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a b s t r a c t

This paper considers a firm that introduces multiple generations of a product to the market at regular intervals.

We assume that the firm has only a single production generation in the market at any time. To maximize

the total profit within a given planning horizon, the firm needs to decide the optimal frequency to introduce

new product generations, taking into account the trade-off between sales revenues and product development

costs. We model the sales quantity of each generation as a function of the technical decay and installed base

effects. We analytically examine the optimal frequency for introducing new product generations as a function

of these parameters.

© 2015 Published by Elsevier B.V.
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. Introduction

Products in competitive markets such as smart phones, tablets,

omputers, cameras, software, health and beauty products, and the

ike are usually offered as multiple generations. Various factors drive

he development of successive product generations. First, the con-

inuous and rapid technology improvements make it necessary to

enew product generations frequently to stay competitive. Second,

ustomers develop new needs over time. Third, in a relatively sat-

rated market, new generation products can generate repeat pur-

hases. For example, Elmer-DeWitt (2013) reports that “90 percent

f iPhone 5S/5C buyers were upgrading from another version of

he iPhone compared to 83 percent for the iPhone 5 launch and

3 percent for the iPhone 4S.” Erhun, Concalves, and Hopman (2007)

oint out that “managing the interplay between product generations

an greatly increase the chances for success.” This is also supported

y an empirical study across a wide range of industries in Morgan,

organ, and Moore (2001), which shows that the introduction of

ultiple product generations is likely more profitable (26 percent

igher) than a series of single-product generation introductions, and

40 percent higher) than a pure single-product generation

ntroduction.

It appears that successive generations of many products are in-

roduced in the market at regular time intervals. For example, Apple

aunched a new iPhone generation (around July–September) every

ear from 2007 to 2013. Likewise, between 2005 and 2013 a new
∗ Corresponding author. Tel.: 41 779 235 090; fax: +41 21 693 24 89.
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eneration of iPod Nano was introduced each September (except in

011). Similarly, four generations of iPod touch were introduced each

eptember from 2007 to 2010, and the fifth generation came to the

arket in October 2012. Moreover, in the automobile industry, Honda

ntroduces a new generation of Accord each four to five years while

oyota brings a new generation of Lexus ES to the market circa ev-

ry five years. This so-called time-pacing product development (PD)

trategy has been widely recognized in the literature about other

ndustries as well. Christensen (1997) shows that thanks to a time-

acing strategy, the medical technology company Medtronics was

ble to reduce uncertainty and improve the new PD process by elim-

nating requests for revisions to product features during the design

rocess. Eisenhardt and Brown (1998) show that for rapidly shifting

ndustries, a time-pacing PD strategy can improve the transition be-

ween new PD projects. Intel releases its chips with an approximately

hree-year cycle, and Morgan et al. (2001) point out that this strategy

allows it to profit from the investment it has made in developing and

ommercializing each generation while limiting competitions’ abili-

ies to win sales”. Also, Souza, Bayus, and Wagner (2004) find that a

ime-pacing strategy “is not necessarily optimal, but generally does

erform well under many conditions.” In this paper, we adopt the

ime-pacing PD strategy as a modeling assumption.

The process for phasing out an older product generation and in-

roducing a new one in the market is called product rollover. A firm

an choose one of two transition strategies during product rollover:

hase-out transition or complete replacement. Using the phase-out

trategy, old and new generations coexist in the market until sales

f the old generation(s) drop to zero. Using the complete replace-

ent strategy, a new generation product introduced in the mar-

et replaces in full the old generation product. These two strategies

re also referred to as “dual-product roll” and “solo-product roll”,
of multiple generation product introductions, European Journal of
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respectively (Billington, Lee, & Tang, 1998). In this paper, we as-

sume that the firm adopts the complete replacement strategy. This

assumption is supported: For example, Hewlett-Packard totally re-

placed DeskJet 500 printers with DeskJet 510 printers (Lim & Tang,

2006); Microsoft stops selling older software versions as soon as a new

version is released; Google stopped selling Nexus 4 when launching

Nexus 5 in September 2013, and so on. Consequently, the assump-

tion of a complete replacement strategy is widely used in the liter-

ature (e.g., Arslan, Kachani, & Shmatov, 2009; Carrillo, 2005; Cohen,

Eliashberg, & Ho, 1996, 2000).

We consider a firm that adopts a complete replacement strategy to

introduce multiple generations of a product at regular time intervals

within a given planning horizon. All product generations are assumed

to be sold in the same geographical region and through the same

channel. For each product generation, a PD cost is charged, and the

sales quantity is related to the technical decay and the installed base

effects. As technologies currently develop faster, the gap between

the technology content of a certain product and the latest available

technology increases over time. This gap precipitates the product

gradually toward obsolescence and thus it loses its attractiveness to

customers, we called this phenomenon “technical decay effect”. We

use the term “installed base effect” to refer to the combination of sev-

eral social contagion effects: word-of-mouth, network effects, social

preferences and observation learning (Narayanan & Nair, 2013). We

consider diffusion dynamics by taking into account the installed base

effect which allows the current sales rate to depend on the cumulative

sales quantity.

The firm’s objective is to maximize the sum of the profits of each

product generation, which equals the sales revenue less the PD cost.

To achieve the optimal total profit, it is important to decide on the op-

timal frequency of product introductions. If products are introduced

too frequently, this may result in excessive PD costs. Moreover, as

the time in the market is too short, each generation may experience

poor sales, since there is insufficient time to build an installed base

and reach peak sales. If a product generation stays in the market for

too long, the technical decay effect may lead to a decrease in sales

rate because customers are less willing to buy technically outdated

products such as old generation computers with Intel 4004 chips for

instance.

Our main contribution is to explicitly model diffusion dynamics

and at the same time analytically study the optimal frequency of

product introductions and its sensitivity to key model parameters.

We model the PD cost based on the PD function in Druehl, Schmidt,

and Souza (2009). To estimate product sales, we construct a primal

sales model as a function of the various parameters mentioned above.

We derive analytical results on the optimal frequency of product in-

troductions and provide analytical sensitivity analysis of the impacts

of different parameters on the optimal frequency and on the maxi-

mum total profit. Moreover, we extend our sales model, which allows

a closed-form solution for the optimal frequency under some special

conditions. We prove the uniqueness of the optimal frequency un-

der general conditions. Finally we compare the sensitivity analyses

between the primal and the extended sales models.

