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Highlights 
 Large-scale benchmark of 41 classifiers across 8 real-word credit scoring data sets. 

 Introduction of ensemble selection routines to the credit scoring community. 

 Analysis of 6 established and novel indicators to measure scorecard accuracy. 

 Assessment of the financial impact of different scorecards. 
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Abstract 

Many years have passed since Baesens et al. published their benchmarking study of 

classification algorithms in credit scoring [Baesens, B., Van Gestel, T., Viaene, S., Stepanova, 

M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification 

algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627-635.]. 

The interest in prediction methods for scorecard development is unbroken. However, there 

have been several advancements including novel learning methods, performance measures 

and techniques to reliably compare different classifiers, which the credit scoring literature 

does not reflect. To close these research gaps, we update the study of Baesens et al. and 

compare several novel classification algorithms to the state-of-the-art in credit scoring. In 

addition, we examine the extent to which the assessment of alternative scorecards differs 

across established and novel indicators of predictive accuracy. Finally, we explore whether 

more accurate classifiers are managerial meaningful. Our study provides valuable insight for 

professionals and academics in credit scoring. It helps practitioners to stay abreast of technical 

advancements in predictive modeling. From an academic point of view, the study provides an 

independent assessment of recent scoring methods and offers a new baseline to which future 

approaches can be compared. 
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1 Introduction 

Credit scoring is concerned with developing empirical models to support decision making 

in the retail credit business (Crook, et al., 2007). This sector is of considerable economic 

importance. For example, the volume of consumer loans held by banks in the US was 

$1,132bn in 2013; compared to $1,541bn in the corporate business.
1
 In the UK, loans and 

mortgages to individuals were even higher than corporate loans in 2012 (£11,676m c.f. 

£10,388m).
2
 These figures indicate that financial institutions require formal tools to inform 

lending decisions. 

A credit score is a model-based estimate of the probability that a borrower will show some 

undesirable behavior in the future. In application scoring, for example, lenders employ 

predictive models, called scorecards, to estimate how likely an applicant is to default. Such 

PD (probability of default) scorecards are routinely developed using classification algorithms 

(e.g., Hand & Henley, 1997). Many studies have examined the accuracy of alternative 

classifiers. One of the most comprehensive classifier comparisons to date is the benchmarking 

study of Baesens, et al. (2003). 

Albeit much research, we argue that the credit scoring literature does not reflect several 

recent advancements in predictive learning. For example, the development of selective 

multiple classifier systems that pool different algorithms and optimize their weighting through 

heuristic search represents an important trend in machine learning (e.g., Partalas, et al., 2010). 

Yet, no attempt has been made to systematically examine the potential of such approach for 

credit scoring. More generally, recent advancements concern three dimensions: i) novel 

classification algorithms to develop scorecards (e.g., extreme learning machines, rotation 

forest, etc.), ii) novel performance measures to assess scorecards (e.g., the H-measure or the 

partial Gini coefficient), and iii) statistical hypothesis tests to compare scorecard performance 

(e.g., García, et al., 2010). An analysis of the PD modeling literature confirms that these 

developments have received little attention in credit scoring, and reveals further limitations of 

previous studies; namely i) using few and/or small data sets, ii) not comparing different state-

of-the-art classifiers to each other, and iii) using only a small set of conceptually similar 

accuracy indicators. We elaborate on these issues in Section 2.  

The above research gaps warrant an update of Baesens, et al. (2003). Therefore, the 

motivation of this paper is to provide a holistic view of the state-of-the-art in predictive 

                                                 

1
 Data from the Federal Reserve Board, H8, Assets and Liabilities of Commercial Banks in the United States 

(http://www.federalreserve.gov/releases/h8/current/). 
2
 Data from ONS Online, SDQ7: Assets, Liabilities and Transactions in Finance Leasing, Factoring and Credit 

Granting: 1st quarter 2012 (http://www.ons.gov.uk).  
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modeling and how it can support decision making in the retail credit business. In pursuing this 

objective, we make the following contributions: First, we perform a large scale benchmark of 

41 classification methods across eight credit scoring data sets. Several of the classifiers are 

new to the community and for the first time assessed in credit scoring. Second, using the 

principles of cost-sensitive learning, we shed light on the link between the (statistical) 

accuracy of scorecard predictions and the business value of a scorecard. This offers some 

guidance whether deploying advanced – more accurate – classification models is 

economically sensible. Third, we examine the correspondence between empirical results 

obtained using different accuracy indicators. In particular, we clarify the reliability of 

scorecard comparisons in the light of recently identified limitations of the area under a 

receiver operating characteristics curve (Hand, 2009; Hand & Anagnostopoulos, 2013). 

