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of these parameters.

This paper considers a firm that introduces multiple generations of a product to the market at regular intervals.
We assume that the firm has only a single production generation in the market at any time. To maximize
the total profit within a given planning horizon, the firm needs to decide the optimal frequency to introduce
new product generations, taking into account the trade-off between sales revenues and product development
costs. We model the sales quantity of each generation as a function of the technical decay and installed base
effects. We analytically examine the optimal frequency for introducing new product generations as a function

© 2015 Published by Elsevier B.V.

1. Introduction

Products in competitive markets such as smart phones, tablets,
computers, cameras, software, health and beauty products, and the
like are usually offered as multiple generations. Various factors drive
the development of successive product generations. First, the con-
tinuous and rapid technology improvements make it necessary to
renew product generations frequently to stay competitive. Second,
customers develop new needs over time. Third, in a relatively sat-
urated market, new generation products can generate repeat pur-
chases. For example, Elmer-DeWitt (2013) reports that “90 percent
of iPhone 5S/5C buyers were upgrading from another version of
the iPhone compared to 83 percent for the iPhone 5 launch and
73 percent for the iPhone 4S.” Erhun, Concalves, and Hopman (2007)
point out that “managing the interplay between product generations
can greatly increase the chances for success.” This is also supported
by an empirical study across a wide range of industries in Morgan,
Morgan, and Moore (2001), which shows that the introduction of
multiple product generations is likely more profitable (26 percent
higher) than a series of single-product generation introductions, and
(40 percent higher) than a pure single-product generation
introduction.

It appears that successive generations of many products are in-
troduced in the market at regular time intervals. For example, Apple
launched a new iPhone generation (around July=September) every
year from 2007 to 2013. Likewise, between 2005 and 2013 a new

* Corresponding author. Tel.::41 779 235 090; fax: +41 21 693 24 89.
E-mail addresses: shuangqing.liao@gmail.com (S. Liao), ralf.seifert@epfl.ch (R.W.
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generation of iPod Nano was introduced each September (except in
2011). Similarly, four generations of iPod touch were introduced each
September from 2007 to 2010, and the fifth generation came to the
market in October 2012. Moreover, in the automobile industry, Honda
introduces a new generation of Accord each four to five years while
Toyota brings a new generation of Lexus ES to the market circa ev-
ery five years. This so-called time-pacing product development (PD)
strategy has been widely recognized in the literature about other
industries as well. Christensen (1997) shows that thanks to a time-
pacing strategy, the medical technology company Medtronics was
able to reduce uncertainty and improve the new PD process by elim-
inating requests for revisions to product features during the design
process. Eisenhardt and Brown (1998) show that for rapidly shifting
industries, a time-pacing PD strategy can improve the transition be-
tween new PD projects. Intel releases its chips with an approximately
three-year cycle, and Morgan et al. (2001) point out that this strategy
“allows it to profit from the investment it has made in developing and
commercializing each generation while limiting competitions’ abili-
ties to win sales”. Also, Souza, Bayus, and Wagner (2004) find that a
time-pacing strategy “is not necessarily optimal, but generally does
perform well under many conditions.” In this paper, we adopt the
time-pacing PD strategy as a modeling assumption.

The process for phasing out an older product generation and in-
troducing a new one in the market is called product rollover. A firm
can choose one of two transition strategies during product rollover:
phase-out transition or complete replacement. Using the phase-out
strategy, old and new generations coexist in the market until sales
of the old generation(s) drop to zero. Using the complete replace-
ment strategy, a new generation product introduced in the mar-
ket replaces in full the old generation product. These two strategies
are also referred to as “dual-product roll” and “solo-product roll”,
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respectively (Billington, Lee, & Tang, 1998). In this paper, we as-
sume that the firm adopts the complete replacement strategy. This
assumption is supported: For example, Hewlett-Packard totally re-
placed DeskJet 500 printers with DeskJet 510 printers (Lim & Tang,
2006); Microsoft stops selling older software versions as soon as a new
version is released; Google stopped selling Nexus 4 when launching
Nexus 5 in September 2013, and so on. Consequently, the assump-
tion of a complete replacement strategy is widely used in the liter-
ature (e.g., Arslan, Kachani, & Shmatov, 2009; Carrillo, 2005; Cohen,
Eliashberg, & Ho, 1996, 2000).

We consider a firm that adopts a complete replacement strategy to
introduce multiple generations of a product at regular time intervals
within a given planning horizon. All product generations are assumed
to be sold in the same geographical region and through the same
channel. For each product generation, a PD cost is charged, and the
sales quantity is related to the technical decay and the installed base
effects. As technologies currently develop faster, the gap between
the technology content of a certain product and the latest available
technology increases over time. This gap precipitates the product
gradually toward.obsolescence and thus it loses its attractiveness to
customers, we called this phenomenon “technical decay effect”. We
use the term “installed base effect” to refer to the combination of sev-
eral social contagion effects: word-of-mouth, network effects, social
preferences and observation learning (Narayanan & Nair, 2013). We
consider diffusion dynamics by taking into account the installed base
effect which allows the current sales rate to depend on the cumulative
sales quantity.

The firm’s objective is to maximize the sum of the profits of each
product generation, which equals the sales revenue less the PD cost.
To achieve the optimal total profit, it is important to decide on the op-
timal frequency of product introductions. If products are introduced
too frequently, this may result in excessive PD costs. Moreover, as
the time in the market is too short, each generation may experience
poor sales, since there is insufficient time to build an installed base
and reach peak sales. If a product generation stays in the market for
too long, the technical decay effect may lead to a decrease in sales
rate because customers are less willing to buy technically outdated
products such as old generation computers with Intel 4004 chips for
instance.

Our main contribution is to explicitly model diffusion dynamics
and at the same time analytically study the optimal frequency of
product introductions and its sensitivity to key model parameters.
We model the PD cost based on the PD function in Druehl, Schmidt,
and Souza (2009). To estimate product sales, we construct a primal
sales model as a function of the various parameters mentioned above.
We derive analytical results on the optimal frequency of product in-
troductions and provide analytical sensitivity analysis of the impacts
of different parameters on the optimal frequency and on the maxi-
mum total profit. Moreover, we extend our sales model, which allows
a closed-form solution for the optimal frequency under some special
conditions. We prove the uniqueness of the optimal frequency un-
der general conditions. Finally we compare the sensitivity analyses
between the primal and the extended sales models.

