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Abstract

Industrial practices and experiences highlight that demand is dynamic and non-stationary. Research however
has historically taken the perspective that stochastic demand is stationary therefore limiting its impact for
practitioners. Manufacturers require schedules for multiple products that decide the quantity to be produced
over a required time span. This work investigated the challenges for production in the framework of a single
manufacturing line with multiple products and varying demand. The nature of varying demand of numerous
products lends itself naturally to an agile manufacturing approach. We propose a new algorithm that iteratively
refines production windows and adds products. This algorithm controls parallel genetic algorithms (pGA)
that find production schedules whilst minimizing costs. The configuration of such a pGA was essential in
influencing the quality of results. In particular providing initial solutions was an important factor. Two novel
methods are proposed that generate initial solutions by transforming a production schedule into one with
refined production windows. The first method is called factorial generation and the second one fractional
generation method. A case study compares the two methods and shows that the factorial method outperforms
the fractional one in terms of costs.

Keywords: lot-sizing; production schedule; ELSP; genetic algorithm

1. Introduction

Food manufacturers are experiencing increases in
the variability of demand received and the variety
of products required (Squire et al., 2009). It is im-
perative for operations to manage the increasing dy-
namics of the situation to avoid excessive inventory.
Through the application of an agile approach food
manufacturers are increasing the flexibility of their
operations and finished goods stocks to meet cus-
tomer demand (Taylor and Fearne, 2006). This in-
creased flexibility supports the production of goods
as they are needed. The resulting manufacturing
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schedules are directed by the objective to minimize
the holding, setup and shortage cost. This study fo-
cuses on a single, agile, production line accommo-
dating multiple products. This single production line
perspective is a reality for many industries. However,
for several it is a simplification. Nevertheless the re-
sulting production schedule is a useful strategy that
can be used to derive a refined schedule.

In this article we discuss the literature on lot-sizing
models and its relationship to agile manufacturing.
The classic Economic Order Quantity (EOQ) model
is the starting point of the review, which leads to the
Economic Lot Sizing Problem (ELSP) and finishes
with a review of research on the Stochastic ELSP
(SELSP). The analyzed classifications are shown in
figure 1. This section also defines some of the later
used terminology.

Our overall approach is to use lot sizing techniques
to derive production schedules. A lot-size is the
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Fig. 1. Literature classifications.

quantity of units that is (was, will be) produced for
one or more products. A product is raw material that
is manufactured into a finished good. Products are
sometimes referred to as items.

Lot sizing techniques are often divided into two
categories. The first category is concerned with
individual-product manufacturing and inventories.
The second one looks at multiple products (Silver
et al., 1998). Lot-sizing techniques for the single
product category have been extensively studied. Har-
ris (1913); Harris and Sollis (2005) introduced the
EOQ model, which finds the optimal order quantity
Q in terms of minimizing order cost D

Qco and hold-
ing costs Qch subject to several constraints such as
constant demand D. Note that order cost in a manu-
facturing context is the setup cost. A number of EOQ
derivatives were introduced using additional factors
such as shortage costs, production rates and many
more. Erlenkotter (1990) gives an interesting doc-
umentation of the EOQ history. The original EOQ
models were extended to incorporate focus on prob-
abilistic demand (predominantly assuming normal
distributed demand). Policies such as Order-Point &
Order-Quantity(s,Q), Periodic-Review & Order-Up-
To-Level (R,S) and (R,s,S) became common prac-
tice. The (s,Q) system is a continuous review sys-
tem with a fixed quantity Q which is ordered when-
ever inventory drops below s. The (R,S) system is
a replenishment cycle system where the inventory is
increased to level S every R time units. The (R,s,S)
system is a combination of the previous two systems.

Every R time units the inventory level is checked, and
when it is below s the level is raised to S . Details of
these methods are explained in Silver et al. (1998).

In food manufacturing environments the multiple
product category is typical challenging the capabil-
ity and flexibility of the organizations to forecast de-
mand (Christopher, 2011). The ELSP is an exten-
sion of the EOQ model that supports several prod-
ucts with differing demand Di and also introduces
change over costs ci j from product i to j. The first
popular work was done by Rogers (1958) and is now
known as an Economic Lot Scheduling Problem
(ELSP). The usual objective of the ELSP is to find
cyclical scheduling policies such that the setup and
holding costs are minimized. The assumptions are
that there is little demand fluctuation (no seasonal-
ity and trend) for each Di and that there is a single
machine that allows only one product at a time to be
produced. Cyclical means a repetition of the produc-
tion. In a two product scenario there will be produc-
tion times p1 and p2 and setup (change over) times
s12 and s21. The timings for a possible production
cycle are p1 s12 p2 s21, which is then repeated. To
be more precise the production time for one product
is the amount of time required for all machines in
use to manufacture a specified quantity of the prod-
uct, including the run time and down time. The run
time is the time machines are active. The down time
is used to describe any possible machine inactivity.
That means the cycle time is longer than the produc-
tion time.

Silver et al. (1998) introduce an approach which
finds a feasible solution for the ELSP. Osman and
Demirli (2012) have recently contributed to the clas-
sic ELSP work. They gave a quadratic assign-
ment formulation and introduced an algorithm that
found optimal solutions - even for large problem in-
stances. The ELSP is non-deterministic polynomial-
time (NP) hard as Hsu (1983) proved. The recent
review of the ELSP done by Chan et al. (2013) sug-
gests classifications of the ELSP according to the
schedule cycles. Their investigation showed that the
common cycle approach is most often found in liter-
ature (41%). That means there is a single cycle for
all products. The next significant class is based on
the basic period approach with a frequency of 28%.
Here each product has it’s own cycle time, but each
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cycle must be a multiple of the basic period. The
third major approach has varying lot sizes per pro-
duction cycles, but only got 11% attention in the lit-
erature (Chan et al., 2013). From an agility perspec-
tive the varying lot size (VLS) is particularly rele-
vant to manufacturers in an agile environment due to
its practical applicability. The limited research in this
area indicates a gap in the body of knowledge and the
authors found no publications that address the use of
VLS combined with varying production intervals in
the food manufacturing sector.

Important work in the time varying lot sizes class
was done by Dobson (1987), which led to time vary-
ing cycles. However it is questionable whether the
cycle term should continue to be used, because of
the possible absence of repetitiveness. Moon et al.
(2002) have looked at the ELSP with an “imperfect”
production process, which also uses a time varying
lot size approach. The last two mentioned papers
reveal similar characteristics to the work, but these
papers give priority to theoretical solutions based on
numerous assumptions, whilst the approaches in this
paper focus on a practical approach. Time-varying
lot-sizes belong into the ELSP class rather than the
SELSP category, because although demand varies -
these variations are supposed to be known. However,
one could put them into the category of stochastic
ELSP claiming zero noise in the predicted demand.
If noise cannot be explained - or if other random in-
fluences are present - stochastic models need to be
regarded.

Winands et al. (2011) survey the stochastic eco-
nomic lot scheduling problem (SELSP). The term
stochastic is primarily associated with random de-
mands, (possible) random setup times and (possi-
ble) random production times. They classify the ap-
proaches according to production sequence, which
could be fixed or dynamic.

