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Abstract
Interactive multiobjective optimization methods cannot necessarily be easily used when

(industrial) multiobjective optimization problems are involved. There are at least two im-
portant factors to be considered with any interactive method: computationally expensive
functions and aspects of human behavior. In this paper, we propose a method based on
the existing NAUTILUS method and call it the Enhanced NAUTILUS (E-NAUTILUS)
method. This method borrows the motivation of NAUTILUS along with the human as-
pects related to avoiding trading-off and anchoring bias and extends its applicability for
computationally expensive multiobjective optimization problems. In the E-NAUTILUS
method, a set of Pareto optimal solutions is calculated in a pre-processing stage before the
decision maker is involved. When the decision maker interacts with the solution process in
the interactive decision making stage, no new optimization problem is solved, thus, avoid-
ing the waiting time for the decision maker to obtain new solutions according to her/his
preferences. In this stage, starting from the worst possible objective function values, the
decision maker is shown a set of points in the objective space, from which (s)he chooses one
as the preferable point. At successive iterations, (s)he always sees points which improve
all the objective values achieved by the previously chosen point. In this way, the decision
maker remains focused on the solution process, as there is no loss in any objective function
value between successive iterations. The last post-processing stage ensures the Pareto op-
timality of the final solution. A real-life engineering problem is used to demonstrate how
E-NAUTILUS works in practice.

Keywords: Multiple objective programming, Interactive methods, Multiple criteria op-
timization, Computational cost, Trading-off, Pareto optimality.
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1 Introduction
Optimization problems, e.g., in industry, often involve multiple conflicting objectives and such
problems are typically referred to as multiobjective optimization problems. Such problems are
usually complex as they deal with nonlinear objective and constraint functions, different types
of variables and may involve the use of computationally expensive black-boxes simulators which
imitate some physical processes. Moreover, multiobjective optimization problems do not have a
single optimal solution but, instead, several (usually infinitely many) optimal solutions, called
Pareto optimal solutions, with different trade-offs among the objectives. Because of this, there
is a need for an expert, referred to as the decision maker (DM), who can provide her/his pref-
erence information when needed and who ultimately chooses one solution among several others
based on her/his preferences. In the literature, there exists a plethora of methods to handle
multiobjective optimization problems and among them interactive methods are commonly used
(1; 2). In interactive methods, the DM is actively involved during the iterative solution process.
Here, the preference information of the DM is accounted to generate a set of solutions which
are subsequently presented to her/him. Next (s)he investigates and chooses one or more solu-
tions as the preferred solution(s). This process continues for several iterations until the DM is
satisfied with the solution found and regards it as the most preferred Pareto optimal solution.

Interactive methods are bound by aspects of human behavior, such as the fact that losses
loom larger than gains and the susceptibility of a DM to an anchoring bias, as mentioned by
Kahneman and Tversky in (3). According to them, in an anchoring bias, the DM defines an
adaptation level based on her/his past and present context of experience and subsequently
her/his response is in relation to her/his adaptation level. On the other hand, moving from
one Pareto optimal solution to another requires sacrifice(s) in some objective function(s), which
may hinder the DM from finding desirable solutions. Both these aspects would mean that the
starting solution(s) will have a profound impact on the final solution chosen by the DM. Though
these aspects of human behavior are critical in understanding the behavior of a DM, very few
interactive methods consider them. In a recently proposed interactive method suggested in (4),
the NAUTILUS method, special emphasis is devoted to the different aspects of human behavior
laid down by Kahneman and Tversky. In NAUTILUS, the DM starts from the worst possible
objective function values derived from the set of Pareto optimal solutions and progressively
moves towards her/his preferred Pareto optimal solution, by improving every objective function
at the current iteration as compared to the previous one. In this way, one can make sure that
the DM does not have to trade off at any iteration and, in fact, (s)he gains on each of the
objectives.

However, the NAUTILUS method involves a large computational cost. At every iteration
of NAUTILUS, a new single objective optimization problem has to be solved unless the DM
does not provide any new preference information. In addition, a number of single objective
optimization problems equal to the number of objectives has to be solved in order to find the
bounds of the reachable objective function values at any iteration, which are provided to the
DM. For complex multiobjective optimization problems involving computationally expensive
objective and constraint functions, solving multiple single objective optimization problems at
every iteration is not practical as the DM typically has to wait for a considerable time period
dictated by the time taken to evaluate the objective and constraint functions between iterations.
In this paper, we address this discrepancy in the NAUTILUS method with several enhancements
and we call the result as the Enhanced-NAUTILUS (E-NAUTILUS) method.

In a nutshell, the E-NAUTILUS method applies the three-stage solution process ideology
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proposed in (5) and consists of the following three stages: pre-processing, interactive decision
making and post-processing stages. In order to reduce the computing time during the interactive
decision making stage, a well-spread set of Pareto optimal solutions is pre-computed using
e.g. any a posteriori type method (1) or evolutionary multiobjective optimization algorithms
(6; 7). Evolutionary multiobjective optimization algorithms are nature inspired population
based algorithms, where a set of random solutions is considered to start with and which evolves
over several generations to finally obtain a set of solutions as close as possible to the set of Pareto
optimal solutions. It must be noted that, since Pareto optimal solutions cannot be guaranteed
when using evolutionary multiobjective optimization optimization algorithms, additional efforts
must be devoted to ensure the optimality of the solutions, see e.g. (8). If a well-spread set
of solutions cannot be obtained e.g. because of a need for an exponentially large number of
solutions to represent a high-dimensional objective space, approximation techniques such as
the PAINT method (9), the interactive hybrid approach (10) etc. can be used to generate new
solutions.

In the interactive decision making stage, the original computationally expensive problem
is not solved but the calculation is based on the data generated in the pre-processing stage.
The DM is iteratively shown a set of intermediate points at a certain distance from the nadir
point (defined in Section 2) in the objective space, from which (s)he selects one point. This set
of intermediate points represents the different ways of approaching the Pareto optimal front
from the previous point selected, i.e., different ways of improving the current objective function
values. At every iteration, these intermediate points are closer to the set of Pareto optimal
solutions and farther from the nadir point than the ones obtained in the previous iteration.
This interactive stage is terminated when the DM chooses one solution among the solutions
calculated in the pre-processing stage. Initially, the DM specifies the number of intermediate
points (s)he wishes to investigate at every iteration and the number of iterations (s)he would
like to pursue before her/his preferred Pareto optimal solution is reached. Based on the number
of iterations specified, step lengths are calculated to reach the set of Pareto optimal solutions
and, at each iteration, a step is taken assuring that the solutions generated are closer to the set
of Pareto optimal solutions. In addition, the DM never looses sight of the set of Pareto optimal
solutions since, at every iteration, (s)he is provided information about the reachable part of
the Pareto optimal set from every intermediate point. It must be noted that the intermediate
points only guide the DM towards her/his preferred Pareto optimal solution, but these points
are not Pareto optimal, and they may not even be feasible. Finally, the Pareto optimality of
the preferred solution chosen by the DM is ensured in the post-processing stage. As mentioned
earlier, the Pareto optimality of the solutions generated in the pre-processing stage cannot
necessarily be guaranteed and, thus, the last stage is needed.

One can regard the E-NAUTILUS method as an interactive decision support system for the
DM to find the most preferred solution among the ones generated by any a posteriori method. It
supports the DM as only a small amount of solutions is considered at a time and it progressively
gives her/him an idea of what can and cannot be achieved in the problem, without the necessity
of evaluating the objective functions of the problem again and again. State-of-the-art of hybrid
evolutionary multiobjective optimization algorithms has been surveyed in (11). As stated in
(11), there are several a posteriori algorithms which incorporate preferences of the DM once
an approximation of the Pareto optimal front is found. However, none of them is similar to
E-NAUTILUS.

Next, in Section 2, we present the background concepts which lay a foundation to the rest of
the article. In this section, we also present a brief description of the NAUTILUS method, which
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is the backbone of the E-NAUTILUS method. In Section 3, we give a detailed description of
the E-NAUTILUS method and, in Section 4, we demostrate the E-NAUTILUS method using
a real-life three-objective optimization problem associated with the efficiency improvement of
the auxiliary services of thermal power plants. Finally, we conclude and give future research
directions in Section 5.

