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Abstract

In this paper, we consider the problem of optimizing the portfolio of an
aggregator that interacts with the energy grid via bilateral contracts. The
purpose of the contracts is to achieve the pointwise procurement of energy to
the grid. The challenge raised by the coordination of scattered resources and
the securing of obligations over the planning horizon is addressed through
a twin-time scale model, where robust short term operational decisions are
contingent on long term resource usage incentives that embed the full extent
of contract specifications.

Keywords: distributed energy resource, bilateral contract, dynamic
resource allocation

1. Introduction

Recent technological advances, together with adequate policies, explain
the increased penetration of renewable energy in several countries [1, 2, 3].
This brings issues related to reserve requirements [4], management of dis-
tributed energy (involving synchronization of excess production with the
grid [5]), security and load forecast [6], as well as the related financial aspects.
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Distributed generators (of heat and power, for instance) can integrate the
grid’s operation through ancillary services and demand-side management,
providing load reduction in the advent of contingencies [7]. Alternatively,
load reduction can be provided by curtailment service providers, which use
aggregation to form bids on wholesale markets. However, current distribution
networks do not allow for the procurement of significant amounts of energy
from generators connected along the distribution network. This is mostly
due to standard relays and switches architectures, which are not designed to
monitor power flows in multiple directions [8].

While it is currently difficult for distributed generators to trade energy
with the grid, the situation is likely to change. Indeed, the falling cost of
technologies such as photovoltaic units [9], and the possibility of pairing them
with storage units [10], suggest the advent of dynamic network management
in the near future.

To the best of our knowledge, little has yet been achieved to address
the challenges that will be faced by distributed generators that are unlikely
to have direct access to wholesale markets. In this context, and inspired
by current practice in demand-response management, namely the bilateral
contractual structure involved in incentive programs [11], we posit an en-
ergy aggregator that acts as a third party between the grid and distributed
generators, and that provides offers to the grid via aggregation [12].

In our framework, we assume that the aggregator is endowed with a
portfolio of internal and external bilateral contracts with its clients and the
grid, respectively. Internal contracting serves as a flexible tool to adjust any
client participation to the aggregator’s external activities on the grid, so that
it be tailored to each client’s financial goals and specific processes. External
operations may be positioned at several levels, such as ancillary services,
wholesale markets or load curtailment. In the current study, we focus on the
management of bilateral contracts designed for the pointwise involvement of
the aggregator’s clients in the delivery of energy to the grid, in response to
contingencies (spinning reserve).

Notwithstanding the fact that the settlement of bilateral contracts can
be tightly coupled to bid production on the market, we do not specifically
address this issue, which has been well documented in a number of recent
studies [13, 14]. Although pool operations intervene in the aggregator’s op-
erations, we yet believe that the management of the two-sided portfolio is
important per se, and that it raises challenges that need to be addressed
independently and prior to any pool activity.
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The aim of this paper is to propose a model for an energy aggregator
providing contingency reserve using distributed generators, and to devise
an efficient algorithm for its operations, which are set in a stochastic and
dynamic environment, whose time horizon typically spans several months.
Due to the fact that discrete decisions are involved, the resulting multi-stage
stochastic program can only be tackled for small portfolios. Alternatively,
addressing the curse of dimensionality directly through statistical learning
schemes [15] is problematic on account of the involved combinatorics. In this
respect, our contribution is twofold. First, we position an energy aggregator
attached to the smart grid which manages a two-sided portfolio of forward
contracts, respectively with its clients and the pool. Second, we devise a two-
frame model that involves a robust mixed integer short term formulation,
covering the aggregator against any weekly demand scenarios, together with
a long term model that captures the full extent of all contracts, based on
the available configurations. On the algorithmic side, this naturally leads to
an optimization framework where a long term model passes information to a
short term model.

The paper is organized as follows. The problem’s formulation is presented
in Section 2, while the algorithmic framework is developed in Section 3, and
a numerical experiment is documented in Section 4. The conclusion is then
followed by the list of notation. Proofs of the various theoretical results is
deferred to the appendix.

2. Formulation

In this section, we first introduce and describe the energy aggregator, the
corresponding contractual framework, and the time frames underlying the
activities involved. Next, we present our optimization model.

We recall that the energy aggregator manages a two-sided portfolio of
bilateral contracts that involves distributed generators and the grid. A grid
contract is set for an amount of power to be delivered to the grid, upon
request by the grid, within the aggregator’s specific time frames. Let D be
the set of grid contracts, referred to as demands in the sequel. Each demand
contract j ∈ D allows for a finite number of requests from the grid rdemj . The
aggregator responds to any such request by forwarding it to a relevant set of
contracted generators. A generator contract is set for an amount of power
to be produced by the generator, upon request by the aggregator, within
generator specific time frames. Let R be the set of generator contracts,
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referred to as resources in the sequel. Correspondingly, and for each i ∈ R,
let rresi be the maximum number of requests the aggregator can submit to
resource i.

Energy delivery must be monitored. At the beginning of each week, be-
fore any demand request has been received, the aggregator broadcasts to all
parties involved a mobilization schedule that assigns available and compat-
ible resources to available demands, for each weekly time slot. Mobilized
resources can then be used to respond to requests. We assume the following
general structure for both demand and resource contracts, which involve a
fixed cost to be paid in advance for the total amount of power to be deliv-
ered throughout the entire contract validity period, and variable mobilization
costs on the basis of which resources are paid for their availability. We as-
sume that the aggregator’s portfolio is fixed, hence optimization is performed
with respect to mobilization costs alone. We denote by Cmob

i the associated
marginal cost of mobilizing resource i ∈ R.