The rest of this paper is organized as follows. We review related
literature in Section 2. In Section 3 we present the PD cost model,
our primal sales model and the total profit function. In Section 4 we
analyze the optimal product introduction frequency and parameter
impacts. In Section 5, we present the extended sales model and ana-
lytical results. We conclude and discuss future research directions in
Section 6. Proofs are provided in the Appendix. Proofs for Section 5
are provided as e-version due to the page limit.

2. Literature review

Our work is related to the literature on new product introduction
(NPI). This literature has mainly focused on the product development

and introduction of single product generation. Several papers con-
sider multiple product generations and examine decisions during the
product rollover as we do, by adopting “dual-product roll” or “solo-
product roll” strategy (Billington et al., 1998).

Research focusing on single product generation introduction pri-
marily studies the static trade-off between time-to-market and
product performance (such as Bayus, 1997; Klastorin & Tsai, 2004;
Krishnan & Ulrich, 2001; Savin & Terwiesch, 2005). Ozer and Uncu
(2013) develop a dynamic decision-support tool to optimize the
nested two-stage decisions on the time-to-market and product quan-
tity for a component supplier. Ozer and Uncu (2015) extend their
research to also integrate pricing and sales channels into decisions.
Unlike their literature, the nature of our problem is such that multiple
product generations are introduced to the market.

The research area of multiple generation products introduction
can be classified into two steams according to the rollover strategies
adopted. One stream assumes both old and new product generations
to be sold during the transition period (dual-product roll). Studies in
this stream consider the cannibalization effect or switch-over among
old and new generations and address decision about time (e.g., Lim
& Tang, 2006), price (e.g., Li & Graves, 2012), inventory quantity (e.g.,
Li, Graves, & Rosenfield, 2010), etc. Druehl et al. (2009) is the most
closely related to our research. Both papers consider diffusion effect,
adopt time-pacing strategy, examine the optimal pace of product in-
troduction and analyze the parameter impacts. However, by adopting
“dual-product roll” strategy and the Norton-Bass diffusion model,
their model necessitates numerical approach due to the analytical
complexity. Instead, under the “solo-product roll” assumption, our
sales model keeps the analytical tractability, which differentiates the
present paper from Druehl et al. (2009).

In the same vein as our research, another stream of the literature
on multiple generation products introduction assumes a single gen-
eration in the market at any time (solo-product roll). Some papers
examine product introduction decisions under competitive environ-
ment in a duopoly (e.g., Arslan et al., 2009; Cohen et al., 1996, 2000;
Morgan etal.,2001; Souza, 2004; Souza et al., 2004), while others con-
sider a monopoly as we do in our paper (e.g., Carrillo, 2005; Krankel,
Duenyas, & Kapuscinski, 2006; Liu & Ozer, 2009; Wilhelm & Xu, 2002).
Liu and Ozer (2009) is closely related to our work. We both show that
the pace of technology evolution negatively impacts the firm’s to-
tal profit, and a smaller product replacement cost encourages more
product replacements. We model the relation between a product’s
profit and its performance gap (technical decay) in different ways;
the product replacement cost in their model is fixed while our PD cost
depends on the decision variable (product introduction frequency).
More importantly, we consider the diffusion dynamics and explic-
itly discuss the impacts of diffusion speed and staff's specialization
level on the optimal frequency and the total profit. However, unlike
ours, they propose a model that helps a manager dynamically de-
cide whether and when to adopt uncertain technological changes.
Carrillo (2005) and Krankel et al. (2006) consider diffusion but
they rely on numerical implementation and dynamic programming,
respectively.

