

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.ejor.2015.03.022

http://hdl.handle.net/10251/70783

Elsevier

C. Archetti; A. Corberán; ISAAC PLANA; Sanchís Llopis, JM.; M.G. Speranza (2015). A
matheuristic for the Team Orienteering Arc Routing Problem. European Journal of
Operational Research. 245:392-401.

A Matheuristic for the Team Orienteering Arc

Routing Problem

Claudia Archetti(1)
∗

Ángel Corberán(2) Isaac Plana (3)

José M. Sanchis (4) M. Grazia Speranza(1)

(1) Dipartimento di Economia e Management, Università di Brescia, Italy

(2) Departamento de Estad́ıstica e Investigación Operativa, Universidad de Valencia, Spain

(3) Departamento de Matemáticas para la Economı́a y la Empresa, Universidad de Valencia, Spain

(4) Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Spain

{archetti, speranza}@eco.unibs.it, {angel.corberan, isaac.plana}@uv.es, jmsanchis@mat.upv.es

October 1, 2014

Abstract

In the Team Orienteering Arc Routing Problem (TOARP) the potential

customers are located on the arcs of a directed graph and are to be chosen

on the basis of an associated profit. A limited fleet of vehicles is available

to serve the chosen customers. Each vehicle has to satisfy a maximum route

duration constraint. The goal is to maximize the profit of the served customers.

We propose a matheuristic for the TOARP and test it on a set of benchmark

instances for which the optimal solution or an upper bound is known. The

matheuristic finds the optimal solutions on all, except one, instances of one

of the four classes of tested instances (with up to 27 vertices and 296 arcs).

The average error on all instances for which the optimal solution is available is

0.67%.

Keywords

Team Orienteering Problem, Arc Routing Problem, Routing Problems with

Profits, Matheuristic.

∗corresponding author

1 Introduction

In arc routing problems customers are located on arcs. The basic problems

of this class are the Chinese Postman Problem (CPP), where all edges or arcs

have to be traversed, and the Rural Postman Problem (RPP), where only some

edges or arcs are required to be traversed, and routes of minimum cost have to

be identified. For a formal definition of the CPP and RPP the reader is referred

to the book edited by Dror [10]. There are several applications of arc routing

problems where the edges or arcs to be traversed are not given and have instead

to be selected on the basis of a profit. In fact, for any arc routing problem with

given customers to traverse a version where customers have to be chosen is likely

to have interesting applications. Typical applications of arc routing problems

include road maintenance, garbage collection, and mail delivery. In all these

cases, if it is not possible to traverse all customers in a day because vehicles,

people or time are not sufficient, one has to choose the most valuable customers

to serve.

In the routing literature where customers are located on vertices, the prob-

lems where the customers have to be selected on the basis of their profit are

called routing problems with profits (see [12], [20] and [7]). The arc routing

counterpart of this class is called arc routing problems with profits. A recent

survey on arc routing problems with profits can be found in [5]. We refer the

reader to this survey for the description of the problems that have been studied

till now in the literature. It is important to mention that, as pointed out in

[5], the number of papers dealing with arc routing problems with profits is still

very limited, especially if compared with the node routing counterpart. More

specifically, the contributions related to the study of problems dealing with

more than one vehicle are very few. In fact, the only problems that have been

studied (apart from the TOARP that is studied in this paper) are the Prof-

itable Arc Tour Problem (PATP) and the Undirected Capacitated Arc Routing

Problem with Profits (UCARPP). The PATP was introduced in [13] and is the

problem of finding a set of routes maximizing the difference between the total

collected profit and the travel cost such that the travel time of each route does

not exceed a given threshold. No limit on the number of routes is given. In [13]

an exact algorithm is proposed based on the branch-and-price scheme while in

[11] different heuristic algorithms are developed. The UCARPP was introduced

in [3] and is the problem of finding the set of routes that maximizes the total

collected profit in such a way that each route satisfies capacity and maximum

2

duration constraints. In [3] an exact algorithm and different heuristics are pro-

posed. More recently, the same problem was addressed in [21] where a new and

effective heuristic algorithm is presented.

A well studied problem in the class of routing problems with profits is the

Team Orienteering Problem (TOP), where a fleet of uncapacitated vehicles

is available, with a time duration constraint on each route, and the problem

is to select a set of customers to maximize the total profit of the customers

served. In this paper we study the arc routing counterpart of the TOP, the

Team Orienteering Arc Routing Problem (TOARP), that was introduced in [1].

In the TOARP, customers with an associated profit are located on arcs and a

fleet of vehicles with a time duration constraint on each route is given. The

problem consists in choosing the customers and in designing the routes in such

a way that the collected profit is maximized. An interesting application of the

TOARP is in truck-load transportation, where customers place orders consisting

of requests of transportation services from an origin to a destination. Each

transportation service requires a full truck going from the corresponding origin

location to the corresponding destination. These services can be represented as

arcs of a graph that have to be traversed in order to satisfy the corresponding

customer requests. Some of the customers are to be served whereas others

may be postponed or not served at all. For example, the service of the least

profitable customers may be outsourced. In [1] an extended polyhedral study

for the TOARP is presented. The proposed branch-and-cut algorithm solves

instances with up to 100 vertices, 800 arcs, and 4 vehicles to optimality and

makes use of the solutions provided by the heuristic described in this paper.

We address the heuristic solution of the TOARP by means of an algorithm

that combines a tabu search, to escape from local optima, a diversification

phase and the optimal solution of integer linear programming (ILP) models

to intensify the search in some areas of the solution space. The combination

of a heuristic or metaheuristic scheme with mixed integer linear programming

(MILP) models has been recently explored by several authors. A survey is

presented by Ball [8] for combinatorial optimization problems in general while,

more recently, in [6] a survey focused on routing problems can be found. These

heuristics are named in different ways. In the survey [8] they are simply called

heuristics based on mathematical programming, in other cases (see [19]) they go

under the generic name of hybrid heuristics. The name matheuristic was created

ad hoc for this class of heuristics (see [17]) and this is the name we will use in this

3

paper. The main contribution of this paper is the design of a matheuristic for the

TOARP where we exploit the benefit of using ILP models in the searching phase.

We developed a solution algorithm which combines heuristic operators with the

exact solution of different ILP models. These models can be easily implemented

and are powerful tools to intensify the search around a promising solution, while

typically standard heuristic operators are not as effective or have to be adapted

to the problem structure, thus leading to very specialized solution methods. We

performed tests on a large set of benchmark and randomly generated instances.