The heterogeneous nature of the aggregator resources, whose underlying
processes can involve hard operational constraints (ramping delay, successive
requests delay) restricts the compatibility of resources and demands. The
subset of resources available to meet a request from demand contract j is
denoted by the set Rj ⊂ R. Similarly, the subset of demands for which
resource i is compatible is expressed as Di ⊂ D. Finally, in order to manage
uncertainties associated with their processes, each resource contract allows
for a predefined number of maintenance periods (mi)i∈R, during which the
generator is not available to meet the requests.

Some key assumptions underlying the model are that (i) the aggrega-
tor has sufficient resources to meet the demand within its pool of resources;
it then remains for the aggregator to minimize its costs by selecting which
resources to mobilize at the current week, without putting at risk the feasi-
bility of the portfolio in the long run, (ii) the aggregator is risk-averse, that
is, resources that are mobilized at the current must have sufficient request
‘tokens’ to respond to any possible weekly request scenario, (iii) at most one
request falls within any given time slot, and (iv) the mobilization schedule is
fixed through the week.

Note that resource contracts are not targeted toward generators with high
availability randomness, such as stand-alone PV units. Also, even though
maintenance periods allows for some flexibility, we assume that they are
announced at least one week in advance, while the remaining resources are
reliable. This should not be too restrictive though, as PV units can be
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coupled with storage to provide the required reliability [10].
In this study, we consider a time horizon of several months, partitioned

into a finite set T of weeks, each week t ∈ T being itself partitioned into a
finite set of time slots S(t) of possibly uneven durations. Let Rts ⊂ R and
Dts ⊂ D denote the subsets of contracts available and eligible for receiving
or sending requests, respectively, during time slot s ∈ S(t). A contract with
no remaining tokens is unavailable for the rest of the time horizon. Contract
eligibility is encapsulated in notation DRts ⊂ Rts × Dts, representing the
sets of compatible resource-demand couples that are available in time slot s.
We denote by Rts

j (resp. Dts
i ) the set of available resources (resp. demands)

compatible with demand j (resp. resource i) in time slot s.
We now introduce the model’s variables and constraints. Let (xtsij) be

the mobilization schedule for week t, where xtsij is set to 1 if resource i is
assigned to demand j in week t and time slot s ∈ S(t). The mobilization
schedule must ensure that sufficient power is gathered for each demand, that
is, xts ∈ Xpow(Rts, Dts), where

Xpow(R,D) =




x :

∑
j : (i,j)∈DR

xij ≤ 1 i ∈ R
∑

i : (i,j)∈DR
poweri xij ≈ powerj j ∈ D




. (1)

These constraints are separable by time slot. The first one ensures that each
resource is assigned to at most one demand in any given time slot. In the
second, the parameter powerj in R×R is the interval of valid power levels (for
demand j). The symbol ≈ specifies that demand should be approximately
satisfied, i.e., up to a prespecified tolerance.

All fixed costs are assumed to be paid in advance, and any resource con-
tract that ends with a positive number of requests represents a lost in value
for the aggregator. Since the situation is similar for grid contracts, the aggre-
gator is expected to agree on all demand requests. The aggregator’s objective
is to minimize the total mobilization costs:

cost(x) =
∑

t∈T

∑

s∈S(t)

∑

(i,j)∈DRts

λtscmob
i xtsij , (2)

where λts is the duration of time slot s ∈ S(t).
Stochasticity impacts the aggregator’s operations at two levels: demand

requests and resource maintenance. Maintenance notices are given at the
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beginning of the week, allowing to account for them directly within the sets
Rts and DRts, which are thereby random. Let y be a demand scenario, such
that ytsj is set to 1 if a request from demand j is received in time slot s of week
t. We assume that the width of time slots is sufficiently small, so that the
probability of more than one request within a single time slot is negligible.
Independent of any particular assumption on the demands distribution, we
must have that y ∈ Y , where

Y ⊂



y

ts
j ∈ {0, 1}, t ∈ T, s ∈ S(t), j ∈ Dts :

∑

t∈T

∑

s∈S(t)

ytsj ≤ rdemj



 .

A sequence of mobilizations (xt)t∈T that covers a scenario y ∈ Y is such that

∑

t∈T

∑

s∈S(t)

∑

(i,j)∈DRts

xtsijy
ts
j ≤ rresi , i ∈ R.

The mobilization xt chosen at the beginning of week t is a function of all
past information (yt

′
)t′<t and (Rt′)t′≤t, and it covers the aggregator against

any demand scenario at week t:

xt
(

(yt
′
)t′<t, (R

t′)t′≤t

)
∈ X t

week

(
(yt

′
)t′<t, (R

t′)t′≤t

)

where

X t
week

(
(yt

′
)t′<t, (R

t′)t′≤t

)
= {xts ∈ Xpow(Rts, Dts) , s ∈ S(t) : (3)

∑

t′≤t

∑

s∈S(t′)

∑

(i,j)∈DRt′s

xt
′s
ij y

t′s
j ≤ rresti , y ∈ Y, i ∈ R}.

In the sequel, parameters (yt
′
)t′<t and (Rt′)t′≤t are dropped whenever the

context is clear, and we simply write xt ∈ X t
week.

