major iteration, IPS performs simplex pivots
on the reduced problem Red, and, depending on the state of the solution, the number of rows and columns in Redmay
increase and/or decrease. The motivation for developing the dynamic reduction is that the solution may be accelerated
if the majority of the pivots can be performed on a problem smaller than the original one.

In this implementation, Red is always set to PC after an update of (P,C,I), and it is gradually augmented with new
columns after each solution of the complementary problem. Rows are added together with the columns to ensure that
the constraints of P that do not appear in Red are the redundant ones (this does not appear explicitly in the algorithm).

To ensure that the interruptions and subsequent warm starts are done efficiently, every LP is solved with a sim-
plex algorithm. To be specific, Red is solved with the primal simplex and Cr-Gni is solved with the dual simplex.
Raymond et al. [24] justify the choice of the dual simplex for Cr-Gni by a large number of computational tests. A
more qualitative reason is that the initial solution of Cr-Gni is usually degenerate. Using the dual simplex offers an
opportunity to escape from a highly degenerate vertex without going through a long sequence of degenerate pivots.
From this perspective, IPS is a primal–dual algorithm that switches to the dual simplex when no improvement can be
achieved in the subspace spanned by the variables of P.

3. IPS with original constraints in the complementary problem: IPSO

In this section, we develop a new dynamic reduction process to include a fast compatibility test that does not
require the computation of Ā. This new algorithm, called IPSO, maintains the global structure of IPS: reduction and
augmentation phases are iteratively performed until optimality is reached. However, the reduction and augmentation
phases are both revised to operate with no access to the information contained in Ā. To characterize the differences
between IPS and IPSO, we may bring out an analogy with the differences between Dantzig’s primal simplex and the
revised simplex method. In its initial description, the primal simplex computes the simplex tableau Ā and updates it
with each pivot. To avoid spending too much time in the computation of Ā, the revised simplex records only the indices
of the basic variables and it solves two linear systems to identify the entering and exiting variables at each iteration.
Similarly to the revised simplex, IPSO records only the indices of the compatible variables and updates them by
solving linear systems. One issue with this new process is that IPS also uses Ā to reduce the complementary problem.
As a consequence, one important difference between IPSO and IPS is that the augmentation phase is completely
redesigned to limit the time spent in the solution of the complementary problem.

Algorithm 2 summarizes the new dynamic reduction process. The key features of IPSO include the adaptation
of the positive edge criterion for fast identification of the compatible variables (steps 6 and 13) and a heuristic aug-
mentation procedure that requires only one solution of the complementary problem at each phase (steps 13–27).
Warm-starting the reduced and complementary problems is another essential contribution for an efficient transition
between the phases (steps 16, 19 and 27). These important steps of the algorithm are detailed below.

3.1. Building the partition

In steps 6 and 13 of Algorithm 2, we adapt the positive edge criterion of Raymond et al. [23] for a fast identification
of the compatible variables. More generally, this criterion can be viewed as a stochastic test of membership in the
range of a set of independent vectors. As for IPS, the authors of [23] complete the deficient basis A·P with vectors of
the canonical basis of Rm to form a basis B of Rm. Let j ∈ {1, . . . , n}, and ā j =

(
B−1a j

)
P. The essence of the positive

edge criterion is then given by the following proposition.

Proposition 3. Let v be a vector of m − p continuous random variables. Then, either a j is compatible with P and

vT · ā j = 0, or a j is incompatible and P
(
vT ā j = 0

)
= 0.
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Data: P, a linear program, x0, a basic feasible solution of P.
Result: x, an optimal solution of P.

1 begin
2 x← x0; P ← the basis associated with x0; B+ ← { j : x0

j > 0}; Red← P; optimal← false;

3 while optimal = false do
/* Reduction and solution of Red */

4 while Red is not solved to optimality do
5 if |B+| ≤ 0.9 |P| and |P ∩ B+| ≤ 0.7 |P| then
6 Use the positive edge criterion to build the partition (P0,C0,I0) corresponding to x;
7 Red← PC0 ; // reduction of Red

8 Solve Red for m iterations or until optimality;
9 if Red is found to be unbounded then

10 Complete an optimal ray of Red to get an optimal ray, x, of P; optimal← true;
11 else
12 Update x←; B+ ← { j : x j > 0};

/* Augmentation of Red */

13 Use the positive edge criterion to build the partition (P,C,I) corresponding to x;
14 if Red has m rows then // Red was augmented since last reduction

15 Build Gni according to (P,C,I);
16 Compute a good dual feasible basis of Gni and solve it from this initial basis;
17 else // Red was not augmented since last reduction

18 Build C-Gni according to (P,C,I) ;
19 Compute a good dual feasible basis of C-Gni and solve it from this initial basis;
20 (d?,B?)← the primal solution of the problem just solved and the associated basis;
21 (π?, z?Gni)← the dual solution and the objective value of the problem just solved;
22 if z?Gni = 0 or d? ≥ 0 then
23 optimal← true;
24 else
25 x← x + ρmaxd?;
26 Add every column j such that c j − aT

j π
? < 0 to Red;

27 Add every removed row to Red; // Red now has m rows

28 Build a feasible basis for P using B? and d?;

9
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Proof. If a j is compatible with P, Proposition 2 states that ā j = 0, hence vT ā j = 0. Otherwise, vT ā j is a nonzero
continuous random variable, which implies that the probability it takes a particular value is zero.

Given v ∈ Rm−p, let w ∈ Rm be the solution of wT B =
(
0, vT

)
, i.e., wT = vT

(
B−1

)
P. vT ā j = wT a j, so the

compatible variables may be identified by solving one linear system of m equations wT B =
(
0, vT

)
and computing one

matrix/vector product wT A·L, which requires the same number of operations as the computation of a reduced cost
vector. Compared with the operations performed by IPS, this test divides the complexity of the update of (P,C,I) by
n − p.