2 Background Concepts
We consider multiobjective optimization problems of the form

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S, (1)

with k ≥ 2 conflicting objective functions fi : S → R. The decision vectors x = (x1, x2, . . . , xn)T

belong to the feasible set S ⊂ Rn. For every x ∈ S, we denote the vector of objective function
values by f(x) = (f1(x), f2(x), . . . , fk(x))T , which is called an objective vector in the objective
space Rk. Usually, because of the conflict degree among the objectives, it is not possible to find
a solution where all the objectives can reach their individual optimum, so we are interested
in so-called Pareto optimal solutions, at which no objective function value can be improved
without impairing, at least, one of the others. Given z1, z2 ∈ Rk, we say that z1 dominates
z2 if z1

i ≤ z2
i for all i = 1, 2, . . . , k and z1

j < z2
j for at least one index j. If z1 and z2 do not

dominate each other, we say that z1 and z2 are (mutually) nondominated. Then, we say that
a decision vector x∗ ∈ S is Pareto optimal if there does not exist another x ∈ S such that f(x)
dominates f(x∗). The corresponding objective vector f(x∗) is called a Pareto optimal objective
vector. Usually, problem (1) has many Pareto optimal solutions. The set formed by all Pareto
optimal solutions is called the Pareto optimal set, denoted by E, and its image in the objective
space is referred to as the Pareto optimal front, denoted by f(E). In this paper, we refer to
objective vectors which map with decision vectors as solutions, and to vectors in the objective
space which do not necessarily correspond to any decision vector as points. Besides, in this
paper, for a point z ∈ Rk, we say that a solution x ∈ S, is reachable from z if f(x) dominates
z, that is, if fi(x) ≤ zi for every i = 1, . . . , k.

When solving problem(s), the DM decides which Pareto optimal solution satisfies best
her/his preferences. This solution is commonly known as the most preferred solution and is
defined as the final solution of the problem. We will denote it as zpref . There are different ways
of expressing preferences (1; 12; 13), such as weighting the objective functions, expressing local
trade-offs for the objectives, performing pairwise comparisons, selecting one solution among
a set of solutions or giving a reference point formed by desirable objective functions values,
among others. One of the ways is to provide to the DM a set of solutions and to let her/him
choose the one (s)he likes most. In E-NAUTILUS, the DM expresses her/his preferences in this
way.

The ranges of the objective function values in the Pareto optimal front are defined by the
ideal and the nadir points (also known as the ideal and nadir objective vectors), which represent
the best and the worst values that each objective function can achieve in the Pareto optimal set,
respectively. The ideal point, z? = (z?1 , . . . , z

?
k)T , contains the lowest objective function values

and is obtained by z?i = minx∈S fi(x) = minx∈E fi(x) for all i = 1, . . . , k. The nadir point,
znad = (znad

1 , . . . , znad
k )T , is formed by the highest objective function values and can be defined

as znad
i = maxx∈E fi(x) for all i = 1, . . . , k. In practice, the nadir point is usually difficult
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to calculate as the set E is unknown and we need to approximate it (see (1) and references
therein). A pay-off table (14) has often been used to find an approximation of the nadir point,
but lately more reliable approaches for its estimation have been suggested (see, e.g., (15; 16)).
Alternatively, the DM can also be asked for the worst possible objective function values and
such values can be used as the components of the nadir point.

As previously mentioned, E-NAUTILUS is based on the NAUTILUS method proposed by
Miettinen et al. in (4). NAUTILUS is an interactive method and was specially designed for
avoiding the undesired anchoring effects that many interactive methods suffer from. In many
of them, the necessity of an impairment in at least one objective function to find a new solution
may hinder the decision making task and this may imply that the DM focusses on a subset
of Pareto optimal solutions too prematurely. As suggested in (3; 17), past experiences affect
people’s hopes and expectations, and DMs do not always react in the same way to gains and
losses. These properties may make the selection of a satisfactory solution difficult or even
endanger finding the most preferred solution. Because of that, NAUTILUS starts the search
for the most preferred solution from the worst objective function values, that is, from the nadir
point. From it, the search is oriented in such a way that the DM will progressively focus on
the part of the Pareto optimal front (s)he likes most. In fact, the DM can reach any Pareto
optimal solution with the NAUTILUS method without the necessity to sacrifice, i.e., trade off.
Although only the last solution will be Pareto optimal, the DM is always shown a solution
which dominates the solution given at the previous iteration, which means that (s)he gains an
improvement in all the objectives at every iteration. This should encourage her/him to continue
iterating, given that better objective function values are obtained progressively, without a need
of trading off. However, as the solution process approaches the most preferred solution, the
area of the Pareto optimal front that can still be reached without trading off shrinks. This
implies that there will be other regions of the Pareto optimal front that will not be reachable
unless a step backwards is taken.

Figure 1 gives a graphical idea of the iterative solution process in NAUTILUS for a biob-
jective optimization problem. At the beginning, the DM indicates how many iterations (s)he
would like to take until finding her/his most preferred solution. However, the number of itera-
tions can be changed during the solution process if (s)he desires to slow down or speed up the
progress. We refer to the solution generated at each iteration i as an iteration point, which is
denoted by zi in Figure 1 (for i = 0, 1, 2). The first iteration point is the nadir point. At each
iteration, the DM expresses her/his preferences about desired local improvements of the current
objective function values following the scheme proposed in (18). This information is employed
to calculate a vector of preferential weights, which is subsequently used in an achievement
scalarizing function (19) to find a Pareto optimal solution. From the practical point of view,
these preferential weights define the search direction for the next iteration point. Actually, the
next iteration point is a point lying in the segment which joins the current iteration point and
the objective vector (labelled as f i for i = 1, 2 in Figure 1) of the Pareto optimal front obtained
when optimizing the achievement scalarizing function. The length of the step taken towards
the Pareto optimal front is adjusted according to the number of iterations left. Additional
information is also given to the DM about the ranges of the values that each objective function
can reach without trading off from the next iteration point (i.e., information about the subset
of Pareto optimal solutions which are reachable from the next iteration point). These ranges
are given at each iteration by the current iteration point and the point zi+1,lo in Figure 1. A
measure of the proximity to the Pareto optimal front is also shown. With this information, the
DM decides either to continue the search from the next iteration point in the current or in a
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new direction, or to take a step backwards and redirect the search from the current iteration
point if the information given is not satisfactory, by expressing new preference information.
Subsequently, a new iteration is performed and this process continues until completing the
number of iterations the DM wishes to take.
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Figure 1: Graphical idea of the NAUTILUS method in a biobjective minimization problem.
We can see how, for two iterations, the DM improves the objective function values, starting
from the nadir point. At each iteration i, the direction is given by the weights obtained from
the preference information provided by the DM, a corresponding Pareto optimal solution f i

is calculated, and a step towards f i is taken (iteration point zi). The ranges of the reachable
Pareto optimal solutions corresponding to each iteration point visualized are illustrated as
rectangles.

3 E-NAUTILUS for Decision Support
The E-NAUTILUS method consists of three stages: pre-processing, interactive decision making
and post-processing stages, as shown in the flowchart in Figure 2. In the pre-processing stage,
a set of nondominated solutions P approximating the whole Pareto optimal front is initially
generated using e.g. an evolutionary multiobjective optimization algorithm or any other a pos-
teriori method, and estimates of the nadir and the ideal points are calculated using P . Special
effort should be devoted to ensuring that the solutions in P are not only (mutually) nondomi-
nated but also as close as possible to the Pareto optimal front. As the name suggests, the DM
is involved in the interactive decision making stage, where (s)he interactively and iteratively
improves all objective function values to find the most preferred solution available. Finally, in
the post-processing stage, an achievement scalarizing function is optimized over the feasible set,
using the solution selected by the DM as the reference point, in order to find (if possible) a more
accurate Pareto optimal solution. In practice, this means projecting the solution chosen onto
the Pareto optimal front in the direction determined in the achievement scalarizing function
(1; 19). The DM is not involved in the post-processing stage.

The interactive decision making stage is the main part of the E-NAUTILUS method. Here
we briefly introduce this stage and a more detailed description is provided hereafter. In this
stage, the DM interacts in the solution process by analysing a small set of points in the objective
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Start

Calculate a set of nondomi-
nated solutions P , the nadir

point znad and the ideal point z?

Show the DM the ranges of the ob-
jective functions, that is, show znad

and z?, set h = 1 and P h = P

The DM provides the number of itera-
tions NI and the number of points NS

At each iteration h, calculate and
show to the DM NS well-spread
intermediate points using P h,

and additional information indicat-
ing proximity and ranges of reach-
able solutions from each of them

The DM selects her/his most preferred
point zh among the NS points shown

h < NI ?