The fixed production sequences are further divided
into those with fixed or dynamic cycle length. The
fixed production sequence with fixed cycle length
can fulfill the demand on a global scale by divid-
ing the “stochastic” demand accordingly. This class
can be associated with the common-cycle class men-
tioned in the ELSP classification. Bradley and Con-
way (2003) explain characteristics of cyclic inven-
tory. The cycle time is defined here by the production

times, the changeover times and slack time. This cy-
cle is repeated. They found that the average cyclic in-
ventory is directly proportional to changeover times.
Cycle length is directly proportional to changeover
times. Two common operations errors were identi-
fied: (1) interrupting a production run (lot-splitting)
to fulfill sudden urgent demand requests; (2) increas-
ing machine utilization. The fixed production se-
quence with dynamic cycle length adapts the cycle
length to meet the stochastic demand without chang-
ing the production sequence. For this class Wag-
ner (2004) proposes a local search algorithm. The
demand is assumed to be a stationary renewal pro-
cess, and the schedule minimizes the long-run av-
erage costs. Product scheduling cycles may vary in
multiples of the base period. The algorithm finds
feasible solutions, and its performance was tested on
several instances. Other important work in this class
include Gallego (1990, 1994); Federgruen and Kata-
lan (1996, 1999).

On occasions it may occur that a product is not
produced. In this case the production sequence may
reinstate later. However, allowing changes to the
production sequence (called dynamic production se-
quence) is another main category Winands et al.
(2011) identified. These changes reflect the dy-
namic situation that agile manufactures face in al-
tering schedules to meet changing demand (Harrison
and Hoek, 2011). Gascon et al. (1994) research falls
into this class, as they provide heuristics that find
schedules given stochastic demand, multi-items and
a single-machine. Zipkin (1986, 1991) considered
dynamic production sequences as well. Their de-
mand and production processes have stochastic char-
acteristics and are based on queueing models, which
lead to interesting theoretical results. Sox et al.
(1999) is another important work in this field.

The above literature review and the Bradley and
Conway (2003) paper confirm that almost all lit-
erature assumes that stochastic demand is station-
ary. The work presented here was particularly de-
veloped to deal with the non-stationarity of demand
to cover the gap currently in the lot-sizing literature.
Bradley and Conway (2003) give a simple example
that demonstrates some of the adverse effects of non-
stationary demand in respect to stock-outs and ser-
vice levels. In practical situations we need to assume
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that demand is non-stationary. The case study in
this paper uses such demand patterns. As mentioned
above most literature deals with cyclic approaches
with fixed production sequences. There is a need for
methods and algorithms that create dynamic produc-
tion schedules. The research in this paper can be
associated to the SELSP class dynamic production
sequence which reflects the agile environment that
food manufacturers operate within, if the demand is
specified as non-deterministic. From the ELSP point
of view our study and algorithms is situated in the
varying lot size and varying lead time category, as-
suming deterministic “dynamic” demand.

The main contributions and objectives of this pa-
per are:

• to provide a lot-sizing technique that can deal
with non-stationary and varying demand;

• to introduce a method for planning agile manu-
facturing schedules;

• to generate production schedules via novel
methods;

• to apply and compare these new methods on the
basis of a real world case study;

• to propose an efficient parallel genetic algorithm
configuration;

• to provide practitioners with tools to create pro-
duction schedules.

The remainder of the paper is structured as fol-
lows. An illustrative example motivates the general
mathematical formulation of the problem (section 2).
This problem is solved with the genetic algorithm in-
troduced in section 3. The Genetic Algorithm termi-
nology is linked with those from production. The
new factorial and fractional methods are proposed in
section 4. These methods will be trialled on an indus-
trial scenario dominated by it’s demand data (section
5). In section 6 the results of the case study are pre-
sented and linked to operations issues. The paper
concludes with a discussion of the results and future
directions of research (section 7). The main contri-
bution of this paper is the development of an effi-
cient way for practitioners to create agile production

schedules. This is achieved through the generation of
production schedules via novel methods which were
subsequently tested in a real world situation.

2. Mathematical formulation

In the previous section various inventory models
were introduced with a focus on the ELSP. It was
found that the formulation of the ELSP, with vary-
ing lot size, was closest to the problem we sought
to address. This section introduces and defines the
problem under investigation. A solution procedure
will be proposed in the next section.

2.1. Problem definition

The objective is to find a production schedule for
multiple products such that the total cost is mini-
mized. The cost is constructed by the holding, short-
age and changeover cost.

Finding the schedule is subject to:

• varying demand (non-stationary);

• a single manufacturing line;

• constant production rate;

• smallest production time window fixed;

• cost are product dependent.

The variability in demand of the products moti-
vates the agility of the manufacturing process. Here,
agility means that production changes according to
demand. For production only a single manufacturing
line is available. We assume that production rates for
each product remain the same over the entire manu-
facturing period. The smallest production time win-
dow is set, but the production run period itself adapts
in an agile way. The holding and shortage costs are
product dependent. The changeover (setup) cost oc-
curs when changing to a different product. We will
assume that the changeover time is neglect-able in
comparison to the production run time.

Example 2.1 (principal approach). Our goal is to
create a production schedule that satisfies the de-
mand and minimizes the costs. Demand for products
one (d1) and two (d2) are known between day 1 and
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Products 1 2
co

st
holding $2 $3

changeover $1 $1
shortage $8 $6

Table 1. Cost factors per batch.

20, d1 = (0 1 0 0 3 0 0 0 2 0 1 1 0 0 0 0 0 2 0 0 ) and
d2 = (0 0 0 0 1 0 1 0 0 3 0 0 0 0 0 0 2 0 0 1 ). For
instance the demand during day 5 for product one is
three batches.

There are three cost factors, which will be consid-
ered to minimize the overall cost. The holding, setup
and shortage cost factors for the two products are
shown in table 1. That means the daily holding cost
ch

1 for one batch of product one is $2. The changeover
cost co

1 to product one is $1. The shortage cost cs
1 per

batch is $8 and represents lost sales.
The decision variable xi is the product batch to

be produced on a given day, i.e. xi can take on the
values 1 or 2. There are 20 decision variables, i.e.
x = (x1, x2, . . . , x20).

The aggregated number of produced product
batches are pk1(x) =

∑k
i=1[xi = 1]xi, pk2(x) =∑k

i=1[xi = 2]xi. 1 The aggregated number of con-
sumed product batches are rk1 =

∑k
i=1 di1, rk2 =∑k

i=1 di2. That means the inventory (in batches)
for product one for day i is qi1(x) = pi1(x) −
ri1. This leads to daily holding costs ch

i1(x) =

[qi1(x) > 0]qi1(x)ch
1 and the total holding cost ĉh

1(x) =∑n
i=1 ch

i1(x) for product one; similar for product two
ĉh

2(x) resulting in ĉh(x) = ĉh
1(x) + ĉh

2(x). The to-
tal shortage costs for product one and two are de-
termined in a similar way ĉs

j(x) =
∑n

i=1 −[qi1(x) <
0]qi1(x)cs

j, resulting in ĉs(x) = ĉs
1(x) + ĉs

2(x). Chang-
ing to product one on day i causes a cost of [xi ,
xi−1]co

1, i > 0. The total of all setup costs are deter-
mined by: ĉo(x) = co

x1
+
∑n

i=2[xi , xi−1]co
xi

.
Thus the objective function is f (x) = ĉh(x) +

ĉs(x) + ĉo(x). A solution can be found using an evo-
lutionary algorithm such as the genetic algorithm.