Remark 2. In practice, the bit representation of floating points implies that the probability of mistakenly identifying
a variable as compatible is greater than zero. This case is problematic if a false-compatible variable is positive in the
solution of Red, because it may result in this solution being outside FP. Since the primal feasibility of x is an essential
assumption for the convergence of Algorithm 2, it is necessary to check that the solution of Red is in FP. If x < FP,
feasibility is recovered by performing a few dual simplex pivots on PC with every constraint of P.

3.2. Augmenting the reduced problem

In steps 4 to 12 of Algorithm 2, Red is solved to optimality, and reduced if needed. An augmentation phase is then
executed from step 13 to step 27. Two slightly different augmentation phases may be executed depending on whether
or not Red has been reduced at step 7 since the last augmentation phase.

3.2.1. Case 1: no augmentation phase has been performed since the last reduction
Since constraints were removed during the reduction, Red includes |P0| < m rows. Referring to the test at step 14,

the complementary problem C-Gni is then used to select the variables of I that should be included in Red. Since
the positive edge criterion is used to identify the compatible variables, Ā is no longer available to form the reduced
complementary problem Cr-Gni. While this implies that the complementary problem may take longer to solve, it also
means that (P,C,I) may be updated before we solve C-Gni. With this update, the following proposition holds.

Proposition 4. The solution of C-Gni at step 19 of Algorithm 2 provides a feasible improving direction for P if
z?C-Gni < 0, or proves that the current solution x is optimal if z?C-Gni = 0.

Proof. Let (P0,C0,I0) be the partition computed during the last execution of step 6, (P,C,I) the partition computed
at step 13, and R-Gni and C-Gni the complementary and reduced problems corresponding to (P,C,I). P ⊂ P0 ∪ C0,
so A·P ⊂ Span

(
A·P0

)
and C ⊂ P0 ∪ C0. Therefore, (Red is solved to optimality)⇒ z?R-Gni = 0. From Theorem 1, it

follows that z?Gni = z?C-Gni. Proposition 1 then gives the result.

In IPSO, to avoid spending too much time in the augmentation phase, we solve the complementary problem just
once before focusing again on the reduced problem. Assuming that z?C-Gni < 0, the primal solution of C-Gni then
provides an improving feasible direction at x. Let (d?P, d

?
I) be an optimal solution of C-Gni; we may complete it with

zeros to obtain d?. The solution is then updated via x← x + ρmax · d? for an improvement ρmaxz?C-Gni in the objective
value, with ρmax computed as in Proposition 1.

The augmentation itself then relies on the dual solution of C-Gni. Let (π, λ) be the dual variables of C-Gni. The
dual of the complementary problem is

max
(π,λ)

λ

s.t. aT
j π + w jλ ≤ c j, ∀ j ∈ I

aT
j π = c j, ∀ j ∈ P

λ ≤ 0

(Cd-Gni)

Proposition 5. Let (π?, λ?) be the optimal solution of Cd-Gni and I− = { j ∈ I : c j − aT
j π

? < 0}. Then

1. I− = ∅ if z?C-Gni ≥ 0.
2. I− ⊃ { j ∈ I : d?j > 0} (, ∅) if z?C-Gni < 0.
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Proof. Recall that w j > 0,∀ j ∈ L. Since λ is maximized in Cd-Gni, λ? = z?C-Gni. The first set of constraints of Cd-Gni
thus implies that c j − aT

j π
? ≥ w jz?C-Gni, ∀ j ∈ I. It follows that I− = ∅ if z?C-Gni ≥ 0.

Assume that z?C-Gni < 0. For j ∈ I such that d∗j > 0, the complementary slackness ensures that c j − aT
j π =

w jz?C-Gni < 0, so j ∈ I−. As a consequence, { j ∈ I : d?i > 0} ⊂ I−.

The optimal solution of Cd-Gni provides a dual solution of P, π?, that satisfies the complementarity conditions
x j · (c j − aT

j π) = 0, j = 1, . . . , n, and maximizes the minimum normalized reduced cost (c j − aT
j π)/w j, j = 1, . . . , n.

Proposition 5 thus suggests a heuristic augmentation strategy that selects the variables that will potentially lead to
the greatest improvements in the objective value. We initialize the columns of Red with those indexed by P0 ∪ C0 at
step 7, and we enlarge the problem by including the variables of I− at each augmentation phase. Proposition 5 then
ensures that every incompatible variable taking a positive value in the improving direction d? is included in Red.

One last important issue of this augmentation phase is the update of the rows of Red. Since I− may contain a large
number of variables, the restriction of P to the variables indexed by P ∪ C ∪ I− does not necessarily have redundant
constraints. The operations that would be necessary to identify the redundant rows are thus skipped, and all the rows
of P are included in Red.

3.2.2. Case 2: the reduced problem has been augmented since the last reduction
Since every row is added to the reduced problem at the end of an augmentation phase (step 27), |B| = m. The test

performed at step 14 thus concludes that Gni will be used to select the variables of I that should be included in Red.
To explain this alternative in Algorithm 2, we denote by (P,C,I) the partition computed at step 13. Nothing

was done during the previous augmentation phase(s) to ensure that the columns compatible with P were included in
Red. If the columns indexed by C are not included in Red, solving Red to optimality does not necessarily imply that
z?R-Gni = 0, so Proposition 4 does not hold. As a consequence, the complete direction search problem Gni is solved
instead of C-Gni. After we replace C-Gni with Gni, Proposition 4 holds and the remainder of the augmentation is
unchanged.

Since C-Gni and Gni play the same role in Algorithm 2, they are both referred to as the complementary problem.
This simplifies the presentation and emphasizes the correspondence with the complementary problem of IPS.

3.3. Warm-starting the complementary problem

As in IPS, Red is solved with the primal simplex, and C-Gni is solved with the dual simplex. An essential point
for the efficiency of the overall algorithm is a good dual feasible basic solution to warm-start C-Gni (or Gni). We thus
describe how such a basis is computed at steps 16 and 19 of Algorithm 2. In the following discussion, we extend the
term basis to the set of indices B when the corresponding set of columns A·B is a basis.