Finally, we illustrate the use of advanced nonparametric testing procedures to secure 

empirical findings and, thereby, offer guidance how to organize future classifier comparisons.  

In the remainder of the paper we first review related work in Section 2. We then 

summarize the classifiers that we compare (Section 3) and describe our experimental design 

(Section 4). Next, we discuss empirical results (Section 5). Section 6 concludes the paper. The 

online appendix
3
 provides a detailed description of the classification algorithms and additional 

results. 

2 Literature review 

Much literature explores the development, application, and evaluation of predictive 

decision support models in the credit industry (see, Crook, et al., 2007; Kumar & Ravi, 2007 

for reviews). Such models estimate credit worthiness based on a set of explanatory variables. 

Corporate risk models employ data from balance sheets, financial ratios, or macro-economic 

indicators, whereas retail models use data from application forms, customer demographics, 

and transactional data from the customer history (e.g., Thomas, 2010). The differences 

between the types of variables suggest that specific modeling challenges arise in consumer as 

opposed to corporate credit scoring. Thus, many studies focus on either the corporate or the 

retail business. The latter is the focus of this paper. 

A variety of prediction tasks arise in consumer credit risk modeling. The Basel II Capital 

Accord requires financial institutions to estimate, respectively, the probability of default (PD), 

the exposure at default (EAD), and the loss given default (LGD). EAD and LGD models have 

recently become a popular research topic (e.g., Calabrese, 2014; Yao, et al., 2015). PD models 

                                                 

3
 Available at: (URL will be inserted by Elsevier when available) 
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are especially well researched and continue to attract much interest. Topical research question 

include, for example, how to update PD scorecards in the face of new information (Hofer, 

2015; Sohn & Ju, 2014). The prevailing methods to develop PD models are classification and 

survival analysis. The latter facilitates estimating not only whether but also when a customer 

defaults (e.g., Tong, et al., 2012). In addition, a special type of survival model called mixture 

cure model facilitates predicting multiple events of interest; for example default and early 

repayment (e.g., Dirick, et al., 2015; Liu, et al., 2015). Classification analysis, on the other 

hand, represents the classic approach and benefits from an unmatched variety of modeling 

methods. 

We concentrate on PD modeling using classification analysis. Table 1 examines previous 

work in this field. To confirm the need for an update of Baesens, et al. (2003), we focus on 

empirical classifier evaluations published in 2003 or thereafter and analyze three 

characteristics of such studies: the type of credit scoring data, the employed classification 

algorithms, and the indicators used to assess these algorithms. With respect to classification 

algorithms, Table 1 clarifies the extent to which advanced classifiers have been considered in 

the literature. We pay special attention to ensemble classifiers, which Baesens, et al. (2003) 

do not cover. 

TABLE 1: ANALYSIS OF CLASSIFIER COMPARISONS IN RETAIL CREDIT SCORING 

Retail credit scoring study  

(in chronological order) 

Data* Classifiers** Evaluation*** 

N
o

. o
f 

d
ata sets 

Observations/v

ariables per 

data set  

N
o

. o
f 

classifier

s 

A
N

N
 

S
V

M
 

E
N

S
 

S
-E

N
S

 

T
M

 

A
U

C
 

H
 

S
T

 

(Baesens, et al., 2003) 8 4,875 21 17 X X 
  

X X  P 

(Malhotra & Malhotra, 2003) 1 1,078 6 2 X 
   

X 
 

 P 

(Atish & Jerrold, 2004) 2 610 16 5 X 
   

X X  P 

(He, et al., 2004) 1 5,000 65 4 X 
   

X 
 

  

(Lee & Chen, 2005) 1 510 18 5 X 
   

X 
 

  