1Iverson (1962) introduced these brackets for true-or-false

statements [S ] :=

1 if S is true;
0 otherwise.

. For instance the Kronecker

delta is defined by δi j := [i ?
= j].

A standard genetic algorithm finds the solution x =

[1 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2] with value
f (x) = 80, where x is the production schedule and
f (x) is the cost of this schedule.

The above example demonstrated the approach in
principle. This will be used to derive a more general
approach.

2.2. General aspects

In example 2.1 we looked at daily demand d1 and
d2 for two products for 20 days in “batch” units. We
will abbreviate the basic time period with tb. So this
could represent a week, a day or an hour. Let n de-
note the number of production windows, and m the
number of products. A production window is a time
slot (with duration t) during which units of one prod-
uct are manufactured. If the production window’s
duration is tb then we say it has window size 1. A
window size of two means that we halve the basic
time period. In general the window size wl is de-
fined as the fraction 1

l that divides the basic time pe-
riod. For instance if tb is 6 days then w3tb leads to
a two days production window. wl is used to refine
the basic production window. A production run can
spread over several adjacent production windows.
The quantity produced within the production win-
dow is the batch size. The batch size b j is the number
of units of one product j worked on in one process
step. In this paper the batch size is dependent on the
size of the production window. The supreme batch
size is a multiple of batches that are produced within
neighboring production windows of the same prod-
uct. Note the differences to production time (window
includes downtime and changeover time) and cycle
time (window is non repetitive and only covers one
product). The production rate is product dependent
and is obtained by b j

t .
The demand matrix D = (di j) is given. Here

di j ∈ R is the demand in production window (e.g.
week) i for product j. If only one index is used then
this addresses a column vector of D, e.g. d2 = D:2

is the demand profile for product two. In case de-
mand is negative (di j < 0) there is no net demand
during i. Negative demand will be called returned
goods and may reduce the amount to produce, as-
suming the goods are reusable. In practical situations
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given demand may be in aggregated form although
it actually occurs in shorter time intervals. For in-
stance weekly demand might be given, but actually
stock is depleted on a daily basis. There are two
typical scenarios for the planning. The first scenario
is that the demand can only be fulfilled in periodic
(e.g. weekly) batches, due to warehouse and trans-
portation arrangements. The second scenario is that
demand could be satisfied “continuously” (e.g. on
a daily basis). We will call the way the demand is
satisfied as depletion scheme.

We assume linear production and possible con-
sumption during the production run. The decision
variable xi is the product, which is produced during
production window i. For instance x5 = 2 means
that product two is produced in production window
(e.g. week) five, in general xi ∈ {1, 2, . . . ,m}. The
case of no production can be implemented by al-
lowing xi = 0 (alternatively a product with zero de-
mand can be used). The decision vector is defined as
x = (x1, x2, . . . , xn). The decision variable combined
with the product’s batch size b j specifies the pro-
duced units in production window i, i.e. [xi = j]b j.
Initial stock for product j is abbreviated by s j. How-
ever, if there is no initial stock available then it can be
created by “shifting” the demand matrix, i.e. adding
zero demand on top of the matrix. This might be
suitable if the company would like to create initial
stock.

2.3. Mathematical program

We will now develop a mathematical program
based on the general aspects mentioned above. The
following dimensions, parameters and variables will
be needed:

Dimensions and indices:
m number of products
n number of production windows
j product
i production window
k aggregated index

Parameters:
t duration of production window
ch

j holding cost (per unit per t)
cs

j shortage cost (per unit per t)
co

j changeover cost from any product to
product j

b j batch size for product j per t
s j initial stock of product j
di j demand for product j during production

window i
qi j inventory at production window i for

product j
Decision variables:

xi product to be produced in production
window i

In order to obtain the objective function the inven-
tory state and its related costs need to be derived.

The aggregated number of produced units in the
first k weeks for product j is:

pk j(x) =

k∑
i=0

[xi = j]xib j + s j. (1)

We start with the production window i = 0, to rep-
resent additional initial stock p0: on top of existing
inventory s j; and hereby allow the production of one
additional batch for a single product j before units
are consumed.

The aggregated number of consumed units is the
same as the aggregated positive demand:

rk j =

k∑
i=1

[di j > 0]di j. (2)

Note if returned goods are reusable then rk j =∑k
i=1 di j, which reduces the quantity to produce.
That means the units of inventory for product j at

production window i is:

qi j(x) = pi j(x) − ri j. (3)

This motivates the holding cost for product j:

ĉh
j(x) =

n∑
i=1

[qi j(x) > 0]qi j(x)ch
j , (4)

where ch
j is the holding cost per unit per production

window. One may want to choose to add the “initial
stock” holding costs.
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The total shortage cost for product j is determined
in a similar way:

ĉ j
s(x) =

n∑
i=1

−[qi j(x) < 0]qi j(x)cs
j, (5)

where cs
j is the shortage cost per unit per production

window. Note that these product quantities cannot be
back-ordered.

The changeover (setup) cost is obtained by:

ĉo
j(x) =

∑
i∈K

co
j , (6)

with K = {i ∈ {1, . . . , n} |xi = j ∧ xi , xi−1} and co
j is

the changeover cost from any product to product j.
xi , xi−1 is true if a different product was produced in
the previous production window. We assume that the
change-over (setup) time is negligible in comparison
to the production window duration.

Thus the objective function is:

f (x) = ĉh(x) + ĉs(x) + ĉo(x). (7)

The agile manufacturing problem can be formu-
lated as the mathematical program:

z∗ = min
x

f (x) = min
x

ĉh(x) + ĉs(x) + ĉo(x) (8)

subject to the set of constraints:

1 ≤ xi ≤ n, xi ∈ N (9)

A feasible solution for this mathematical program
can be found with the Genetic Algorithm.

3. Genetic Algorithm

The first section will give a brief explanation about
the underlying biological concepts. The second sec-
tion introduces the genetic algorithm (GA), and the
third section explains how the GA is used in the con-
text of production schedule creation.

3.1. Background - Biological Evolution
Genetic algorithms are based on the natural selec-

tion of the survival of the fittest. The idea of these al-
gorithms was first introduced by Holland (1975) and
their practical usage was demonstrated by Goldberg
and Holland (1988).

The biological background is shortly discussed. It
is assumed that a human being is made out of 1014

cells (e.g. the diameter of a red blood cell is 9µm). A
cell contains a linear DNA string. A chromosome is
a continuous piece of DNA string. The diameter of
a chromosome is between 0,2 and 20µm typically. A
chromosome is built up by sequence of linearly or-
dered genes. A gene contains the information about
the characteristics and shape of a macro molecule.