Proposition 6. Let B be a basis of P, x and c̄ the corresponding basic solution and reduced cost vector, and (P,C,I)
the partition corresponding to x.

1. Let b = argmin
j∈L
{ c̄ j

w j
}; then B ∪ {b} is a dual feasible basis of Gni whose objective value is zGni = min

j∈L
{ c̄ j

w j
}.

2. Let bI = argmin
j∈I
{ c̄ j

w j
}; then B ∪ {bI} is a dual feasible basis of C-Gni whose objective value is zC-Gni = min

j∈I
{ c̄ j

w j
}.

Proof. A proof of the second point is given in [17]; it can easily be adapted to show the first point.

At step 16 of Algorithm 2, Red has m rows, so its optimal basis is also a basis of P, hence Proposition 6 shows that
B ∪ {b} can be used to warm-start Gni. If Red contains |P0| = p0 rows, its optimal basis, B0, must be completed with
m− p0 columns to form a a basis of P. In IPS, B0 is completed with m− p0 vectors of the canonical basis of Rm to form
a basis B1 of P. This corresponds to adding slack variables to P and enforcing zero lower and upper bounds. These
slack variables are systematically added by CPLEX, so no additional operation is required in our implementation. The
dual feasible basis BD

1 = B1 ∪ {bI} is then a valid candidate to warm-start C-Gni.
The basis BD

1 represents a neutral but poor initial guess for C-Gni since it reflects only the dual information
gathered when solving Red. In particular, the dual solution does not take into account the rows indexed by P. Another
completion is thus considered.
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Proposition 7. Let B be a feasible basis of P and (P,C,I) be the partition associated with the corresponding basic
solution. Let A·B0 be a set of independent columns spanning A·P, and let P̄ = B \ P. Then A·B0∪P̄ is a basis of Rm.
Moreover, if B0 is a feasible basis of PC0 , then B0 ∪ P̄ is a feasible basis of P.

Proof. A·B is a basis of Rm, so Span(A·P) ⊕ Span(A·P̄) = Rm, which implies that A·B0∪P̄ is a basis of Rm.
If B0 is a feasible basis of PC0 , then b = A·B0 xB0 with xB0 ≥ 0. As a consequence, any completion of B0 is a

feasible basis of P.

Since Algorithm 2 starts with a basic feasible solution, a complete basis B of P is always known. At step 19, a
completion of B based on Proposition 7 is thus possible. Let B2 be this basis of P, and BD

2 = B2 ∪ {bI}. Then BD
1 and

BD
2 are two valid candidates to warm-start C-Gni. Since Cd-Gni is a maximization problem, the basic solution with

the higher objective value is chosen.

3.4. Maintaining a feasible basis

As for the complementary problem, it is important to start solving Red with a basis corresponding to the current
solution. We must therefore find a basis corresponding to the updated solution after the augmentation (step 28).

Proposition 8. Assume that P is bounded and that the current solution x at step 13 is not optimal. Let B? and d? be
the optimal basis and solution of the complementary problem, and b ∈ { j ∈ P : x j + ρmaxd?j = 0}. Then B = B? \ {b}
is a feasible basis of P and the corresponding basic solution is x + ρmaxd?.

Proof. According to Proposition 1, x is not optimal implies that d? , 0 and P bounded implies that ρmax < +∞,
which shows that { j ∈ P : x j + ρmaxd?j = 0} is not empty. Next, d? is the basic solution of Gni associated with B?,
so A·B? d? = 0, and A·Bd?B = −d?b ab. Since db , 0, ab ∈ Span(A·B) and the rank of A·B and A·B? are the same.
Moreover, A·B? is obtained by removing one row from the basic matrix of Gni, whose rank is equal to m + 1, so the
ranks of A·B? and A·B are equal to m. As a consequence, B is a basis of P.

To see that x+ρmaxd? is the corresponding basic solution, first recall that the initial basis of Gni includesP and that
the variables of dP are unbounded. These variables cannot be chosen as the exiting variable in a dual pivot and thus
remain in the basis until optimality, so B? ⊃ { j : x j > 0} ∪ { j : d?j , 0}. As a consequence, A·B

(
x + ρmaxd?B

)
= b + 0

and B ⊃ { j : x j + ρmaxd?j > 0}, which completes the proof.

With this last proposition, it is finally possible to address the convergence of the overall algorithm.

Theorem 2. Let P be a feasible LP. Assuming that the primal and dual simplex are finite, Algorithm 2 is finite and
returns either an optimal solution of P if it is bounded, or an optimal ray if it is unbounded.

Proof. If Algorithm 2 is finite, it either ends because Red is found to be unbounded, or because the optimal solution
of Gni satisfies either z?Gni = 0 or d? ≥ 0. If an optimal ray of Red is found, it can be completed with zeros to form an
optimal ray of P. Otherwise, let x? be the result of the algorithm. If z?Gni = 0 or d? ≥ 0, Proposition 1 ensures that x?

is respectively an optimal solution or an optimal ray of P.
To prove that the algorithm is finite, we first notice that each step is finite if the primal and dual simplex are

assumed to be finite. For the same reason, the loop covering step 4 to step 12 eventually end with an optimal solution
of Red, so the algorithm performs finite major iterations starting at step 4 and ending at step 27. Let x be the current
solution before solving C-Gni or Gni; Proposition 4 shows that if x is not optimal, then d? is an improving feasible
direction. Moreover, Proposition 8 ensures that x + ρmax · d? is a basic solution of P. As a consequence, each major
iteration ends with a basic feasible solution providing a strict improvement in the objective value. Since the number
of basic solutions is finite, so is Algorithm 2.

4. Computational tests

In this section, we evaluate IPSO by comparing it to the primal simplex of CPLEX 12.4. The pricing cri-
terion is systematically set to an approximate version of the steepest edge described by Goldfarb and Reid [12]
(CPX PARAM PRIIND=3), because it has similar performance to that of the automatic default pricing of CPLEX
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but allows for a consistent analysis of the results (see [17]). The other CPLEX parameters are set to their default
values. We finally compare the performance of IPSO with that of IPS and with that reported by Towhidi et al. [26] for
the primal simplex with the positive edge pricing criterion.