Update P h in order to remove
the solutions which are not reach-
able from zh and set h = h + 1

Project zh onto the Pareto optimal front

Stop

Pre-processing stage

Interactive decision making stage

Post-processing stage

Yes

No

Figure 2: Three stages of the E-NAUTILUS method. The pre-processing stage is aimed at
obtaining a good approximation of the whole Pareto optimal front, from which the nadir and
the ideal points are estimated. In the interactive decision making stage, the DM actively
participates by indicating the number of solutions to be seen and the number of iterations to
be taken, and by selecting at each iteration the intermediate point (s)he likes most. Finally, once
all the iterations have been carried out, the post-processing stage assures the Pareto optimality
of the last point selected.
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space and selecting one among them at each iteration. Before starting the interactive solution
process, the ideal and the nadir points are presented to the DM in order to let her/him know
the ranges of the values that each objective function can reach. Then, the DM is asked to
set the number of iterations NI to be carried out and the number of points NS to investigate
at each iteration. The interactive decision making stage of E-NAUTILUS starts from the
nadir point, from which NI steps (or iterations) are taken towards P . At each iteration h,
a set of NS mutually nondominated points, termed as intermediate points, are generated and
shown to the DM. These NS mutually nondominated points always dominate the point chosen
by the DM at the previous iteration. In order to help the DM decide which point (s)he
prefers most at each iteration, information about the closeness to P h (a subset of nondominated
solutions in P reachable at iteration h) and the objective function bounds of the reachable
solutions in P h (for each of the NS points) are also provided. At each iteration, the DM selects
her/his most preferred point, referred to as zh, from the NS points shown and a new iteration
is performed. This iterative procedure is repeated by providing new sets of NS well-spread
mutually nondominated points to the DM until NI iterations are completed. At each iteration,
except in the last one, the set P h is updated by removing those solutions which cannot be
reached from zh. In this stage, we can assure that the point chosen by the DM at any iteration
will always dominate the points (s)he has selected at the previous iterations. Thus, at each
iteration, an improvement is always obtained in each objective function. This is expected to
encourage the DM to continue iterating. In this way, the DM progressively moves towards a
subset of the set of nondominated solutions P generated in the pre-processing stage, starting
from the nadir point, and only at the last iteration, (s)he considers a subset of nondominated
solutions from P and chooses one of them as her/his most preferred solution.

After completing the interactive decision making stage, the post-processing stage is used
to ensure the Pareto optimality of the final solution. We can guarantee having a Pareto op-
timal solution at the end of E-NAUTILUS is by projecting the last solution selected in the
interactive decision making stage, zh, on the Pareto optimal front. For that, we can minimize
the achievement scalarizing function proposed in (19) using zh as a reference point, by any
suitable mathematical optimization technique. But, given that this stage means to solve a
single-objective optimization problem with the original (computationally expensive) functions,
it can be skipped if it is regarded to be too time-consuming. Finally, the objective function
values and the decision variable values of the projected or the selected solution are provided to
the DM.

Although E-NAUTILUS has the same underlying philosophy as the NAUTILUS method,
there are several differences, which make it specifically suitable for computationally complex
multiobjective optimization problems, such as:

1. A possibility to provide more than one point in the objective space at every iteration
to the DM to consider. Although it has been stated in (20) that "trade-off conflict is
a major source of decisional stress", we believe that different types of DMs exist and a
method must provide the possibility for a DM to choose the number of points (s)he wishes
to investigate based on her/his cognitive ability. Thus, unlike the NAUTILUS method,
where the DM is shown just one point at each iteration, a set of mutually nondominated
points representing different trade-offs is provided to the DM at each iteration.

2. No optimization problem is solved in the second stage, that is, when the DM is involved,
using the original multiobjective optimization problem, which can be computationally ex-
pensive. Instead, a set of solutions representing the Pareto optimal front is pre-calculated
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in the pre-processing stage, before the DM is involved in the solution process. This
prevents the DM from waiting at each iteration when solving complex multiobjective op-
timization problems where the generation of Pareto optimal solutions would otherwise
take time.

3. Preference information asked from the DM in E-NAUTILUS is simple, i.e., the DM is
asked to choose a point among a set of points. In the NAUTILUS method, the DM has
to provide information about desired local improvements in the objective function values,
which may be cognitively challenging in some cases.

In what follows, we describe in detail the interactive decision making stage of E-NAUTILUS,
which is the core of the method. Algorithm 1 contains the main steps of this stage. One should
note that this stage of E-NAUTILUS operates in the objective space. Let us denote by h the
current iteration number, ith the number of iterations left at each iteration (including iteration
h), zh the selected point by the DM at the iteration h, referred to as the iteration point, and
P h the subset of nondominated solutions of P which can be reached at iteration h from the
previous iteration point zh−1 (without impairing any of the objective function values).

As said before, the ideal and the nadir points are first shown to the DM in order to let
her/him know the ranges of the objective functions. As the reachable solutions always belong
to P , the ideal and the nadir points are approximated using the best and the worst objective
function values represented in P , respectively. Next, the DM sets values for NI (number of
iterations) and NS (number of points). Initially, we set the nadir point znad as z0 and the
interaction with the DM starts at h = 1. At this moment, the number of iterations left is
it1 = NI and P 1 = P , which means that from the nadir point all the nondominated solutions
in P can be reached.

At each iteration h, the set of NS intermediate points is generated. For this, first, the NS

most representative solutions of P h are found and then NS points are calculated which lie on
the line segments that join each representative solution and the previous iteration point zh−1.
For the selection of the NS most representative solutions, we need to divide P h into NS subsets
and find a representative solution of each one. This can be done by any suitable methodology,
such as clustering, which can be used to reduce the number of solutions in a set, maintaining
the main characteristics of the trade-offs among them. After dividing P h into NS clusters
using, e.g., the average linkage method (21), we can select the centroids of the clusters as the
representative solutions. For i = 1, . . . , NS, let us denote these representative solutions by z̄h,i.

Subsequently, we calculate and show the DM the following intermediate points:

zh,i = ith−1
ith

zh−1 + 1
ith

z̄h,i, for every i = 1, . . . , NS, (2)

and (s)he has to select one of them as the next iteration point zh. As can be seen, the step-
length taken towards the Pareto optimal front represented by P is calculated according to ith,
the number of iterations left. Since ith depends on the total number of iterations to be taken,
the higher the number of the iterations to carry out, the smaller the step-length is and the
slower the convergence to P is.

If ith = 1 (i.e., we are at the last iteration), we have zh,i = z̄h,i from (2) and, thus, the
points shown to the DM at the last iteration are solutions belonging to P h ⊂ P . This means
that the point zNI chosen by the DM at the last iteration is a nondominated solution in P . If
ith > 1 (i.e., we are not at the last iteration), it must be noted that the points zh,i may not be
feasible solutions of the original problem. This must not be regarded as a drawback, given that
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Algorithm 1 Interactive decision making stage of E-NAUTILUS

Input: • A set of nondominated solutions, P , approximating the Pareto optimal front.

• Estimates of the nadir point znad and the ideal point z? calculated using the worst and
the best objective function values in P .

Output: Most preferred nondominated solution, zpref .
Step 1: Initial preference information. Show znad and z? to the DM and ask her/him

to indicate the number of iterations to be carried out, NI , and the number of points to
investigate at each iteration, NS.

Step 2: Parameter initialization. Set z0 = znad, h = 1, it1 = NI and P 1 = P .
Step 3: Select the NS most representative points in P h, denoted by z̄h,i for i = 1, . . . , NS.
Step 4: For each i = 1, . . . , NS, calculate the intermediate point zh,i in the line segment joining

zh−1 and z̄h,i as follows:

zh,i =
ith − 1

ith
zh−1 +

1

ith
z̄h,i.

Step 5: If ith > 1, for i = 1, . . . , NS, calculate the lower bounds of the reachable objective
function values from zh,i and the measurement of the closeness to P as follows:

• In order to calculate the lower bound objective vector, fh,i,lo = (fh,i,lo
1 , . . . , fh,i,lo

k ), for
each r = 1, . . . , k, solve the ε-constraint problem (P h,i

r ) given in (3) and fh,i,lo
r is the

optimal objective function value of problem (P h,i
r ).

• The measurement of the closeness is computed as dh,i = ‖zh,i−znad‖
‖z̄h,i−znad‖ × 100.

Step 6: Preferred point:

• If ith = 1, show zh,i for i = 1, . . . , NS to the DM. Set the point selected by the DM as
zpref and Stop.

• If ith > 1, show zh,i for i = 1, . . . , NS to the DM, together with fh,i,lo and dh,i. Let zh

be the point selected by the DM.