To the best of our knowledge, we are the first to analytically study
the frequency of multiple generation product introductions while ex-
plicitly taking into account the diffusion effect. The diffusion effect
has been widely observed in practice and extensively studied in the
literature (Mahajan, Muller, & Bass, 1990; Meade & Islam, 2006). How-
ever, due to the analytical complexity of extant diffusion models for
multiple generations (such as Mahajan & Muller, 1996; Norton & Bass,
1987), analytical results are not obtained by the literature of multi-
ple generation product introduction considering the diffusion effect
(such as Carrillo, 2005; Druehl et al., 2009; Krankel et al., 2006). We
develop our sales model which considers diffusion and holds flexible
shapes, and we provide analytical results for the optimal frequency
and parameter impacts.
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3. Model D( ' +dT), f=1 D(i+dT), d=0.04
«D
We consider a fixed planning horizon of length L (e.g., L months or % — woe
years). We assume that the firm introduces a new product generation 40 e
at constant time intervals T over the planning horizon L. Our model 30
gives an explicit analytical expression of the optimal new product 20 -
introduction frequency n = % which is impacted by the PD cost and 2 E
the cumulative sales of all product generations. 10 . ‘ | ‘ o
We use the fOllOWng notations. All parameters are assumed to be (a) PD Costlcol?rves wzii)l? differse(x)?t Valuezogf d (b) PD costlzﬂrves wzl(t)ﬁ differSe(i?t Valuezogf f
positive.
. : Fig. 1. Our product development cost curves.
Decision variable
n Frequency of new product introductions D( +dT)
Parameters el -1
L Planning horizon
T Time between introduction of successive generations, T = %
t The time span since a product generation has been introduced,
0<t=<T
Ai(t) Sales rate of product generation i after time t since its intro-
duction in the market
N; Sales quantity of product generation i
u Unit profit margin
a Sales rate scale parameter
B Technical decay effect parameter
y Installed base effect parameter 20 40 60 80
D S.Cale parameter for PD cost curve Fig. 2. PD cost curves of Druehl et al. (2009).
d First shape parameter for PD cost curve
f Second shape parameter for PD cost curve
Next we detail the analytical functions for the PD cost, the sales Our quel is built based on the PD cost model of Druehl et al.
and the total profit. (2009), which sets fT = 1:
31. PD cost JCost(PD) =D (edrli_l + dT) . (2)
We follow a standard assumption (Graves, 1989) that the trade-off Fig._z presents the PD cost curves origipatgd from Druehl et al. (2009)
between the PD cost for introducing a new product and its PD time is V\{hICh uses the same values of d as in ,Flg', l(a).. er see that for.a
a “U-shaped” convex curve. That said, the PD cost grows when time given shape parameter d, the PD curve in Flg 2 is similar to that in
is compressed as “crashing” the project requires more resource allo- Fig. 1(a), ie., they both represent the e‘mplrlcally observed U-shape
cations such as training new team members. The PD cost also grows and a higher d "alfle corresponds to a higher sFeepness of the convex
when the PD project is delayed because of decreasing motivation and PD. Ccurve. By sethg JT = 1, all values Of d yield the same PD cost
additional setup cost as people move to other projects. This assump- fmnmum in their model. Our modgl provides more flexibility thanks
tion is supported both empirically and theoretically in the literature to the add1F10nal parameterf. More importantly, it has more desirable
(Bayus, 1997: Boehm, 1981; Graves, 1989). mathematlcgl properties as follqws. We denotLe the sum of PD costs
Similar to Druehl et al. (2009), we assume all generations face the of n generations by.Cost(nPD). Given that T = . we have:
same PD cost curve and that the PD time per generation equals T. The fT fL
“U-shaped” convex PD cost for each generation is given by Cost(nPD) = D xn x <ﬁ + dT) =D (e% 1 + dL) : ()
CostPD) =D (deiT + dT) ) (1) Eq.(3)is an (increasing) convex function with respect to (WRT) n (see
et —1 proof in Appendix A). The first order derivation of Eq. (3) WRT n is:
The‘ paramgter D represents thg size of thg overall development ACost(nPD) DfL wdl
project, which may vary according to the industry, company and an =— e 0. (4)
project. The parameter d can be interpreted as the staff’s specialization r —1)
level: highly specialized workers can finish the project within a The first order derivation of n generations’ PD cost using our model
shorter time span nevertheless it costs more to train and pay new (Eqg.(1))is much simpler than that using Eq. (2) as a single-generation
workers (for PD project acceleration), as well as to switch them from PD cost. This simplification helps to derive the explicit analytical ex-
other projects (due to PD project delay), that said the PD project is pression of the optimal frequency n and the sensitivity analysis in
more cost sensitive with respect to time. Fig. 1(a) presents some sam- Section 4. Moreover, it enables us to provide a closed-form solution
ples of our PD cost curves associated with different values of d (given of the optimal frequency in Section 5.
f=1). We see that a higher d value corresponds to a steeper curve
with a narrower bottom and a smaller optimal PD time (that asso- 3.2. Sales
ciates with the minimum PD cost). The parameter f contributes to
both the scale and the steepness of the PD cost, to allow more flex- Note that the subscript i refers to the ith generation of new prod-
ibility in fitting the shape of the PD cost curve. In Fig. 1(b) we show ucts introduced into the product market. We assume without loss of
our PD cost curves for different values of f (with d = 0.04). We see generality that the introduction of the ith generationis at time (i — 1)T.
that the value of f can be used to adjust the minimum cost as well as We assume that the firm adopts complete replacement strategy. Let
the associated time. Ai(t)denote the sales rate of generation i at time t after its introduction
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(0 <t <T),and let N; denote the cumulative sales quantity of the ith
generation through its product life cycle, we have N; = fOT Ai(t)dt. In
the following we introduce our sales model which considers diffusion
and technical decay effects.

Let a denote the sales rate scale parameter. We add a negative
technical decay effect — Se*! because today’s technologies change
fast, and over time a product may progressively lose attractiveness
because it becomes obsolete. The technical decay effect is well recog-
nized and modeled in different ways in the literature. For example,
Li and Graves (2012) assume a decreasing customer preference for
the old product during inter-generational product transition; Liu and
Ozer (2009) assume that a product’s profit rate is a decreasing func-
tion of the performance gap between its underlying technology and
the latest technology in the market. Souza (2004) assumes that prod-
uct attraction decreases with respect to product age. In addition, we
consider the installed base effect by assuming that the sales rate is
proportional to the prior cumulative sales quantity. Installed base
effect has formed the basis for the extensive aggregate diffusion liter-
ature in Marketing (Bass, 1969; Mahajan et al., 1990). This literature
treats the entire population of past adopters as the reference group
forarepresentative agent’s product adoption decision. Narayanan and
Nair (2013) investigate the identification and estimation of causal in-
stalled base effect in a linear model. Through an empirical analysis,
they find a statistically significant and positive installed base effect in
the adoption of the Toyota Prius Hybrid car.

The sales rate of the first generation (i = 1) is thus defined as:
At)=a— et +y ,/5)»1 (t)dt, where B and « are the linear and
exponential coefficients of technical decay effect, respectively, and
y indicates the rate of installed base effect. All the parameters are
assumed to be constant and positive for different generations. In order
to avoid the exceptional case that at t = O the technical decay effect
is already — 8, we can consider the parameter a as the scale value of
a potential sales rate plus .

Appendix B demonstrates that

MmO =a—Ber+y /tkl(t)dt
0
(a—pB—ypBtye. (5)

Note that by parameter correction, we have @ = y thus y appears
in the technical decay effect function. This can be understood as:
in a given market, if the diffusion speed is faster (y increases), the
diffusion may approach completion earlier (8e”! is bigger thus sales
slower down earlier).

From Eq. (5), we obtain the sales quantity of the first generation:

[3«nW=1uanfmf&”n
0 Y

Ny

%KafyﬂDWde. ®)

Similarly, for the second generation (i = 2), by using the results of
Egs. (5) and (6), we obtain the formulas for the sales rate A,(t):

t
a—Bert + y/ A2 (T)dT + YNy
0

{a+[(@—yBTDe’" —a] - B - yptle’
=[(a-yBDer" — B —yptle, (7)

and the cumulative sales quantity of the first two generations:

%ﬂw—VﬂDWT—ﬂ—VﬂﬂWT—w—ﬂWU}

A2 (f)

Ni+N;

%ﬂw—yﬂDWT—yﬁﬂNT—M.