At a high level, the aggregator’s problem is expressed as the multi stage
mixed integer stochastic program:

Program 1.

min
x

E [cost(x)]

s.t. xt ∈ X t
week t ∈ T.
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As mentioned above, and implicit to the formulation is the assumption
that the aggregator’s resources are a priori sufficient to cover any demand
scenario: the issue is how to achieve this at minimal cost, and using a min-
imal amount or resources. Considering the risk-averse environment within
which the aggregator operates, together with the fact that failures not only
impact the aggregator’s welfare in the short term, but perhaps more impor-
tantly impact negatively his ability to secure future contracts with the grid,
uncovered time slots are to be avoided at all cost, and are simply not con-
sidered. (Obviously, in practice, failure to cover a time slot will yield severe
penalties for the aggregator.)

Dem/Res req pow cost t1 tN Mon Tue Wed Thu Fri Sat Sun
D1 12 1 n/a 1 15 x x x x x x
R1 10 1 2 1 15 x x x x x x
R2 5 1 5 1 15 x x

Table 1: Portfolio 1 – Contract parameters

As an illustration, consider the small Portfolio 1 described in Table 1,
where time slots are set to days for simplicity. In Table 1, column pow refers
to energy per request; columns t0 and tn refer to first and last weeks of the
contract, respectively; column req refers to maximum number of requests in
the contract; and columns Mon through Sun refer to weekly availability.

In Portfolio 1, either of the two resources R1 and R2 can alone cover
requests from the only demand D1. Resource 1 is only available 2 days a
week, while Resource 2 is available 6 days a week. Observe that while the
combined resources allow for a total of 15 requests, only 10 requests can
be satisfied between Wednesday and Saturday. Table 2 provides the data
of a demand scenario history and two associated sequences of mobilization
policies leading to either the failure to cover all time slots (top), or a coverage
of the entire time horizon (bottom). Entries in each column correspond to a
(weekly) mobilization policy (set at the beginning of the week) where either
resource R1 or R2 is assigned to cover demand D1. Circles correspond to
requests, and uncovered time slots are labeled with symbol ‘*’. Mobilization
costs are displayed at the bottom.

Straightforward combinatorics yields that at least 4 percent of all possible
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s\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mon 1 1 1 1© 1 1 1 1 2 2 2 2 2 2 2
Tue 1 1 1 1 1 1© 2 2 2 2© 2 2 2 2 2
Wed 1 1 1© 1 1 1 1 1© 1© 1 1 * * * *
Thu 1 1 1 1 1© 1 1 1 1 1 1© * *© * *
Fri 1 1 1 1 1 1 1 1 1 1 1© * * * *
Sat 1 1 1 1 1 1© 1 1 1 1 1© * * * *
Sun
Cost 12 12 12 12 12 12 15 15 18 18 18 ∞ ∞ ∞ ∞

s\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mon 2 2 2 2© 2 2 2 2 2 2 2 2 2 2 2
Tue 2 2 2 2 2 2© 2 2 2 2© 2 2 2 2 2
Wed 1 1 1© 1 1 1 1 1© 1© 1 1 1 1 1 1
Thu 1 1 1 1 1© 1 1 1 1 1 1© 1 1© 1 1
Fri 1 1 1 1 1 1 1 1 1 1 1© 1 1 1 1
Sat 1 1 1 1 1 1© 1 1 1 1 1© 1 1 1 1
Sun
Cost 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

Table 2: Portfolio 1 – Two simulation runs.

request scenario cannot be covered. Indeed,

(
60
11

)(
30
1

)
+
(
60
12

)
(
90
12

) ≈ 0.04, (4)

where the denominator corresponds to the number of ways the 12 demand
requests fall in any one of the 6×15 = 90 contracted days, and the numerator
is the number of ways at least 11 requests occur between Wednesday and
Saturday, where only 10 requests can be satisfied by R1, the only available
resource on those days.

The above analysis does not account for the weekly robustness of Pro-
gram 1, which would have provided an estimate of weeks when robust weekly
constraints are violated. Inspection of Portfolio 1 suggests to favor the use of
R2 over R1 on Monday and Tuesday, as R1 must cover the rest of the week.
To simplify the exposition, let us refer to Monday and Tuesday as day type
1 and Wednesday to Saturday as day type 2. Consider the following policy:
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resource R2 is mobilized on days of type 1 until a single request token is left.
Next, it is mobilized each week on a single day of type 1, while resource R1
covers the rest of the week. If, on a given week, 7 requests have been received
on days of type 2, and less than 2 requests on days of type 1, then R1 has 3
tokens left to cover 4 time slots (Wednesday to Saturday), on which demand
D1 can still make more than 3 requests. It follows that the aggregator can no
longer guarantee the feasibility of the portfolio. It is readily seen that this is
the only failure under the mobilization policy, and the resulting probability
of failure, given equiprobable demand scenarios, is given by the sum of the
following two binomial probabilities:

p′ = P{7 requests on day type 2 and 0 on day type 1} =

(
0

7

)
(2/3)7

p′′ = P{7 requests on day type 2 and 1 on day type 1} =

(
1

8

)
(2/3)7(1/3).

which yield a probability of failure

p′ + p′′ ≈ 0.21. (5)

3. Numerical resolution

The mathematical model takes the form of a a multistage mixed integer
stochastic program, and is thus algorithmically challenging. As typical for-
ward contracts span periods between 3 months to a year, exact resolution
schemes such as [16, 17] must be ruled out, while scenario based heuristics
proposed in [18, 19] involve but a small number of scenarios, which in our
case are difficult to sample. Moreover, taking into account the large number
of states (number of requests and maintenances left in each contract), the set
of scenarios required to properly implement non-anticipativity would by far
exceed our computational capabilities. It is otherwise difficult to see how ap-
proximate dynamic programming [15] can properly account for the problem
combinatorial features.