The matheuristic finds the optimal solution on 78% of the instances for which

the optimal solution is known and provides an average error with respect to the

optimal solution of 0.67%.

The paper is organized as follows. In Section 2 we introduce the TOARP,

whereas in Section 3 we describe the general scheme of the matheuristic and its

components. The computational results are presented and discussed in Section

4.

2 The team orienteering arc routing problem

The TOARP is defined on a directed graph. In general, the graph is not com-

plete. A numerical value representing the traversal cost or travel time is associ-

ated with each arc. Only some of the arcs represent customers. Some customers

have to be served, and are called required, whereas some others may be served

if beneficial. A profit is associated with each customer of the latter set. We

call these customers profitable. A limited fleet of vehicles is available. Each

vehicle starts its route at the depot, traverses a set of arcs and ends its route

at the depot. Each route cannot exceed a maximum time duration. The goal

is to choose a set of the profitable customers and to design the routes of the

vehicles in such a way that the required and chosen profitable customers are

served, the time duration constraints of the routes are satisfied and the total

profit collected is maximized.

More formally, a directed graph G = (V,A) is given, where V = {1, . . . , n}

is the set of vertices and A is the set of arcs. Vertex 1 is the depot, that is the

starting and ending vertex of each route. A travel time ca is associated with

each arc a ∈ A. Some arcs represent customers. The set AR ⊆ A represents

customers that have to be served, whereas AP ⊆ A represents the set of prof-

itable customers. A nonnegative profit sa is associated with each arc a ∈ AP .

4

A fleet of K vehicles is available. The route of each vehicle cannot exceed a

maximum time duration Tmax. The profit of any profitable customer can be

collected by one vehicle at most. The objective of the TOARP is to maximize

the total profit collected. A mathematical programming formulation for the

TOARP can be found in [1].

3 A matheuristic for the TOARP

In this section we present a matheuristic for the solution of the TOARP that

we call MAT (MAtheuristic for TOARP).

In the following, we say that a profitable arc is served by a vehicle if the

vehicle traverses the arc and collects the corresponding profit. In MAT, there

is no distinction between required and profitable arcs. A very large profit is

assigned to the arcs in AR and all arcs in AP ∪ AR are considered, and called,

profitable. Thus, we redefine AP as AP ∪ AR. Moreover, the set of arcs A is

completed by inserting all arcs between every pair of profitable arcs, plus the

depot. Thus, if there is not an arc which link the head of a profitable arc (or

the depot) with the tail of another profitable arc (or the depot), then we insert

it in A. The cost of the inserted arcs is equal to that of the shortest path.

Before describing the different components of MAT, we introduce some no-

tation and definitions.

3.1 Notation and definitions

The profit S(C) of a set of profitable arcs C ⊆ AP is the total profit
∑
a∈C

sa.

We denote by Lr the set of profitable arcs served by route r and by Ar the set

of all arcs traversed by route r. The profit S(r) of a route r is defined as the

total profit of the profitable arcs served by the route, i.e., S(r) = S(Lr). The

duration T (r) =
∑

a∈Ar
ca of a route r is its total travel time. A route r is

feasible if it starts and ends at the depot and T (r) ≤ Tmax.

For a set R of routes, S(R) =
∑
r∈R

S(r) is the total profit of the routes in R

and L(R) =
⋃

r∈R

Lr is the set of profitable arcs served by the routes in R.

A solution s is defined as a set of routes such that each profitable arc is

served by exactly one route. A solution s is said to be feasible if each route

in s is feasible. Although in a solution s any arc (profitable or not) may be

traversed more than once, the profit of a profitable arc is collected exactly

once. We denote by RP (s) the set of the K most profitable routes in s (or the

5

set of all routes in s if they are less than or equal to K), and RN (s) the set of

all remaining routes. The aim of the TOARP is to determine a feasible solution

s that maximizes S(RP (s)).

The profitable arcs in L(RN (s)) do not belong to the K most profitable

routes in s, but are organized in routes. The reason for keeping these arcs

organized into routes is that it is much easier to have a new route with a high

profit by inserting profitable arcs in one of the routes in RN (s) than to create a

new route from scratch. Although this requires an additional effort with respect

to keeping the K most profitable routes only, it turned out to be beneficial to

the efficiency of the heuristic. This solution structure was used effectively in

the solution of other routing problems with profits like UCARPP (see [3]), the

TOP (see [4]), the Capacitated Team Orienteering Problem and the Capacitated

Profitable Tour Problem (see [2]).

In a solution s, we denote by ra(s) the route serving the profitable arc a. For

a profitable arc a and a route r 6= ra(s), we denote by r+ a the route obtained

by adding a to r. Similarly, given a route ra(s) and a profitable arc a served by

ra(s), we denote ra(s) − a the route obtained from ra(s) by removing a. The

insertion of an arc a into a route r is performed by means of the Add operator

introduced by Hertz et al. [14] for the Undirected Capacitated Arc Routing

Problem (UCARP), adapted to the case of a directed graph. The removal of

arc a from route ra(s) is performed by means of the Drop operator by Hertz

et al. [14] for the UCARP, adapted to the case of a directed graph.

3.2 MAT scheme

MAT is a matheuristic which combines a tabu search and a diversification phase

with the exact solution of ILP models. A tabu search phase is carried out

to guide the search in the neighborhood of the current solution. The ILP

models are used to intensify the search with the aim to improve the solution

found during the tabu search phase. At the end of the tabu search phase, a

diversification step, called jump, is performed to move the search to a completely

different part of the solution space. A general scheme of MAT is given in Figure

2.

Initial solution. Let s be the generated solution.

k := kmax.

While a stopping criterion is not met do

6

Jump (k, s): Generate a new solution s′ by performing k moves on

solution s.

s← s′.

Internal tabu search (s): Apply a tabu search to improve upon

solution s. Let s′ be the generated solution.

s← s′.

If s is better than sbest then

Route Improvement (s). Let sbest be the generated solution.

s← sbest.

k := kmax.

Else

k := k − 1.

If k = 0 then

k := kmax.

End If

End If

Intensification Phase (s). Intensify the search around solution s.

Let s′ be the generated solution.

s← s′.

If s is better than sbest then

sbest ← s.

End If

End While

Figure 2: MAT: A matheuristic for the TOARP

We now describe in details the procedures that compose MAT.