The tests are all performed on an OpenSuse operating system with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz
processor, and all the LPs, including Red, C-Gni, and Cr-Gni, are solved with the simplex of CPLEX. The initial basic
feasible solutions used by every algorithm are obtained by the primal simplex phase I of CPLEX. We set the time limit
to 10 hours for every tested algorithm.

Unless otherwise specified, CPLEX refers to the primal simplex of the LP solver in the rest of the article.

4.1. Implementation improvements

In their analysis of the performance of IPS, Omer et al. [17] emphasize that the algorithm was designed with
some particular classes of highly degenerate problems in mind. It would be unrealistic to expect that it would achieve
the impressive performance described in [6, 24] on every LP. Omer et al. [17] identify three major reasons that
IPS may not perform well on some instances. The first two relate to degeneracy. If only a few simplex pivots
are degenerate (< 30%), then interrupting the primal simplex may be counterproductive. Otherwise, if only a few
variables are degenerate (< 20%), then reducing P is unlikely to lead to a faster solution of the problem. Moreover,
after a reduction of Red, the problem contains only the positive and compatible variables. If Red contains only a
few compatible variables, it is again likely that the whole process of dynamic reduction will not be advantageous.
Referring to [17], IPS does not perform well when |C0| ≤ 0.5 |P0|. In IPS, identifying C is time-consuming, but this
is not the case if the positive edge criterion is used. As a consequence, one important contribution of IPSO is that we
can test its potential for improvement in advance.

In practice, Algorithm 3 is run before Algorithm 2 to take into consideration the conclusions of [17]. This algo-
rithm iteratively tests the potential of IPSO and perform simplex pivots on P until the potential of IPSO is shown or
optimality is reached. A few pivots are done before the first time that the numbers of degenerate and compatible vari-
ables are tested to estimate the percentage of degenerate pivots. The maximum number of pivots M is then increased
after each interruption of the simplex to limit the number of these interruptions when the tests are unsuccessful.

Algorithm 3: Testing the potential of IPSO

1 x0 ← a basic feasible solution;
2 M ← 1000; d ← 0; optimal← false; potential← false;
3 while x0 is not optimal and potential = false do
4 while d < 0.3 × M and optimal = false do
5 Perfom M simplex pivots on P;
6 d ← number of degenerate pivots;
7 x0 ← the current solution of P;
8 if x0 is optimal or Red is unbounded then
9 optimal← true;

10 p←
∣∣∣∣{ j : x0

j > 0}
∣∣∣∣;

11 if p ≤ 0.8m then
12 Use the positive edge criterion to build the partition (P0,C0,I0) corresponding to x0;
13 if |C0| ≥ 0.5 |P0| then
14 potential← true;
15 M ← M + m;

If Algorithm 3 reaches step 14, IPSO will potentially improve the primal simplex, so the current solution x0 is
used to initialize x at step 2 of Algorithm 2. Otherwise, the complete solution of the problem is done in Algorithm 3
with primal simplex pivots on P. In the latter case, the difference with an ordinary execution of the primal simplex is
that the algorithm is interrupted a limited number of times to make unsuccessful tests. The only costly operation in
the tests of Algorithm 3 is the identification of the compatible variables when building the partition (P0,C0,I0). As is
stated in Section 3.1, this requires a similar number of operations as computing the reduced costs, so the complexity of
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the tests is the same as that of a simplex pivot. For a very small computational cost, Algorithm 3 may thus prevent from
starting the dynamic reduction of IPSO on instances that should be solved more efficiently with the primal simplex.

Another improvement ensures that IPSO performs well on highly degenerate LPs with only a few compatible
variables. When the number of compatible variables is not sufficient to start IPSO, but the simplex performs a large
number of degenerate pivots, it is interrupted every time it remains stuck on the same vertex for more than some large
number of pivots. No reduction is done, but Gni is then solved to find a feasible improving direction. In our tests, this
process is triggered when more than 95% degenerate pivots are performed overall and the objective value stalls for
more than 1000 pivots.

4.2. Description of the benchmark

The benchmark includes the VCS, UBFA, and UFL instances used in [17], and 45 instances of Mittelmann’s
benchmark3. For Mittelmann’s benchmark, we exclude only two instances that take less than one second to solve.
As in [17], we added the dual formulation of four LPs (neos1, neos2, neos3, rlfprim) whose number of constraints
is much larger than the number of variables. The characteristics of the benchmark appear in Table 1, which includes
the dimensions (n × m) and the density (ρA) of A, and the main statistics for the phase II of the primal simplex of
CPLEX, i.e., the number of pivots (piv), the percentage of degenerate pivots (degen piv), and the computational time
(cpu). The CPLEX statistics result from two separate optimization runs for each model : the number of pivots and the
total runtime are obtained with the default options, but the perturbations had to be disabled to compute the fraction
of degenerate pivots. The column “phase I” indicates how much time is spent in phase I to find an initial feasible
solution. Since the time and pivots spent in this phase I are common to every algorithm, they are excluded from the
subsequent comparisons.

4.3. Comparison with CPLEX

In our first evaluation of IPSO we present detailed statistics on its execution and compare it with the primal simplex
of CPLEX. The tests described in Algorithm 3 are performed before starting the dynamic reduction. The results of
the instances solved with the dynamic reduction are reported in Table 2. The instances that are not degenerate enough
or have too few compatible variables appear in Table 3. In both tables, we do not report the time spent in testing the
potential of IPSO, because it is negligible compared to the solution times of IPSO and CPLEX.