The rest of this paper is organized as follows. We review related

literature in Section 2. In Section 3 we present the PD cost model,

our primal sales model and the total profit function. In Section 4 we

analyze the optimal product introduction frequency and parameter

impacts. In Section 5, we present the extended sales model and ana-

lytical results. We conclude and discuss future research directions in

Section 6. Proofs are provided in the Appendix. Proofs for Section 5

are provided as e-version due to the page limit.

2. Literature review

Our work is related to the literature on new product introduction

(NPI). This literature has mainly focused on the product development
Please cite this article as: S. Liao, R.W. Seifert, On the optimal frequency

Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.03.041
nd introduction of single product generation. Several papers con-

ider multiple product generations and examine decisions during the

roduct rollover as we do, by adopting “dual-product roll” or “solo-

roduct roll” strategy (Billington et al., 1998).

Research focusing on single product generation introduction pri-

arily studies the static trade-off between time-to-market and

roduct performance (such as Bayus, 1997; Klastorin & Tsai, 2004;

rishnan & Ulrich, 2001; Savin & Terwiesch, 2005). Ozer and Uncu

2013) develop a dynamic decision-support tool to optimize the

ested two-stage decisions on the time-to-market and product quan-

ity for a component supplier. Ozer and Uncu (2015) extend their

esearch to also integrate pricing and sales channels into decisions.

nlike their literature, the nature of our problem is such that multiple

roduct generations are introduced to the market.

The research area of multiple generation products introduction

an be classified into two steams according to the rollover strategies

dopted. One stream assumes both old and new product generations

o be sold during the transition period (dual-product roll). Studies in

his stream consider the cannibalization effect or switch-over among

ld and new generations and address decision about time (e.g., Lim

Tang, 2006), price (e.g., Li & Graves, 2012), inventory quantity (e.g.,

i, Graves, & Rosenfield, 2010), etc. Druehl et al. (2009) is the most

losely related to our research. Both papers consider diffusion effect,

dopt time-pacing strategy, examine the optimal pace of product in-

roduction and analyze the parameter impacts. However, by adopting

dual-product roll” strategy and the Norton–Bass diffusion model,

heir model necessitates numerical approach due to the analytical

omplexity. Instead, under the “solo-product roll” assumption, our

ales model keeps the analytical tractability, which differentiates the

resent paper from Druehl et al. (2009).

In the same vein as our research, another stream of the literature

n multiple generation products introduction assumes a single gen-

ration in the market at any time (solo-product roll). Some papers

xamine product introduction decisions under competitive environ-

ent in a duopoly (e.g., Arslan et al., 2009; Cohen et al., 1996, 2000;

organ et al., 2001; Souza, 2004; Souza et al., 2004), while others con-

ider a monopoly as we do in our paper (e.g., Carrillo, 2005; Krankel,

uenyas, & Kapuscinski, 2006; Liu & Ozer, 2009; Wilhelm & Xu, 2002).

iu and Ozer (2009) is closely related to our work. We both show that

he pace of technology evolution negatively impacts the firm’s to-

al profit, and a smaller product replacement cost encourages more

roduct replacements. We model the relation between a product’s

rofit and its performance gap (technical decay) in different ways;

he product replacement cost in their model is fixed while our PD cost

epends on the decision variable (product introduction frequency).

ore importantly, we consider the diffusion dynamics and explic-

tly discuss the impacts of diffusion speed and staff’s specialization

evel on the optimal frequency and the total profit. However, unlike

urs, they propose a model that helps a manager dynamically de-

ide whether and when to adopt uncertain technological changes.

arrillo (2005) and Krankel et al. (2006) consider diffusion but

hey rely on numerical implementation and dynamic programming,

espectively.

To the best of our knowledge, we are the first to analytically study

he frequency of multiple generation product introductions while ex-

licitly taking into account the diffusion effect. The diffusion effect

as been widely observed in practice and extensively studied in the

iterature (Mahajan, Muller, & Bass, 1990; Meade & Islam, 2006). How-

ver, due to the analytical complexity of extant diffusion models for

ultiple generations (such as Mahajan & Muller, 1996; Norton & Bass,

987), analytical results are not obtained by the literature of multi-

le generation product introduction considering the diffusion effect

such as Carrillo, 2005; Druehl et al., 2009; Krankel et al., 2006). We

evelop our sales model which considers diffusion and holds flexible

hapes, and we provide analytical results for the optimal frequency

nd parameter impacts.
of multiple generation product introductions, European Journal of
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Fig. 1. Our product development cost curves.

Fig. 2. PD cost curves of Druehl et al. (2009).
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. Model

We consider a fixed planning horizon of length L (e.g., L months or

ears). We assume that the firm introduces a new product generation

t constant time intervals T over the planning horizon L. Our model

ives an explicit analytical expression of the optimal new product

ntroduction frequency n = L
T , which is impacted by the PD cost and

he cumulative sales of all product generations.

We use the following notations. All parameters are assumed to be

ositive.

ecision variable

n Frequency of new product introductions

arameters

L Planning horizon

T Time between introduction of successive generations, T = L
n

t The time span since a product generation has been introduced,

0 � t � T

λi(t) Sales rate of product generation i after time t since its intro-

duction in the market

Ni Sales quantity of product generation i

u Unit profit margin

a Sales rate scale parameter

β Technical decay effect parameter

γ Installed base effect parameter

D Scale parameter for PD cost curve

d First shape parameter for PD cost curve

f Second shape parameter for PD cost curve

Next we detail the analytical functions for the PD cost, the sales

nd the total profit.

.1. PD cost

We follow a standard assumption (Graves, 1989) that the trade-off

etween the PD cost for introducing a new product and its PD time is

“U-shaped” convex curve. That said, the PD cost grows when time

s compressed as “crashing” the project requires more resource allo-

ations such as training new team members. The PD cost also grows

hen the PD project is delayed because of decreasing motivation and

dditional setup cost as people move to other projects. This assump-

ion is supported both empirically and theoretically in the literature

Bayus, 1997; Boehm, 1981; Graves, 1989).