7

3.3 Initial solution

The initial solution is constructed through a greedy procedure that ranks the

arcs in order of non-decreasing profit. The procedure then builds the routes by

sequentially inserting arcs in each route and creating a new route when the time

constraint is violated. When all the profitable arcs are inserted into a route,

the K most profitable routes compose the initial set RP (s) and the remaining

routes the initial set RN (s).

3.4 Internal tabu search (s)

Once the initial solution has been obtained, a tabu search is executed that uses

the following three moves:

• 1-move: In a 1-move, a profitable arc a is moved from its route ra(s) to a

route r 6= ra(s). Route r may be an empty route. Hence, ra(s) and r are

replaced by ra(s)− a and r + a, respectively.

• swap-move: Let a and a′ be two profitable arcs in two different routes. A

swap-move consists in replacing ra(s) and ra′(s) by (ra(s) − a) + a′ and

(ra′(s)− a′) + a, respectively.

• sequence move: Let I be a sequence of profitable arcs served consecutively

in a route r ∈ RN (s). Choose a route r′ ∈ RP (s). For each a ∈ I, remove

a from ra(s) and insert it in r′. If T (r′) > Tmax, then choose a sequence

I ′ of profitable arcs served in r′ such that S(I ′) < S(I). For each a ∈ I ′,

remove a from r′a(s) and insert it in a route r′′ ∈ RN (s).

The sequence move may be seen as a combination of 1-moves or swap-moves.

The sequence move performs a more intensive search around the current solution

than the search performed through the application of the 1-move and the swap-

move only. However, applying the sequence move at every iteration may be too

cumbersome. Thus, it is performed only every 5 iterations.

A temporary tabu status forbids profitable arcs to be removed from routes

in which they have been previously inserted. When arc a is inserted in route r,

it is tabu to remove it for a number of iterations equal to:

l =
√
λσ/4 + |AP | ∗

√
K/8, (1)

where λ = |V | ∗ |R|, with R the set of routes in the initial solution and σ a

random number in [0, 1]. This formula links the number of tabu iterations to the

8

number of vertices and profitable arcs, and to the number of routes. Parameter

σ is introduced in order to have a certain variability in the number of tabu

iterations.

A hierarchical function is used to evaluate the solution quality which con-

siders the following terms, in the order in which we describe them: the total

profit S(RP (s)) of the routes in RP (s), the total duration
∑

r∈RP (s)

T (r) of the

routes in RP (s), the number of non empty routes in s and, finally, the total

duration
∑

r∈RN (s)

T (r) of the routes in RN (s).

The tabu search phase terminates after 400 iterations without improvement.

This value allows us to keep this phase quite short and to perform a large number

of jumps to diversify the search.

3.5 Route improvement (s)

The Route improvement (s) phase is aimed at optimizing the order of traver-

sal of the arcs in the routes in s. For each route of the current best solution

s, this procedure is aimed at reducing the corresponding duration and, at the

same time, serving all profitable arcs currently served by the route. This phase

is particularly important when the routes are long, i.e., when they traverse a

large number of arcs, which is the case in most of the tested instances.

The procedure works as follows. Given a new best solution s, we first

reduce the time duration of the routes in RP (s) to increase the probability

of inserting additional profitable arcs and then apply the sequence move. To

reduce the time duration of the routes in s, for each route r in RP (s) we solve

an Asymmetric Traveling Salesman Problem (ATSP) where each vertex of the

graph corresponds to a sequence of profitable arcs which are served consecutively

by route r. The depot is also a vertex of the graph. The cost of arc (i, j) is

the cost of the shortest path between the head of the last profitable arc of the

sequence represented by vertex i and the tail of the first profitable arc of the

sequence represented by vertex j. An example of an ATSP instance generated

by a TOARP route is shown in Figure 1 where the square vertex is the depot

while the arcs in bold are the profitable arcs served by the route. Numbers

close to each arc represent the corresponding cost.

The ATSP is solved using the Miller-Tucker-Zemlin formulation [18], which

has a polynomial number of constraints. After that, the sequence move is ap-

plied iteratively as long as it improves the current solution.

A maximum time of 30 seconds is assigned to the solution of the ATSP.

9

5

3

2

2

4

4
7

2

5

6

7

2

516

13

2 2

7

7

13 12

117

Figure 1: Transforming a TOARP route into an ATSP instance

We decided to give such a short computing time as the procedure is applied

very often. As the routes are often formed by a large number of profitable arcs,

it may happen that the optimal solution of the ATSP is not found within 30

seconds. In this case, the best feasible solution found is accepted. We tested

also the use of the heuristic algorithm of Lin and Kernighan [16] to solve the

ATSP. However, this leads to worse results.

3.6 Intensification phase (s)

The Intensification phase (s) is applied once the Internal tabu search

(s) phase is terminated and before performing a jump. The aim of the jump

is to destroy the current solution and to build a new and completely different

solution on which the Internal tabu search (s) is started again. A detailed

description of the Jump (k, s) procedure is provided in Section 3.7. The aim

of the Intensification phase (s) is to intensively exploit the possibility of

improving the current best solution.

The Intensification phase (s) consists in the solution of two ILP models

which differ in terms of aim and structure. The first ILP model, which we

call Route selection model, aims at selecting the K most profitable routes

among the set R of all the routes generated so far. Thus, the solution space is

defined by the entire set R of routes generated by the algorithm (which may be

quite large). The second model, which we call Profit improvement model,

10

focuses on the best solution s found so far and aims at increasing the profit

collected by the routes in RP (s) by inserting profitable arcs or sequences of

profitable arcs and removing less profitable arcs.

Let us now describe the two models in more detail. Let parameter bar be

1 if the profitable arc a is traversed by route r ∈ R, and 0 otherwise. Route

selection makes use of binary variables za, where za = 1 if profitable arc a is

served, and 0 otherwise, and variables xr, where xr = 1 if route r ∈ R is used,

and 0 otherwise. The Route selection model is as follows:

Maximize
∑

a∈AP

saza

∑
r∈R

barxr ≥ za a∈AP (2)∑
r∈R

xr ≤ K (3)

xr ∈ {0, 1} r∈R (4)

za ∈ {0, 1} a∈AP . (5)

The objective function aims at maximizing the total collected profit. Con-

straints (2) establish that at least a route must be chosen that traverses a served

arc while (3) limits the number of routes that can be selected.