Each living being has got a genotype and a pheno-
type. The genotype is made up by the chromosomes
which identify the ”whole” of a being. The pheno-
type describes the appearance of the individual. A set
of individuals make up a population. Individuals sur-
vive because they are fit or lucky. But fit individuals
are more likely to keep on living and to be selected as
parents for the next generation. The selected parents
reproduce with their strongest gens. But complete
unexpected and unforeseen events happen occasion-
ally and change parts of the genetic information. We
call this mutation of the gens. A better generation
(species) replaces the old one, which is part of the
evolution process.

3.2. Algorithm
The principals of a genetic algorithm are shown in

algorithm 1.

Algorithm 1 Genetic algorithm - principle.
Input: fitness function f
Output: population P

1: set initial population P
2: while generation reasonable do
3: I := S (P, f ) select fit individuals
4: N := C(I) crossover of individuals
5: P := M(N) mutate
6: end while

We begin with deriving an initial population (i.e.
set of initial production schedules). This is a set
of diverse feasible solutions. Usually individuals
(schedules) are chosen/created with an opening pro-
cedure. The fittest of these create the next genera-
tion, i.e. fitter individuals are more likely to be se-
lected. These individuals represent parents and gen-
erate children, which “combine” the characteristics
of their parents. This process is called crossover
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operation, which are often implemented by merg-
ing binary representations of the individuals. Muta-
tion randomly changes some individuals. This com-
pletes a generation change over. This procedure re-
peats itself (i.e. the population evolves) until a cer-
tain number of iterations or other stop criteria have
been reached.

Genetic algorithms (GA) have previously been
used for solving lot-sizing problems. Chang et al.
(2006) used a GA for solving a fuzzy economic lot-
size scheduling problem. They paid attention to per-
turbations of demand leading to “fuzziness” in the
cost function. In contrast to our approach their search
is governed by cycles, which they have to accom-
modate in the decision variables for the production
schedule (individual). Yokoyama and Lewis (2003)
developed a GA to optimize the stochastic dynamic
production cycling problem. This problem differs
from the ELSP by using more than one machine
(production line). The representation of the decision
variables is similar to the one chosen in this study,
with the difference that a machine index was nec-
essary. Furthermore, Yokoyama and Lewis (2003)
did not investigate the refinement of production win-
dows. Khouja et al. (1998) created a GA for solving
the basic period ELSP. Trials on some of the algo-
rithm settings were done. In general finding appro-
priate settings for the GA is essential for the solution
quality. Most authors state only one configuration,
but it is advisable to set up an experimental design
and test several factors as described in the follow-
ing sub-section. Torabi et al. (2006) looked at an
extension of the economic lot and delivery schedul-
ing problem (ELDSP) using a hybrid GA to find pro-
duction sequences and other aspects. The hybridism
addresses the issue that GAs are “slow” in the local
search by introducing a local improvement method
for each child. Similar reasons motivated the “guid-
ance” algorithm proposed in section 4. A GA is
one of many possible meta-heuristics to be used for
scheduling. Almeder and Mönch (2010) have ana-
lyzed various algorithms such as the Ant Coloniza-
tion Optimization (ACO), Variable Neighborhood
Search (VNS) and GA in manufacturing/scheduling
context. Their study suggests that the VNS is supe-
rior to the ACO and GA. Another study by Raza and
Akgunduz (2008) compared heuristics in regards to

the ELSP. Moreover the study proposed a Simulated
Annealing (SA) algorithm to solve the ELSP. SA out-
performed other heuristics such as the hybrid GA
and neighborhood heuristics. Their SA converged
faster than Tabu Search (TS) having similar solution
quality as TS. Gaafar (2006) implemented a GA for
the dynamic lot sizing problem with batch ordering,
which was compared against the modified Silver-
Meal (MSM) heuristic. Their results indicate that
the GA outperforms the MSM heuristic in regards
to solution quality. From the mentioned literature no
general statement about the superiority of a particu-
lar heuristic can be derived. Alternative approaches
to GA will be discussed in conclusion section on fur-
ther research. The overall framework of dealing with
increased complexity introduced in section 4 allows
the GA to be substituted with any heuristic that ac-
cepts initial solutions.

This section showed the basic GA and reviewed
related literature associated to heuristics in regards
to lot-sizing problems.

3.3. GA for production schedule

We will now relate the GA to the production
schedule creation. In particular we will describe the
GA’s settings in more detail. These settings are ap-
plied to run a traditional and parallel GA algorithm.
In section 2 we have defined the decision variables xi

as the product manufactured during production win-
dow i. These decisions variables are the genes that
make up an individual (also called genome) x. That
means a feasible production schedule x is an indi-
vidual in GA terminology. The fitness of an individ-
ual is determined by the value of the objective func-
tion ( f (x), see eq. 7), which are the accrued holding,
setup and shortage costs. A set of feasible production
schedules represents the current population (genera-
tion).

In general an initial set of production schedules
(initial population) are determined with an open-
ing procedure. These schedules should be diverse
in x and usually vary in f (x) as well. This is
important for creating better production schedules.
In our algorithm x is obtained by applying a uni-
form random distribution on the produced products
(genes) fulfilling the constraints of equation (9). It
would be interesting to initialize production sched-
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ules (genomes) with longer production runs (strings
of genes), e.g. that each production schedule pro-
duces just one product or mixtures with longer pro-
duction runs. This should improve the run-time, but
might affect the quality of the solution. As men-
tioned above more complex production schedules are
based on previously simpler ones. For instance as-
sume two products are produced over five weeks, e.g.
x = (2, 2, 1, 1, 2). This will be transformed into a pro-
duction schedule (parent) that deals with 3 products
and 10 half-weeks by doubling each entry in x, i.e.
x′ = (2, 2|2, 2|1, 1|1, 1|2, 2).

To control the variation of f (x) we scaled it to a
predefined range. In our approach we have used rank
fitness scaling, i.e. we ordered f (x) and assigned
value 1, 2, . . . s. The number of candidate schedules
(size of the population) is determined by

s = min {max {n, 40} , 200)} , (10)

where n is the number of decision variables (num-
ber of production windows), i.e. s ∈ [40, 200]. For
the case study this means that the population is ini-
tially 104 (number of weeks in two years), and will
increase to 200 for refined production windows. The
choice of the population size (number of production
schedules to investigate) is a trade off between so-
lution quality and performance. A large population
will avoid more local optima and increase the chance
of the GA finding a global optimum. However, the
performance duration will increase. Several authors
have document this population size issue, e.g. Alan-
der (1992), Roeva et al. (2013) and Pasandideh et al.
(2011). Based on linear algebra, n base vectors (i.e.
initial production schedules, parents) are required to
span the entire search space (i.e. all possible produc-
tion schedules). However, if there are less production
schedules, mutation would eventually create missing
base vectors. Literature acknowledges a relation be-
tween the size of the search space and the popula-
tion size. Our literature review indicates that there is
no conclusive method that determines the population
size depending on run time or number of decision
variables, and that most authors using the GA have
experimentally chosen the population size.