From Eq. (7) we can see that the sales rate is proportional to the
cumulative sales quantity of both the current and previous genera-
tions. On the one hand, this is consistent with the “word-of-mouth

effect” of the current generation in the Bass model (Bass, 1969) and
the Norton=Bass model (Norton & Bass, 1987). On the other hand, we
also take into account an installed base effect from previous gener-
ations, which can be interpreted as the social contagion effects be-
tween product generations. Or for consumers of very old generation
products, if the internal influence or the social contagion effects are
relatively small, the installed base effect between generations can
be interpreted as including the number of consumers who renew
their product (switching or repeat purchasing). This effect is not con-
sidered in the multi-generation Norton=Bass model (Norton & Bass,
1987), but represents the Apple example (Elmer-DeWitt, 2013) in the
introduction very well.

For the jth generation, we give the general formulas of the sales
rate A;(t) and the cumulative sales quantity of the first j generations

211:21 N; as follows:

J

Aj(t) = | ae? 0T =% (y pT)er VT — B —y Bt | e, (8)
i=2

J 1 y BTerT ;

ZN":?KG_ T 1)(6WT_1)}' )

i=1

For any given generation j, we can also show the sales quantity ex-
pression for this generation as:

i j-1
Nj=> Ni—Y N
i=1 i=1
T
= l <a — vy BTer ) (VT — v -1
14

erT —1
%[a(eVT —1)— yBTerT]er -1,

The shape of our sales rate function is quite flexible. By adjusting
the parameters a, y and g, it is possible to plot different curve shapes.
In Fig. 5(a), (c) and (e) (in Appendix G) we present some examples of
our first generation sales rate curves.

In order to guarantee a positive sales rate, we have to assume that
y BT < a — B. This assumption limits the maximum length of each
generation, which is consistent with practice. If a product remains in
the market for too long without renewal, it may become obsolete over
time because of the technical decay. Thus it loses its attractiveness in
the market (Souza, 2004), especially if there is strong competition.

Proposition 1. If y BT < a — B, then A;(t) = 0 and A; , 1(t) = Ai(t), V1
<i<n-1,0<t<T

Proposition 1 shows that the sales rate grows with successive gen-
erations. This is consistent with empirical results and the classic Nor-
ton=Bass Model (Norton & Bass, 1987).In Figs. 6 and 7 (in Appendix H)
we present some examples of the first four generations’ sales rates
with different installed base effect levels (y = 0.3 and 0.5, respec-
tively). We can see that by adjusting the interplay among parameters
a, B, y and the scale of T, our model can represent the subsequent
generations’ sales rates growing with flexible shapes.

Proposition 2. GiventhatT = % lety(n) = "I N; denote the cumula-
tive sales quantity for the strategy of frequency n, y(n) is strictly concave
WRT n.

Proposition 2 shows that introducing too few or too many prod-
uct generations may diminish the cumulative sales quantity. For the
former, sales are lost due to the technical decay effect; for the latter,
each generation lacks the time to build the installed base to increase
the sales.

The concavity of the cumulative sales quantity is a very useful
property of our sales model. Because Druehl et al. (2009) use the
Norton=Bass model to describe sales, they have to search for the
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optimal solution numerically because of the analytical complexity.
Thanks to the concavity of our total sales quantity, we can provide
an analytical expression of the optimal frequency of new generation
introductions in Section 4.

In the NPI literature, for the sales rate of each product generation,
some researchers such as Druehl et al. (2009) use the Bass diffusion
model (Bass, 1969; Norton & Bass, 1987), others assume that the de-
mand rate is constant over time (e.g., Cohen et al., 1996; Morgan et al.,
2001), and still others develop new sales rate models as a function
of price and/or reference price (e.g., Arslan et al., 2009; Lim & Tang,
2006), etc. In this section, we have developed a sales rate model by
taking into account the technical decay and the diffusion effects. The
shape of our sales rate function is flexible. More importantly, we prove
the concavity of the cumulative sales quantity.

3.3. Total profit

The firm’s objective is to maximize total profit, which results from
the difference between the net revenues (cumulative sales quantity of
all generations multiplied by its per-unit profit margin) and the total
PD cost. Assume the unit profit margin u is constant over generations.
Let I1(n) denote the total profit over the whole planning horizon. We
have:

I1(n)

uy(n) —Cost(nPD)
_u B VTLEVTL L fL
__y<a_ﬂl)@y_n)_u< J 1+dL>.

en —
In this paper, we assume a constant unit profit margin u for all gener-
ations. In the literature, Morgan et al. (2001) and Krankel et al. (2006)
also assume constant product margin across product generations. We
give a discussion about cases where the profit margin increases or
decreases over generations in Section 4.

In our model, we do not take the discount rate into account. In fact,
Druehl et al. (2009) use more than 2000 scenarios to perform a de-
tailed sensitivity analysis on the discount rate, and they conclude that
“it does not significantly impact the optimal time between product
introductions.”

no—

4. Optimal solution and impact of product development
environment

In this section, we derive the optimal frequency of new product
introductions and analyze the impacts of different parameters on the
optimal frequency and on the maximum total profit.

Recall that.Cost(nPD) is convex and y(n) is concave WRT n (as
discussed in Sections 3.1 and 3.2, respectively), it is straightforward
that:

Proposition 3. Given the constant profit margin u, I'1(n) is a concave
function WRT n. Let G(n) denote the first order derivation of I1(n) WRT
n. We have:

8%”) =ufE" -1)

DfL

(e% 1) n2’
The optimal solution n* is thus the unique value (if it exists) which sat-
isfies the first order condition (FOC) G(n*) = 0. The optimal (integer)

number of product generations to introduce is the ceiling or the floor
of n*.

(e e ~

(€% 17

L
G(n) = — %)

We provide in below the impacts of all the parameters (concerning
profit margin, sales, PD cost and planning horizon length) on the
optimal frequency n*.

Corollary 1.

(I) The value n* increases WRT unit profit margin u.

(I) Concerning the sales parameters, the value n* increases WRT the
technical decay effect B and the installed base effect y; the sales
rate scale parameter a has no impact on n*.

(IIl) Concerning on the PD cost parameters, the value n* increases WRT
the first shape parameter d, decreases WRT the scale parameter D
and the second shape parameter f.

(IV) The value n* increases WRT the planning horizon length L.