The Profit improvement model tries to insert in RP (s) single profitable

arcs or pairs of profitable arcs. For each profitable arc a, the insertion cost of

a in r is calculated as the detour cost for adding a to r. The cost of inserting

two profitable arcs a and a′ in route r is calculated as the minimum between

the cost of going from r to a, from a to a′ and from a′ to r and the cost of

going from r to a′, from a′ to a and from a to r. The insertion cost of the pair

of arcs a and a′ may be in general lower than the sum of the insertion costs of

the single arcs a and a′, and this happens especially when a and a′ are close to

each other. This is the reason why we consider explicitly the insertion of pairs

of arcs. A pair of profitable arcs is considered for insertion only if the distance

between the two arcs is lower than a given threshold T set to

T =
TmaxK

|L(RP (s))|
,

which gives the average time available to serve the profitable arcs in RP (s). We

did not consider longer sequences to avoid an excessive increase of the computing

time.

11

Let S be the set of all sets composed by single profitable arcs and pairs of

profitable arcs with a distance lower than T . We denote by S(i) the profit of

set i ∈ S. Let Γir be the cost of inserting set i ∈ S in route r ∈ RP (s) and ∆ar

be the saving gained if arc a is removed from route r ∈ RP (s). Finally, let bar

be equal to 1 if profitable arc a is currently served by route r ∈ RP (s), gai be

equal to 1 if a ∈ AP is in set i ∈ S and fair be equal to 1 if the profitable arc a

is traversed by r ∈ RP (s) when set i ∈ S is inserted in r (a is traversed along

the path that links route r with the arcs in set i). The Profit improvement

model makes use of the following binary variables: vir which takes value 1 if set

i ∈ S is inserted in r ∈ RP (s), war which takes value 1 if arc a, currently served

by route r ∈ RP (s), is removed from r, and zair which takes value 1 if arc a is

served by route r ∈ RP (s) when set i ∈ S is inserted in r. The formulation is

the following:

Maximize
∑
i∈S

∑
r∈RP (s)

(
S(i)vir +

∑
a∈AP

sa(fairzair)
)
−

∑
r∈RP (s)

∑
a∈AP

sawar

T (r) +
∑
i∈S

Γirvir −
∑

a∈AP

∆arwar ≤ Tmax r∈RP (s) (6)

vir ≤ 1− gaibar a ∈ AP , i ∈ S, r ∈ RP (s) (7)

war ≤ bar a ∈ AP , r ∈ RP (s) (8)

zair ≤ fairvir a ∈ AP , i ∈ S, r ∈ RP (s) (9)∑
r∈RP (s)

(bar − war +
∑
i∈S

(gaivir + fairzair)) ≤ 1 a ∈ AP (10)

∑
a∈AP

war +
∑
i∈S

vir ≤ Θ r ∈ RP (s) (11)

vir ∈ {0, 1} i ∈ S, r ∈ RP (s) (12)

war ∈ {0, 1} a ∈ AP , r ∈ RP (s) (13)

zair ∈ {0, 1} a ∈ AP , i ∈ S, r ∈ RP (s). (14)

The objective function aims at maximizing the profit of the routes in RP (s).

The left-hand side of constraints (6) gives an estimation of the cost of each

new route r which must be lower than Tmax. Constraints (7) establish that a

sequence of arcs can be inserted into a route only if all arcs in the sequence are

not served by the route while from (8) an arc a can be removed from route r

only if r serves a. Inequalities (9) impose that variable zair is set to 1 only if

sequence i is inserted in route r and arc a is on the shortest path that links i

with r. (10) guarantee that each profitable arc is served at most once. Finally,

with (11) we impose that a limited number Θ of arcs or sets of arcs can be

removed or inserted from a route.

12

The limitation set in constraints (11) is applied to avoid a poor estimation

of the cost of the new route in constraint (6). In fact, the estimation of the cost

of the route made in constraint (6), i.e., T (r) +
∑

i∈S Γirvir −
∑

a∈AP
∆arwar,

is an approximation of the cost of the new route. Indeed, if we insert and/or

remove more than one arc of the same route, then the cost of the new route may

be different from the one obtained by simply summing up the corresponding

insertion costs or removal savings. For example, suppose that we remove two

profitable arcs a and a′ from the same route r and these arcs are traversed

consecutively in route r (meaning that no other profitable arc is served between

the two), with a traversed before a′. Then the cost of the arcs connecting the

head of a with the tail of a′ is accounted for both in ∆ar and in ∆a′r, and thus

twice in the left-hand side of (6). As an example, consider the route depicted

in Figure 2. The savings obtained by removing a and a′ are both equal to 5,

thus summing them up we obtain a total saving of 10. However, when removing

both of them simultaneously, we obtain a saving of 5.

a
a’

2

3

5

2

2

9

5 4

Figure 2: A poor approximation of the cost of the new route

W set the value of Θ to 5. This value is sufficient to allow a deep search of

the solution space around solution s and, on the other hand, to prevent from a

poor approximation of the cost of each route.

Note that, because of constraints (6), the solution obtained by the Profit

improvement model may be infeasible. In this case, we randomly remove arcs

from infeasible routes until each route becomes feasible. The removed arcs are

inserted in existing routes in RN (s), if this is feasible, or in new routes.

13

The Profit improvement model is solved only if the Route selection

model is able to improve the current best solution. If this is not the case,

the current best solution has already been processed by the Route improve-

ment (s) procedure and thus the probability of improving this solution further

through Profit improvement is low. If instead a new best solution is found by

Route selection, then Profit improvement makes a deep search around

this solution to try to increase the corresponding profit.

3.7 Jump (k, s)

The Jump (k, s) procedure is performed after the intensification phase. We use

two kinds of jumps. One consists in performing a sequence of k 1-moves from

RN (s) to RP (s), while the other moves a set U , with |U | = k, of profitable arcs

from RP (s) to RN (s), and a set W of profitable arcs from RN (s) to RP (s),

such that S(U) ≤ S(W). The larger the value of k, the more different the new

solution is with respect to the previous one.

When we move the arcs from RN (s) to RP (s), we disregard the Tmax du-

ration constraint and we insert each arc in the route that leads to the cheapest

insertion cost. Consequently, the solution obtained after a jump may be infea-

sible. In order to recover feasibility, we first optimize the length of each route

by solving an ATSP as described in Section 3.5 and then apply 1-moves and

swap-moves on the routes in RP (s) in order to reduce the infeasibility. Only

moves that reduce infeasibility are implemented. If some routes are still infea-

sible after all such moves, then we randomly remove arcs from infeasible routes

until each route becomes feasible. The removed arcs are inserted in existing

routes in RN (s), if this is feasible, or in new routes.