Similar to Druehl et al. (2009), we assume all generations face the

ame PD cost curve and that the PD time per generation equals T. The

U-shaped” convex PD cost for each generation is given by

ost(PD) = D

(
f T

edT − 1
+ dT

)
. (1)

he parameter D represents the size of the overall development

roject, which may vary according to the industry, company and

roject. The parameter d can be interpreted as the staff’s specialization

evel: highly specialized workers can finish the project within a

horter time span nevertheless it costs more to train and pay new

orkers (for PD project acceleration), as well as to switch them from

ther projects (due to PD project delay), that said the PD project is

ore cost sensitive with respect to time. Fig. 1(a) presents some sam-

les of our PD cost curves associated with different values of d (given

= 1). We see that a higher d value corresponds to a steeper curve

ith a narrower bottom and a smaller optimal PD time (that asso-

iates with the minimum PD cost). The parameter f contributes to

oth the scale and the steepness of the PD cost, to allow more flex-

bility in fitting the shape of the PD cost curve. In Fig. 1(b) we show

ur PD cost curves for different values of f (with d = 0.04). We see

hat the value of f can be used to adjust the minimum cost as well as
he associated time. λ 270

Please cite this article as: S. Liao, R.W. Seifert, On the optimal frequency
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Our model is built based on the PD cost model of Druehl et al.

2009), which sets fT = 1:

ost(PD) = D

(
1

edT − 1
+ dT

)
. (2)

ig. 2 presents the PD cost curves originated from Druehl et al. (2009)

hich uses the same values of d as in Fig. 1(a). We see that for a

iven shape parameter d, the PD curve in Fig. 2 is similar to that in

ig. 1(a), i.e., they both represent the empirically observed U-shape

nd a higher d value corresponds to a higher steepness of the convex

D curve. By setting fT = 1, all values of d yield the same PD cost

inimum in their model. Our model provides more flexibility thanks

o the additional parameter f. More importantly, it has more desirable

athematical properties as follows. We denote the sum of PD costs

f n generations by Cost(nPD). Given that T = L
n , we have:

ost(nPD) = D ∗ n ∗
(

f T

edT − 1
+ dT

)
= D

(
f L

e
dL
n − 1

+ dL

)
. (3)

q. (3) is an (increasing) convex function with respect to (WRT) n (see

roof in Appendix A). The first order derivation of Eq. (3) WRT n is:

∂Cost(nPD)

∂n
= D f L

(e
dL
n − 1)2

e
dL
n

dL

n2
≥ 0. (4)

he first order derivation of n generations’ PD cost using our model

Eq. (1)) is much simpler than that using Eq. (2) as a single-generation

D cost. This simplification helps to derive the explicit analytical ex-

ression of the optimal frequency n and the sensitivity analysis in

ection 4. Moreover, it enables us to provide a closed-form solution

f the optimal frequency in Section 5.

.2. Sales

Note that the subscript i refers to the ith generation of new prod-

cts introduced into the product market. We assume without loss of

enerality that the introduction of the ith generation is at time (i − 1)T.

e assume that the firm adopts complete replacement strategy. Let

(t) denote the sales rate of generation i at time t after its introduction
i

of multiple generation product introductions, European Journal of
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(0 � t � T), and let Ni denote the cumulative sales quantity of the ith

generation through its product life cycle, we have Ni = ∫ T
0 λi(t)dt. In

the following we introduce our sales model which considers diffusion

and technical decay effects.

Let a denote the sales rate scale parameter. We add a negative

technical decay effect − βeαt because today’s technologies change

fast, and over time a product may progressively lose attractiveness

because it becomes obsolete. The technical decay effect is well recog-

nized and modeled in different ways in the literature. For example,

Li and Graves (2012) assume a decreasing customer preference for

the old product during inter-generational product transition; Liu and

Ozer (2009) assume that a product’s profit rate is a decreasing func-

tion of the performance gap between its underlying technology and

the latest technology in the market. Souza (2004) assumes that prod-

uct attraction decreases with respect to product age. In addition, we

consider the installed base effect by assuming that the sales rate is

proportional to the prior cumulative sales quantity. Installed base

effect has formed the basis for the extensive aggregate diffusion liter-

ature in Marketing (Bass, 1969; Mahajan et al., 1990). This literature

treats the entire population of past adopters as the reference group

for a representative agent’s product adoption decision. Narayanan and

Nair (2013) investigate the identification and estimation of causal in-

stalled base effect in a linear model. Through an empirical analysis,

they find a statistically significant and positive installed base effect in

the adoption of the Toyota Prius Hybrid car.

The sales rate of the first generation (i = 1) is thus defined as:

λ1(t) = a − βeαt + γ
∫ t

0 λ1(τ )dτ , where β and α are the linear and

exponential coefficients of technical decay effect, respectively, and

γ indicates the rate of installed base effect. All the parameters are

assumed to be constant and positive for different generations. In order

to avoid the exceptional case that at t = 0 the technical decay effect

is already − β , we can consider the parameter a as the scale value of

a potential sales rate plus β .

Appendix B demonstrates that

λ1(t) = a − βeγ t + γ

∫ t

0

λ1(τ )dτ

= (a − β − γβt)eγ t. (5)

Note that by parameter correction, we have α = γ thus γ appears

in the technical decay effect function. This can be understood as:

in a given market, if the diffusion speed is faster (γ increases), the

diffusion may approach completion earlier (βeγ t is bigger thus sales

slower down earlier).

From Eq. (5), we obtain the sales quantity of the first generation:

N1 =
∫ T

0

λ1(τ )dτ = 1

γ
[λ1(T)− (a − βeγ T)]

= 1

γ
[(a − γβT)eγ T − a]. (6)

Similarly, for the second generation (i = 2), by using the results of

Eqs. (5) and (6), we obtain the formulas for the sales rate λ2(t):

λ2(t) = a − βeγ t + γ

∫ t

0

λ2(τ )dτ + γ N1

= {a + [(a − γβT)eγ T − a] − β − γβt}eγ t

= [(a − γβT)eγ T − β − γβt]eγ t, (7)

and the cumulative sales quantity of the first two generations:

N1 + N2 = 1

γ
{[(a − γβT)eγ T − β − γβT]eγ T − (a − βeγ T)}

= 1

γ
{[(a − γβT)eγ T − γβT]eγ T − a}.

From Eq. (7) we can see that the sales rate is proportional to the

cumulative sales quantity of both the current and previous genera-

tions. On the one hand, this is consistent with the “word-of-mouth
Please cite this article as: S. Liao, R.W. Seifert, On the optimal frequency
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ffect” of the current generation in the Bass model (Bass, 1969) and

he Norton–Bass model (Norton & Bass, 1987). On the other hand, we

lso take into account an installed base effect from previous gener-

tions, which can be interpreted as the social contagion effects be-

ween product generations. Or for consumers of very old generation

roducts, if the internal influence or the social contagion effects are

elatively small, the installed base effect between generations can

e interpreted as including the number of consumers who renew

heir product (switching or repeat purchasing). This effect is not con-

idered in the multi-generation Norton–Bass model (Norton & Bass,

987), but represents the Apple example (Elmer-DeWitt, 2013) in the

ntroduction very well.