The resolution scheme we present enforces short term feasibility of the
portfolio, covering for every possible demand scenario at the current week,
while making use of its resources so to best account for the full validity period
of all contracts. We devise a two-time scale model in which a simpler long
term model passes long term information to a short term model, where a
single week of operations is considered. The two formulations are solved in
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sequence, over a rolling time horizon. Numerical experiments are conducted
based on simulated demand and maintenance scenarios.

The short term formulation yields a robust optimization problem that
involves binary decision variables, where the minimized costs are provided
by the long term model. The latter is expressed as a min-cost flow problem
and is based on expected amounts of demand requests that occur in various
time slot types. Its solution is expressed in terms of the number of times a
resource can safely be used to respond to a given demand, for a given time
slot type, without jeopardizing the feasibility of the portfolio. The type of a
time slot is specified by the demand and resource contracts that are online
within its range.

The main simplifying assumption behind the long term formulation con-
sists in replacing the demand stochastic process by expected number of events
falling under various time slot types. (Note that such quantities may be frac-
tional). The feasibility of a demand scenario is then independent of the exact
order in which the requests are received. Its solution is used by the short
term model to value the use of resources at the current week different time
slots.

The rest of this section is organized as follows. In Section 3.1 we discuss
robust short term feasibility. In Section 3.2 we introduce the short term
model and present a preliminary heuristic to value the use of resources at
the current week, which will be used as benchmark. The notion of time slot
type, and the underlying static representation of the aggregators activity, is
introduced in Section 3.3. Finally, the long term model is presented in section
3.4 together with the incentives it provides to the short term formulation.

3.1. Robust short term feasibility

Mobilization schedules must account for every possible weekly demand
scenario. For example, a resource assigned to a single demand over a full
week should either (i) be assigned to no more time slots than it has request
tokens, or (ii) be assigned to a demand that has at most as many request
tokens as the resource does. The following result provides necessary and
sufficient conditions for the covering of any weekly demand scenario in the
general case, where one resource can cover multiple demands on different
time slots.

Theorem 1. Let rresti and rdemtj are the number of requests left in resource i
and demand j, respectively, at the beginning of week t. A mobilization policy
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xt ∈ X t
week if and only if xts ∈ Xpow(Rts, Dts) for each s ∈ S(t) and

rresti ≥
∑

j∈Di

min

{ ∑

s:(i,j)∈DRts

xtsij , r
dem
tj

}
, i ∈ R. (6)

Proof : see Appendix.

The above result allows the characterization of weekly feasibility through
a system of linear inequalities.

Theorem 2. A mobilization policy xt ∈ X t
week if and only if xts ∈ Xpow(Rts, Dts)

for each s ∈ S(t) and there exist binary vectors (zij) and (x̃sij) such that

rresi ≥
∑

j∈Di


rdemtj zij +

∑

s:(ij)∈DRts

xtsij − x̃tsij


 i ∈ R (7)

∑

s:(i,j)∈DRts

xtsij − rdemtj − µ ≤Mzij (i, j) ∈ DR (8)

∑

s:(i,j)∈DRts

xtsij − rdemtj ≥ −M(1− zij) (i, j) ∈ DR (9)

x̃tsij ≤ xtsij (i, j) ∈ DRts s ∈ S(t) (10)

x̃tsij ≤ zij (i, j) ∈ DRts s ∈ S(t) (11)

x̃tsij ≥ xtsij + zij − 1 (i, j) ∈ DRts s ∈ S(t) (12)

from any 0 < µ < 1.

Proof : see Appendix.

3.2. Rolling time horizon resolution scheme and a preliminary heuristic

Let qtsij be the cost associated with the mobilization of resource i for de-
mand j on time slot type s ∈ S(t), and consider the single stage optimization
program:

Program 2.

min
xt

∑

s∈S(t)

∑

(i,j)∈DR(t,s)

qtsij x
ts
ij

s.t xt ∈ X t
week.
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This short term model is solved from one week to the next, over a rolling
time horizon, on the basis of simulated demand requests and resource main-
tenances. For each week t ∈ T , the following operations are performed:

1. Simulate weekly resource maintenances (mt
i)i∈Rt .

2. Update the available resource sets on account of activated maintenance
periods:

Rts = {i ∈ Rts : mt
i = 1}, s ∈ S(t).

3. Set the coefficients of the short term model objective (Program 2) ac-
cording to long term information (Equations (13) or (24) in the sequel).

4. Solve the short term model and broadcast the optimal mobilization x
obtained from the solution of Program 2.

5. Simulate weekly demand requests (yts)s∈S(t).

6. Update contract states:

rdemt+1 j = rdemtj −
∑

s∈S(t)

ytsj , j ∈ Dt

rrest+1 i = rresti −
∑

s∈S(t)

∑

j∈Di
t

xtsijy
ts
j , i ∈ Rt.

7. Remove fulfilled contract from the availability lists:

Rt+1 s = {i ∈ Rts : rresti > 0}
Dt+1 s = {i ∈ Dts : rdemti > 0}.

Before introducing the long term model in the next section, let us con-
sider the following simple scheme to set the coefficients in the objective of
Program 2. The Contract Level (CL) information is defined as

qtsij = rdemtj − rresti t ∈ T, s ∈ S(t), (i, j) ∈ DRts, (13)

and can be used to detect the resources having an amount of request tokens
that exceeds the demand for which they are mobilized, the rational being
that an uncovered time slot can only arise if at least one resource runs out
of tokens before a demand.