Fit individuals (possible production schedules) are
selected for generating the next generation (new pro-
duction schedules). There are several popular se-

lection methods such as the tournament, roulette
and stochastic-uniform method. Single factor ex-
perimentation indicated that the tournament method
leads to the best production schedules out of the
three tested methods. In the deterministic tourna-
ment method k “players” (individuals) are chosen
randomly and the best one becomes a parent. This
is repeated until sufficient parents have been cho-
sen. Additionally we allow migration. That means
a fraction m f of the “best” schedules (fittest par-
ents) replaces the worst schedules (i.e. individuals
from a sub-population). Single factor experimenta-
tion suggested m f = 30%, other alternatives tested
were 10%, 20% and 40%. These two fractions are
the schedules for the next generation. Note that we
use a percentage ec that ensures the “best” schedules
(fittest parents) reach the next generation, i.e. they
by-passed crossover and mutation. We have set ec

to 5%, other less successful options were 10% and
30%.

Our crossover operation takes scheduled pro-
duction windows (genes) randomly (uniform) from
schedule 1 and merges them with schedule 2. For
instance p1 = (2, 2, 1, 3, 3), p2 = (1, 2, 2, 3, 2) and
the random production windows are (2, 4, 5). This
means we merge ( , 2, , 3, 3) into p2, which gives
us c = (1, 2, 2, 3, 3) as the new production schedule.
The previously mentioned GA mechanism ensures
that better schedules are used. Another crossover op-
eration is to randomly choose the cut index. In the
previous example, let the cut index be three, then the
created schedule is c = (2, 2, 1|3, 2). We could also
cut the schedule in two positions, e.g. two and four
resulting in c = (2, 2|2, 3|3). Usually not all sched-
ules of the population are created using the crossover
operation, but rather a percentage c f . Our configura-
tion had c f = 80%.

After the crossover operation the mutation opera-
tion is applied. Initial generations are mutated more
than later generations. Individual’s genes (i.e. parts
of the production schedule) are changed by choos-
ing a random number from the normal distribution
with mean 0 and decreasing variance. The variance
is given by σ2

k = σ2
k−1(1 − 3k

4g ), where g is the total
number of generations and k the current generation.

Our primary interest is in the quality of the solu-
tion rather than the speed. However, we have limited
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the run time to 10 minutes. Furthermore, the GA
stops if the improvement (fitness weighted average)
over sg = 50 generations is less than t f = 10−7. The
genetic algorithm (in context of the fractional sched-
ule generation) terminated in 64.8% of all cases be-
cause there was no improvement in the best fitness
value for a period of sg = 50 generations. 35.0% of
terminations were due to exceeding the generation
limit of 100. The rest was due to exceeding the time
limit. Increasing the generation limit to 200 resulted
in a 96.4% no improvement termination. The pre-
viously discussed parameters have been summarized
in table 5.

The GA implementation takes advantage of par-
allelism. In our case study we used 32 cores and
shared memory. Furthermore, we used a multi-start
approach, which has been integrated in algorithm 2
proposed in the next section. The number of mul-
tiple starts of the parallel GA (pGA) was set to 30.
The run-time increased as the production schedule
was refined. The decision variable could take on
values between 0 and 10, i.e. 10 products (plus no
production possible). We observed that on average
the run-time to find a pGA solution for a decision
vector of size 208 was 65.5 seconds (i.e. on aver-
age 2.18 seconds for a single pGA run utilizing 32
cores). This increased to 499.7 seconds for a pro-
duction schedule with 2080 decision variables (i.e.
on average 16.7 seconds for a single pGA run). The
pGA for refined production schedules uses initial so-
lutions (i.e rougher schedules) found in prior runs.
This approach will be explained in detail in the next
section. In this section we have discussed the config-
uration of the pGA. We found that the pGA algorithm
can be used to find the feasible production schedules
even without initial solutions. However, the solution
quality is not as good as using an iterative schedule
creation. That means complexity is added iteratively.

4. Iterative schedule creation

The iterative algorithm will be explained first. Fol-
lowed by an introduction to the factorial and frac-
tional approach.

4.1. Iterative Algorithm
This study investigates how complex schedules are

derived via an iterative algorithm that uses parallel

genetic algorithms (pGAs). Initially the authors at-
tempted to use the parallel genetic algorithm directly,
i.e. without the guidance of the iterative algorithm.
This led to high schedule costs. Our algorithm in-
creases the complexity (i.e. number of production
windows and products) step by step. The proposed
iterative generation of feasible production schedules
is shown in algorithm 2. The input for this algorithm

Algorithm 2 Iterative generation.
Input: demand D, see table 4
Output: production schedules P

1: g finds initial production schedules P
2: for window size w in W do
3: B = f (P,w) set new initial schedules
4: demand depletion transformation
5: adapt batch size
6: parfor k = 1 to number of runs do
7: pk = g(B) get schedule via GA
8: end parfor
9: end for

10: for #products = 3 to m do
11: find schedule based on #products-1
12: end for

is the demand of all products. This demand should be
ordered according to the product’s importance (see
section 5). The importance can be identified by the
total volume, holding cost, shortage cost or profit. In
the case of volume importance this means:

n∑
i=1

di1 ≥

n∑
i=1

di2 ≥ · · · ≥

n∑
i=1

dim, m > 1. (11)

In the case of a single product the reader is advised to
use techniques mentioned in section 1. As mentioned
previously the demand may vary, be non-stationary
or be discontinued. A detailed discussion of demand
for a case study is given in the data section 5, demon-
strating numerous real world issues. Other relevant
input values and options such as costs or depletion
scheme are specified in the input of the algorithm,
which are detailed in table 4.

We will now explain the steps in the algorithm in
more detail. [Line: 1] The algorithm begins with
finding several production schedules P by using the
GA explained in section 3 multiple times. This step
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focuses on the first two products only. [Line: 2] The
for-loop iterates (hence the name iterative algorithm)
through a set of production windows W. The set
is dependent on the factorial or fractional approach,
which are explained in detail in subsequent subsec-
tions. [Line: 3] Setting the initial production sched-
ules (population) is the “heart” for iterative improve-
ments. This paper proposes and investigates the fac-
torial and fractional approach. In the algorithm these
two initial schedule generation methods are abbrevi-
ated with f (P,w), where P are existing production
schedules and w is the new window size. f derives
a schedule basis B such as

{
x32

1 , x
32
2 , . . . , x

32
s

}
. Here, s

is the number of runs defined in line 6.
[Line: 4] In section 2.2 two depletion schemes:

periodic and continuous were introduced. The given
demand has to be accordingly transformed. In the
periodic depletion scheme the demand is requested
at the end of a given period. As an example assume a
12 days schedule with demand aggregated over three
days is 12, 3, 9 and 6. The end of period depletion on
a daily basis is (0, 0, 12, 0, 0, 3, 0, 0, 9, 0, 0, 6). If we
apply the continuous depletion scheme the average
depletion is (4, 4, 4, 1, 1, 1, 3, 3, 3, 2, 2, 2). In the case
study periodic depletion was used.