At the end of the procedure that recovers the feasibility of the routes in

RP (s) we may obtain a solution of very poor quality which may constitute a

bad starting point for the following internal tabu search phase. This has a very

bad impact on the quality of the solutions found by the internal tabu search as

a short computing time is allowed to it. Thus, in order to improve the starting

solution, a further ILP model, which we call Fast profit improvement, is

solved on the solution generated after the jump. Fast profit improvement is

a simplification of Profit improvement, as applying Profit improvement

at each jump proved to be too cumbersome. As done by Profit improve-

ment, Fast profit improvement tries to increase the profit collected by the

routes in RP (s) by inserting profitable arcs and removing less profitable arcs.

14

However, contrary to what happens in Profit improvement, in Fast profit

improvement it is possible to only insert or remove single profitable arcs from

the routes in RP (s).

For the sake of completeness and clarity, we report the formulation of Fast

profit improvement even if it is very similar to the one of Profit improve-

ment. With a similar notation as in Profit improvement, let bar be equal

to 1 if profitable arc a is currently served by route r ∈ RP (s), Γar be the cost

of inserting arc a ∈ AP in route r ∈ RP (s) and ∆ar be the saving gained if arc

a is removed from route r ∈ RP (s). Fast profit improvement makes use of

the following binary variables: var which takes value 1 if arc a ∈ AP is inserted

in r ∈ RP (s) and war which takes value 1 if arc a, currently served by route

r ∈ RP (s), is removed from r. Fast profit improvement is formulated as

follows:

Maximize
∑

a∈AP

∑
r∈RP (s)

(savar − sawar)

s.t.:

T (r) +
∑

a∈AP

(Γarvar −∆arwar) ≤ Tmax r∈RP (s) (15)

var ≤ 1− bar ∀a ∈ AP , r ∈ RP (s) (16)

war ≤ bar ∀a ∈ AP , r ∈ RP (s) (17)∑
r∈RP (s)

(bar − war + var) ≤ 1 a ∈ AP (18)

∑
a∈AP

(war + var) ≤ Θ r ∈ RP (s) (19)

var ∈ {0, 1} a ∈ AP , r ∈ RP (s) (20)

war ∈ {0, 1} a ∈ AP , r ∈ RP (s). (21)

The objective function and the constraints have a similar meaning as in

Profit improvement. The differences are related to the fact that we con-

sider single arcs to be inserted in the routes and not pair of arcs. A further

difference is the absence of variables zair which leads to a different formulation

of constraints (6) and (10) and to the absence of constraints (14).

In Fast profit improvement we fix the value of Θ to 3 in order to reduce

the computing time. In fact, a larger value of Θ leads to a wider solution space

and thus the problem becomes harder to solve. Moreover, when Θ increases, the

risk of a poor approximation of the cost of the routes increases and, at the same

time, the risk to obtain infeasible solutions increases. Given that Fast profit

15

improvement is solved frequently, we prefer to obtain a feasible solution in a

fast way.

Infeasibility is eventually recovered by randomly removing arcs from infea-

sible routes until each route becomes feasible. The removed arcs are inserted in

existing routes in RN (s), if this is feasible, or in new routes.

Finally, note that, even if Fast profit improvement is applied, the so-

lution obtained after a jump may be of poor quality and starting a tabu search

phase from a poor solution may be a waste of time. Thus, the tabu search phase

is started only if the profit associated with the solution obtained after the jump

is at least equal to zbestβ, where zbest is the value of the best solution found

so far. β is initialized to 0.9. If this is not the case, a new jump is performed.

This procedure is aimed at guaranteeing a good quality of the starting solution

of the internal tabu search phase. After 5 consecutive trials for which the value

of the solution is lower than zbestβ, the value of β is decreased to 0.9β. In fact,

it may happen that the threshold of zbestβ is too difficult to reach. This is why

we decrease the value of β after 5 unsuccessful iterations.

4 Computational results

MAT was tested on the set of instances proposed in [1]. These instances are

generated from three classes of RPP benchmark instances proposed by Hertz et

al. [15]. In the first class, the R class, the edges are generated randomly in the

plane. In the second class, the D class, the edges define a graph where all the

vertices have degree 4. In the third class, the G class, the edges have all cost 1

and define a uniform grid. These instances have been transformed into TOARP

instances as follows. For each edge {i, j}, two arcs (i, j) and (j, i) with the same

cost are generated. If the edge was not required, both arcs are not required. If

it was required, one direction is randomly selected and the corresponding arc

is required (with probability p) or profitable (with probability 1− p), while the

opposite one is neither required nor profitable. The profit associated with the

traversal of a profitable arc is defined as its cost, which corresponds to assuming

that the profit gained by serving an arc is proportional to the traversal cost.

Each of these classes of instances is divided in three sets whose characteristics

are reported in Table I.

The instances of classes R, D and G are based on undirected graphs and,

thus, are such that if there is an arc from i to j, then there is also an arc from j

16

to i with the same cost. Given that the TOARP is defined on a directed graph,

we generated a new class of instances where some arcs exist in one direction

but not in the other one. Moreover, in this new class of instances, profits

are not related to the arc costs but are generated randomly. The number of

vertices was set equal to 50 and the vertices were randomly generated in the

1, 000× 1, 000 square. Then, for each vertex i, arcs to the three vertices closest

to i are added to the arc set A. Moreover, to guarantee the strong connectivity

of the resulting graph, the arcs in three different Hamiltonian cycles are also

added to A. Arc costs are defined as the Euclidean distances. Each arc a ∈ A

is randomly included in AR ∪ AP with probability 0.2. We generated 10 such

instances with p = 0 and 10 instances with p = 0.5. Profits of the arcs in

AP were randomly generated in the interval [100; 500]. We call this class of

instances the T50 instances.

For each one of the previous instances, we generated three instances with

K = 2, 3 and 4. The value of Tmax was set in such a way that a feasible solution

exists while there is no solution which traverses all profitable and required arcs.

This value was found by solving the minmaxK-vehicles Directed Rural Postman

Problem with the algorithm proposed in [9], as explained in [1].

The code was written in Visual C++ 2010 and tests were run on an AMD

Athlon (tm) 64 X2 Dual Core Processor 5600+ 2.89 GHz, 3.37 GB RAM.