The CL information is evaluated at week t = 1 for Portfolio 1 (Tables 1-2)
in Table 3, and was actually used in the simulation at the top of Table 2. Over
100 simulations based on a uniform demand distribution were performed, se-
quentially solving Program 2 using the CL information allowed to fully cover
19 of the scenarios, out of the 79 expected to be feasible (see equation (5)).

12



Resource Mon-Tue Wed-Sat
R1 2 2
R2 7 n/a

Table 3: Portfolio 1: CL information at week t = 1.

3.3. Aggregated demand scenario based on availability configurations
The long term formulation requires to first cast the aggregator’s problem

within a static framework defined in terms of the total number of requests
received in time slot types, characterized by available demand-resource con-
figuration pairs (D̂k, R̂k) ⊂ D ×R.

Let (πk)k∈K be a partition of the time horizon, where class πk (time slots
of type k), are characterized by the set of online and compatible demand-
resource pairs (D̂k, R̂k) ⊂ D × R. A uniform distribution of demand yields
the expected number of requests ykj from contract j in time slots of type k:

ykj =

{
rdemj |πk|/rresj if j ∈ D̂k

0 otherwise.
(14)

Let k(t, s) ∈ K be the type of time slot s ∈ S(t), and define Yuni ⊂ Y as the
set of compatible demand scenarios, i.e., y ∈ Yuni if and only if y ∈ Y and

bykjc ≤
∑

t∈T

∑

s∈S(t)

1(k(s, t) = πk)y
ts
j ≤ dykje.

Note that the uniformity assumption is readily generalized to forecast data,
and is otherwise consistent with a Bayesian approach given that no predictive
information is available.

The key to the long term model formulation is the expression of the
aggregate forecast in terms of the maximum number of requests issued si-
multaneously from demand subsets. The left-hand side of Figure 1 displays
a request scenario’s history. It corresponds to requests from demands j1, j2
and j3 occurring on time slots of a given type, say Monday mornings, for
weeks t = 1, . . . , 15. The corresponding histogram is shown in the middle.
The data on the right-hand side corresponds to the maximum number of
simultaneous requests from demand subsets {j1, j2, j3}, {j2, j3} and {j2}.

The following procedure is instrumental in computing quantities relevant
to the analysis. Consider the sequence of nested sets

D̂knk ⊂ . . . ⊂ D̂k1 ⊂ Dk (15)
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and the vector ŷk ∈ Rnk , recursively constructed as follows: first, set

D̂k1 = {j ∈ D̂k : ykj > 0} (16)

and let ŷk1 be the smallest quantity such that

D̂k2 = {j ∈ D̂k1 : ykj − ŷk1 > 0} 6= D̂k,1, (17)

then update ykj ← ykj − ŷk1 for each j ∈ D̂k1 and repeat the operation until
no positive components remains in vector yk, for each k ∈ K.

Theorem 3. Let D̂k` and ŷk` obtained from procedure (14-17). Then ŷk` is
an upper bound on the number of requests received simultaneously from the
demands D̂k`, in any one time slot of type k, in any compatible scenario
y ∈ Yuni.

Proof : see Appendix.

j1 x x x
j2 x x x x x x
j3 x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x
x x
x x

x x x
x x x
x x x
j1 j2 j3

x 1
x x 2

x x x 3
j1 j2 j3 ŷ

Figure 1: Request history (left-hand side) with the associated histogram (center).
On the right-hand side is given the maximum number of requests ŷ associated to
each subset of demands {j1, j2, j3}.

3.4. Min-Cost Flow Model

Assuming that the set of mobilizations Xpow(D̂k`, Rk) are provided ex-
plicitly for each time slot type, let us consider the problem of addressing
requests, independent of their arrival order, within the static framework de-
scribed in the previous section. We now show that, if fractional requests are
allowed, the aggregator’s problem reduces to a minimum cost flow problem.
To this aim, let Mk` be an ordering of Xpow(D̂k`, Rk) and let δk` be the
corresponding mobilization-resource incidence matrix:

δk`mi =





1 if the m-th mobilization of Xpow(D̂k`, Rk) uses resource i for

one of the demands in D̂k`,

0 otherwise.

14



Let Ck`
m be the cost associated with mobilization m ∈Mk` such that

Ck`
m =

∑

i,j∈DRk`

δk`mi1
{
j ∈ D̂k`

}
ci, (18)

and let variable wk`m > 0 denote the number of time slots on which joint
requests from demands D̂k` are satisfied by mobilization m. In other words,
variable wk`m represents the number of resource tokens that are used in mo-
bilization m for addressing joint requests from demands D̂k` on time slots of
type k. Let

wki =
∑

`≤nk

∑

m∈Mk`

δk`miwk`m,

be the total amount of tokens from resource i used to respond to requests
on time slots of type k, and let ŷt· be the aggregate forecast constructed
following procedure (15-17), at the beginning of week t. Now, consider the
set of flow constraints W (ŷ, rres) defined by the inequalities

∑

m∈Mk,`

wk`m ≥ ŷk` k ∈ K ` ∈ Lk (19)

∑

k∈K

wki ≥ rresi i ∈ R, (20)

wk`m ≥ 0 k ∈ K ` ∈ Lk,

together with the mathematical program:

Program 3.

min
w∈W (ŷt,rrest )

∑

k∈K

∑

`∈Lk

∑

m∈Mk`

Ck`
mwk`m, (21)

whose optimal solution ensures that a maximum number of demand requests
are satisfied at minimum cost. Constraint (19) models demand satisfaction
and ensures that, given a sufficient amount of resources, all demands are sat-
isfied, and then all components of Constraint (20) are tight. Otherwise, the
slack variable associated with resource constraints (20) provide information
on missing resources. More formally:

15



Theorem 4. If resources are sufficient to satisfy all demand, that is, there
exists a w ∈ W (ŷt, r

res
t· ) such that
∑

m∈Mk`

w∗k`m = ŷtk`, k ∈ K, ` ∈ Lk (22)

∑

k∈K

∑

`∈Lk

∑

m∈Mk`

δk`miw
∗
k`m ≤ rresti , ∀i, (23)

then constraints (20) are tight in Program 3.