Intuitively, a higher margin per unit sold allows the firm to in-
troduce more product generations because sales revenues are much
greater than PD costs. Analytically, both the total sales quantity (con-
cave) function and the n generations’ PD cost (convex) function in-
crease WRT n, and the optimal n corresponds to the intersection point
of the sales revenue curve and the n generations’ PD cost curve. If
the margin increases, the sales revenue curve moves up, and its in-
tersection point with the increasing PD cost curve corresponds to a
bigger n*.

For a given generation, a stronger technical decay effect 8 reduces
the demand rate more quickly. Thus the firm would choose to intro-
duce another generation when S is large. The installed base effect
parameter y in our model can be interpreted as a combination of the
diffusion process parameter and the growth rate in the Norton=Bass
model. Our analytical results for the installed base effect y are also
reflected in the numerical finding in Druehl et al. (2009) about their
diffusion process parameter (p + q) and their growth rate (g), which
have a positive impact on product introduction frequency. The part
%L’” of the total profit can be considered as “potential fixed rev-
enue,” the sales rate scale parameter a does not influence the optimal
number of product generations.

A larger scale value D leads to a higher PD cost per generation. It
is thus intuitive that the firm tends to introduce fewer product gen-
erations when D is large. In terms of the shape parameter d, when it
grows, the PD cost increases more sharply, which encourages the firm
to speed up the new generation introduction. Both these analytical
results are in line with the numerical findings in Druehl et al. (2009)
about the impacts of D and d on n*. For the second shape parameter
f, a larger f brings a higher PD cost (see Fig. 1(b)) and it thus has a
negative impact on n*.

Due to the technical decay effect, the firm tends to introduce more
product generations for a longer planning horizon. It is thus to be
expected that n* increases WRT the planning horizon length.

Now we analyze the parameters’ impacts on the maximum total
profit TT(n*).

Corollary 2.

(I) The maximum total profit T1(n*) is increases WRT unit profit mar-
ginu.

(I) Concerning the sales parameters, T1 (n*) decreases WRT the
technical decay effect 8, increases WRT the sales rate scale
parameter a.

(IIl) Concerning on the PD cost parameters, I1(n*) decreases WRT the
scale parameter D and the second shape parameter f, and is con-
cave WRT the first shape parameter d.

(IV) TI(n*) increases WRT the planning horizon length L.

If the unit profit margin decreases, even if the firm cuts its PD
costs by introducing fewer product generations, it is still likely that
the total profit will decrease. The maximum total profit decreases
when the technical decay is more rapid. There are two reasons for
this: More product generations lead to higher n generations’ PD cost;
at the same time, the sales quantity (sales revenue) decreases due to
a faster technical decay. As a result, the total profit goes down. The
maximum total profit increases with respect to the scale parameter a.
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200000 - Maximum total profit increases. This accelerates the freguency of prgduct introductions,
and thus the yearly pace of product introduction increases for a longer

150000 1 planning horizon.
100000 4 In this paper, we assume that the profit margin remains constant
for the whole planning horizon. For cases where the profit margin
50000 increases or decreases over time, we also numerically examine the
performance of our model. We find that when the profit margin de-
0 | —— - creases across generations and the sales rate scale parameter a is
0.01 0.015 0.02 0.025 0.03

Installed base effect parameter, y

Fig. 3. Maximum total profit WRT installed base effect parameter y.

This is obvious, because a bigger scale parameter a means a higher
sales quantity when all other parameters stay the same.

Concerning the impacts of the PD cost parameters D and f, a larger
value of D or f brings a higher PD cost, and thus has a negative im-
pact on the optimal profit. The total profit is concave WRT d, which
indicates that under a certain product development condition, there
exists a staff’s specialization level which is the most appropriate for
a specific projet.

The result in (IV) is straightforward. Unless total profit increases
with L, the firm will stop development and sales at a certain time.

Due to the analytical complexity, we numerically analyze the im-
pact of the installed base effect parameter y on the maximum total
profit. We adopt the planning horizon length of Druehl et al. (2009):
L =200 months; the planning horizon is about 16 years. Without loss
of generality, we consider the following parameter setting: a = 14,
u=4,8=10,D=190,d=0.02 and f = 0.08. We consider five possible
values of factor y: 0.01, 0.015, 0.02, 0.025, 0.3. For each factor level,
we compute the corresponding optimal value of n and the associated
total profit. The results are presented in Fig. 3 where we can see that
the maximum total profit increases with a higher installed base effect
parameter y. As mentioned before, the installed base effect parameter
y in our model can be interpreted as a combination of the diffusion
process parameter and the growth rate in the Norton=Bass model.
Our result is in keeping with the findings in Druehl et al. (2009)
about these parameters (p + q and g): as sales rise, the total profit
increases.

We also numerically study the average yearly profit and the prod-
uct introduction pace (i.e. average yearly product introduction fre-
quency) with respect to L. We consider five possible values of L: 160,
180, 200, 220, 240. Similarly, for each value of L, we compute the
corresponding n* and the associated I[1(n*). The results are presented
in Fig. 4 where the left vertical axis corresponds to the average yearly
profit I1(n*)/L, and the right vertical axis corresponds to the prod-
uct introduction pace n*/L. We see that both values increase when
L increases. Since the firm introduces more product generations for
a longer planning horizon, and since the sales rate grows with suc-
cessive generations (as discussed in Proposition 1), the average sales
rate per year increases. The increased average sales revenue is greater
than the increase in PD costs, consequently average profit per year

B Average yearly profit == Pace

4 4500 16

e —

5 3500 145
1]

= 1.2 t

© 2500 <

[ 1 =

> 3

]

ap 1500 08 &

o

3 500 0.6

160 180 200 220 240

Planning horizon length, L

Fig. 4. Average yearly profit and product introduction pace WRT time length.

large, the sales revenues go down because of margin decrease, then
increase thanks to the installed base effect. As a consequence, the to-
tal profit function does not remain concave with respect to n and we
can no longer use the FOC to find n*.

5. Extended sales model

In this section, we extend our sales functions presented in
Section 3.2 into more general formulas. We keep all assumptions
about the sales function in Section 3.2, except that for the technical
decay effect, we add a linear effect — x4t in addition to the exponential
effect — Bev!. The additional linear technical decay effect — ut is a
technicality which allows us to obtain a closed-form optimal solution
under some special conditions.