[Line: 5] In order to fulfill all demand on aver-
age the production rate must be pavg = 1

n

∑
i, j di j. As

mentioned in result section 6 it is recommended that
the actually used planning production rate is at least
twice pavg. The permission of production windows
with zero output can be interpreted as adjusting the
production rate according to demand. Here, we set
the batch size to:

b =
2
n

m∑
j=1

n∑
i=1

[di j > 0]di j. (12)

Note, that the batch size depends on the number n
of production windows, e.g. n increases when the
window size increases. It is also possible to set batch
sizes for “individual” products: b j = 2

n

∑n
i=1[di j >

0]di j.
[Line: 6 to 8] The iterative algorithm starts the

GA multiple times. The GA was discussed in sec-
tion 3 and returns a single schedule (individual) pk

via g(w, B), since the GA includes some random op-
erations the returned solutions are expected to vary.

Thus, we are obtaining several production schedules
{p1, p2, . . . , ps}, where s represents the number of
runs. These schedules are used as part of the initial
population (line 3) for finding a refined production
schedule (e.g. windows of size 6 for two products).
Later yw2

k will be used to describe pk ∈ P with pro-
duction window size w (w > 1) for two products. In
the special case that P consists only out of one ele-
ment we will drop the index k. So f (y32, 6) would
have created x62 using the factorial design, which
g(x62) turned into y62.

[Line: 10 to 12] These lines add additional prod-
ucts one at a time, i.e. the values a decision variable
can take on are increase incrementally. Again the
GA is used to achieve this. This leads to a growing
product variety as shown in figure 2.

Subsection 4.2 and 4.3 will explain in detail how
fractional and factorial schedules are created.

4.2. Factorial Generation

The basic principle is that a “rough” schedule is re-
fined, i.e. a top down approach where the number of
products is fixed (see figure 2). For instance an initial
schedule may consist of fixed weekly (6 days) pro-
duction windows. This duration is linked to window
size w1. The first refinement is half-a-week (3 days
and window size w2). Followed by a third-week (2
days and w3), and so on. The half-a-week (“division-
by-two”) schedule uses the one-week slots as initial
solutions. The same applies for a division-by 3, 5
and 7 schedule. In general any division-by a prime
number schedule can be derived from the schedule
with window size 1. The other schedules are derived
from the highest factor, e.g. a divided-by 4 schedule
is derived from 2, 6(= 3 · 2) from 3, 8 from 4, 9 from
3 and so on. We will call this the factorial approach.
The factorial approach is shown in figure 2. Here we
see (1, 2) representing the schedule with window size
1 and two products, which can be derived via the par-
allel genetic algorithm proposed in section 3. This is
the basis to derive (2,2), (3,2) or (ω,2), where ω is
a prime number. In general the schedule yω2 is cre-
ated via g(x12), where g the genetic algorithm. x12 is
obtained via f (y02, 1). Here, f is the factorial gener-
ation function and y02 is an initial schedule (see alg.
2, line 1). g and f are also shown in algorithm 2 in
line 7 and 3 respectively.
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Fig. 2. Factorial solution generation.

Let y12 = (2, 1, 1, 2, 2) be a (1,2)-schedule. This
is transformed into x22 = f (y12, 2) = (2, 2; 1, 1;
2, 2; 2, 2; 2, 2) the (2,2) schedule basis. Similarly
into the (3,2) schedule x32 = f (y12, 3) = (2, 2, 2;
1, 1, 1; 2, 2, 2; 2, 2, 2; 2, 2, 2). x22 and x32 are ini-
tial schedules, which are improved by the GA
to obtain y22 and y32, e.g. assume y22 evolved
into (2, 2; 2, 1; 1, 1; 1, 2; 2, 2). From figure 2 it
can be seen that y22 is the (2,2) schedule ba-
sis that obtains the initial production schedule for
the (4,2) schedule via f . For the example that
means x42 = f (y22, 4) = (2, 2, 2, 2; 2, 2, 1, 1;
1, 1, 1, 1; 1, 1, 2, 2; 2, 2, 2, 2). Now the y42 is obtained
via g(x42). Schedule basis (4,2) will be used to de-
rive schedule y43. That means the number of pro-
duction windows remains four, but a third prod-
uct is introduced via g. Furthermore f will not be
used because of the “horizontal” direction (see 2).
This gives us y43 = g(y42, 3) = (2, 2, 2, 3; 3, 3, 3, 1;
1, 1, 1, 1; 1, 1, 1, 3; 3, 3, 2, 2). The second parameter
of g specifies the number of used products (see also
alg. 2 line 11). We see that g has replaced some
of the previously set products with product 3. This
iterative approach is based on the highest combined
factor α obtained so far. This guarantees that the ob-
tained schedule is better than the α schedule. In gen-
eral ykα,2 = g( f (yα,2, k)); and yα, j = g(yα, j−1, j) for
j > 2. A higher product dimension schedule yω3 or
ykα,3 is derived via g from xω3 = yω2 or xkα,3 = ykα,2

respectively. This is used to derive the production

window set W specified in algorithm 2. For instance
if the required production window is t = 16 then
W = {1, 2, 4, 8, 16}. In the next section a second ap-
proach is discussed. Section 6 compares the produc-
tion schedule costs of these methods.

4.3. Fractional Generation

An alternative approach is a fractional genera-
tion, this means a production schedule is partially
fitted into the refined schedule. For instance a slot
2 schedule with 3 products y23 = (2, 3|2, 2|1, 1|
1, 3|2, 2) is transformed into a “refined” slot 3 sched-
ule by leaving a production gap x33 = (2, 3, 0|2, 2, 0|
1, 1, 0|1, 3, 0|2, 2, 0). The gap is defined by setting
every third element to zero. Such refined schedules
are used in the parallel genetic algorithm as initial
solutions. In general the fractional generation pro-

cess for two products is: y02 g◦ f
→ y12 g◦ f

→ y22 · · ·
g◦ f
→ yn2

or yn2 = (g ◦ f )n(x12), where g is the genetic algo-
rithm or any production schedule generation func-
tion, f is the fractional generation function and y02

an initial solution (see alg. 2). This process shows
that the set of production windows for algorithm 2 is
W = {1, 2, . . . , t}.

The fractional generation function currently uses
production gaps. However, instead of non-
production fractions a heuristic interpolation proce-
dure can be used. If product A is produced in the
preceding and succeeding production window it can
be assumed that product A will be produced during
that time slot as well. If two different products sur-
round the gap then the one with the greatest missing
demand should be produced. These heuristics shall
be investigated in future work.

This section proposed an algorithm and meth-
ods to iteratively create a production schedule with
higher complexity.

5. Case Study Data

The case study company observed that their inven-
tory levels are too high and detached from the actual
demand. So, a change from a push strategy to a pull
strategy became of interest. That means that manu-
facturing has to be done in an agile way. The previ-
ous sections introduced a methodology that derives a
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schedule for agile production. This section will in-
troduce the company process, the demand data and
suggest a cost upper bound.