Step 7: Set P h+1 = φ. For each z ∈ P h, if fh,l,lo
j ≤ zj ≤ zhj for all j = 1, . . . , k, set P h+1 =

P h+1
⋃
{z}. Set ith+1 = ith − 1 and h = h+ 1. Go to Step 3.
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the main purpose of E-NAUTILUS is to progressively improve the objective functions at each
iteration until the DM reaches a satisfactory nondominated solution in P , without trading off.
Thus, a possibly infeasible solution is dominated by a feasible one in P . To be more specific,
the following properties hold:

Theorem 1. At any iteration h, for any r1, r2 ∈ {1 . . . , NS}, points zh,r1 and zh,r2 do not
dominate each other.

Proof. See A.

Theorem 2. 1. At any iteration h with ith 6= 1, the objective vector zh,i is an achievable1

point dominated by z̄h,i, for any i = 1, . . . , NS.

2. At any iteration h, zh dominates zh−1.

Proof. See A.
Theorem 2 is an extension of Theorem 1 in (4). According to claim 1 of Theorem 2, when

ith 6= 1, we can assure that, although the points presented to the DM at each iteration are
not Pareto optimal and may be even infeasible, there always exist feasible solutions which
dominate them. Furthermore, Theorem 1 means that the NS points shown at each iteration
will not dominate each other, whatever the shape of the Pareto optimal front is. Additionally,
claim 2 of Theorem 2 ensures that each iteration point dominates all the previous ones, and
this means that the DM will always obtain an improvement in each objective function at each
iteration taken.

If ith > 1, from each point zh,i, the range of reachable values that each objective function
can take will shrink as new iterations are carried out. This implies that there will be a region of
P h that will be discarded at the following iterations. Because of that, the DM should be aware
of what kind of solutions can and cannot be reached from each zh,i before selecting the next
iteration point. Thereby, we also give the DM lower bounds of the reachable values from each
zh,i, and a measurement of its closeness to P . Note that the upper bounds of the reachable
values are given by the points zh,i themselves. On the one hand, for every i = 1, . . . , NS, the
lower bounds of the reachable values from zh,i are calculated following the same idea as in
NAUTILUS. We consider the following ε-constraint problems for r = 1, . . . , k:

(P h,i
r )


minimize fr(x)

subject to fj(x) ≤ zh,ij , j = 1, . . . , k, j 6= r,
x ∈ P h.

(3)

As can be seen, instead of solving these problems over the whole feasible set, we just minimize
them over P h. In this way, the computation cost of solving each problem (P h,i

r ) at each iteration
h (a total of k x NS problems) is significantly small, given that we just need to find the solution
in P h (a finite set) with the lowest function value for each one of them. Next, the lower bound
objective vector for the point zh,i, denoted by fh,i,lo = (fh,i,lo

1 , . . . , fh,i,lo
k ) for every i = 1, . . . , NS,

is defined using the optimal values of the problems (P h,i
r ). That is, for each r = 1, . . . , k, the

lower bound fh,i,lo
r for the objective fr is the optimal objective function value of problem (P h,i

r ).
On the other hand, we measure the closeness of each zh,i to P h as follows:

dh,i = ‖zh,i−znad‖
‖z̄h,i−znad‖ × 100 for every i = 1, . . . , NS, (4)

1We say that a point in Rk is achievable if its components can be simultaneously achieved or improved by a
feasible solution.
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where ‖ · ‖ is the L2-norm. As in the NAUTILUS method, the greater dh,i, the closer the point
zh,i is to P h. This information is useful to let the DM have an idea of how fast the approach
to P h would be from each of the points shown.

With all this information, the DM analyses each zh,i, together with the lower bounds of
the reachable objective function values in fh,i,lo and the measurement of closeness dh,i. (S)he
must decide which point satisfies her/his preferences best and this point will be set as the next
iteration point zh. The process described is repeated until NI iterations have been carried out.

As said, at each iteration, once the DM has selected the next iteration point zh, there is
a part of P h that cannot be reached at the next iteration. Because of that, the set P h+1 to
be used at the next iteration will be formed by the solutions z ∈ P h whose objective value zj
verify that fh,l,lo

j ≤ zj ≤ zhj for all j = 1, . . . , k. In other words, P h+1 will be formed by the
nondominated solutions in P which approximate the reachable part of P from zh.

Figure 3 gives an idea of the first and second iterations of the interactive decision making
stage of E-NAUTILUS in a biobjective optimization problem. In this example, the DM wishes
to perform three iterations (NI = 3) and investigate six points at each iteration (NS = 6). At
the first iteration, we start from z0 = znad and P 1 = P . This set is divided into six clusters
and one representative of each cluster is selected. The six points shown to the DM are the
ones encircled in the figure on the left. They have been obtained by dividing the line segments
joining the representative solutions and z0 into three parts. Next, assuming that the DM has
selected the point labelled z1, the process described is repeated and the second iteration is
performed, as shown in the figure on the right. It can be observed that from z1, the subset of
P h that can be reached has shrunk (shown by a dashed box) and there are some solutions in
P h that have been discarded. Since one iteration has already been completed, at the second
iteration, the segments joining the representative solutions and z1 are divided into two parts,
so that the step-length is adjusted correspondingly.

The E-NAUTILUS method allows several flexibilities in the solution process, which have
not been indicated in Algorithm 1, for simplicity. These flexibilities are the following:

1. In the interactive decision making stage of E-NAUTILUS, the number of points to be
seen can be altered at any moment if the DM desires so. On the other hand, if the DM is
not satisfied with any of the points shown at an iteration, (s)he can take a step backwards
in order to re-select the iteration point. In that case, we update the number of remaining
iterations ith = ith + 1 and continue the process from the iteration point selected.

2. The DM is able to speed up or slow down the search process at any time by expressing a
new value for the remaining number of iterations ith.

3. At any iteration h, the intermediate points shown to the DM represent the set of solutions
that can be reached from zh. However, the extreme solutions of the reachable region P h

may not be represented by these points. This can be observed in Figure 3. We refer to
the solutions which independently minimize each objective function over P h as extreme
solutions of P h. In practice, showing intermediate points associated to the extreme
solutions at each iteration could be useful for the DM. They would allow her/him to gain
information about the minimum value that each objective function could take from the
current iteration point, and also about the price to be paid in the rest of the objectives
in order to reach this minimum value. Because of that, intermediate points associated to
the extreme solutions are stored in an archive set at each iteration. But, in order to avoid
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Figure 3: Graphical idea of the interactive decision making stage of E-NAUTILUS with two
iterations. Starting from the nadir point, in the first iteration, the desired number of inter-
mediate points is given to the DM. In the second iteration, from the iteration point selected
(labelled as z1), the subset of reachable solutions at this iteration is reduced and, as it can be
seen, new intermediate points are shown to the DM that represent it. This process continues
until completing the number of iterations desired.

overwhelming the DM with too much information, these intermediate points are shown
to the DM just in case (s)he explicitly asks for revising them at some iteration.

4. In Step 3 of Algorithm 1, during the selection of the most representative solutions in P h,
it may happen that the number of solutions in P h is less than NS. This may be the
case, for example, when the number of solutions in P is not big enough and the DM is
at the last iterations, when the proximity to P is high. In this situation, there are at
least two options: (a) the DM can be shown the set of intermediate points that can be
obtained with the solutions currently available in P h, and in this case the DM must be
told that the required number of points is not available, or (b) additional solutions can
be generated within the reachable part P h in order to get NS intermediate points as the
DM wishes to see. For option (b), we propose to use a Pareto fill module in order to
generate more nondominated solutions in the reachable part. This Pareto fill module is
an auxiliary module and must be considered as an add-on to E-NAUTILUS. Hence, the
module is not included in Algorithm 1.

In Figure 4, we enumerate the three steps involved in the Pareto fill module. In the
first step, an interpolation method like PAINT (9) is used to create an approximation of
the Pareto optimal front based on the solutions in P . In the second step, κ uniformly
distributed points are generated on a k-simplex (22) whose vertices (uk) are the bounds
of the reachable part P h within which additional solutions are needed. The PAINT
approximation is used in the third step to create a computationally inexpensive surrogate
of the original problem (1). This surrogate problem is scalarized using the achievement
scalarizing function proposed in (19). Next, the scalarized problem is solved several
times by choosing one of the points generated on the k-simplex as a reference point at a
time. The resulting solutions will lie on the PAINT approximation and they constitute a
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Figure 4: Graphical idea of the Pareto fill module. Firstly, an approximation of the Pareto
optimal front is generated using an interpolation method like PAINT (9). Secondly, uniformly
distributed points on a k-simplex are generated and, thirdly, these points are projected onto the
PAINT approximation of the Pareto optimal front using the achievement sacalarizing function
proposed in (19).

new set P h, from which the Step 3 of Algorithm 1 can continue. Note, however, that the
feasibility of the new solutions generated with the Pareto fill module cannot be guaranteed
and, thus, the post-processing stage is strongly recommended in this case, since it finally
guarantees the Pareto optimality of the final solution chosen by the DM. But if the
projection in the post-processing stage is considered to be too time consuming, another
option to guarantee at least the feasibility of the final solution is to find the solution in P
which has the minimum Euclidean distance from the point zh finally chosen by the DM.