We now present the functions of the sales rate and total sales
quantity. For the first generation (i = 1,0 < t~= T, =t = 0), the sales
rate is:

t
M) = a—ut—ﬂeyf-i-y/ M (t)dT
0

Hn < t
=+ a—ﬁ———yﬂt)ey.
4 14
We can see that if u = 0, Eq. (10) equals Eq. (5).
From (10), the sales quantity at the end of time T is:

(10)

T 1
Ny = / MOT = [0 (1) ~ @ uT~ fe’")

)1/ [(a—ﬂ— ——yﬂT)eyT— (a— %)+MT+,367’T)}

-]

For the jth generation, the general form of the sales rate An(t) is:

—_

o - K K orG-nr . y(-2)T
A)==+|(a- e +Z,ute
Y 14 P
j .
=BT~y e ()
i=2

The cumulative sales quantity for the first j generations y(j) is:

. 1 T yL_1q
y(i) = ?{(a7%> e -1)— '8 e] (e’ - 1)+MT;/T7_1}
Lo
= )(e”L 1) - .B(EVL—U ] -
HoE -y (12)
ef —1

As mentioned above, the only difference between the primal and
extended sales models is that the latter uses an additional linear func-
tion for the technical decay effect. Fig. 5 (in Appendix G) gives some
examples of the first generation sales rates for the primal and ex-
tended models. Leta — 8 = 1.8, y B = 0.09, we consider three differ-
ent values of y: 0.02, 0.18, 0.5 and three different values of w: 0.1,
0.054, 0.29.
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Table 1
The effects of different parameters on nx.

Parametervmodel The primal model The extended model
p-t p=t p<t
Profit Margin
Profit Margin u + + + —+
Sales
Technical decay effect 8 + + + —+
Installed base effect y + + + —+
Sales rate scale parameter a f f # f
PD cost
The first shape parameter d + + + —+
The second shape parameter f - - - +—
The scale parameter D - - - 4
Planning horizon length
The planning horizon length L + + + -+
+ : positive effect; — : negative effect; #: no effect; + —: first positive then negative

effect; — +: first negative then positive effect.

We can see that: for both models, depending on the parameter
setting, the sales rates can be different shapes; and the shapes of the
sales rates of the two models can be very similar. Given the same
parameter setting, the sales rate of the extended model attenuates
faster than that of the primal model because of the stronger technical
decay effect. Intuitively, the sales rate of the extended model has more
flexibility in terms of its shape thanks to an additional parameter j.
It can be used to describe the sales rate of a wider range of industries
by adjusting all the parameters.

As in Section 4, the total profit over the planning horizon is:

IT(n) = uy(n) —Cost(nPD).
We denote the first order derivation of I1(n) with respect to n by G(n).

Proposition 4. There is at most a unique value of n* € [1, +o0) that
satisfies the FOC G(n*) = 0.If B = %

dL DfdL

(13)

= 2
In(/$+z+1+3%)

Note that if there is no value of n € [1, +) that satisfies G(n) = 0,
then the optimal n* should be one of the two extreme points. Since
for a fixed L, n* cannot be infinity, it follows that n* = 1. The proofs of
Proposition 4 is available in Appendices I (in e-version).

Table 1 gives the associated sensitivity analyses of the primal sales
model and the three cases of the extended sales model. It shows the
effect on n* of each of the parameters (concerning profit margin, sales
function, PD cost and planning horizon length). We can see that the
effects of different parameters on n* associated with the primal sales
model are exactly the same as those associated with the extended
sales model with 8 > % . For the case 8 < % in the extended sales
model, the effects of all parameters reverse their directions once,
because in this case, % first increases then decreases with respect
to n (Please see proof in Appendix ] in e-version ).

6. Conclusion

In this paper, we examine the optimal frequency of new gen-
eration product introductions assuming complete replacement and
time-pacing strategies. We construct a new PD cost function based
on the one in Druehl et al. (2009) and develop a primal sales quantity
model by taking into account technical decay and diffusion effects.
We analytically determine the optimal frequency of new genera-
tion product introductions, and provide an analytical study on the

impacts of various parameters on the optimal frequency and on the
maximum total profit. An extension based on our primal sales model
is presented. This extended sales model enables us to obtain a closed-
form solution for the optimal frequency under a special condition,
and to prove the uniqueness of the solution for general conditions.
We also provide a comparison between the two sales models in the
associated sensitivity analysis. This is the first paper (to the best of
our knowledge) to explicitly model diffusion dynamics and provide
analytical results.

We have analytically shown that fast industrial technology evo-
lution speeds up the product generation introduction, we thus ex-
pect companies in the electronics industry to have more frequent
introductions than those in the sports equipment or health prod-
uct industries. We also analytically demonstrate that fast industrial
technology evolution may reduce the firm’s total profit. For example,
in the late 1980s, the computer industry suffered from a significant
profit reduction while experiencing a fast pace of technology evolu-
tion (Lewis, 1989). In addition, we find that the diffusion speed posi-
tively impacts the product introduction frequency. In a given market,
the diffusion process approaches completion and sales slow down
earlier if the diffusion speed is higher, thus the firms tend.to more
frequently introduce new product generations. Thanks to the big dif-
fusion effect, the cumulative sales quantity is large and so is the total
profit.

We also find that a smaller PD cost encourages more frequent
product generation introductions, which may partially explain why
electronic product companies such as Apple more frequently intro-
duce new product generations than companies in the automobile
industry such as Honda and Toyota, as discussed in the introduction.
A smaller PD cost leads to higher total profit, thus it is in the firms’ in-
terest to reduce PD cost, especially in fast changing industries. More-
over, under a certain product development environment, we see that
a well-chosen staff’s specialization level can increase the total profit
for a specific project, and a high specialization level allows the firm to
more frequently introduce new product generations. A possible im-
plication of our results can be that if a firm aims to increases its profit,
it is not necessary to hire over specialized PD staff; however, if the
firm aims to speed up the product introduction frequency and neg-
atively impact its competitors, it is helpful to hire highly specialized
PD staff.