We first focus on Table 2, where “aug” is the number of augmentation phases, and m−p
m and |C|

|P| are the average
percentages of degenerate and compatible variables. The next four columns detail the time spent and the numbers of
pivots performed when solving the reduced and the complementary problems. The remaining runtime is that spent in
identifying the compatible variables and the redundant constraints of PC; we do not report it in Table 2, because it is
negligible when compared to the solution time of the reduced and complementary problems. The last two columns
contain the ratios of the total number of pivots and runtime of CPLEX relative to those of IPSO, thus indicating
improvement factors. The cpu improvement column shows that IPSO significantly (≥ 30%) outperforms CPLEX on
33 of 38 instances while CPLEX never outperforms IPSO, which means that Algorithm 3 successfully filters out the
unfavorable cases. Moreover, IPSO divided the computational time by a factor larger than two on all the VCS and
UBFA instances and on nine Mittelmann instances. Most of the computational time was spent in the reduced problem,
which is consistent with the fact that only one complementary problem is solved at each augmentation phase. Finally,
the six instances buildingen, neos1, neos2, neos3’, rlfprim’, and stat96v1 have very low |C|

|P| , so P is never reduced
during the solution with IPSO. The improvement in runtime is achieved by solving one or more complementary
problems to find improving feasible directions, as described in Section 4.1.

Table 3 details the degeneracy and compatibility values when the tests in Algorithm 3 are not successful. The
instances are organized according to the test that fails, and we report the highest observed values. IPS and IPSO are
designed to take advantage of degeneracy, so it seems logical that the first twelve instances should not be tested. On
the other hand, when solving the last ten instances, the primal simplex struggles with degeneracy, and the number
of degenerate variables would allow for an advantageous reduction of P. IPSO was thus executed without testing
the number of compatible variables to evaluate the relevance of the chosen threshold. For eight instances out of ten,
IPSO is outperformed by CPLEX although the improvement factor is significant in only five cases. This shows that

3 These instances are available online: http://plato.asu.edu/ftp/lpcom.html (last visited on January 14th, 2015).
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Table 1: Characteristics of the benchmark

Size of P CPLEX solve

Instance m: rows n: cols ρA phase I (s) piv cpu (s) degen piv

VCS1 2084 10343 1.5E-2 5.19 21091 20.30 70.2%
VCS2 2084 10150 1.6E-2 6.91 22980 21.95 72.2%
VCS3 2085 26350 1.7E-2 6.11 42341 93.07 47.9%
VCS4 1200 133572 1.7E-2 4.33 12479 68.43 66.3%
VCS5 1600 570983 1.2E-2 17.35 25849 607.08 66.9%

UBFA1 5182 23650 2.5E-3 21.68 11129 8.92 63.9%
UBFA2 5182 23990 2.5E-3 28.88 15566 13.09 58.3%
UBFA3 5182 24282 2.5E-3 30.04 67792 93.72 68.5%
UBFA4 5182 24517 2.5E-3 27.86 142550 255.36 73.2%
UBFA5 5182 24875 2.5E-3 31.91 53591 73.42 85.8%

UWL2 7965 7965 2.4E-4 0.02 20327 5.31 40.9%
UWL3 10440 10440 1.9E-4 0.02 36072 8.99 36.8%
UWL4 15476 30452 1.3E-4 0.03 54069 17.57 61.3%
UWL5 20534 40568 9.6E-5 0.04 60587 23.72 71.4%
UWL6 25931 51462 7.7E-5 0.05 58382 23.21 84.3%

buildingen 277594 154978 9.2E-6 0.75 169070 282.53 73.2%
cont1 160792 40398 2.0E-5 235.54 2227 151.12 91.3%
cont11 160792 80396 1.6E-5 236.15 90026 4188.87 28.6%
cont4 160792 40398 2.0E-5 88.89 830 68.63 99.0%
dano3mip 3202 15851 1.6E-3 0.15 13785 5.22 60.1%
dbic1 43200 226317 1.1E-4 0.38 28371 12.44 88.3%
dfl001 6071 12230 4.8E-4 1.88 21895 8.77 70.8%
ds-big 1042 174997 2.5E-2 2.50 24818 280.85 46.0%
fome12 24284 48920 1.2E-4 2.97 78964 66.61 66.6%
fome13 48568 97840 6.0E-5 6.89 171371 240.75 73.0%
gen4 1537 4297 1.6E-2 10.21 2072 3.24 78.3%
ken-18 105127 154699 2.2E-5 0.80 66767 21.59 32.5%
L1-simx 986069 428032 1.0E-5 4.02 89021 3852.64 95.9%
l30 2701 16281 1.2E-3 0.02 123704 136.84 98.0%
Linf 520c 93326 103505 6.2E-5 50.99 23319 138.95 45.1%
lp22 2958 16392 1.4E-3 3.18 36250 20.38 80.0%
mod2 34774 66409 8.7E-5 5.16 38023 43.79 12.1%
neos 479119 515905 6.2E-9 24.23 12721 17.16 53.8%
neos1 131581 1892 3.4E-5 16.36 16588 37.33 99.9%
neos1’ 1892 131582 1.9E-3 0.18 33580 111.98 99.0 %
neos2 132568 1560 3.9E-5 16.39 93410 398.11 100.0%
neos2’ 1560 132568 2.6E-3 0.29 39460 149.87 99.2 %
neos3 512209 6624 4.5E-4 0.82 >527758 >36000 96.2%
neos3’ 6624 512209 4.5E-4 0.62 61140 939.58 1.7%
ns1687037 50622 43749 3.5E-4 2.01 140664 4506.89 35.14%
ns1688926 32768 41163 1.3E-3 0.40 18969 90.81 30.9%
nsct2 23003 37563 8.1E-4 0.14 6847 2.69 87.3%
nug08-3rd 19728 20448 2.5E-4 1083.13 247897 6724.86 99.9%
nug15 6330 22275 6.7E-4 46.03 92087 257.49 55.6%
pds-040 66844 217531 3.2E-5 1.48 41587 34.41 87.6%
pds-100 156243 514577 1.4E-5 6.99 174460 530.01 91.6%
qap12 3192 8856 1.4E-3 7.32 20727 17.21 32.8%
qap15 6330 22275 6.7E-4 82.70 108918 339.23 60.6%
rail2586 2586 923269 3.4E-3 2.81 45855 1248.37 36.0%
rail4284 4284 1096890 2.4E-3 4.21 88617 2520.75 52.4%
rlfprim 58866 62716 8.7E-5 0.11 15214 8.86 99.6%
rlfprim’ 8052 74970 4.7E-4 0.13 3224 2.31 100.0%
stat96v1 5995 197472 5.0E-4 0.36 18845 84.89 56.5%
stat96v4 3173 63076 2.5E-3 29.47 43352 113.74 43.0%
storm 1000 528185 1377310 4.8E-6 9.56 221870 1219.95 58.9%
storm 125 66185 172431 3.8E-5 0.40 27810 9.30 50.2%
stp3dlp 159488 336283 1.5E-5 817.07 260848 1679.04 97.7%
watson 1 201155 386992 1.4E-5 16.97 66106 84.27 79.5%
watson 2 352013 677224 7.7E-6 20.91 124865 290.47 69.5%
world 34506 67147 8.6E-5 2.65 44387 56.85 13.7%
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Table 2: Comparison of IPSO with CPLEX