4 Numerical Example
In this section, we illustrate the performance of E-NAUTILUS in the real-life multiobjective
optimization problem presented in (23), which is associated to the efficiency improvement of the
auxiliary services of thermal power plants. This problem deals with finding the most convenient
improvement strategies that can be carried out in the auxiliary services in order to maximize the
energy saving achieved (denoted by f1, in MWh), minimize the economic investment required
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(denoted by f2, in million e) and maximize the Internal Rate of Return (IRR) of the investment
(denoted by f3, in %). The improvement strategies considered are: (a) the replacement of the
current electric motors by more efficient ones, (b) the installation of variable speed drives, and
(c) compensation for reactive power. There are binary decision variables indicating whether the
strategies (a) and (b) are implemented or not in the elements involved, as well as continuous
decision variables containing the amount of reactive power to be compensated for in strategy
(c) on each component of the auxiliary services. The case study considered is based on the
auxiliary services of a 1,100 MW power plant, and the resulting multiobjective optimization
problem has 13 continuous decision variables and 20 binary decision variables.

In this problem, objectives functions f1 and f3 must be maximized while f2 must be mini-
mized. In order to follow the notation of the paper, the original problem has been transformed
into a minimization problem, where the objectives to be minimized are −f1, f2 and −f3. How-
ever, in real practical problems, the objective values should be presented to the DM in the
correct form (maximization/minimization) in order to ease the understanding of the values.

It should be said that we initially asked the DM for the importance he gave to each objective
function. He indicated that his most important objective was the investment cost (f2), given
that he had to adjust to a budget of 2 million e, approximately. After that objective, the
energy saving objective function (f1) was the second most important objective for him and,
finally, the IRR objective (f3). The DM also said that, with E-NAUTILUS, he expected to find
a solution with a satisfactory trade-off among the investment and the energy saving objectives.
Note that this information is not needed by E-NAUTILUS, but it is very useful to have an
initial understanding of the preferences and expectations of the DM.

In what follows, we describe the solution process using E-NAUTILUS. First, in the pre-
processing stage, we started by finding a set of nondominated solutions P which approximates
the Pareto optimal front of the problem. The objective functions are discontinuous and noncon-
vex, even some of them are modelled using a black-box simulator due to the complex engineer-
ing formulas behind the model. Because of that, and the presence of binary and continuous
variables, the Pareto optimal front was approximated using the evolutionary multiobjective
optimization algorithms NSGA-II (24) and MOEA/D (25) (further details about the param-
eter setting used are available upon request). Since this is a real multiobjective optimization
problem whose Pareto optimal front is unknown, we ran these two algorithms with a high pop-
ulation size (2000 individuals) and a large number of generations (650 generations) in order to
be able to rely on the results obtained. The set P was formed by the nondominated solutions
of the final populations of both algorithms. As a result, P had a total of 2218 solutions. The
ideal and the nadir point were approximated from P to get z? = (−47526.37, 0.05,−100.00)
and znad = (−408.49, 9.28,−22.13). From an overall perspective, after analysing the solutions
obtained, we concluded that the highest values of the IRR, which were near 100%, were reached
by solutions where the energy savings and the investment costs were not very high in compari-
son to the rest of the solutions. In contrast, solutions with higher energy savings and costs had
lower IRR values, although these IRR values were still economically very profitable taking into
account that the lowest IRR value attained was 22.13%.

Regarding the interactive decision making stage, two experiments are described hereafter.
The first experiment carried out is described in Subsection 4.1 and shows the solution process
followed when P was formed by the 2218 solutions available. Although, in this example, we
had a dense set of solutions approximating the Pareto optimal front, this may not be a common
situation, specially in computationally complex multiobjective optimization problems. In these
cases, the number of solutions in P may be much lower in order to save in compuation cost. In
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these situations, the Pareto fill module described in Section 3 may be internally needed during
the solution process of E-NAUTILUS to generate extra solutions within the reachable part
P h, at some iteration h. In order to illustrate this, we have carried out a second experiment,
described in Subsection 4.2, in which the size of P was reduced by selecting the 100 most
representative solutions available as the set P .

4.1 Experiment 1

As previously indicated, in this experiment the set P consisted of 2118 nondominated solutions.
After showing the ideal and the nadir points to the DM, he decided to take five iterations and
wanted to see six points at each iteration, i.e., NI = 5 and NS = 6. Table 1 of B contains the
information shown to the DM along the whole solution process. The first column of this table
shows the iteration number h and the second one the intermediate points given to the DM
at each iteration. The ’Bounds’ column contains three subcolumns with the lower objective
function bounds for each intermediate point (that is, the components of the vector fh,i,lo) and
the last column ’Closeness’ indicates the value of dh,i for each point. In what follows, we
describe the iterative process followed by the DM.

Iteration 1 Based on the information provided, the DM observed that, from all the interme-
diate points of iteration 1, the lowest values that could be reached for the three objectives
(their lower bounds) were still very close to their ideal values. Since he initially gave more
importance to the investment cost than to the other two objectives, he decided to select
the point with the lowest value for f2 and chose the point z1,3. He noticed that this point
had the worst value for f1, but he did not mind having such a value since he was satisfied
with the lowest bound that could be achieved for f1 from z1,3. Then, we set z1 = z1,3.

Iteration 2 At this iteration, apart from analysing the information given for f2, the DM also
paid special attention to the energy saving in f1. He realized that the values that could be
achieved by f2 from all the intermediate points were lower than 2 million e, so he thought
it would be worthy to improve f1 rather than the f2 value. From the intermediate points
obtained, he preferred z2,2 because the lower bounds that could be reached for both
objectives, f1 and f2, at this point were satisfactory enough. Then, we set z2 = z2,2.

Iteration 3 Given that the lower bounds that f2 could achieve from any of the intermediate
points were very similar, and f3 could also reach the same lower bound from all of them,
the DM mainly concentrated on f1 in order to select the most profitable point. According
to that, he looked for the point with the best energy saving value and from which the
best values for f1 could be obtained. Then, he selected z3,3 as the next iteration point z3.

Iteration 4 It can be seen that, at this iteration, the values for f2 at all the intermediate
points were greatly reduced in comparison to those of the previous iteration, and, at the
same time, the DM could still find solutions which did not require to spend more than 2
million e. He found points z4,4, z4,5 and z4,6 interesting because, from all of them, the
investment could be reduced down to 1.87 million e, and the IRR could be up to 61.47%.
From these points, he initially selected the point z4,6 since it was the point with the best
value for f1 and from which the best lower bound for f1 could be reached. However,
at the next iteration, he was not satisfied with any of the intermediate points obtained
because only one of them needed an investment below 2 million e. Given that he would
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have chosen the final solution at that iteration (since it would have been the last one),
he decided to take a step backwards. Then, among the three points he liked most at the
fourth iteration, he looked for the point with the second best value for f1. Finally, he
selected z4,4 as the iteration point z4 in order to see if it was possible to obtain better
results.

Iteration 5 At the last iteration, we obtained solutions requiring to invest both more or less
than 2 million e. Solutions z5,3 and z5,5 did not need more than 2 million e, but the DM
also analysed the trade-offs among f1 and f2 in the solutions with an investment higher
than 2 million e. Finally, the DM was more interested in the solution z5,4 than in z5,3

and z5,5. Although this solution required an investment over the initial budget, it saved
more energy than z5,3 and z5,5 and the DM considered that the sacrifice to be paid in the
investment for obtaining a better value for f1 was worthy enough. Besides, among the
solutions requiring more than 2 million e, z5,4 was the solution with the best IRR value
(f3), which also encouraged him to select this solution as the final one. Then, we set zpref

= z5 = z5,4.

In this experiment, the post-processing stage was not carried out since the computational
effort required was regarded too high. Although we cannot assure that the solution zpref is
Pareto optimal, it belongs to P , which has been obtained by combining over 2000 individuals
obtained by NSGA-II and MOEA/D, respectively, after 650 generations and by selecting the
nondominated solutions among them.