Proof : see Appendix.

3.5. Long term information

With respect to an optimal solution of Program 3, two situations may
arise. First, there exists an index i ∈ R such that (20) is not tight, i.e.,
resource i is lacking request tokens, and then at least one of the component
of (19) is tight, say component (k, `), where additional resources are required
to satisfy demands D̂k`. The opposite situation entails that all demands are
covered. This is consistent with our general positioning of the aggregator’s
problem, where resources are assumed to be sufficient to cover demand. In
this context, the mobilization policy of the current week should be such that
the long term model remains feasible in subsequent weeks.

To satisfy the above requirement, we factor in bounds on the use of each
resource (provided by the long term solution) and restrain the current week’s
mobilization accordingly. The stochastic nature of the aggregated forecast w
(on the basis of which the long term model is built) suggests not to implement
this as hard constraints. In the proposed scheme, the coefficients of the short
term objective are corrected in the following manner. Consider the restriction
x̂(w) of the long term solution w to the time slots at current week t, that is,
the expected amount of resource i used to satisfy requests from demand j in
time slot s ∈ S(t), for each (i, j) ∈ DRts:

x̂tsij(w) = pt,k(ts)
∑

`∈Lk(t,s):j∈D̂k`

∑

m∈Mk(t,s)`

δ
k(t,s)`
mi wk(t,s)`m,

where ptk is the conditional probability that a request in a time slot of type
k occurs at current week t under the uniform demand assumption, and is
expressed as

ptk = |{s ∈ S(t) : k(ts) = k}|/|πk|.
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Since incorporating the constraints

pt,k(ts) x
ts
ij ≤ x̂tsij(w) (ij) ∈ DRts, s ∈ S(t)

may make the short term model infeasible, we look for a feasible mobilization
schedule x∗ such that

pt,· x
∗ ∈ arg min

xt∈Xweek
t

‖x̂t(w), xt‖.

Equivalently, the square of the norm can be minimized:

‖x̂t(w), xt‖2 =
∑

s∈S(t)

∑

(i,j)∈DR(t,s)

(x̂tsij(w)− xtsij)2

=
∑

s∈S(t)

∑

(i,j)∈DR(t,s)

(x̂tsij(w))2 − 2x̂tsij(w)xtsij + (xtsij)
2

=
∑

s∈S(t)

∑

(i,j)∈DR(t,s)

[1− 2x̂tsij(w)]xtsij + constant, (24)

where we used (xtsij)
2 = xtsij , as xtsij ∈ {0, 1}. We now have:

pt,· x
∗ ∈ arg min

xt∈Xweek
t

∑

s∈S(t)

∑

(i,j)∈DR(t,s)

[1− 2x̂tsij(w)] xtsij .

We then set the long term information in the short term model (Program 2)
to

qtsij = (pt,k(ts))
−1(1− 2x̂tsij(w)), (25)

which is referred to as the projected flow (PF) information in the sequel.
Consider again Portfolio 1 (Tables 1 and 2), which involves two time slot

types (referred to as day types above): Mondays and Tuesdays for k = 1,
and the remaining week days for k = 2, and thus K = {1, 2}. As a single
resource suffices to cover a request, mobilizations can be expressed directly in
terms of the mobilized resource. We have M1 = {R1} and M2 = {R1, R2},
and wki = wk1i. That is, the amount of resource i assigned to day type k
matches the flow of the corresponding mobilization on the unique slice 1.
Variable wk`m represents the amount of resource i mobilized in time slot of
type k to cover the demands D̂k`, where k ∈ {1, 2}, ` = 1 and m ∈ 1, 2.
Mobilization 1 (resp. mobilization 2) corresponds to the use of resource R1
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(resp. resource R2) and D̂11 = D̂12 = {1}, that is, a single demand is
involved. Recalling that c1 = 2 and c2 = 5, Program 3 takes the form:

min
w≥0

2(w111 + w211) + 5w112

s.t. w111 + w112 ≥ y11 = 4

w211 ≥ y21 = 8

w11 + w21 ≥ rres1 = 10

w12 ≥ rres2 = 5.

✻

✲❘■
✿
✯

1
✛

5

7

1 2
❝ R1

R2
✻

✲

y11

y21

1 2

w12

w21

2

4

6

8

10

Requests

Time Slot TypePF

CL
C

Figure 2: Portfolio 1. Left-hand side: CL and PF information comparison at week 1 for
time slots of type 1 (Monday and Tuesday). Right-hand side: solution of the long term
model.

Its optimal solution is illustrated on the right-hand side of Figure 2. For
example, at week t = 1 and for time slot s = 1, resource i = 1 (D1) and
demand i = 2 (R2), we have p11 = 1/15 and x̂1121 = 1/3, and the corrected
cost

q1121 = (1/15)−1[1− 2(1/3)] = 5.