For the jth generation, we give the general formulas of the sales

ate λj(t) and the cumulative sales quantity of the first j generations
j
i=1

Ni as follows:

j(t) =
⎡
⎣aeγ (j−1)T −

j∑
i=2

(γ βT)eγ (i−1)T − β − γβt

⎤
⎦ eγ t, (8)

j

i=1

Ni = 1

γ

{(
a − γβTeγ T

eγ T − 1

)
(eγ jT − 1)

}
. (9)

or any given generation j, we can also show the sales quantity ex-

ression for this generation as:

j =
j∑

i=1

Ni −
j−1∑
i=1

Ni

= 1

γ

(
a − γβTeγ T

eγ T − 1

)
(eγ jT − eγ (j−1)T)

= 1

γ
[a(eγ T − 1)− γβTeγ T ]eγ (j−1)T .

The shape of our sales rate function is quite flexible. By adjusting

he parameters a, γ and β , it is possible to plot different curve shapes.

n Fig. 5(a), (c) and (e) (in Appendix G) we present some examples of

ur first generation sales rate curves.

In order to guarantee a positive sales rate, we have to assume that

βT � a − β . This assumption limits the maximum length of each

eneration, which is consistent with practice. If a product remains in

he market for too long without renewal, it may become obsolete over

ime because of the technical decay. Thus it loses its attractiveness in

he market (Souza, 2004), especially if there is strong competition.

roposition 1. If γβT � a − β , then λi(t) � 0 and λi + 1(t) � λi(t), �1

i � n − 1, 0 � t � T.

Proposition 1 shows that the sales rate grows with successive gen-

rations. This is consistent with empirical results and the classic Nor-

on–Bass Model (Norton & Bass, 1987). In Figs. 6 and 7 (in Appendix H)

e present some examples of the first four generations’ sales rates

ith different installed base effect levels (γ = 0.3 and 0.5, respec-

ively). We can see that by adjusting the interplay among parameters

, β , γ and the scale of T, our model can represent the subsequent

enerations’ sales rates growing with flexible shapes.

roposition 2. Given that T = L
n , let y(n) = ∑n

i=1 Ni denote the cumula-

ive sales quantity for the strategy of frequency n, y(n) is strictly concave

RT n.

Proposition 2 shows that introducing too few or too many prod-

ct generations may diminish the cumulative sales quantity. For the

ormer, sales are lost due to the technical decay effect; for the latter,

ach generation lacks the time to build the installed base to increase

he sales.

The concavity of the cumulative sales quantity is a very useful

roperty of our sales model. Because Druehl et al. (2009) use the

orton–Bass model to describe sales, they have to search for the
of multiple generation product introductions, European Journal of
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ptimal solution numerically because of the analytical complexity.

hanks to the concavity of our total sales quantity, we can provide

n analytical expression of the optimal frequency of new generation

ntroductions in Section 4.

In the NPI literature, for the sales rate of each product generation,

ome researchers such as Druehl et al. (2009) use the Bass diffusion

odel (Bass, 1969; Norton & Bass, 1987), others assume that the de-

and rate is constant over time (e.g., Cohen et al., 1996; Morgan et al.,

001), and still others develop new sales rate models as a function

f price and/or reference price (e.g., Arslan et al., 2009; Lim & Tang,

006), etc. In this section, we have developed a sales rate model by

aking into account the technical decay and the diffusion effects. The

hape of our sales rate function is flexible. More importantly, we prove

he concavity of the cumulative sales quantity.

.3. Total profit

The firm’s objective is to maximize total profit, which results from

he difference between the net revenues (cumulative sales quantity of

ll generations multiplied by its per-unit profit margin) and the total

D cost. Assume the unit profit margin u is constant over generations.

et �(n) denote the total profit over the whole planning horizon. We

ave:

(n) = uy(n)− Cost(nPD)

= u

γ

(
a − β γ L

n
e

γ L
n

e
γ L
n − 1

)
(eγ L − 1)− D

(
f L

e
dL
n − 1

+ dL

)
.

n this paper, we assume a constant unit profit margin u for all gener-

tions. In the literature, Morgan et al. (2001) and Krankel et al. (2006)

lso assume constant product margin across product generations. We

ive a discussion about cases where the profit margin increases or

ecreases over generations in Section 4.

In our model, we do not take the discount rate into account. In fact,

ruehl et al. (2009) use more than 2000 scenarios to perform a de-

ailed sensitivity analysis on the discount rate, and they conclude that

it does not significantly impact the optimal time between product

ntroductions.”

. Optimal solution and impact of product development

nvironment

In this section, we derive the optimal frequency of new product

ntroductions and analyze the impacts of different parameters on the

ptimal frequency and on the maximum total profit.

Recall that Cost(nPD) is convex and y(n) is concave WRT n (as

iscussed in Sections 3.1 and 3.2, respectively), it is straightforward

hat:

roposition 3. Given the constant profit margin u, �(n) is a concave

unction WRT n. Let G(n) denote the first order derivation of �(n) WRT

. We have:

(n) = ∂�(n)

∂n
= uβ(eγ L − 1)

( L
n2 e

γ L
n )(e

γ L
n − 1 − γ L

n
)

(e
γ L
n − 1)2

− D f L

(e
dL
n − 1)2

e
dL
n

dL

n2
.

he optimal solution n∗ is thus the unique value (if it exists) which sat-

sfies the first order condition (FOC) G(n∗) = 0. The optimal (integer)

umber of product generations to introduce is the ceiling or the floor

f n∗.

We provide in below the impacts of all the parameters (concerning

rofit margin, sales, PD cost and planning horizon length) on the

ptimal frequency n∗.
Please cite this article as: S. Liao, R.W. Seifert, On the optimal frequency
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orollary 1.

(I) The value n∗ increases WRT unit profit margin u.

(II) Concerning the sales parameters, the value n∗ increases WRT the

technical decay effect β and the installed base effect γ ; the sales

rate scale parameter a has no impact on n∗.

(III) Concerning on the PD cost parameters, the value n∗ increases WRT

the first shape parameter d, decreases WRT the scale parameter D

and the second shape parameter f.

(IV) The value n∗ increases WRT the planning horizon length L.