A possible way to ease the interaction with the DM in E-NAUTILUS is to use a value path
as the one showed in Figure 5 for graphically visualizing the solution process. In this value
path, we illustrate the first and the second iterations of experiment 1. It can be seen that the
DM can esily compare the objective values reached by all intermediate points at each iteration
before selecting her/his most preferred point. Besides, at the second iteration, we illustrate
the objective values which can be reached from the first iteration point z1 by highlighting with
thick lines the part of each bar which corresponds to the reachable range for each objective
function. The DM can also have an idea of how close the objectve objective values at the current
iteration point are from their ideal values. Overall, what makes using this value path specially
suitable for illustrating the E-NAUTILUS method is that the DM can graphically visualize the
improvement of each objective along the whole solution process and the progression from the
nadir point towards the final solution in P .

4.2 Experiment 2

Here, the set P consisted of the 100 most representative solutions of the 2118 solutions initially
generated. In this case, the ideal and the nadir points approximated from this set P were
z? = (−47, 504.84, 0.05,−99.02) and znad = (−413.47, 9.27,−22.16). Once the DM was shown
the ideal and the nadir points, he indicated that he desired to see five solutions at each iteration
and that he wanted to take five iterations, so we set NS = 5 and NI = 5. All the information
provided to the DM in this second experiment can be seen in Table 2 in B.

Iteration 1 Initially, the reachable values for f3 and its lower bounds were very low in all the
intermediate points obtained so, at this iteration, the DM gave more importance to f1

and f2. He decided to choose the point z1,3 given that it reached the second best value
for f1 and the investment needed at this point (f2) was slightly lower than that of the
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Figure 5: Two sets of value paths corresponding to the intermediate points shown to the DM
at the first two iterations of experiment 1. From the solution selected in the first iteration, z1,
the subset of reachable values for f1, f2 and f3 is reduced, which has been highlighted with
thick lines on each bar. Using a value path in this way, the DM can easily see at each iteration
the improvement of each objective function and the shrinking ranges of the objective function
values that are still reachable.

point with the lowest value for f1. Besides, from z1,3, f1 could reach very good values
near its ideal value, and the reachable values for f2 did not exceed the maximum amount
of money he was willing to invest. Then, we set z1 = z1,3.

Iteration 2 As f1 and f3 could still reach acceptable values for the DM in all the intermediate
points found at this iteration, the DM was more interested in directing the search towards
solutions which require the lowest investments (f2). The point with the lowest f2 value
was z2,1, and it must be noted that similar lower bounds for f2 and f3 were obtained by
the points z2,1 and z2,3. However, the reachable value for f1 from z2,1 was the lowest one.
According to that, the DM realized that more profitable solutions might be found from
z2,1 than from z2,3, so he selected it and we set z2 = z2,1.

Iteration 3 From the information shown at iteration 3, the DM observed that the f2 values
were significantly reduced at all the intermediate points when compared to z2 and he liked
this improvement a lot. From them, he selected as the next iteration point z3 the point
z3,1, since this was the point from which the best f2 and f3 values could be obtained, and,
at the same time, he thought that the reachable values for f1 were still very good. Thus,
we set z3 = z3,1.

Iteration 4 At the fourth iteration, the DM put more attention on the first objective than in
the other two because he was satisfied with the values obtained for f2 and f3 in all the
intermediate points. He observed that a significant improvement in f1 was obtained by
all the points. The point he liked most was z4,5 because this point was the one with the
second best value for f1, and the DM realised that, from it, he could reach the lowest
value for f1 and the second lowest value for f2. Then, we set z4 = z4,5. After that, the DM
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noticed that the closeness to P was almost 80% and only one iteration remained (ith = 1),
which meant that he would choose his last preferred solution at the next iteration. But
he wished to explore the reachable part of P from z4 more carefully, so he decided to slow
down the search and to take two iterations more (internally, we updated ith = 3).

Iteration 5 From the intermediate points shown, the point the DM liked most was z5,2 and
we set z5 = z5,2. There were several points with the same lower bound for f2, but the DM
was most interested in this point because it achieved the best value for the energy saving
(f1) among all of them and, at the same time, the values that could still be reached for
f1 from it were among the best ones. Regarding f3, the DM was satisfied with the values
achieved and lower bounds obtained for this objective by all the intermediate points, so
he did not concentrate on that objective too much. At this iteration, the DM was 84.47%
close to the set P and he was quite satisfied with the lower bound values that the objective
functions could reach from z5. Then, he decided to increase the number of points to be
obtained at the next two iterations to have more information about the solutions that
could be reached from z5. He desired to see ten points, so we updated NS = 10.

Iteration 6 Since only one iteration remained, he concentrated on revising the lower objective
function bounds that could be obtained from each one of the 10 intermediate points
obtained. Analysing the lower bounds obtained for f1, he could distinguish two kinds of
intermediate points. On the one hand, there was a first group of intermediate points from
which f1 could reach values around -26000.00 (points z6,1, z6,3, z6,4, z6,5, z6,8 and z6,10).
On the other hand, the second group was formed by the intermediate points z6,2, z6,6,
z6,7 and z6,9, from which better lower bounds for f1 were obtained (around -32000.00) in
comparison to the points in the first group. However, the points in the second group had
obtained lower bounds for f2 which were worse than those of the points in the first group
and, regarding f3, better values could be reached from the points in the second group
than from the points in the first one. As a result, from the intermediate points in the first
group, the DM could reach a final solution which saved less energy, required less money
but reached a worse IRR value than the solution that could reach from the intermediate
points in the second group. Based on this, and given that his initial budget was around
2 million e, the DM decided to select a point in the first group, although higher energy
savings could be obtained from the points in the other group at the expense of a higher
investment. Then, among the points in the first group, he selected z6,6 because it was the
point from which the best energy savings (f1) could be reached (z6 = z6,6).

Iteration 7 It should me mentioned that, at this iteration, the Pareto fill module described
in Section 3 was internally needed. The iteration point z6 was very close to the set P
(at 94.34% of the total distance) and, internally, there were not enough solutions in the
subset P 7 to find the 10 representative solutions required to calculate the 10 intermediate
points. This module generates a set of extra solutions within the reachable region P 7

and, since this is the last iteration, the intermediate points generated were nondominated
solutions belonging to this set. Based on the previous experiment, and although none
of the points obtained required an investment below 2 million e, the DM did not want
to go backwards since he was satisfied with the trade-offs among f1 and f2. He finally
selected the point z7,3 as the his most preferred solution. It had the lowest value for f2

and, at the same time, it reached the best value for f3, which meant that this was the
most profitable solution. Consequently, we set zpref = z7 = z7,3.
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Figure 6: Trajectory of the iteration points selected by the DM in experiment 1 (the Pareto
fill module is not used). The star represents the nadir point of the problem, the solutions
approximating the Pareto optimal front are the dark encircled points and the iteration points
selected by the DM at different iterations of E-NAUTILUS are represented by triangles.

In this experiment, given that the Pareto fill module was needed at the last iteration, the
post-processing stage is strongly recommended in order to assure the Pareto optimality of zpref .
In our case, the post-processing stage was carried out by selecting the closest solution of the
set P considered in this experiment to zpref with respect to the Euclidean distance, which was
the solution (−25368.00, 2.1438,−58.58).

In Figures 6 and 7, the star indicates the nadir point of the problem, the dark encircled points
represent the solutions in P which approximate the Pareto optimal front and the triangles are
the iteration points selected by the DM at different iterations of E-NAUTILUS, in experiments
1 and 2, respectively. Since in experiment 2 (Figure 7) the solution zpref and the final solution
are different, we have represented the final solution with a large (yellow) circle. The figure
clearly shows that the DM made consistent progress by choosing a solution better than the
previous solution and finally obtained a solution in the same region than in experiment 1.
Additionally, using the Pareto fill module in experiment 2 did not drastically change the final
solution preferable to the DM as compared to experiment 1.

5 Conclusions
In this paper, we have proposed enhancements to the interactive method NAUTILUS and
called it the E-NAUTILUS method. In principle, E-NAUTILUS is aimed at avoiding the unde-
sired anchoring effects which may take place in interactive solution processes. It progressively
proceeds to the most preferred Pareto optimal solution from the nadir point, taking one step
closer to the Pareto optimal set at each iteration, and effectively handles computationally ex-
pensive multiobjective optimization problems. What is important is that the DM does not
face the computational cost during the solution process, even if the problem is computationally
expensive.