The PF information at week t = 1 is summarized in Table 4. The left-hand
side of Figure 2 provides a graphical comparison between the CL and PF
information.

A simulation run using FB information on Portfolio 1 is presented at the
bottom of Table 2, and compared with one based on CL information. Note
that all time slots are now covered. CL and FP information are compared on
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Resource Mon-Tue Wed-Sat
R1 0 −5
R2 5 n/a

Table 4: Portfolio 1: PF information at week t = 1.

Portfolio 1 in Table 5, where 100 simulations have been performed. The PF
information provides a coverage of 83 percent of all scenarios, compared to 19
percent for the CL information. While the FB information performs better,
both schemes ‘agree’ that Portfolio 1 cannot be covered with probability 1,
which confirms our previous observations.

information type mobilization cost proportion of covered scenarios
CL 176.88 19%
FP 223.50 83%

Table 5: Portfolio 1: CL vs TP information.

4. A larger numerical example

dem/ res pow req main t0 tN Mon Tue Wed Thu Fri Sat Sun
R1 2 10 1 1 16 x x x
R2 2 10 1 1 24 x x x
R3 2 20 0 1 24 x x x
R4 1 10 4 1 16 x x x
R5 1 10 4 1 16 x x
R6 1 10 4 1 16 x x x
R7 1 10 1 1 24 x x x x x
R8 1 10 1 1 16 x x x x
R9 1 20 0 1 24 x x x x x x
R10 1 10 1 1 24 x x
D1 1 15 n/a 1 16 x x x x x
D2 2 20 n/a 1 24 x x x x
D3 3 25 n/a 1 16 x x x

Table 6: Portfolio 2: Contract Parameters
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We now contrast CL and FP’s long term information on the larger Portfo-
lio 2 given in Table 6. The meaning of the columns are as in Table 1, and the
additional column main refers to maximum number of maintenances. Table 7
provides the total number of eligible mobilization candidates per time slot
types. Figure 3 and Figure 4 give the total power gathered and the available
contracts in each time slot type, respectively.

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

time slot type

power

Resources

Demands

20

Figure 3: Portfolio 2: Demand vs resource power (power constraints).

time slot type 1 2 3 4 5 6 7 8 9 10
nb. mobilizations 5 6 960 4 2 960 40 2 3 2

Table 7: Portfolio 2: day type information - number of candidate mobilizations.

The results of 50 simulation runs are summarized in Table 8 and Table 9,
respectively. The statistics are gathered for each time slot type, showing
average mobilization costs, average number of uncovered time slots (failures)
and the proportion of runs where demand is fully covered. At the bottom,
we provide the average number of unused resource tokens, for each resource,
as well as the total proportion of unused power.

Considering the distribution of uncovered time slots for the different
types, both algorithms (information type) broadly agree that resources are
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Figure 4: Portfolio 2: Demand vs resource request tokens (request constraints).

lacking on time slots of type 1, time slot of type 7 (weeks 1 thru 16), and
time slot of type 10 (weeks 17 thru 24). The CL information otherwise man-
ages a lower average mobilization cost of 887.62, compared to 1037.64 when
using the FP information. However, the extra mobilization cost allows the
FP scheme to fully cover 76 percent of scenarios, compared to none for the
CL scheme, and this is achieved using only 2 percent of additional resources.

time slot type 1 2 3 4 5 6 7 8 9 10 total
cost 84.80 34.28 188.46 65.80 30.58 224.44 192.84 25.44 30.18 10.80 887.62
nb. failures 0.60 0.06 0.14 0 0.28 0.20 0.58 0 0.40 4.52 6.78
prop. covering 0.62 0.94 0.88 1 0.90 0.80 0.64 1 0.82 0.02 0

resource 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 0.12 0 2.42 5.52 3.82 1.60 0.16 1.12 11.38 5.72 0.21

Table 8: Portfolio 2 - CLI: Simulation summary (averages over 50 runs)
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time slot type 1 2 3 4 5 6 7 8 9 10 total
cost 105.42 31.82 213.18 88.78 32.60 277.22 204.92 41.64 25.46 16.60 1037.64
nb. failures 0.06 0 0 0 0 0 0.04 0 0 0.22 0.32
prop. covering 0.94 1 1 1 1 1 0.96 1 1 0.84 0.76

resources 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 1.32 1.72 7.98 1.28 1.34 0.94 0.46 0.84 1.48 1.72 0.19

Table 9: Portfolio 2 - PF: Simulation summary (averages over 50 runs)

5. Conclusion

In the present work, we have introduced a novel approach to model an en-
ergy aggregator interacting with the smart grid through bilateral contracts.
While the management of this contractual framework yields a hard combi-
natorial problem, we could yet propose for its solution original and efficient
optimizing tools aimed at maximizing the aggregator’s profitability. Our
deterministic two-time frame can be viewed as a semi-online mathematical
model that covers the aggregator against a family of adversarial demand
scenarios in the long run, while ensuring short term feasibility. The next
challenge consists in addressing a probabilistic generalization of the model.
This will be done in a companion paper.

Notation

A contract is said to be valid at week t if week t is within the contract’s
validity period and if it has a positive number of request tokens left at the
end of week t − 1. A resource contract that has announced a maintenance
for week t is not valid at week t.

CL Contract Level information.

PF Projected Flow information.

T Set of weeks.

S(t) Set of time slots in week t.

λts Duration of time slot s ∈ S(t).

K Set of time slots types.

k(t, s) Type of time slot s ∈ S(t).

D Set of demands (grid contracts).