The stopping criterion was set to 30 minutes of computing time. To calculate

the optimal solution of the ATSP, Route selection, Profit improvement

and fast profit improvement we used CPLEX 12.2.0. The maximum time

allowed for the solution of each ATSP was set to 30 seconds while 30 minutes

were allowed for the solution of Route selection, Profit improvement

and Fast profit improvement. This choice is due to the fact that the ATSP

is solved very often and thus we decided to allow a short computing time.

Route selection, Profit improvement and Fast profit improvement

are instead called less frequently and, in addition, they are typically solved much

faster than the ATSP. Thus, we decided not to insert a maximum computing

time for them and to fix it equal to the maximum time allowed for MAT.

Classes R, D and G are composed by 207 instances and the optimal solution

is known for 204 instances with 2 vehicles and for 188 and 157 instances with

3 and 4 vehicles, respectively. For the T50 instances, the optimal solution is

known for 19 instances out of 20 with 2 vehicles, for 13 out of 20 with 3 vehicles

and for 4 out of 20 with 4 vehicles. The optimal solution was obtained through

17

the branch-and-cut algorithm proposed in [1].

Tables II-V summarize the results. Table II refers to the instances of class

R, Table III to class D, Table IV to class G, and Table V to class T50. In each

table, the instances are classified by the number of vehicles K (on the rows)

and by parameter p (on the columns). For each class of instances we report:

the number of instances solved to optimality by the branch-and-cut algorithm

proposed in [1] (# solved), the number of optimal solutions found by MAT (#

opt), the average and maximum percentage gap of the solution found by MAT

with respect to the upper bound found by the branch-and-cut algorithm (Av.

and Max Gap) and the average and maximum percentage gap calculated only

on the instances where the optimal solution is available (Av. and Max Gap*).

From Tables II - V one can note that the simplest class of instances, both

for the exact algorithm and the heuristic, is class R where all instances are

solved to optimality by the branch-and-cut algorithm and MAT always finds

the optimal solution except for one instance with K = 2 and p = 0.5. For

this instance, the error with respect to the optimal solution is 28.95% (which

determines the average error of 5.79% over five instances in the last column of

Table II). Such a large error is due to the fact that the solution space is narrow

and either the optimal solution is found or the gap for any non-optimal solution

is large. In fact, the Tmax value is very tight, which makes finding good feasible

solutions very difficult. Looking at the results for class D (see Table III), we

observe that this class contains more difficult instances. The branch-and-cut

algorithm is sensitive to the number of vehicles as the number of instances solved

to optimality decreases when K increases. MAT is instead more sensitive to

parameter p. The average gap calculated with respect to the optimal solution

is in some cases much lower than the one calculated with respect to the upper

bound. This indicates that the upper bound may be quite far from the optimal

solution. The same observations apply to class G (see Table IV). The instances

of class T50 (Table V) are difficult to solve to optimality especially for K = 4

but MAT gives on average good quality solutions.

The values of the maximum gaps are quite high in some cases. We now

focus on the instances for which MAT generated large errors and analyze the

reasons for such a behavior. We analyze the instances solved to optimality as

in the other cases the quality of the upper bound may be very poor. We just

mention that, for the instance of Table IV which presents a value of Max Gap

of 44.61%, the value of the solution of MAT corresponds to the best feasible

18

solution found by the branch-and-cut algorithm.

Table VI presents an analysis of the structure of the optimal solution of the

instances for which the value of the solution obtained through MAT is greater

by more than 10% with respect to the value of the optimal solution. The first

four columns report data on the instance: name, set, number of vehicles and

parameter p. The fifth column reports the percentage gap between the MAT

solution and the value of the optimal solution. The last three columns present

the average number of arcs traversed by a route in the optimal solution (#

traversed arcs per route), the average number of profitable and required arcs

served in a route (# required and profitable arcs per route), and the ratio

between the total duration of the routes with respect to the maximum allowed

duration (

∑
r∈Rp(s) T (r)

kTmax
).

The larger number of instances for which MAT generated an error greater

than 10% comes from set D100 with p = 0.5. The last column of the table

shows that the duration constraint is extremely binding for all these instances.

Moreover, with the only exception of instance ‘hertzr16’, all remaining instances

have long routes serving a large number of profitable and required arcs. This

is a feature that, combined with a binding duration constraint, makes these

instances very difficult to solve heuristically. Concerning instance ‘hertzr16’,

we have performed different tests by changing the parameters used in MAT

and we have always obtained two solution values: either the optimal one or the

one which is 29% worse. Thus, we believe that the solution we report is the

second best.

In Table VII we summarize the results related to the average gaps and

number of optimal solutions found aggregated by class of instances, number of

vehicles, and parameter p. The last row of the table refers to the total average

gap and total number of optimal solutions found on all instances. We notice

that when the value of p increases, the instances seem to be more difficult to

solve heuristically.

Finally, in Table VIII we report the results of a computational study we

made on the set of instances considered in Table VI. The aim of this study

is to analyze the effectiveness of the different components of MAT and the

tuning of the parameters. We perform the analysis on the following pro-

cedures/parameters used in MAT: number of tabu iterations, intensification

phase, route improvement phase, sequence move and value of parameter Θ in

constraint (11). The reason of our choice is that we believe that these are the

19

procedures/parameters that influence the most the performance of MAT. We

report the percentage gap of the solutions produced by MAT with respect to the

optimal solution for the different settings of MAT. In particular, in the second

column we report the gaps obtained with the setting described in the paper.

The third column refers to the case where the number of tabu iterations, as

calculated in (1), is halved. The fourth and the fifth columns report the re-

sults for the case where the intensification phase described in Section 3.6 and

the route improvement described in Section 3.5 are not performed, respectively.

The last two columns report the results obtained when no sequence move is

performed and when the value of the parameter Θ in constraint (11) is set to

5, respectively. The results show that there is no setting that is dominant with

respect to the others. During the preliminary tests, we also observed that, with

a different setting, the set of instances that show a large gap changes. The

setting used in our tests is the one that guarantees to always find a feasible

solution and to avoid extremely bad solutions.

Conclusions

The matheuristic proposed for the solution of the Team Orienteering Arc Rout-

ing Problem generates an average error of 0.67% and finds the optimal solution

on 78% of the instances for which the optimal solution is known. The effective-

ness of the algorithm is the result of the use of ILP models combined with a

tabu search and a diversification phase that allows us to explore different parts

of the solution space in depth, taking advantage of the power of commercial

MILP solvers.

The solution value generated by the matheuristic was used as initial upper

bound in the branch-and-cut algorithm proposed in [1] and proved to be effective

in improving its efficiency.