potential solve Gni solve Red total improvement

aug
m − p

m
|C|
|P| piv cpu piv cpu cpu piv cpu

VCS1 9 43% 437% 339 0.35 21616 11.85 12.6 0.98 1.61
VCS2 10 45% 447% 556 0.45 25180 13.22 14.12 0.91 1.55
VCS3 9 60% 154% 6239 4.46 27236 18.87 23.54 1.26 3.95
VCS4 1 43% 17252% 91 0.16 8494 25.37 25.63 1.45 2.67
VCS5 3 53% 52541% 213 3.21 21133 239.81 243.44 1.21 2.49
Average 1.15 2.31

UBFA1 4 73% 302% 1736 1.14 15362 6.52 7.78 0.72 1.15
UBFA2 5 74% 312% 1817 1.27 17573 7.43 8.88 0.89 1.47
UBFA3 4 75% 331% 3483 1.77 18800 6.98 8.81 3.04 10.64
UBFA4 6 76% 280% 8873 4.62 30378 12.13 16.82 3.63 15.18
UBFA5 3 73% 324% 1471 0.78 16799 9.62 10.43 2.93 7.04
Average 1.83 4.54

UWL2 4 52% 101% 1 0.01 21156 4.46 4.53 0.96 1.17
UWL3 4 66% 67% 8 0.01 24578 5.94 6.03 1.47 1.49
UWL4 3 74% 75% 3 0.08 40051 9.70 9.79 1.35 1.79
UWL5 3 79% 69% 130 0.14 51901 13.38 13.55 1.16 1.75
UWL6 3 81% 81% 19 0.13 42476 13.25 13.41 1.37 1.73
Average 1.25 1.57

buildingen 2 77% 20% 11860 7.66 147889 161.97 170.54 1.14 1.66
dano3mip 4 33% 419% 21 0.07 15251 3.71 3.81 0.90 1.37
dbic1 3 89% 105% 13 0.66 17886 5.29 6.06 1.59 2.05
ds-big 4 35% 32216% 787 4.73 33015 258.04 263.83 0.75 1.06
gen4 1 68% 0% 0 0.02 1001 1.57 1.6 2.07 2.03
l30 4 25% 176% 4787 2.12 19698 10.49 12.64 5.05 10.83
lp22 4 28% 389% 2120 0.89 24954 13.43 14.37 1.34 1.42
L1 simx 16 96% 100% 17221 988.8 79374 1824.58 2823.54 1.12 1.36
neos1 3 50% 0% 3073 8.89 3282 8.03 17.18 2.61 2.17
neos1’ 3 86% 4942% 94 0.24 2374 0.60 0.88 13.61 127.83
neos2 5 64% 1% 12466 42.47 6183 15.65 58.53 5.01 6.80
neos2’ 3 80% 4110% 1384 2.03 13154 5.31 7.38 2.71 20.32
neos3 7 84% 11% 305399 4608.34 85123 4651.2 9262.82 >6.20 > 3.80
neos3’ 2 38% 50% 47 0.39 6101 73.97 74.97 10.02 12.53
nug08-3rd 4 100% 18435% 106887 731.64 21735 590.62 1339.39 11.41 5.02
rail2586 3 26% 16489% 314 5.66 52224 555.94 561.99 0.87 2.22
rail4284 3 26% 6461% 1004 19.82 79452 713.97 734.30 1.10 3.43
rlfprim’ 1 48% 3% 2970 1.24 101 0.02 1.28 1.05 1.81
stat96v1 1 21% 13% 5223 16.00 13446 57.83 74.05 1.01 1.15
storm 1000 3 56% 112% 124 7.60 179106 704.72 714.08 1.24 1.71
storm 125 3 56% 111% 1 0.48 29325 8.71 9.28 0.95 1.00
watson 1 3 83% 62% 18 1.46 30152 8.99 10.69 2.19 7.89
watson 2 3 80% 63% 14 2.24 40879 61.70 64.38 3.05 4.51
Average 2.07 3.40
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Table 3: Instances with low potential improvement

degen piv
m − p

m
|C|
|P| cpu improve

mod2 12.5%
← degen piv < 30%qap12 21.4%

world 13.7%

cont1 58.1% 0.0%

← m − p
m

< 20%

cont11 34.7% 0.6%
cont4 99.0% 0.0%
neos 53.6% 4.1%
ns1687037 35.1% 4.5%
nug15 23.8% 13.8%
qap15 53.3% 12.2%
rlfprim 99.5% 17.8%
stat96v4 41.2% 1.0%

dfl001 43.6% 45.2% 20.1% 0.89

← |C||P| < 50%

fome12 73.1% 31.4% 39.9% 0.68
fome13 77.5% 40.9% 45.2% 0.81
ken-18 33.4% 29.7% 20.3% 0.67
Linf-520c 54.3% 27% 41% 0.88
ns1688926 41.5% 44.4% 5.9% 1.30
nsct2 87.8% 49.0% 3.0% 1.83
pds-040 87% 82% 26% 0.35
pds-100 91% 88% 34% 0.60
stp3dlp 98.5% 94.7% 19.7% 0.65

the decomposition based on compatibility does not allow us to take advantage of degeneracy for every degenerate
LP (only 21 of 34 degenerate Mittelmann instances), but it is possible to test the potential efficiency of IPSO before
starting the dynamic reduction. Moreover, this test is fast, since the positive edge criterion allows us to find the number
of compatible variables within a computational time that compares to that of a simplex pivot. As a consequence, the
algorithm could be used as an adaptive strategy integrated in an efficient primal simplex.