5.1. Company and Process Overview

The case study company produces a range of 250
food products that service a heterogeneous customer
base. The SME had actively pursued growth through
expanding its customer base driving a change in
manufacturing variables including lead-times and or-
der size. The new demand profile had adversely im-
pacted on the performance of the operations area.
The production process that is deployed utilizes a
five stage manufacturing route. Raw material inputs
are cleaned and sorted leading to the production of
eight intermediary semi-finished products which are
stored in material handling silos awaiting release to
the appropriate production lines for packaging be-
fore shipment to the warehouse. The manufacturing
process had been faced with the challenges of grow-
ing sales, increased inventory cost and falling service
levels. Increasing demands on the manufacturing fa-
cility challenged the historical approach to produc-
tion planning and control. The increasingly variable
demand on the manufacturing operation weakened
the reliability of the planning schedule rendering the
plan obsolete within hours of issue. The four week
time horizon schedule began to reflect a customer or-
der list. The reactive planning and control modus
operandi had forced manufacturing into an increas-
ing number of unplanned changeovers with dimin-
ishing performance. The firm had effectively moved
from a position of flexible spare capacity to a bottle-
neck over a three year period due to increased com-
plexity and reduction in schedule stability.

Improving the reliability and responsiveness of
the production schedule became the focus of the
organization. In order to reduce the costs of un-
planned changeovers, lost production capacity, in-
creased downtime and emergency customer ship-
ments the case study firm investigated the possibil-
ity of creating focused factories. Products were relo-
cated to specific production lines based on pack size,
the primary driver of changeover time, and classi-
fied in terms of Make-To-Order (MTO) and Make-
To-Stock (MTS) status to develop a more supportive
inventory position. These refinements and changes

were expected to improve the productivity of the line
and the stability of the schedule.

5.2. Demand profiles
In this study we focus on an arbitrary selection of

ten products (out of 250). For each product the de-
mand is known on a weekly basis. The time-series
of the individual products are shown in figure 3. We
see that the quantities of the first two products dom-
inate. In order to optimize the production process
greater understanding of the individual product’s de-
mand profile has to be gained. We propose to first
classify the products:

1. any products revealing a “high” coefficient of
variation are flagged red (see “traffic light” in
figure 3 and first letter in product code was set
to R) - indicating MTO production;

2. time-series with a single significant innovation
get an orange traffic-light assigned - requiring
the time series to be divided into two sections;
an algorithm in Garn and Aitken (2015) shows
how the innovation split can be found;

3. all other products are marked as green - suggest-
ing demand profiles that typically include MTS
and MTO components.

The orange and green flagged time series usu-
ally have a hybrid MTS/MTO demand profile. The
Garn and Aitken (2015) splitting method delivers
the individual Make-To-Stock (MTS) and Make-To-
Order(MTO) time-series. A product code was de-
rived as follows: traffic light (G= green, O= orange,
R= red); followed by a sequential number (01, 02, ...,
10); Savings (S= significant, M= moderate, T= tiny,
L= low); and back-order information (N= none, L=

low, M= moderate, H= high). There is a necessity
to improve the scheduling of the production process.
In this example we have a variety of time-series and
most products have a time-series that can be split into
two components.

Let us now return to the total demand. The over-
all aggregated demand reveals an increasing linear
trend (see figure 4). This means we are dealing with a
non-stationary production planning process. Further-
more, there is a visible innovation after the first year,
which can be obtained using the innovation identifi-
cation algorithm (Garn and Aitken, 2015). This sug-
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Fig. 3. Time series showing the weekly demand and additional information.
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gests that planning for each year should be done sep-
arately. The weekly demand has high variability, in-
dicating cost factors caused by staff scheduling con-
straints.

5.3. Demand overview and plans

The rough capacity plan was to produce 450k
packages in the year 2010. The actual demand in
2010 was 404k packages, which left an excess in-
ventory of 46k packages - 10.1% below plan.

The assumption for 2011 was a growth of 20%,
due to sales agreements. The plan was to have 404k
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Fig. 5. Aggregated plan.

plus 20% packages in 2011. That meant the produc-
tion plan intended to produce 440k packages taking
into account the excess inventory from 2010. How-
ever, the actual demand in 2011 was 608k packages
- this would have meant lost sales of 30%.

Let us consider the demand per quarter (figure 5).
We observe significant changes between the quarters
(see table 2). The absolute average change of consec-
utive quarters is 27,439 packages, this is a relative
average change of 21.7%. The planned production
was 112,500 packages, which was insufficient for
2011 and a capacity management decision was nec-
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Table 2. Quarter changes.

Quarter Change
20

10

Q1
Q2 52.8%
Q3 -22.8%
Q4 -14.0%

20
11

Q1 38.9%
Q2 23.3%
Q3 18.2%
Q4 -7.9%
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Fig. 6. Product volume importance.

essary. An investment doubled the production rate in
the second quarter of 2011.

For the scheduling it is interesting to know which
products have the highest demand. Figure 6 shows
that product G02SN is causing 37.7% of all demand.
Furthermore three products account for 77.2% of all
demand. The product R04TN is from a volume and
cost perspective not important. A comparison of
setup cost against shortage cost (lost sales) shows
that this product causes losses, in particular since the
demand is at the end of the period. So, practically it
should not be manufactured. The generated produc-
tion schedules (see next section) support this and do
not produce R04TN. Thus, reducing product variety
and improving factory focus.

5.4. Cost upper bound

Finding an upper bound for the costs is achieved
with the following considerations. Holding cost and
shortage cost cannot occur concurrently. Setup costs
can be avoided by not producing anything at all. That
means the maximal cost factors are:

cmax
j = [cs

j ≥ ch
j]c

s
j + [cs

j < ch
j]c

h
j , (13)

where j is the product, cs
j and ch

j are the product’s
shortage and holding costs respectively. Usually
shortage cost is higher than holding cost, simplifying
the cost bound to be the shortage cost. That means
an upper bound for the cost is:

m =
∑

i, j

|di j|cmax
j . (14)

In the case study the maximal cost is $7,543,580
over two years. The individual cost factors and total
demand volume are shown in table 3. The holding
cost and shortage cost are in dollar per unit per week.
The setup cost occurs when changing from a product
to the specified one.

Furthermore, product 2 can cause 38.4% ($2.89M)
damage and product 8, 21.4% ($1.61M). Note that
shortage cost can sometimes be interpreted as nega-
tive revenue, i.e. lost sales or possible revenue. So
product 2 and 8 could generate 59.8% ($4.50M) of
all possible revenues.

In table 5 we have summarize the data require-
ments to run the iterative generation algorithm for
the case study.