E-NAUTILUS is divided into three stages. In the first stage, called the pre-processing stage,
a set of well-spread nondominated solutions approximating the entire Pareto optimal front is

20



Figure 7: Trajectory of the iteration points selected by the DM in experiment 2 (the Pareto fill
module is used). The star represents the nadir point of the problem, the solutions approximating
the Pareto optimal front are the dark encircled points, the iteration points selected by the DM
at different iterations of E-NAUTILUS are represented by triangles and the large (yellow) circle
is the final solution.

generated. Additionally, if a well-spread set of solutions cannot be generated, approximation
techniques such as the PAINT method can be used to generate more solutions without solving
the original problem. The next stage, called the interactive decision making stage, constitutes
the core of E-NAUTILUS and is the stage where the DM interacts with the solution process.
The DM progressively proceeds from the nadir point towards the most preferred solution in
the set of nondominated solutions generated in the previous stage. At every iteration, the DM
is given a set of intermediate points, from which (s)he must select the next iteration point. It
is guaranteed that all the intermediate points shown at each iteration to the DM are mutually
nondominated, as well as that all of them dominate the previous iteration point chosen by the
DM. In this way, the DM always obtains an improvement in all objective functions at every
iteration, thereby keeping her/him always motivated and focused. The DM is also provided
with additional information regarding the kind of solutions that may be reachable from each
iteration point before making a decision. At the last iteration, it is assured that the DM selects
one solution which belongs to the set of nondominated solutions which were initially generated.
However, given that this set just constitutes an approximation of the Pareto optimal front, it
is not assured that the last solution selected by the DM is Pareto optimal. Because of this,
we need the last stage, called the post-processing stage, in which an achievement scalarizing
function is formulated and solved to project the final solution to be Pareto optimal.

In addition, some flexibilities for the interactive decision making stage of E-NAUTILUS
have been proposed, such as changing the number of solutions to be seen or the number of
iterations left at any time, and the possibility of going backwards at any iteration. We have
also suggested an add-on module to be used in case the number of solutions that can still be
reached is not big enough to show the DM the number of intermediate points (s)he desires to
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see. In this case, this module generates additional nondominated solutions in the reachable
part by means of an interpolation method.

We have illustrated the E-NAUTILUS method using a real-life multiobjective optimiza-
tion problem concerning the improvement strategies of the auxiliary services of thermal power
plants. Here the DM progressively improved the values of the objective functions at each gen-
eration according to his preference information and he finally reached a final solution which
responded to his initial expectations. For the sake of demonstration a second experiment was
performed using a reduced set of nondominated solutions in the pre-processing stage. In the
second experiment, an approximation of nondominated solutions using the PAINT method was
activated at the last iteration due to an insufficient number of solutions available. However, the
preferred solution that was chosen by the DM was not very different from the one in experiment
1. Thus, the additional flexibility added to the E-NAUTILUS is justified.

Future research directions include a further study of graphical illustrations that enable
showing the DM the information in an understandable and intuitive way, and the development
of a user-friendly interface to interact with the DM. The role of a user-friendly interface is
essential so that DMs can make the most of the properties of E-NAUTILUS.
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A Theorems and Proofs
From now on, for any h, let us consider βh = ith−1

ith
. Given that ith is an integer value between

1 and NI , we have βh ∈ [0, 1) for any h. Then, using (2), zh,i can be expressed in the following
way for any i = 1, . . . , NS:

zh,i = βhzh−1 + (1− βh)z̄h,i. (5)

Theorem 1. At any iteration h, for any r1, r2 ∈ {1, . . . , NS} solutions zh,r1 and zh,r2 do not
dominate each other.

Proof. Let us consider any two r1, r2 ∈ {1, . . . , NS}.

1. If ith = 1, from (5), we have zh,r1 = z̄h,r1 and zh,r2 = z̄h,r2 . Since z̄h,r1 , z̄h,r2 ∈ P , they do
not dominate each other and this completes the proof.

2. If ith > 1, let us assume that zh,r1 dominates zh,r2 . This means that zh,r1j ≤ zh,r2j for every
j = 1, . . . , k and there exists s such that zh,r1s < zh,r2s . Using (5), this implies that

βhzh−1
j + (1− βh)z̄h,r1j ≤ βhzh−1

j + (1− βh)z̄h,r2j for every j = 1, . . . , k and

βhzh−1
s + (1− βh)z̄h,r1s < βhzh−1

s + (1− βh)z̄h,r2s ⇒
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(1− βh)z̄h,r1j ≤ (1− βh)z̄h,r2j for every i = 1, . . . , k and (1− βh)z̄h,r1s < (1− βh)z̄h,r2s .

Given that βh < 1, we can simplify as follows:

z̄h,r1j ≤ z̄h,r2j for every i = 1, . . . , k and z̄h,r1s < z̄h,r2s .

This means that z̄h,r1 dominates z̄h,r2 , but this is not possible because z̄h,r1 , z̄h,r2 ∈ P and
they do not dominate each other.

Theorem 2. 1. At any iteration h with ith 6= 1, the objective vector zh,i is an achievable
point dominated by z̄h,i, for any i = 1, . . . , NS.

2. At any iteration h, zh dominates zh−1.

Proof. 1. Since we just consider values of h with ith 6= 1, we can assume that βh 6= 0 for
every h. Then, zh,i 6= z̄h,i for every i = 1, . . . , NS.

Let us prove the theorem by induction. First, let us show that z1,i is dominated by z̄1,i,
for every i = 1, . . . , NS. If we set h = 1 in (5), we have

z1,i = β1z0 + (1− β1)z̄1,i. (6)

Given that z0 = znad and z̄1,i ∈ P h = P (the approximation of the Pareto optimal front),
we can assume that z̄1,i dominates z0, so z̄1,i

j ≤ z0
j for every j = 1, . . . , k and z̄1,i

s < z0
s for

at least one index s. Then, from (6), we have

z1,i
j = β1z0

j + (1− β1)z̄1,i
j ≥ β1z̄1,i

j + (1− β1)z̄1,i
j = z̄1,i

j for every j = 1, . . . , k and

z1,i
s = β1z0

s + (1− β1)z̄1,i
s > β1z̄1,i

s + (1− β1)z̄1,i
s = z̄1,i

s ⇒

z1,i
j ≥ z̄1,i

j for every j = 1, . . . , k and z1,i
s > z̄1,i

s .

Consequently, z1,i is an achievable point dominated by z̄1,i.

Let us assume that zh−1,i is an achievable point dominated by z̄h−1,i for every i =
1, . . . , NS, and let us prove that zh,i is an achievable point dominated by z̄h,i for every
i = 1, . . . , NS.

Let us show that, for any z ∈ P h−1, there exists one index s for which zs < zh−1
s , which

will imply that all the solutions in P h dominate zh−1. On the one hand, zh−1 is the
previous iteration point, so zh−1 = zh−1,l for one index l = 1, . . . , NS. Since we have
supposed that zh−1,l is dominated by z̄h−1,l, then zh−1 is dominated by z̄h−1,l. On the
other hand, we have zj ≤ zh−1

j for all j = 1, . . . , k (as indicated in Step 8 of Algorithm
1, any z ∈ P h−1 satisfies fh−1,l,lo

j ≤ zj ≤ zh−1
j for all j = 1, . . . , k). Consequently, if we

assume that there does not exist any s for which zs < zh−1
s , we have z = zh−1 for every

z ∈ P h−1. Then, zh−1 belongs to P and thus, it is not dominated by any other solution
in P . But this contradicts the fact that zh−1 is dominated by z̄h−1,l ∈ P . With this, we
have shown that all the solutions in P h dominate zh−1.
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Given that z̄h,i ∈ P h for every i = 1, . . . , NS, z̄h,i dominates zh−1. Then, z̄h,ij ≤ zh−1
j for

every j = 1, . . . , k and z̄h,is < zh−1
s for at least one index s. Consequently, using (5), we

have

zh,ij = βhzh−1
j + (1− βh)z̄h,ij ≥ βhz̄h,ij + (1− βh)z̄h,ij = z̄h,ij for every j = 1, . . . , k and

zh,is = βhzh−1
s + (1− βh)z̄h,is > βhz̄h,is + (1− βh)z̄h,is = z̄h,is ⇒

zh,ij ≥ z̄h,ij for every j = 1, . . . , k and zh,is > z̄h,is .

This implies that, for every i = 1, . . . , NS, zh,i is an achievable point dominated by z̄h,i

and the proof is complete.

2. At any iteration h, we know that zh = zh,r, for some index r = 1, . . . , NS. We must
distinguish two cases:

• If ith = 1, then βh = 0 and we have zh,i = z̄h,i for every i = 1, . . . , NS. Since
z̄h,i ∈ P h and the solutions in P h dominate zh−1 (see Step 8 of Algorithm 1), z̄h,i

dominates zh−1 for every i = 1, . . . , NS. In particular, zh = zh,r dominates zh−1 and
the proof is complete in this case.