(Hand, et al., 2005) 1 1,000 20 4 X 
 

X 
   

  

(Ong, et al., 2005) 2 845 17 6 X 
   

X 
 

  

(West, et al., 2005) 2 845 19 4 X 
 

X 
 

X 
 

 P 

(Y.-M. Huang, et al., 2006) 1 10,000 n.a. 10 X 
   

X 
 

  

(Lee, et al., 2006) 1 8,000 9 5 X 
   

X 
 

  

(S.-T. Li, et al., 2006) 1 600 17 2 X X 
  

X 
 

 P 

(Xiao, et al., 2006) 3 972 17 13 X X X 
 

X 
 

 P 

(C.-L. Huang, et al., 2007) 2 845 19 4 
 

X 
  

X 
 

 F 

(Yang, 2007) 2 16,817 85 3 
 

X 
  

X 
 

  

(H. Abdou, et al., 2008) 1 581 20 6 X 
   

X 
 

 A 

(Sinha & Zhao, 2008) 1 220 13 7 X X 
  

X X  A 
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(C.-F. Tsai & Wu, 2008) 3 793 16 3 X 
 

X 
 

X 
 

 P 

(Xu, et al., 2009) 1 690 15 4 
 

X 
  

X 
 

  

(Yu, et al., 2008) 1 653 13 7 
  

X X X 
 

  

(H. A. Abdou, 2009) 1 1,262 25 3 
    

X 
 

  

(Bellotti & Crook, 2009) 1 25,000 34 4 
 

X 
   

X   

(Chen, et al., 2009) 1 2,000 15 5 
 

X 
  

X 
 

  

(Nanni & Lumini, 2009) 3 793 16 16 X X X  X X   

(Šušteršič, et al., 2009) 1 581 84 2 X 
   

X 
 

  

(M.-C. Tsai, et al., 2009) 1 1,877 14 4 X 
   

X 
 

 Q 

(Yu, et al., 2009) 3 959 16 10 X X X 
 

X X  P 

(J. Zhang, et al., 2009) 1 1,000 102 4 
    

X 
 

  

(Hsieh & Hung, 2010) 1 1,000 20 4 X X X 
  

X   

(Martens, et al., 2010) 1 1,000 20 4 
 

X 
  

X 
 

  

(Twala, 2010) 2 845 18 5 
  

X 
 

X 
 

  

(Yu, et al., 2010) 1 1,225 14 8 X X X 
 

X 
 

 P 

(D. Zhang, et al., 2010) 2 845 17 11 X X X 
 

X 
 

  

(Zhou, et al., 2010) 2 1,113 17 25 X X X X X 
 

  

(J. Li, et al., 2011) 2 845 17 11 
 

X 
  

X 
 

  

(Finlay, 2011) 2 104,649 47 18 X 
 

X 
 

X 
 

 P 

(Ping & Yongheng, 2011) 2 845 17 4 X X 
  

X 
 

  

(Wang, et al., 2011) 3 643 17 13 X X X 
 

X 
 

  

(Yap, et al., 2011) 1 2,765 4 3 
    

X 
 

  

(Yu, et al., 2011) 2 845 17 23 X X 
  

X 
 

  

(Akkoc, 2012) 1 2,000 11 4 X 
   

X X   

(Brown & Mues, 2012) 5 2,582 30 9 X X X 
  

X  F/P 

(Hens & Tiwari, 2012) 2 845 19 4 
 

X 
  

X 
 

  

(S. Li, et al., 2012) 2 672 15 5 
 

X X 
 

X 
 

  

(Marqués, et al., 2012a) 4 836 20 35 X X X 
 

X 
 

 F/P 

(Marqués, et al., 2012b) 4 836 20 17 X X X 
 

X X  F/P 

(Kruppa, et al., 2013) 1 65,524 17 5 
  

X 
  

X   

(Abellán & Mantas, 2014) 3 793 16 5 X  X   X  A 

(C.-F. Tsai, 2014) 3 793 16 21 X  X  X   F/P 

Mean / counts 1.9 6,167 24 7.8 30 24 18 3 40 10 0 17 

* We report the mean of observations and independent variables for studies that employ multiple data sets. 