The analysis in this paper can be extended in several directions.
First, by decomposing the profit margin to the unit price minus the
unit cost, and setting the sales rate as price sensitive, the profit func-
tion is concave as to the unit price (thus probably jointly concave with
respect to the unit price and n). It would be interesting to include
price as an additional decision variable and analytically compare the
result with our model. Second, Fig. 4 shows that the optimal intro-
duction pace increases with respect to L. Our model assumes that the
firm introduces a new product generation at constant time intervals
T. Further work may relax this assumption by assuming decreasing
time intervals TeS =1 with s < 0, for example, and search for the
optimal values of s and T. Third, we assume that the product tran-
sition follows the complete replacement strategy, whereby only one
product generation exists in the market at any time. In reality, succes-
sive generations may coexist at the transition period. It would be of
interest to formalize the phase-out transition in our setting, despite
the increasing analytical complexity. Lastly, we consider a single firm
without considering competition or customer behavior. Future work
could take these factors into account.

Acknowledgments

We would like to thank two anonymous reviewers for their valu-
able comments and suggestions.

Please cite this article as: S. Liao, R.W. Seifert, On the optimal frequency of multiple generation product introductions, European Journal of
Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.03.041

585
586

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644

645
646


Original text:
Original text:
M

Original text:
Original text:
Cost

Original text:
Original text:
PD

Original text:
Original text:
s

http://dx.doi.org/10.1016/j.ejor.2015.03.041

647

648
649

650
651

652
653
654

655
656

657

658
659
660

661
662
663
664
665
666
667

668

669

670
671

672
673
674
675

676

677

678

679

JID: EOR [m5G;April 10, 2015;11:3]
8 S. Liao, R.W. Seifert / European Journal of Operational Research xxx (2015) Xxx-xxx
Appendix A. Proof that Cost (nPD) is convex WRT n Ltk Lo
. 2 em —1—
with gq(n) = "VL >0, gon) = 7" > 0. If we can prove that

To prove the convexity of Eq. (3), given its first order derivation
Eq. (4), we show that its second order derivation on n is positive:

2 dgr 7
d4Cost(nPD) _DfL en 3
an? e% — 12
LdL dL (o L
:DfL HE G +1) 2(e —1)] _ 0.
(e —1)

Let x = %. We have %(e% $1)—2(eT —1)=x@*+1)—2(* 1)
If g(x) = x(eX + 1) — 2(¢* — 1) > 0, then Mgrgz@) > 0. Since g(0) =0,

if we can prove that g'(x) = % >0, Vx > 0, then we have g(x) > 0,

Vx> 0.
gx) = % =xe¥+e¥+1-2e*=xe*—-e*+1 and g'(0) = 0.
98 _ ox 4 xeX — X = xeX > 0 for x > 0. Thus g'(x) increases with

respect to x, g'(x) = 0 for x > 0. Consequently, g(x) > 0, x > 0. Proved.
Appendix B. Proof of the formulas A{(t)

We define the sales rate of the first generation by Aq(t)=a—
Be*t +y [o ki(t)dt. Assume that Aq(t) = A + Bt + CeP* + Etef* with
A, B, C, D, E and F as parameters to be determined, we have:

B C
A + Bt + CeP* + Eteft = a—ﬂe“t+y{At+ft2+5(eD‘—1)

2
E 1
—|teft — =" - 1)|}.
R G|
It is straightforward that A = B = 0. Equation (B.1) holds if t = 0 thus
C=a— B.From Etef = y Eteft we have F = y. Substitute the values
of Cand Fin CePt = —Bet + y §ePt — Eeft we can find two groups of
possible values of (D, E): (1)D=y,E=-yB witha =y; (2)D =«,
E=0witha =y aﬂ With the parameters in (2), A1(t) is monotone
with respect to t. As we aim to model more complex sales rates, we
choose the parameters in (1) thus A{(t) = (a — 8 — y Bt)e’".

(B.1)

Appendix C. Proof of Proposition 1

If yBT < a — B, itis obvious that A{(t) >0, Vt < T.

Fori=2,Ay(t)=[(a - yBTe’T — B — y Btle’". Given that y BT <
a— f, we have:
@-ypne’" —B—ypT

> (@-ypTe’" —a=a(e’" —1)—yBTe’"

=(B+yBDET —1)—yBTe’ =@’ ~1-yT)=0, (C1)
because B = 0and e¥T — 1 — T = 0 (using Taylor series). From (C.1)
we also see that (a — y 8T)e?T = a, so Ay(t) = A;(t) is proved.

For i > 2, we now prove that }‘i.+ 1(t) = Ai(t). From Eq. (8),
this therefore proves that ae?iT — ZJ’:; (y BT)er (=DT > qey (=1T _

Y, (yBTer -7, Equally,

iT e+ _q i-1)T
ae? ™ — y BTE 1 > qev (-1
aeV(l'*UT(e)/T _

il _
~yBT .
1) = yBT 4" - 1).
y BTe¥T = 0. Proved.

From (C.1) we see that a(e?T — 1) —
Appendix D. Proof of Proposition 2

The first order derivation of y(n) is

) _ sy | BN
en —

= B’ — g1 (g2 (n),

(D.1)

both functlons 2 ( )and g»(n) strictly deérease with respect to n, then
3%(: decreases with respect to n, consequently y(n) is strict concave
with respect to n.
b _ T

an_ (eyTLfl)Z( 26
now prove that VTL — 2 +2 <0.Letflx)=x —2e¥+ 2 withx = VTL
We have f{0) =0 and f'(x) =1 — 2e* < 0, Vx > 0. So we have f(x) < 0,
Vx > 0. Function g;(n) decreases with respect to n is proved.

[VLen +1—en]We

For function g;, we have +2) We

For function g, we have M - yL
(e m —1)2

now prove that £ en +1 —en > 0. Let filx) = xe* + 1 — e* with
X= VTL.Wehaveﬂo)_Oandf(x):e"+xe" —e*>0, Vx> 0.Sowe
have f(x) > 0, Vx > 0. Consequently function g,(n) strictly decreases
with respect to n is proved.