Intuitively, a higher margin per unit sold allows the firm to in-

roduce more product generations because sales revenues are much

reater than PD costs. Analytically, both the total sales quantity (con-

ave) function and the n generations’ PD cost (convex) function in-

rease WRT n, and the optimal n corresponds to the intersection point

f the sales revenue curve and the n generations’ PD cost curve. If

he margin increases, the sales revenue curve moves up, and its in-

ersection point with the increasing PD cost curve corresponds to a

igger n∗.

For a given generation, a stronger technical decay effect β reduces

he demand rate more quickly. Thus the firm would choose to intro-

uce another generation when β is large. The installed base effect

arameter γ in our model can be interpreted as a combination of the

iffusion process parameter and the growth rate in the Norton–Bass

odel. Our analytical results for the installed base effect γ are also

eflected in the numerical finding in Druehl et al. (2009) about their

iffusion process parameter (p + q) and their growth rate (g), which

ave a positive impact on product introduction frequency. The part
ua(eγ L−1)

γ of the total profit can be considered as “potential fixed rev-

nue,” the sales rate scale parameter a does not influence the optimal

umber of product generations.

A larger scale value D leads to a higher PD cost per generation. It

s thus intuitive that the firm tends to introduce fewer product gen-

rations when D is large. In terms of the shape parameter d, when it

rows, the PD cost increases more sharply, which encourages the firm

o speed up the new generation introduction. Both these analytical

esults are in line with the numerical findings in Druehl et al. (2009)

bout the impacts of D and d on n∗. For the second shape parameter

, a larger f brings a higher PD cost (see Fig. 1(b)) and it thus has a

egative impact on n∗.

Due to the technical decay effect, the firm tends to introduce more

roduct generations for a longer planning horizon. It is thus to be

xpected that n∗ increases WRT the planning horizon length.

Now we analyze the parameters’ impacts on the maximum total

rofit �(n∗).

orollary 2.

(I) The maximum total profit �(n∗) is increases WRT unit profit mar-

gin u.

(II) Concerning the sales parameters, � (n∗) decreases WRT the

technical decay effect β , increases WRT the sales rate scale

parameter a.

(III) Concerning on the PD cost parameters, �(n∗) decreases WRT the

scale parameter D and the second shape parameter f, and is con-

cave WRT the first shape parameter d.

(IV) �(n∗) increases WRT the planning horizon length L.

If the unit profit margin decreases, even if the firm cuts its PD

osts by introducing fewer product generations, it is still likely that

he total profit will decrease. The maximum total profit decreases

hen the technical decay is more rapid. There are two reasons for

his: More product generations lead to higher n generations’ PD cost;

t the same time, the sales quantity (sales revenue) decreases due to

faster technical decay. As a result, the total profit goes down. The

aximum total profit increases with respect to the scale parameter a.
of multiple generation product introductions, European Journal of
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Fig. 3. Maximum total profit WRT installed base effect parameter γ .
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This is obvious, because a bigger scale parameter a means a higher

sales quantity when all other parameters stay the same.

Concerning the impacts of the PD cost parameters D and f, a larger

value of D or f brings a higher PD cost, and thus has a negative im-

pact on the optimal profit. The total profit is concave WRT d, which

indicates that under a certain product development condition, there

exists a staff’s specialization level which is the most appropriate for

a specific projet.

The result in (IV) is straightforward. Unless total profit increases

with L, the firm will stop development and sales at a certain time.

Due to the analytical complexity, we numerically analyze the im-

pact of the installed base effect parameter γ on the maximum total

profit. We adopt the planning horizon length of Druehl et al. (2009):

L = 200 months; the planning horizon is about 16 years. Without loss

of generality, we consider the following parameter setting: a = 14,

u = 4, β = 10, D = 190, d = 0.02 and f = 0.08. We consider five possible

values of factor γ : 0.01, 0.015, 0.02, 0.025, 0.3. For each factor level,

we compute the corresponding optimal value of n and the associated

total profit. The results are presented in Fig. 3 where we can see that

the maximum total profit increases with a higher installed base effect

parameterγ . As mentioned before, the installed base effect parameter

γ in our model can be interpreted as a combination of the diffusion

process parameter and the growth rate in the Norton–Bass model.

Our result is in keeping with the findings in Druehl et al. (2009)

about these parameters (p + q and g): as sales rise, the total profit

increases.

We also numerically study the average yearly profit and the prod-

uct introduction pace (i.e. average yearly product introduction fre-

quency) with respect to L. We consider five possible values of L: 160,

180, 200, 220, 240. Similarly, for each value of L, we compute the

corresponding n∗ and the associated �(n∗). The results are presented

in Fig. 4 where the left vertical axis corresponds to the average yearly

profit �(n∗)/L, and the right vertical axis corresponds to the prod-

uct introduction pace n∗/L. We see that both values increase when

L increases. Since the firm introduces more product generations for

a longer planning horizon, and since the sales rate grows with suc-

cessive generations (as discussed in Proposition 1), the average sales

rate per year increases. The increased average sales revenue is greater

than the increase in PD costs, consequently average profit per year
Fig. 4. Average yearly profit and product introduction pace WRT time length.
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ncreases. This accelerates the frequency of product introductions,

nd thus the yearly pace of product introduction increases for a longer

lanning horizon.

In this paper, we assume that the profit margin remains constant

or the whole planning horizon. For cases where the profit margin

ncreases or decreases over time, we also numerically examine the

erformance of our model. We find that when the profit margin de-

reases across generations and the sales rate scale parameter a is

arge, the sales revenues go down because of margin decrease, then

ncrease thanks to the installed base effect. As a consequence, the to-

al profit function does not remain concave with respect to n and we

an no longer use the FOC to find n∗.

. Extended sales model

In this section, we extend our sales functions presented in

ection 3.2 into more general formulas. We keep all assumptions

bout the sales function in Section 3.2, except that for the technical

ecay effect, we add a linear effect − μt in addition to the exponential

ffect − βeγ t. The additional linear technical decay effect − μt is a

echnicality which allows us to obtain a closed-form optimal solution

nder some special conditions.

We now present the functions of the sales rate and total sales

uantity. For the first generation (i = 1, 0 � t′ � T, t = t′ − 0), the sales

ate is:

1(t) = a − μt − βeγ t + γ

∫ t

0

λ1(τ )dτ

= μ

γ
+

(
a − β − μ

γ
− γβt

)
eγ t. (10)

e can see that if μ = 0, Eq. (10) equals Eq. (5).