6. Results and Discussion

In section 4 we have proposed an iterative algo-
rithm that generates production schedules. The de-
mand data fed into this algorithm was discussed in
section 5. Figure 7 illustrates the factorial and frac-
tional schedule results. The bold brown line repre-
sents the average production schedule cost obtained
by the factorial approach. The average was formed
by calling the iterative algorithm 30 times. Individ-
ual results are shown as red dots and their sample
standard deviation is indicated by thin brown lines.
The bold blue line displays the production sched-
ule cost derived through the fractional approach. It
can be seen that the factorial generation outperforms
the fractional approach. This is first observable
when two production windows occur per week. That
means that the half-week gaps cannot be filled with
the fractional approach well enough. It would be in-
teresting to start the fractional approach from the fac-
torial w2 solution onwards. The factorial and frac-
tional approaches reveal challenges of finding bet-
ter solutions due to the increased number of decision
variables.
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Table 3. Cost factors and volume.
cost G01SL G02SN G03MH R04TN G05MM O06MN G07ML O08SN O09LN R10LN

holding 1.3 2.4 1.5 2.2 1.1 1.6 2.3 3 2.3 2.2
setup 5,600 7,900 5,600 6,500 7,000 7,100 5,600 7,700 5,200 8,300

shortage 7.2 7.6 6.6 8.1 4.6 8.6 7.3 8.1 6.8 8.3
volume 200,626 381,381 38,241 320 59,228 70,167 38,429 199,239 17,759 6,576

volume [%] 19.8% 37.7% 3.8% 0.0% 5.9% 6.9% 3.8% 19.7% 1.8% 0.6%
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Fig. 7. Production schedules created via factorial and fractional approach.
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The factorial solution generation process reveals
the following patterns. Two production windows per
week (i.e. window size is 2 this is abbreviated with
w2) are based on a schedule with w1. The production
schedule w4 is derived from w2 and shows improve-
ment. w8 ← w4 and w16 follow the iterative improve-
ment process. It can be observed, that the iterative
factorial algorithm improves with each refinement of
the production window as expected. The results sug-
gest that the cost savings follow a negative exponen-
tial function that means initial production window re-
finements lead to higher savings. If we turn to three
production windows per week w3, an improvement
over w1 is observed however, it is not better than w2.
This is due to increased complexity. That means it
is harder for the iterative factorial algorithm to find a
better solution due to dimensionality increase. Con-
tinuing with w3 based schedules such as w6 and w9

show steady improvements. It can be observed, that
the iterative factorial algorithm improves with each
refinement of the production window as expected. In
general we can observe prime factor schedule cost
(fig. 7, red line) increase due to growing complex-
ity. Overall factor derived based schedules improve
iteratively. The factorial approach is based on the
idea that the best refinement can be obtained from
a factorization that uses the largest found schedule
as an initial solution. This works well for w2 How-
ever, it can be seen that a better solution could have
been found for w6 by using w2 instead of w3. This
is a surprising result and indicates that the increased
number of decision variables has a major impact on
the solution quality.

The results found motivate an improved iterative
refinement approach (see figure 8), which makes use
of factorial and fractional approach to obtain higher
cost savings.

A couple of additional interesting observations
were made. Preventing production gaps has a major
effect on the costs, e.g. product 2 without production
gaps leads to 23.5% higher costs on average. Chang-
ing the batch size ( production rate) from the average
demand to twice of the average demand improves the
solution by 39.3% for the fractional approach. This
observation was the reason to set batch size (in sec-
tion 4) to 2pavg. This behavior is visualized in figure
9. Here the batch size factor is a multiple of the av-

Fig. 8. Improved iterative refinement process
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Fig. 9. Cost depends on batch size factor.

erage demand. We have plotted four production win-
dows (abbreviated with pw). This motivates the fol-
lowing questions: What is the optimal batch size (if
only one batch size is possible)? Figure 9 indicates
that 1.5 times the average demand leads to the mini-
mum. Is a “dynamic (unlimited) batch size” the most
cost efficient way to produce? Contrary to intuition
we observe that costs start to increase with increased
batch sizes.

7. Conclusion & Managerial Implications

The case study’s demand was non-stationary and
required a dynamic schedule breaking away from
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the main-stream “cycle methods”. These demand
variations of multiple products motivated agile man-
ufacturing. To find an agile production schedule
for the single manufacturing line, we have devel-
oped an iterative algorithm that guides parallel ge-
netic algorithms. This approach was necessary to
alleviate the effects of the “curse” of dimensional-
ity that affected the solution quality. Here, the di-
mensions were the production windows and prod-
ucts. We have devised the factorial and fractional
generation methods, which refine production win-
dows systematically. The case study’s product vol-
umes revealed a Pareto distribution pattern. There-
fore important products (e.g. based on aggregated
demand) are used first to find schedules. The itera-
tive algorithm increases the number of products in-
crementally, which are fed into the genetic algorithm
We experienced that the pGA’s configuration is es-
sential for the solution quality despite of the iterative
algorithm’s control. The analysis has shown that the
factorial approach finds the most cost efficient sched-
ules, in comparison to the fractional approach. The
results confirm intuition about complexity, such as
higher prime number refined schedules led to higher
inventory and production costs. We have also ob-
served that significant cost savings are possible with
the fractional approach by increasing the number of
production windows initially. However, the saving
opportunities through refined production windows
decrease exponentially. Another interesting insight
for operations managers is that utilizing machines’
capacity (or maximizing the produced batch during
a time window) does not lead to a cost reduction as
shown in section 6. Overall it can be concluded that
the number of products and time slots greatly affect
the quality of schedules. The case study supports
that agile manufacturing, i.e. adapting production ac-
cording to demand, is a cost efficient approach.

The study gives rise to a number of avenues for
further research. Following is a discussion of three
possible avenues. The first avenue is in regards to
stochastic demand. In practice the assumption that
all demand for each week is known with certainty
cannot uphold. Thus it is necessary to investigate the
stochastic parts of the demand. Future research can
use the formulations and algorithms presented here
as basis for gaining insight into production planning

time horizons. This can be achieved by using ad-
ditional forecasting methods. The introduced case
study can be used by defining fractions of the time
series’ demand as uncertain. The second avenue is
to improve the model. This should cover the topol-
ogy of the plant Section 5 introduced the production
process with several stages. This can be mapped us-
ing simulation models. Furthermore the perishable
nature of the products and limited storage should be
taken into account. A third possible avenue is to look
at different algorithmic approaches. Instead of the
parallel genetic algorithm other meta heuristics such
as SA and TS can be used to find production sched-
ules. The iterative algorithm lends itself to accom-
modate other heuristics as long as they accept ini-
tial solutions. This algorithm in conjunction with the
factorial and fractional method is general enough to
be applied to other problem domains, which “strug-
gle” with complexity. Using Mixed Integer Program-
ming might be another option although the number
of decision variables will constitute a challenge to
practitioners. As an alternative MIP could be em-
bedded in the iterative algorithm to solve parts of the
problem exactly. An interesting approach might be
to identify the demand profile as an “analog” signal
and the production schedule as a discretization of this
signal. That means the Fast-Fourier-Transformation
algorithm can be applied. Future work should also
include the development of a software (preferably
with GUI) that can be readily deployed in production
environments.

The dynamic nature of demand encourages agile
manufacturing in many industries. Agile lot sizing
challenges are therefore an interesting area for fur-
ther research. The concepts and methods developed
in this paper opens up the way for such analyses.

Appendix

Table 4 lists the required input data to run the iter-
ative generation algorithm.

Table 5 summarizes the settings discussed in sec-
tion 3.3.
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