• If ith 6= 1, then βh 6= 0. Theorem 2 assures that zh,r is dominated by z̄h,r, so
z̄h,rj ≤ zh,rj = zhj for every j = 1, . . . k and z̄h,rs < zh,rs = zhs for one index s. Then,
using (5), we have

zhj = zh,rj = βhzh−1
j + (1− βh)z̄h,rj ≤ βhzh−1

j + (1− βh)zhj for every j = 1, . . . , k

and zhs = zh,rs = βhzh−1
s + (1− βh)z̄h,rs < βhzh−1

s + (1− βh)zhs ⇒

zhj − (1− βh)zhj ≤ βhzh−1
j for every j = 1, . . . , k and zhs − (1− βh)zhs < βhzh−1

s ⇒

βhzhj ≤ βhzh−1
j for every j = 1, . . . , k and βhzhs < βhzh−1

s .

Given that βh 6= 0, we can simplify and get

zhj ≤ zh−1
j for every j = 1, . . . , k and zhs < zh−1

s ,

what means that zh dominates zh−1.
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B Tables of the Experiments

Iteration
number (h)

Intermediate points Bounds Closeness
(%)(f1, f2, f3) fh,lo

1 fh,lo
2 fh,lo

3

1

z1,1 = (−1307.16, 7.57, − 23.99) -46531.03 0.07 -100.00 20.00
z1,2 = (−1085.79, 7.48, − 31.31) -44268.72 0.06 -100.00 20.00
z1,3 = (−949.27, 7.46, − 35.54) -39905.81 0.06 -100.00 20.00
z1,4 = (−5569.30, 7.95, − 27.44) -46892.30 0.96 -65.73 20.00
z1,5 = (−3360.41, 7.69, − 29.27) -44558.82 0.19 -87.87 20.00
z1,6 = (−8808.42, 8.64, − 24.31) -47423.13 0.96 -65.73 20.00

2

z2,1 = (−1764.56, 5.69, − 40.87) -34104.70 0.09 -100.00 43.01
z2,2 = (−4503.98, 5.92, − 41.11) -34085.53 0.96 -65.73 43.48
z2,3 = (−9249.67, 6.61, − 36.86) -39565.26 0.96 -65.73 41.68
z2,4 = (−1493.23, 5.64, − 48.89) -26178.51 0.07 -100.00 40.03
z2,5 = (−1877.87, 5.74, − 36.27) -39676.58 0.09 -100.00 43.90
z2,6 = (−7139.30, 6.18, − 40.11) -34208.04 0.96 -65.73 42.81

3

z3,1 = (−8221.39, 4.47, − 43.79) -33660.84 0.96 -65.71 63.86
z3,2 = (−7424.58, 4.29, − 48.76) -26182.83 0.96 -65.71 60.90

z3,3 = (−11872.92, 4.93, − 42.11) -33823.30 0.96 -65.71 63.54
z3,4 = (−11653.55, 4.79, − 44.29) -33430.78 0.96 -65.71 62.36
z3,5 = (−11369.47, 4.64, − 47.26) -32919.19 0.96 -65.71 60.76
z3,6 = (−14022.17, 5.11, − 42.88) -33803.39 1.07 -65.71 60.76

4

z4,1 = (−13746.05, 3.24, − 45.80) -26463.06 1.05 -65.71 80.42
z4,2 = (−12569.34, 2.98, − 53.08) -25827.84 0.99 -65.71 77.05
z4,3 = (−22420.28, 4.19, − 44.40) -33430.78 1.88 -61.47 78.69

z4,4 = (−18788.82, 3.64, − 48.02) -26270.44 1.87 -61.47 79.02
z4,5 = (−17803.90, 3.44, − 51.35) -25943.97 1.87 -61.47 77.77
z4,6 = (−19163.92, 3.87, − 44.06) -33430.78 1.87 -61.47 80.78

5

z5,1 = (−25562.47, 2.27, − 55.61)
z5,2 = (−25795.03, 2.38, − 53.39)
z5,3 = (−23058.31, 1.90,−60.07)

z5,4 = (−25306.11, 2.13, − 58.88)
z5,5 = (−24540.09, 1.99, − 61.28)
z5,6 = (−26029.09, 2.54, − 50.30)

Table 1: Experiment 1: Data provided to the DM and DM’s choices in bold face.
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Iteration
number (h)

Intermediate points Bounds Closeness
(%)(f1, f2, f3) fh,lo

1 fh,lo
2 fh,lo

3

1

z1,1 = (−1210.39, 7.51, − 26.56) -45202.61 0.07 -99.02 20.00
z1,2 = (−1061.24, 7.46, − 33.84) -39980.74 0.06 -99.02 20.00

z1,3 = (−8243.83, 8.44, − 25.11) -47277.75 0.97 -65.64 20.00
z1,4 =(−5443.27, 7.87, − 28.85) -44523.93 0.97 -65.64 20.00
z1,5 = (−9730.37, 8.99, − 23.16) -47463.28 0.97 -65.64 20.00

2

z2,1 = (−10003.36, 6.67, − 32.58) -43742.27 1.02 -65.64 37.02
z2,2 = (−17281.97, 8.02, − 26.49) -46997.96 1.89 -61.28 39.54
z2,3 = (−12456.40, 6.85, − 33.84) -39980.74 1.02 -65.64 37.38
z2,4 = (−13863.23, 7.14, − 30.36) -44396.37 1.09 -65.64 39.50
z2,5 = (−15310.76, 7.48, − 28.33) -44654.26 1.44 -61.28 40.34

3

z3,1 = (−11860.17, 4.95, − 38.48) -38633.59 1.02 -65.64 58.53
z3,2 = (−11607.41, 4.84, − 42.56) -33776.49 1.02 -65.64 56.04
z3,3 = (−16909.38, 5.53, − 37.09) -39179.87 1.89 -61.28 58.88
z3,4 = (−19162.30, 6.00, − 34.59) -39980.74 1.89 -61.28 58.24
z3,5 = (−15033.61, 5.14, − 41.73) -33776.49 1.24 -61.28 56.68

4

z4,1 = (−13716.98, 3.24, − 44.39) -26600.87 1.09 -65.64 79.18
z4,2 = (−13337.85, 3.06, − 50.50) -25795.03 1.09 -65.64 76.35
z4,3 = (−22818.33, 4.38, − 40.79) -33776.49 1.93 -61.28 78.17
z4,4 = (−18477.14, 3.51, − 49.26) -25957.62 1.89 -61.28 76.61

z4,5 = (−19102.12, 3.85, − 42.61) -33776.49 1.89 -61.28 79.62

5

z5,1 = (−21255.57, 3.32, − 46.94) -26226.15 1.93 -60.35 82.53
z5,2 = (−23278.79, 3.67, − 44.01) -33391.72 1.93 -60.35 84.47
z5,3 = (−21476.80, 3.45, − 44.51) -32924.97 1.93 -60.35 85.67
z5,4 = (−21099.45, 3.26, − 48.42) -25957.62 1.93 -60.35 80.75
z5,5 = (−23993.58, 3.84, − 42.77) -33776.49 2.07 -60.04 85.01

6

z6,1 = (−24420.63, 2.97, − 49.81) -25957.62 2.07 -60.04 90.26
z6,2 = (−27000.11, 3.46, − 45.06) -32924.97 3.26 -47.21 92.65
z6,3 = (−24618.20, 3.10, − 47.22) -26226.15 2.07 -60.04 92.14
z6,4 = (−24186.45, 2.87, − 52.03) -25795.03 2.07 -60.04 88.73
z6,5 = (−24811.43, 3.21, − 45.37) -26344.07 2.07 -60.04 93.53

z6,6 = (−24939.83, 3.29, − 44.26) -30721.43 2.07 -60.04 94.39
z6,7 = (−27455.46, 3.49, − 45.41) -32924.97 3.26 -47.21 92.07
z6,8 = (−24752.47, 3.17, − 46.17) -26344.07 2.07 -60.04 92.92
z6,9 = (−28101.88, 3.54, − 45.61) -32924.97 3.26 -47.21 91.45
z6,10 = (−24536.91, 3.03, − 48.70) -25957.62 2.07 -60.04 91.05

7

z7,1 = (−26100.00, 2.56, − 50.10)
z7,2 = (−25900.00, 2.48, − 51.50)

z7,3 = (−25300.00, 2.19, − 57.10)
z7,4 = (−25700.00, 2.32, − 54.70
z7,5 = (−30700.00, 3.28, − 45.70)
z7,6 = (−25600.00, 2.26, − 55.70)
z7,7 = (−26500.00, 2.91, − 44.60)
z7,8 = (−26200.00, 2.67, − 48.40)
z7,9 = (−25800.00, 2.39, − 53.30)
z7,10 = (−26400.00, 2.81, − 46.20)

Table 2: Experiment 2: Data provided to the DM and DM’s choices in bold face.
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