Recent advances in the design of exact methods and heuristics make it

possible to achieve good results on arc routing problems, a class of problems

that is still largely unexplored if compared to node routing problems.

Acknowledgements: The authors wish to thank two anonymous referees for

their useful comments which helped them improve a previous version of the

paper.

Ángel Corberán, Isaac Plana and José M. Sanchis wish to thank the Ministe-

rio de Economı́a y Competitividad (project MTM2012-36163-C06-02) of Spain

20

and the Generalitat Valenciana (project GVPROMETEO2013-049) for their

support.

References

[1] C. Archetti, Á. Corberán, I. Plana, J.M. Sanchis and M.G. Speranza

(2012), The team orienteering arc routing problem. Transportation Sci-

ence, to appear, doi:10.1287/trsc.2013.0484.

[2] C. Archetti, D. Feillet, A. Hertz and M.G. Speranza (2009), The capaci-

tated team orienteering and profitable tour problems. Journal of the Op-

erational Research Society 60, 831-842.

[3] C. Archetti, D. Feillet, A. Hertz and M.G. Speranza (2010), The undirected

capacitated arc routing problem with profits. Computers & Operations

Research 37, 1860-1869.

[4] C. Archetti, A. Hertz and M.G. Speranza (2007), Metaheuristics for the

team orienteering problem. Journal of Heuristics 13, 49-76.

[5] C. Archetti and M.G. Speranza (2013), Arc routing problems with profits.

Working paper WPDEM 2013/2, Department of Economics and Manage-

ment, University of Brescia.

[6] C. Archetti and M.G. Speranza (2013), A survey on matheuristics

for routing problems. EURO Journal on Computational Optimization,

doi:10.1007/s13675-014-0030-7.

[7] C. Archetti, M.G. Speranza and D. Vigo (2013), Vehicle routing problems

with profits. Working paper WPDEM 2013/3, Department of Economics

and Management, University of Brescia.

[8] M.O. Ball (2011), Heuristics based on mathematical programming. Surveys

in Operations Research and Management Science 16, 21-38.

[9] E. Benavent, Á. Corberán, I. Plana and J.M. Sanchis (2011), New facets

and an enhanced branch-and-cut for the min-max k-vehicles windy rural

postman problem. Networks 58, 255-272.

[10] M. Dror (2000), Arc Routing. Theory, Solutions and Applications. Kluwer

Academic Publishers, Boston.

[11] J. Euchi and H. Chabchoub (2011), Hybrid metaheuristics for the prof-

itable arc tour problem. Journal of the Operational Research Society 62,

2013-2022.

21

[12] D. Feillet, P. Dejax and M. Gendreau (2005a), Traveling salesman problems

with profits. Transportation Science 39, 188-205.

[13] D. Feillet, P. Dejax and M. Gendreau (2005b), The profitable arc tour

problem: solution with a branch-and-price algorithm. Transportation Sci-

ence 39, 539-552.

[14] A. Hertz, G. Laporte and M. Mittaz (2000), A tabu search heuristic for

the capacitated arc routing problem. Operations Research 48, 129-135.

[15] A. Hertz, G. Laporte and P. Nanchen-Hugo (1999), Improvement proce-

dures for the undirected rural postman problem. INFORMS Journal on

Computing 1, 53-62.

[16] S. Lin and B. W. Kernighan (1973), An effective heuristic algorithm for

the Traveling Salesman Problem. Operations Research 21, 498-516.

[17] V. Maniezzo, T. Stützle, S. Voß (2010), Matheuristics. Hybridizing Meta-

heuristics and Mathematical Programming. Annals of Information Systems,

Vol. 10, Springer, New York.

[18] C.E. Miller, A.W. Tucker and R.A. Zemlin (1960), Integer programming

formulation of travelling salesman problem., Journal of ACM 3, 326-329.

[19] J.R. Montoya-Torres, A.A. Juan, L.H. Huatuco, J. Faulin and G.L.

Rodriguez-Verjan, eds. (2012) Hybrid Algorithms for Service, Computing

and Manufacturing Systems: Routing, Scheduling and Availability Solu-

tions. IGI Global.

[20] P. Vansteenwegen, W. Souffriau and D. Van Oudheusden (2011), The ori-

enteering problem: a survey. European Journal of Operational Research

209, 110.

[21] E.E. Zachariadis and C.T. Kiranoudis (2011). Local search for the undi-

rected capacitated arc routing problem with profits. European Journal of

Operational Research 210, 358-367.

22

p = 0 p = 0.25 p = 0.5

Set # inst |V | |A| |AR| |AP | |AR| |AP | |AR| |AP |

R30 5 11-18 42-134 0 7-11 1-3 4-9 3-6 6-2

R40 5 13-25 68-266 0 8-18 3-5 3-15 4-8 1-11

R50 5 19-27 166-296 0 13-20 0-7 11-17 4-11 8-10

D36 9 17-36 96-270 0 10-38 2-10 6-30 6-20 4-23

D64 9 37-62 264-482 0 27-75 4-21 22-54 11-38 15-37

D100 9 68-100 544-846 0 50-121 9-28 37-95 26-64 20-70

G36 9 18-35 54-120 0 11-35 1-11 7-28 6-18 3-19

G64 9 34-62 128-228 0 24-68 3-22 20-50 10-15 12-38

G100 9 60-100 246-394 0 41-113 8-25 33-91 19-57 20-64

Table I: Characteristics of the TOARP instances of classes R, D and G

23

p = 0 p = 0.25 p = 0.5

R30 R40 R50 R30 R40 R50 R30 R40 R50

solved 5 5 5 5 5 5 5 5 5

opt 5 5 5 5 5 5 5 5 4

K=2 Av. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.79

Av. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.79

Max. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.97

Max. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.97

solved 5 5 5 5 5 5 5 5 5

opt 5 5 5 5 5 5 5 5 5

K=3 Av. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Av. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

solved 5 5 5 5 5 5 5 5 5

opt 5 5 5 5 5 5 5 5 5

K=4 Av. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Av. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max. Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max. Gap* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table II: Computational results for the sets of instances R30, R40, and R50