From (10), the sales quantity at the end of time T is:

1 =
∫ T

0

λ1(τ )dτ = 1

γ
[λ1(T)− (a − μT − βeγ T)]

= 1

γ

[(
a − β − μ

γ
− γβT

)
eγ T −

(
a − μ

γ

)
+ μT + βeγ T)

]

= 1

γ

[(
a − μ

γ
− γβT

)
eγ T −

(
a − μ

γ

)
+ μT

]
.

For the jth generation, the general form of the sales rate λn(t) is:

j(t) = μ

γ
+

[ (
a − μ

γ

)
eγ (j−1)T +

j∑
i=2

μteγ (i−2)T

−
j∑

i=2

(γ βT)eγ (i−1)T − β − γβt

]
eγ t. (11)

he cumulative sales quantity for the first j generations y(j) is:

(j) = 1

γ

{(
a − μ

γ

)
(eγ jT − 1)− γβTeγ T

eγ T − 1
(eγ jT − 1)+μT

eγ L − 1

eγ T − 1

}

=
(a − μ

γ )

γ
(eγ L − 1)− β(eγ L − 1)

L
j
e

γ L
j

e
γ L
j − 1

+μ

γ
(eγ L − 1)

L
j

e
γ L
j − 1

. (12)

As mentioned above, the only difference between the primal and

xtended sales models is that the latter uses an additional linear func-

ion for the technical decay effect. Fig. 5 (in Appendix G) gives some

xamples of the first generation sales rates for the primal and ex-

ended models. Let a − β = 1.8, γβ = 0.09, we consider three differ-

nt values of γ : 0.02, 0.18, 0.5 and three different values of μ: 0.1,

.054, 0.29.
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Table 1

The effects of different parameters on n∗.

Parameter\model The primal model The extended model

β >
μ
γ β = μ

γ β <
μ
γ

Profit Margin

Profit Margin u + + + − +
Sales

Technical decay effect β + + + − +
Installed base effect γ + + + − +
Sales rate scale parameter a 	 	 	 	

PD cost

The first shape parameter d + + + − +
The second shape parameter f − − − + −
The scale parameter D − − − + −

Planning horizon length

The planning horizon length L + + + − +

+ : positive effect; − : negative effect; 	: no effect; + −: first positive then negative

effect; − +: first negative then positive effect.
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We can see that: for both models, depending on the parameter

etting, the sales rates can be different shapes; and the shapes of the

ales rates of the two models can be very similar. Given the same

arameter setting, the sales rate of the extended model attenuates

aster than that of the primal model because of the stronger technical

ecay effect. Intuitively, the sales rate of the extended model has more

exibility in terms of its shape thanks to an additional parameter μ.

t can be used to describe the sales rate of a wider range of industries

y adjusting all the parameters.

As in Section 4, the total profit over the planning horizon is:

(n) = uy(n)− Cost(nPD).

e denote the first order derivation of �(n) with respect to n by G(n).

roposition 4. There is at most a unique value of n∗ � [1, +�) that

atisfies the FOC G(n∗) = 0. If β = μ
γ ,

∗ = dL

ln(
√

z2

4
+ z + 1 + z

2
)

with z = D f dL

uβ(eγ L − 1)
. (13)

ote that if there is no value of n � [1, +�) that satisfies G(n) = 0,

hen the optimal n∗ should be one of the two extreme points. Since

or a fixed L, n∗ cannot be infinity, it follows that n∗ = 1. The proofs of

roposition 4 is available in Appendices I (in e-version).

Table 1 gives the associated sensitivity analyses of the primal sales

odel and the three cases of the extended sales model. It shows the

ffect on n∗ of each of the parameters (concerning profit margin, sales

unction, PD cost and planning horizon length). We can see that the

ffects of different parameters on n∗ associated with the primal sales

odel are exactly the same as those associated with the extended

ales model with β ≥ μ
γ . For the case β <

μ
γ in the extended sales

odel, the effects of all parameters reverse their directions once,

ecause in this case, ∂�(n)
∂n

first increases then decreases with respect

o n (Please see proof in Appendix J in e-version ).

. Conclusion

In this paper, we examine the optimal frequency of new gen-

ration product introductions assuming complete replacement and

ime-pacing strategies. We construct a new PD cost function based

n the one in Druehl et al. (2009) and develop a primal sales quantity

odel by taking into account technical decay and diffusion effects.

e analytically determine the optimal frequency of new genera-

ion product introductions, and provide an analytical study on the
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mpacts of various parameters on the optimal frequency and on the

aximum total profit. An extension based on our primal sales model

s presented. This extended sales model enables us to obtain a closed-

orm solution for the optimal frequency under a special condition,

nd to prove the uniqueness of the solution for general conditions.

e also provide a comparison between the two sales models in the

ssociated sensitivity analysis. This is the first paper (to the best of

ur knowledge) to explicitly model diffusion dynamics and provide

nalytical results.

We have analytically shown that fast industrial technology evo-

ution speeds up the product generation introduction, we thus ex-

ect companies in the electronics industry to have more frequent

ntroductions than those in the sports equipment or health prod-

ct industries. We also analytically demonstrate that fast industrial

echnology evolution may reduce the firm’s total profit. For example,

n the late 1980s, the computer industry suffered from a significant

rofit reduction while experiencing a fast pace of technology evolu-

ion (Lewis, 1989). In addition, we find that the diffusion speed posi-

ively impacts the product introduction frequency. In a given market,

he diffusion process approaches completion and sales slow down

arlier if the diffusion speed is higher, thus the firms tend to more

requently introduce new product generations. Thanks to the big dif-

usion effect, the cumulative sales quantity is large and so is the total

rofit.

We also find that a smaller PD cost encourages more frequent

roduct generation introductions, which may partially explain why

lectronic product companies such as Apple more frequently intro-

uce new product generations than companies in the automobile

ndustry such as Honda and Toyota, as discussed in the introduction.

smaller PD cost leads to higher total profit, thus it is in the firms’ in-

erest to reduce PD cost, especially in fast changing industries. More-

ver, under a certain product development environment, we see that

well-chosen staff’s specialization level can increase the total profit

or a specific project, and a high specialization level allows the firm to

ore frequently introduce new product generations. A possible im-

lication of our results can be that if a firm aims to increases its profit,

t is not necessary to hire over specialized PD staff; however, if the

rm aims to speed up the product introduction frequency and neg-

tively impact its competitors, it is helpful to hire highly specialized

D staff.