For a more general view on the available LP solvers, we compared IPSO and the primal simplex of CPLEX with
the barrier and dual simplex algorithms of CPLEX. These comparisons focus on the solution times from scratch.
The results show that the dual simplex and the barrier algorithm respectively outperform IPSO by an average 1.55
and 2.15 factor, whereas they outperform the primal simplex by an average 2.90 and 4.10 factor. Even though IPSO
is clearly more competitive than the primal simplex, the improvement is not sufficient to make it the most efficient
algorithm when solving an LP from scratch. Despite this, IPSO provides the best solution time for 10% of the
instances, whereas the primal simplex outperforms the other three algorithms for only one instance. IPSO may then
be useful as one of the concurrent methods used in the default behavior of CPLEX. Moreover, as highlighted in the
introduction, the main benefit of the primal simplex is that it can be used to efficiently optimize an LP when a good
feasible solution is available, so IPSO should be the best option in a large number of such situations.

4.4. Comparison with IPS and positive edge

In this section we compare IPSO with the latest version of IPS described in [17] and with the results reported by
Towhidi et al. in [26] for the primal simplex of CLP including the positive edge pricing criterion (PE).

Table 4 gives the computational time spent identifying the compatible variables (“PCI”) and solving the reduced
problems (“Red”) and the complementary problem (“Cr-Gni”) during the execution of IPS, and total runtime of IPS
(“total”). The last three columns give the cpu improvement of IPS, IPSO, and PE (when available in [26]). The cpu
improvement of IPS and IPSO are the ratios of the runtime of the primal simplex of CPLEX relative to those of IPS
and IPSO, respectively. The cpu improvement of PE is the ratio of the runtime of CLP’s primal simplex relative to that
of PE. In our tests IPS is started from the same phase I feasible solution as IPSO, whereas PE uses a different solution
generated by CLP in [26]. Only the Mittelmann instances with sufficient degeneracy are included, and they are divided
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into two different groups depending on whether or not the compatibility test fails ( |C||P| < 50%). The instances are then
organized by increasing number of rows.

The improvement factors show that IPS and IPSO have similar performance on the VCS and UFL problems. IPS
outperforms IPSO on the UBFA instances, but the improvement factors are still high. Focusing on the first group of
Mittelmann instances, IPS matches the performance of IPSO in four of sixteen cases but is significantly outperformed
in the other twelve cases. Moreover, IPS experiences serious difficulties on the largest instances, while there is no
obvious correlation between the performance of IPSO and the size of the instance. To explain the difficulties of
IPS, we observe that the identification of compatible variables alone takes more time than the complete solution by
CPLEX for buildingen, dbic1, neos3, pds-100, storm 125, storm 1000, watson 1, and watson 2. Moreover, Cr-Gni
must be solved a large number of times during the augmentation phases to select a significant number of incompatible
variables. Finally, IPS does not perform better on the instances that would fail the compatibility test, but this test is
time-consuming if Ā has to be computed.

Towhidi et al. [26] use the positive edge criterion as a pricing criterion to select the compatible variables. More
precisely, if jC = argmin{c̄ j : j ∈ C} and jI = argmin{c̄ j : j ∈ I}, the entering variable is x jC if c̄ jC < ψc̄ jI and x jI
otherwise (0 < ψ < 1). They thus use the concept of compatibility to reduce the number of degenerate steps, but
they do not take advantage of degeneracy by removing constraints from the LP. The comparison with PE is presented
simply to indicate global trends, because the available data is partial and, more importantly, because the improvement
factors of PE refer to CLP. Nevertheless, if we focus on the instances that satisfy the compatibility test, we see that
IPSO’s improvement factors range from two to six for rail4284, neos1, neos2, and watson-2 whereas PE fails to
improve the computational time of CLP. For rail4284 and watson-2, the success of IPSO is due to the reduction of P,
but for neos1 and neos2, solving Gni to find improving feasible directions makes the difference. On the other hand,
PE clearly outperforms IPSO on all the instances that failed the compatibility test. In these cases, the advantage of PE
is its flexibility. In contrast with IPSO, it does not exclusively focus on the compatible variables and does not need to
rely on a heuristic augmentation phase. PE selects a compatible variable when its reduced cost is negative enough and
an incompatible variable otherwise.

5. Conclusion

The improved primal simplex (IPS) is a dynamic constraint reduction algorithm that takes advantage of degeneracy
in LPs. Among the pitfalls that remain to be addressed are the costly matrix product performed when identifying the
compatible variables, and the numerous solutions of the complementary problem at each augmentation phase. In
this work, we introduce two major modifications to overcome these pitfalls. The first is the use of the positive edge
criterion [23] as a fast stochastic compatibility test. This test allows for a fast reduction of the LP during the solution
process, and it also offers an opportunity to rapidly test the potential performance of our method prior to starting it. The
second is the revision of the whole augmentation phase to focus on a complementary problem involving the original
coefficients of the matrix, which is solved only once per phase. We also describe how to build good dual and primal
feasible bases to warm-start respectively the complementary and the reduced problems. The resulting algorithm,
referred to as IPSO, is evaluated on a benchmark including 45 Mittelmann instances. This evaluation shows that the
preemptive test efficiently identifies the instances that have a limited potential for improvement with IPSO. When this
test is successful, IPSO outperforms the primal simplex of CPLEX on all but five instances, and improvement factors
greater than two are found in 20 of 38 cases. IPSO also outperforms IPS on all but two Mittelmann instances. To
be specific, IPS has difficulties on the largest Mittelmann instances, whereas the improvement factor of IPSO is not
correlated to the size of the instance. Finally, the comparison with the PE that Towhidi et al. [26] implemented in the
primal simplex of COIN-OR’s CLP offers important insight into future improvements of the algorithm. The reduction
of the number of constraints is clearly an advantage of IPSO when there is a large number of compatible variables.
On the other hand, the possibility of considering incompatible variables when the compatible variables do not have
good reduced costs allows PE to perform well on every highly degenerate LP of Mittelmann’s benchmark.