24

p = 0 p = 0.25 p = 0.5

D36 D64 D100 D36 D64 D100 D36 D64 D100

solved 9 9 9 9 9 9 9 9 9

K=2 # opt 9 5 0 9 5 1 9 4 1

Av. Gap 0.00 0.48 2.58 0.00 0.26 2.92 0.00 1.10 4.71

Av. Gap* 0.00 0.48 2.58 0.00 0.26 2.92 0.00 1.10 4.71

Max. Gap 0.00 1.79 5.40 0.00 1.20 10.68 0.00 5.12 12.42

Max. Gap* 0.00 1.79 5.40 0.00 1.20 10.68 0.00 5.12 12.42

solved 9 9 4 9 9 5 9 9 7

K=3 # opt 9 7 2 8 6 3 9 5 1

Av. Gap 0.00 0.10 3.31 0.08 0.42 4.14 0.00 2.05 20.45

Av. Gap* 0.00 0.10 0.19 0.08 0.42 1.33 0.00 2.05 8.91

Max. Gap 0.00 0.75 12.50 0.74 1.64 9.34 0.00 5.78 20.07

Max. Gap* 0.00 0.75 0.62 0.74 1.64 5.31 0.00 5.78 20.07

solved 9 5 2 9 7 4 9 7 5

K=4 # opt 9 4 2 9 6 3 9 6 3

Av. Gap 0.00 1.42 4.58 0.00 0.68 3.02 0.00 1.21 7.53

Av. Gap* 0.00 0.18 0.00 0.00 0.15 0.05 0.00 0.30 2.53

Max. Gap 0.00 4.05 10.98 0.00 4.57 9.27 0.00 5.36 22.07

Max. Gap* 0.00 0.91 0.00 0.00 1.02 0.20 0.00 2.07 11.40

Table III: Computational results for the sets of instances D36, D64, and D100

25

p = 0 p = 0.25 p = 0.5

G36 G64 G100 G36 G64 G100 G36 G64 G100

solved 9 9 8 9 9 8 9 9 8

opt 9 7 3 9 7 4 9 9 5

K=2 Av. Gap 0.00 0.63 1.56 0.00 1.58 1.53 0.00 0.00 2.62

Av. Gap* 0.00 0.63 1.35 0.00 1.58 1.21 0.00 0.00 2.03

Max. Gap 0.00 3.03 4.00 0.00 8.33 4.09 0.00 0.00 7.35

Max. Gap* 0.00 3.03 4.00 0.00 8.33 3.51 0.00 0.00 6.06

solved 9 9 5 9 9 6 9 9 8

opt 9 8 2 9 9 3 9 7 3

K=3 Av. Gap 0.00 0.25 3.27 0.00 0.00 3.33 0.00 1.18 5.04

Av. Gap* 0.00 0.25 1.62 0.00 0.00 1.44 0.00 1.18 4.44

Max. Gap 0.00 2.27 7.69 0.00 0.00 9.11 0.00 5.88 12.20

Max. Gap* 0.00 2.27 2.82 0.00 0.00 3.45 0.00 5.88 12.20

solved 8 3 1 8 9 4 7 9 6

opt 8 3 1 8 9 3 7 9 4

K=4 Av. Gap 0.38 4.72 8.53 0.53 0.00 6.38 1.96 0.00 10.87

Av. Gap* 0.00 0.00 0.00 0.00 0.00 1.06 0.00 0.00 1.52

Max. Gap 3.45 11.74 13.08 4.76 0.00 17.46 11.76 0.00 44.61

Max. Gap* 0.00 0.00 0.00 0.00 0.00 4.26 0.00 0.00 5.41

Table IV: Computational results for the sets of instances G36, G64, and G100

26

p = 0 p = 0.5

solved 10 9

opt 0 1

K=2 Av. Gap 0.81 1.52

Av. Gap∗ 0.81 1.46

Max. Gap 1.68 4.11

Max. Gap∗ 1.68 4.11

solved 10 3

opt 1 1

K=3 Av. Gap 0.78 3.15

Av. Gap∗ 0.78 2.57

Max. Gap 3.13 5.69

Max. Gap∗ 3.13 5.69

solved 2 2

opt 1 0

K=4 Av. Gap 5.03 4.11

Av. Gap∗ 0.06 1.13

Max. Gap 11.11 7.87

Max. Gap∗ 0.12 1.59

Table V: Computational results for the class of instances T50

27

Instance set K p Gap∗ # traversed arcs # required and profitable

∑
r∈Rp(s)

T (r)

Tmax∗k

per route arcs per route

hertzd28 D100 2 0.25 10.68 53.50 24.00 99.82

hertzr16 R50 2 0.5 28.97 14.50 6.50 99.11

hertzd34 D100 2 0.5 12.42 105.00 59.00 99.97

hertzd29 D100 3 0.5 12.08 32.33 13.33 99.63

hertzd32 D100 3 0.5 20.07 46.00 26.33 99.97

hertzd33 D100 3 0.5 13.05 43.00 22.00 99.75

hertzg33 G100 3 0.5 10.81 52.00 26.67 100.00

hertzg35 G100 3 0.5 12.20 56.00 31.33 100.00

hertzd35 D100 4 0.5 11.40 54.00 29.50 98.91

Table VI: Analysis of instances with large gaps

Class R Class D Class G Class T50

Av. Gap 0.16 2.26 2.01 2.57

Av. Gap* 0.16 1.05 0.66 1.09

opt (# solved) 134 (135) 144 (208) 173 (206) 4 (36)

K=2 K=3 K=4

Av. Gap 0.96 1.78 2.30

Av. Gap* 0.90 0.81 0.19

opt (# solved) 150 (223) 156 (201) 149 (161)

p = 0 p = 0.25 p = 0.5

Av. Gap 1.40 1.01 2.56

Av. Gap* 0.35 0.39 1.23

opt (# solved) 144 (193) 156 (186) 155 (206)

Total Av. Gap 1.68

Total Av. Gap* 0.67

Total # opt (total # solved) 455 (585)

Table VII: Average results

28

Instance MAT low tabu no no route no sequence Θ = 5 in (11)

tenure intensification improvement move

hertzd28 10.68 2.86 1.94 10.32 5.39 10.14

hertzr16 28.97 0.00 28.97 0.00 28.97 0.00

hertzd34 12.42 6.81 11.99 7.10 6.90 13.28

hertzd29 12.08 inf. inf. inf. 51.98 67.08

hertzd32 20.07 18.13 22.99 14.43 15.03 12.48

hertzd33 13.05 15.50 17.40 19.37 16.55 14.26

hertzg33 10.81 10.81 2.50 13.89 5.13 7.89

hertzg35 12.20 15.00 6.98 12.20 12.20 4.55

hertzd35 11.40 2.28 1.44 1.54 3.35 2.28

Table VIII: Computational study on instances with large gaps

29