The analysis in this paper can be extended in several directions.

irst, by decomposing the profit margin to the unit price minus the

nit cost, and setting the sales rate as price sensitive, the profit func-

ion is concave as to the unit price (thus probably jointly concave with

espect to the unit price and n). It would be interesting to include

rice as an additional decision variable and analytically compare the

esult with our model. Second, Fig. 4 shows that the optimal intro-

uction pace increases with respect to L. Our model assumes that the

rm introduces a new product generation at constant time intervals

. Further work may relax this assumption by assuming decreasing

ime intervals Tes(i − 1) with s < 0, for example, and search for the

ptimal values of s and T. Third, we assume that the product tran-

ition follows the complete replacement strategy, whereby only one

roduct generation exists in the market at any time. In reality, succes-

ive generations may coexist at the transition period. It would be of

nterest to formalize the phase-out transition in our setting, despite

he increasing analytical complexity. Lastly, we consider a single firm

ithout considering competition or customer behavior. Future work

ould take these factors into account.
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Appendix A. Proof that Cost (n PD) is convex WRT n

To prove the convexity of Eq. (3), given its first order derivation

Eq. (4), we show that its second order derivation on n is positive:

∂2Cost(nPD)

∂n2
= D f L

[
e

dL
n

dL
n2

(e
dL
n − 1)2

]′

= D f L
e

dL
n

dL
n3 [ dL

n
(e

dL
n + 1)− 2(e

dL
n − 1)]

(e
dL
n − 1)3

≥ 0.

Let x = dL
n . We have dL

n (e
dL
n + 1)− 2(e

dL
n − 1) = x(ex + 1)− 2(ex − 1).

If g(x) = x(ex + 1) − 2(ex − 1) � 0, then ∂2Cost(nPD)
∂n2 ≥ 0. Since g(0) = 0,

if we can prove that g′(x) = ∂g(x)
∂x

≥ 0,∀x ≥ 0, then we have g(x) � 0,

�x � 0.

g′(x) = ∂g(x)
∂x

= xex + ex + 1 − 2ex = xex − ex + 1 and g′(0) = 0.
∂g′(x)
∂x

= ex + xex − ex = xex ≥ 0 for x � 0. Thus g′(x) increases with

respect to x, g′(x) � 0 for x � 0. Consequently, g(x) � 0, x � 0. Proved.

Appendix B. Proof of the formulas λ1(t)

We define the sales rate of the first generation by λ1(t) = a −
βeαt + γ

∫ t
0 λ1(τ )dτ . Assume that λ1(t) = A + Bt + CeDt + EteFt with

A, B, C, D, E and F as parameters to be determined, we have:

A + Bt + CeDt + EteFt = a − βeαt + γ

{
At + B

2
t2 + C

D
(eDt − 1)

+E

F

[
teFt − 1

F
(eFt − 1)

]}
. (B.1)

It is straightforward that A = B = 0. Equation (B.1) holds if t = 0 thus

C = a − β . From EteFt = γ E
F teFt we have F = γ . Substitute the values

of C and F in CeDt = −βeαt + γ C
D eDt − E

γ eFt we can find two groups of

possible values of (D, E): (1) D = γ , E = −γβ with α = γ ; (2) D = α,

E = 0 with α = γ a−β
a . With the parameters in (2), λ1(t) is monotone

with respect to t. As we aim to model more complex sales rates, we

choose the parameters in (1) thus λ1(t) = (a − β − γβt)eγ t.

Appendix C. Proof of Proposition 1

If γβT � a − β , it is obvious that λ1(t) � 0, �t � T.

For i = 2, λ2(t) = [(a − γβT)eγ T − β − γβt]eγ t. Given that γβT �
a − β , we have:

(a − γβT)eγ T − β − γβT

≥ (a − γβT)eγ T − a = a(eγ T − 1)− γβTeγ T

≥ (β + γβT)(eγ T − 1)− γβTeγ T = β(eγ T − 1 − γ T) ≥ 0, (C.1)

because β � 0 and eγ T − 1 − γ T � 0 (using Taylor series). From (C.1)

we also see that (a − γβT)eγ T � a, so λ2(t) � λ1(t) is proved.

For i � 2, we now prove that λi + 1(t) � λi(t). From Eq. (8),

this therefore proves that aeγ iT − ∑i+1
j=2(γ βT)eγ (j−1)T ≥ aeγ (i−1)T −∑i

j=2(γ βT)eγ (j−1)T . Equally,

aeγ iT − γβT eγ (i+1)T −1
eγ T −1

≥ aeγ (i−1)T − γβT eγ iT −1
eγ T −1

,

aeγ (i−1)T(eγ T − 1) ≥ γβT eγ iT

eγ T −1
(eγ T − 1).

From (C.1) we see that a(eγ T − 1) − γβTeγ T � 0. Proved.

Appendix D. Proof of Proposition 2

The first order derivation of y(n) is

∂y(n)

∂n
= β(eγ L − 1)

{
( L

n2 e
γ L
n )(e

γ L
n − 1 − γ L

n
)

(e
γ L
n − 1)2

}

= β(eγ L − 1)g1(n)g2(n), (D.1)
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ith g1(n) =
L

n2
e

γ L
n

e
γ L
n −1

≥ 0, g2(n) = e
γ L
n −1− γ L

n

e
γ L
n −1

≥ 0. If we can prove that

oth functions g1(n) and g2(n) strictly decrease with respect to n, then
∂y(n)
∂n

decreases with respect to n, consequently y(n) is strict concave

ith respect to n.

For function g1, we have
∂g1(n)

∂n
= e

γ L
n L

n3

(e
γ L
n −1)2

(γ L
n − 2e

γ L
n + 2). We

ow prove that
γ L
n − 2e

γ L
n + 2 < 0. Let f(x) = x − 2ex + 2 with x = γ L

n .

e have f(0) = 0 and f ′(x) = 1 − 2ex < 0, �x > 0. So we have f(x) < 0,

x > 0. Function g1(n) decreases with respect to n is proved.

For function g2, we have
∂g2(n)

∂n
= −

γ L

n2

(e
γ L
n −1)2

[
γ L
n e

γ L
n + 1 − e

γ L
n ]. We

ow prove that
γ L
n e

γ L
n + 1 − e

γ L
n > 0. Let f(x) = xex + 1 − ex with

= γ L
n . We have f(0) = 0 and f′(x) = ex + xex − ex > 0, �x > 0. So we

ave f(x) > 0, �x > 0. Consequently function g2(n) strictly decreases

ith respect to n is proved.