In future work, we will look into the possibility of a hybrid procedure combining IPSO and PE in COIN-OR’s
CLP. Although the primal simplex of CLP is not as fast as that of CPLEX, it has the great advantage of being an open
code. The algorithm could then be implemented as an internal procedure, and the analysis would take advantage of the
availability of the code. Another possibility is to extend the algorithm to the simplex phase I with a method similar to
that of Pan [21]. It would also be interesting to investigate a dual version of IPSO. Pan [19] takes advantage of primal
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Table 4: Comparison of IPSO with IPS [17] and PE [26]

size of P IPS: cpu time (s) cpu improvement

m: rows n: cols PCI Red Cr-Gni total IPS IPSO PE

VCS1 2084 10343 0.54 6.19 0.69 7.53 2.70 1.61 –
VCS2 2084 10150 0.53 5.91 0.80 7.37 2.98 1.55 –
VCS3 2085 26350 1.64 6.41 7.14 15.72 5.92 3.95 –
VCS4 1200 133572 1.87 20.82 0.55 23.37 2.93 2.67 –
VCS5 1600 570983 13.11 146.13 63.27 226.42 2.68 2.49 –
UBFA1 5182 23650 1.06 2.75 2.09 6.08 1.47 1.15 –
UBF2 5182 23990 1.07 2.87 2.30 6.47 2.02 1.47 –
UBFA3 5182 24282 1.07 3.26 2.17 6.72 13.94 10.64 –
UBFA4 5182 24517 1.14 3.34 3.06 7.77 32.86 15.18 –
UBFA5 5182 24875 1.08 3.58 2.36 7.26 10.12 7.04 –
UWL2 7965 7965 0.70 2.16 0.81 3.79 1.40 1.17 –
UWL3 10440 10440 1.13 1.68 1.39 4.37 2.06 1.49 –
UWL4 15476 30452 2.93 3.37 2.42 9.00 1.95 1.79 –
UWL5 20534 40568 4.58 4.80 4.47 14.23 1.67 1.75 –
UWL6 25931 51462 8.08 3.65 6.26 18.44 1.26 1.73 –

ds-big 1042 174997 29.50 172.42 24.22 227.52 1.23 1.06 –
gen4 1537 4297 0.52 4.47 0.00 4.98 0.65 2.03 –
neos2dual 1560 134128 2.38 0.63 9.47 12.77 11.74 20.32 –
neos1dual 1892 133473 2.09 0.19 5.32 8.10 13.82 127.83 –
rail2586 2586 923269 85.51 246.60 275.60 619.64 2.01 2.22 –
l30 2701 16281 0.32 15.80 12.26 28.56 4.79 10.83 –
lp22 2958 16392 0.59 12.68 1.05 14.40 1.41 1.42 1.84
dano3 3202 15851 0.40 2.73 0.51 3.73 1.40 1.37 1.68
rail4284 4284 1096890 155.60 539.21 1336.12 2048.01 1.23 3.43 0.45
stat96v1 5995 197472 29.12 57.83 16.00 93.18 0.91 1.15 0.83
neos3’ 6624 512209 122.36 312.91 35558.46 stopped stopped 12.53 –
rlfdual 8052 74970 2.00 0.02 0.42 2.49 0.93 1.81 –
nug08-3rd 19728 20448 129.48 689.33 1463.33 2288.31 2.94 5.02 0.88
dbic1 43200 226317 51.24 6.96 535.17 593.42 0.02 2.05 2.15
neos1 131581 1892 150.76 478.19 5704.07 6333.47 0.06 2.17 1.05
neos2 132568 1560 829.40 4301.60 30878.50 stopped stopped 6.80 1.03
storm 125 159488 336283 59.08 5.51 188.21 252.89 0.04 1.71 –
watson 1 201155 386992 579.45 3.87 2224.27 2807.69 0.03 7.89 –
buildingen 277594 154978 912.87 490.30 34527.22 stopped stopped 1.66 –
watson 2 352013 677224 2522.88 58.43 17771.40 20487.62 0.01 4.51 1.81
neos3 512209 6624 1982.01 0.25 34017.99 stopped stopped >3.88 1.46
storm 1000 528185 1377310 8235.06 382.76 27764.94 stopped stopped 1.00 –
L1 simx 986069 428032 3683.27 728.86 31964.68 stopped stopped 1.36 –

dfl001 6071 12230 1.11 5.17 3.48 9.95 0.88 0.89 –
nsct2 23003 37563 3.39 0.27 14.06 17.74 2.47 1.83 –
fome12 24284 48920 16.80 55.98 111.42 187.39 0.36 0.68 1.52
ns1688926 32768 41163 5.92 26.85 14.00 46.77 0.44 1.30 2.91
fome13 48568 97840 24.02 230.09 192.58 446.81 0.54 0.81 2.54
pds-040 66844 217531 42.65 76.85 1048.54 1168.27 0.03 0.35 2.20
Linf-520c 93326 103505 98.81 2966.83 1758.12 4831.06 0.03 0.88 –
ken-18 105127 154699 34.76 62.05 112.13 209.05 0.02 0.67 –
pds-100 156243 514577 892.97 871.22 19945.92 21866.86 0.02 0.60 3.17
stp3dlp 159488 172431 200.01 92.49 3009.68 3302.36 0.03 0.65 –
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degeneracy in a dual algorithm, but he does not treat dual degeneracy. Finally, another decomposition algorithm [11]
reduces the size of the basis by giving special treatment to slack variables. A study of the interaction of IPSO with
this decomposition could lead to additional improvements of the primal simplex.
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