Since both functions g;(n) and g, (n) strictly decrease with respect
ton, their product g1 (1) + g»(n) strictly decreases with respect to n too.
Then % strictly decreases with respect to n. The strict concavity of
y(n) with respect to n is proved.

Appendix E. Proof of Corollary 1

(Lelt)ehr-1-1L) @
Recall that G(n) = uf (e’ — 1)-2— T DL pdl
@' -1y emr-1n2 "

For any parameter x, its impact on n* (the implicit function n*(x) as
a function of x) is given by the equation G(n*, x) = 0 and % =

AG(n* .x. 9Gm* x)
) i i ; .
— Joiiy - Given the strict concavity of I1(n), we have =% < 0.

on*

)(ET 1=k

(1) ¥n, 2GR = plert - D{“e

0.
(II) Following the proof in (I), we have a'g—ﬂ@ > 0. We now prove

that 260020 > 0, je, P50 > 0. Let G(n, 1) = (€71 — 1)Ga(y)

T } > 0, thus 200 >

eyTL (eVTL -1 —VTL)

e%/TL —1)2
increases with respect to y. Second, for G,(y ) we have
eVnL L
e —1)3
Let g(x) =xe* + x — 2e* + 2 withx = VTL We have g(0) =0; g'(x)
=xe*—e*+1and g'(0)=0; g’(x) =xe* >0, Vx > 0. So g'(x)
increases with respect to x, g'(x) > 0, Vx > 0. Consequently,
g(x) increases with respect to x, g(x) > 0, Vx > 0. As a result,
G(n*, y)increases with respect to y, we have %;V) > 0, thus
3";—]()’) > 0.

with Gy (y) = > 0.First, it is obvious that e’ — 1

G y) _
y

[VLe T+ ”L _ 2 + 2] > 0.The reason is as follows:

The sales rate scale parameter a does not show up in the
function G(n), therefore they have no effect on n*.

(1) Vn, %60d _ f e 4L 4 dL
em—1)3

as follows: Let g(x) = e*x +x — e¥ + 1 withx = %. We have g(0)
=0; g(x) =e*x = 0, Vx > 0. Thus we have g(x) > 0, Vx > 0.
As a consequence, 3"6 @ _ _3c.d)  06d) » 0.t is straight-

forward that 26%-D) < o, ac(a'?’f) < 0. thus n* decreases WRT

_eft + 1] > 0. The reason is

Dandf.
LeyTL yL 1 yL
(IV) Let Ga(n.L)=e’t —1,Gp(n.L) = 22— Ge(n.[) = =&
a0 em —1 eT 1
and Gp(n, L):—%eﬁ %. We have Gu(n, L), Gg(n, L),
o

Ge(n, L) = 0and G(n, L) = uBGa(n, L)Gg(n, L)Gc(n, L) + Gp(n, L).
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Obviously, Ga(n, L) increases WRT L. Gg(n*, L) also increases WRT
e

yL

L because % = n2 [T — ”TL — 1] = 0. For G¢(n, L), we have

f Y L L

GG%(LM) = V+[VTLeVT —elr + 1] > 0 by using the result from
em 1)

proof of Proposition 2 that VTLeyTL —er +1 > 0. For Gp(n*, L), we

have 26o") _ DdfLe ¥
L)

eE Z[VTLBVTL vt —2e’ +2] = 0 by using the
e - n

result from proof of Corollary 1 (II) that VTLeyTL + V?L —2et +2>0.

N G .L)
As aresult, G(n*, L) increases with respect to L, 3”8L(L) = _ >

Gt —
0. Proved.

an*

Appendix F. Proof of Corollary 2
T
Recall that TT(n) = u {(m — LE) v — 1)) — D(e%{—: +dl).

Because of the FOC in Proposition 3 (% = 0), the impact of any
parameter x on I1(n*) is

oll(n*)  9Il(n*,x) =~ AdIl(n*,x) dn*(x)  AI1(n*,x)
ox ~ 0x on* ox ~— ox

where we write I[1(n*, x) to express the total profit as a function of both
n* and x. The impacts of u, a, B, D, d and fon I1(n*) are straightforward.
As for the impact of L, unless total profit increases with L, the firm will
stop development and sales at a certain time.

Appendix G. Comparison of the first generation sales rate
between the primal and extended sales models

a=6.3, f=4.5, y=0.02 a=6.3, f=4.5, y=0.02, u=0.1

Sales rate Sales rate
1.5 1.5
1.0 1.0
0.5 0.5
s 10 15 20 T2 4 6 8 10

(a)A in primal model,y=0.02 (b)A in extended model, p/y=5

a=2.3, =0.5, y=0.18 a=2.3, f=0.5, y=0.18, u=0.054

Sales rate Sales rate
6 4.0
5 3.5
4 3.0
% 2.5
1 2.0
} t f t
5 10 15 20 5 10 15

(¢)A in primal model,y=0.18 (d)A in extended model, p/y=0.3

a=1.98, 5=0.18, y=0.5 a=1.98, £=0.18, y=0.5, u=0.29

Sales rate Sales rate
1400
1200 50
1000 40

800

600 28

400

200 10
; t :
5 10 15 20

(e)A in primal model,y=0.5

2 4 6 8 10 12
(f)A in extended model, p/y=0.58

Fig. 5. Examples of sales rates for the primal and extended models.

Appendix H. Examples of successive generations sales rates

PST0) 5(t)
2.0
1.5
1.5
1.0
1.0
0.5 05
t t
02 04 06 08 1.0 12 02 04 06 08 1.0 1.2 14
A3(t) A4(1)
2.5 3‘0
2.0 2.5
15 2.0
1.5
1.0
1.0
t t
0.5 1.0 1.5 0.5 1.0 1.5 2.0

Fig. 6. Successive generations sales rates witha=6.8, 8 =5and y =0.3.

(1)

S L A
hounouo

02 04 0.6 0.8 1.0 1.2 020406081.01.21.4

A3(t) A4(0)

W B A
SLhouon

: : : : t e R
00 05 1.0 15 20 0.5 1.0 1.5 2.0 25 3.0

Fig. 7. Successive generations sales rates witha=38, 8 =5and y = 0.5.

Supplementary materials

Supplementary material associated with this article can be found,
in the online version, at 10.1016/j.ejor.2015.03.041.
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