R Set of resources (generator’s contracts).

Dts Set of valid demand contracts in time slot s ∈ S(t).
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Rts Set of valid resource contracts in time slot s ∈ S(t).

DRts Set of valid and compatible demand/resource contract pairs in time
slot s ∈ S(t).

Rts
j Set of valid resources in time slot s ∈ S(t) that are compatible with

demand i.

Dts
j Set of valid demands in time slot s ∈ S(t) that are compatible with

resource i.

D̂k Set of demand contracts in time slots of type k.

D̂k` Subset of valid demand contracts in D̂k forming the `-th horizontal
slice of the corresponding demand histogram.

nk Number of slices in histogram associated with demand D̂k.

Lk Slide indices for time slot type k: Lk = [1, . . . , nk].

Xpow(R,D) Static feasibility set associated with resource set R and demand set D.

X t
week Robust feasible at week t.

Y Set of feasible demand request scenarios.

Yuni Subset of feasible demand request scenarios compatible with the uni-
form forecast.

wk`m Amount of mobilization m used in time slots of type k along the `-th
slice (to respond to simultaneous requests from demands D̂k`).

xstij Binary decision variable set to 1 if resource i is assigned to demand j
in time slot s ∈ S(t).

ystj Binary parameters set to 1 if demand j makes a request in time slot
s ∈ S(t).

ŷk` Upper bound on the expected number of simultaneous requests from
demands D̂k` in time slots of type k.

ykj Expected number of requests from demand j in time slots of type k.

rresti Number of request tokens for resource i at the beginning of week t.

rdemtj Number of requests tokens for demand j at the beginning of week t.

qtsij Adjusted cost of resource i for demand j at time slot s ∈ S(t).

ci Cost for the mobilization of resource i for one unit of time.

Mk` Set of mobilizations for time slots of type k for demands in D̂k`.

Ck`
m Total cost of resource mobilization for mobilization m ∈Mk`.

δk` Mobilization incidence matrix associated with slice ` of time slot type
k.

λts Duration of time slot s ∈ S(t).

power` Power delivered (resp. received) for resource (resp. demand) `.
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6. Appendix

Proof of Theorem 1

(⇒) Let x ∈ X t
week and suppose that ∃t ∈ T, i ∈ R :

∑

j∈Di

min{
∑

s:(i,j)∈Dts

xtsij , r
dem
tj } > rresti .

We can choose y ∈ Y such that

∑

j∈Di

∑

s(i,j)∈Dts

xtsijy
ts
j =

∑

j∈Di

min{
∑

s:(i,j)∈Dts

xtsij , r
dem
tj }

But then

∑

j∈Di

∑

s:(i,j)∈Dts

xtsijy
ts
j > rresti

and thus x /∈ X t
week, contradicting the hypothesis.

(⇐) Let x ∈ X t
week and suppose that there exists a resource i such that

∑

s∈S(t)

∑

(i,j)∈DRts

xtsijy
ts
j > rresti .

According to (2) we have

∑

j∈D

∑

s∈S(t)

ytsj x
ts
ij ≤

∑

j∈D

min{
∑

s∈S(t)

xtsij , r
dem
tj }

≤ rresti ,

contradicting the hypothesis.

Proof of Theorem 2

Constraints (8-9) require that

zij =

{
1 if

∑
s∈S(t) x

s
ij > rRi

0 if
∑

s∈S(t) x
s
ij ≤ rRi .
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Constraints (10-12) require that

wsij = xsij zij,

and thus Constraint (7) requires that

rresi ≥
∑

j∈Dt


rDj zij +

∑

s∈S(t)

xsij(1− zij)




=
∑

j∈Dt

min{rDj ,
∑

s∈S(t)

xsij}.

Proof of Theorem 3

The argument is geometric. Consider the histogram associated with the
quantities ykj, j ∈ D̂k. Given an appropriate ordering of D̂k, the histogram
can be partitioned into a finite number of horizontal slices, the `-th slice
having height ŷk,`, and horizontally covering the columns associated with
demands in D̂k,`. The conclusion follows.

Proof of Theorem 4

By contradiction, let w′ satisfy Constraints (22-23) and w∗ be an optimal
solution of Program 2 such that there exists i ∈ R such that

∑

k∈K

∑

`≤nk

∑

m∈Mk`

δk`miw
∗k`
m > rresti .

Now consider the following equivalent expression of Program 2:

min
ψ,w

f̂(w) =
∑

i∈I

ciψi (26)

s.t.
∑

m∈Mk`

wk`m ≥ ŷk`t ∀k ` ≤ nk (27)

ψi ≥ rresti ∀i (28)

ψi =
∑

k∈K

∑

`≤nk

∑

m∈Mk`

δk`miw
k`
m ∀i (29)

wk`m ≥ 0 ∀k ` ∈ Lk ∀m.

25



Expressing w′ and w∗ in terms of the new variable yields

ψ′ =
∑

k∈K

∑

`≤nk

∑

m∈Mk`

δk,`miw
′k`
m

ψ∗ =
∑

k∈K

∑

`≤nk

∑

m∈Mk`

δk,`miw
∗k`
m .

From the optimality of w∗ we deduce:
∑

i ciψ
∗
i ≤ ci

∑
i ψ
′
i, while the feasibility

of w′ implies that ψ′i ≤ ψ∗i , ∀i. The strict positivity of c implies that w′ is
optimal, which in turn implies that

∑
i ciψ

∗
i = ci

∑
i ψ
′
i,. The contradiction

follows from the inequality ψ∗i > ψ′i.
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