Since both functions g1(n) and g2(n) strictly decrease with respect

o n, their product g1(n) ∗ g2(n) strictly decreases with respect to n too.

hen ∂y(n)
∂n

strictly decreases with respect to n. The strict concavity of

(n) with respect to n is proved.

ppendix E. Proof of Corollary 1

Recall that G(n) = uβ(eγ L − 1)
( L

n2
e

γ L
n )(e

γ L
n −1− γ L

n )

(e
γ L
n −1)2

− D f L

(e
dL
n −1)2

e
dL
n dL

n2 .

or any parameter x, its impact on n∗ (the implicit function n∗(x) as

function of x) is given by the equation G(n∗, x) = 0 and ∂n∗(x)
∂x

=
∂G(n∗ ,x)

∂x
∂G(n∗ ,x)

∂n∗
. Given the strict concavity of �(n), we have ∂G(n∗,x)

∂n∗ < 0.

(I) �n, ∂G(n,u)
∂u

= β(eγ L − 1){ ( L

n2
e

γ L
n )(e

γ L
n −1− γ L

n )

(e
γ L
n −1)2

} ≥ 0, thus ∂n∗(u)
∂u

≥
0.

(II) Following the proof in (I), we have ∂n∗(β)
∂β

≥ 0. We now prove

that
∂G(n∗,γ )

∂γ
≥ 0, i.e.,

∂n∗(γ )
∂γ

≥ 0. Let G(n∗, r) = (eγ L − 1)G2(γ )

with G2(γ ) = e
γ L
n (e

γ L
n −1− γ L

n )

(e
γ L
n −1)2

≥ 0. First, it is obvious that eγ L − 1

increases with respect to γ . Second, for G2(γ ) we have
∂G2(γ )

∂γ
=

e
γ L
n L

n

(e
γ L
n −1)3

[
γ L
n e

γ L
n + γ L

n − 2e
γ L
n + 2] ≥ 0. The reason is as follows:

Let g(x) = xex + x − 2ex + 2 with x = γ L
n . We have g(0) = 0; g′(x)

= xex − ex + 1 and g′(0) = 0; g′ ′(x) = xex � 0, �x � 0. So g′(x)

increases with respect to x, g′(x) � 0, �x � 0. Consequently,

g(x) increases with respect to x, g(x) � 0, �x � 0. As a result,

G(n∗, γ ) increases with respect to γ , we have
∂G(n∗,γ )

∂γ
≥ 0, thus

∂n∗(γ )
∂γ

≥ 0.

The sales rate scale parameter a does not show up in the

function G(n), therefore they have no effect on n∗.

(III) ∀n,
∂G(n,d)

∂d
= e

dL
n

(e
dL
n −1)3

[e
dL
n dL

n + dL
n − e

dL
n + 1] ≥ 0. The reason is

as follows: Let g(x) = exx + x − ex + 1 with x = dL
n . We have g(0)

= 0; g′(x) = exx � 0, �x � 0. Thus we have g(x) � 0, �x � 0.

As a consequence, ∂n∗(d)
∂d

= − ∂G(n∗,d)
∂d

/
∂G(n∗,d)

∂n∗ ≥ 0. It is straight-

forward that ∂G(n∗,D)
∂D

≤ 0,
∂G(n∗,f )

∂ f
≤ 0. thus n∗ decreases WRT

D and f.

(IV) Let GA(n, L) = eγ L − 1, GB(n, L) =
L

n2
e

γ L
n

e
γ L
n −1

, GC(n, L) = e
γ L
n −1− γ L

n

e
γ L
n −1

and GD(n, L) = − D f L

(e
dL
n −1)2

e
dL
n dL

n2 . We have GA(n, L), GB(n, L),

GC(n, L) � 0 and G(n, L) = uβGA(n, L)GB(n, L)GC(n, L)+ GD(n, L).
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Obviously, GA(n, L) increases WRT L. GB(n∗, L) also increases WRT

because
∂GB(n,L)

∂L
= e

γ L
n 1

n2

(e
γ L
n −1)2

[e
γ L
n − γ L

n − 1] ≥ 0. For GC(n, L), we have

∂GC(n,L)
∂L

=
γ
n

(e
γ L
n −1)2

[
γ L
n e

γ L
n − e

γ L
n + 1] ≥ 0 by using the result from

roof of Proposition 2 that
γ L
n e

γ L
n − e

γ L
n + 1 ≥ 0. For GD(n∗, L), we

ave
∂GD(n∗,L)

∂L
= Ddf Le

dL
n

(e
dL
n −1)3n2

[
γ L
n e

γ L
n + γ L

n − 2e
γ L
n + 2] ≥ 0 by using the

esult from proof of Corollary 1 (II) that
γ L
n e

γ L
n + γ L

n − 2e
γ L
n + 2 ≥ 0.

As a result, G(n∗, L) increases with respect to L, ∂n∗(L)
∂L

= −
∂G(n∗ ,L)

∂L
∂G(n∗ ,L)

∂n∗
≥

. Proved.

ppendix F. Proof of Corollary 2

Recall that �(n) = u 1
γ {(m − γ βTeγ T

eγ T −1
)(eγ nT − 1)} − D( f L

e
dL
n −1

+ dL).

ecause of the FOC in Proposition 3 ( ∂�(n∗)
∂n∗ = 0), the impact of any

arameter x on �(n∗) is

∂�(n∗)
∂x

= ∂�(n∗, x)

∂x
+ ∂�(n∗, x)

∂n∗
∂n∗(x)

∂x
= ∂�(n∗, x)

∂x
,

here we write �(n∗, x) to express the total profit as a function of both
∗ and x. The impacts of u, a, β , D, d and f on �(n∗) are straightforward.

s for the impact of L, unless total profit increases with L, the firm will

top development and sales at a certain time.

ppendix G. Comparison of the first generation sales rate

etween the primal and extended sales models

Fig. 5. Examples of sales rates for the primal and extended models.
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ppendix H. Examples of successive generations sales rates

Fig. 6. Successive generations sales rates with a = 6.8, β = 5 and γ = 0.3.

Fig. 7. Successive generations sales rates with a = 8, β = 5 and γ = 0.5.

upplementary materials

Supplementary material associated with this article can be found,

n the online version, at 10.1016/j.ejor.2015.03.041.
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