Eight studies mix retail and corporate credit data. Table 1 considers the retail data sets only. 

** Abbreviations have the following meaning: ANN=Artificial neural network, SVM=Support vector machine, 

ENS=Ensemble classifier, S-ENS=Selective Ensemble (e.g., Partalas, et al., 2010). 

*** Abbreviations have the following meaning: TM=Threshold metric (e.g., classification error, true positive 

rate, costs, etc.), AUC=Area under receiver operating characteristics curve, H=H-measure (Hand, 2009), 

ST=Statistical hypothesis testing. We use the following codes to report the type of statistical test used for 

classifier comparisons: P=Pairwise comparison (e.g., paired t-test), A=Analysis of variance, F=Friedman 

test, F/P=Friedman test together with post-hoc test (e.g., Demšar, 2006), Q=Press’s Q statistic. 

Five conclusions emerge from Table 1. First, it is common practice to use a small number 

of data sets (1.9 on average), many of which contain only few cases and/or independent 

variables. This appears inappropriate. Using multiple data sets (e.g., data from different 
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companies) facilitates examining the robustness of a scorecard toward environmental 

conditions. Also, real-world credit data sets are typically large and high-dimensional. The data 

used in classifier comparisons should be similar to ensure the external validity of empirical 

results (e.g., Finlay, 2011; Hand, 2006). 

Second, the number of classifiers per study varies considerably. This can be explained 

with common research setups. Studies with fewer classifiers propose a novel algorithm and 

compare it to some reference methods (e.g., Abellán & Mantas, 2014; Akkoc, 2012; Yang, 

2007). Studies with several classifiers often pair algorithms and ensemble strategies in a 

factorial design (e.g., Marqués, et al., 2012a; Nanni & Lumini, 2009; Wang, et al., 2011). 

Both setups have limitations. The latter focuses on preselected methods and omits a 

systematic comparison of several state-of-the-art classifiers. Studies that introduce novel 

classifiers may be over-optimistic because i) the developers of a new method are more adept 

with their approach than external users, and ii) the new method may have been tuned more 

intensively than reference methods (Hand, 2006; Thomas, 2010). Independent benchmarks 

complement the other setups in that they compare many classifiers without prior hypotheses 

which method excels. 

Third, most studies rely on a single performance measure or measures of the same type. In 

general, performance measures split into three types. Those that assess the discriminatory 

ability of the scorecard (e.g., AUC); those that assess the accuracy of the scorecard’s 

probability predictions (e.g., Brier Score) and those that assess the correctness of the 

scorecards’ categorical predictions (e.g., classification error). Different types of indicators 

embody a different notion of classifier performance. Few studies mix evaluation measures 

from different categories. For example, none of the reviewed studies uses the Brier Score to 

assess the accuracy of probabilistic predictions. This misses an important aspect of scorecard 

performance because financial institutions require PD estimates that are not only accurate but 

also well calibrated. Furthermore, no previous study uses the H-measure, although it 

overcomes conceptual shortcomings of the AUC (Hand, 2009). It is thus beneficial to also 

consider the H-measure in classifier comparisons and, more generally, to assess scorecards 

with conceptually different performance measures. 

Fourth, statistical hypothesis testing is often neglected or employed inappropriately. 

Common mistakes include using parametric tests (e.g., the t-test) or performing multiple 

comparisons without controlling the family-wise error level (shown by a ‘P’ in the last 

column of Table 1). The approaches are inappropriate because the assumptions of parametric 

tests are violated in classifier comparisons (Demšar, 2006). Similarly, pairwise comparisons 
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without p-value adjustment increase the actual probability of Type-I errors beyond the stated 

level of  𝛼 (e.g., García, et al., 2010).  

Last, only two studies employ selective ensembles and they use rather simple approaches 

(Yu, et al., 2008; Zhou, et al., 2010). Selective ensembles are an active field of research and 

have shown promising results (e.g., Partalas, et al., 2010). The lack of a systematic evaluation 

of selective ensembles in credit scoring might thus be an important research gap.  

From the literature review, we conclude that an update of Baesens, et al. (2003) is needed. 

This study overcomes several of the above issues through i) conducting a large-scale 

comparison of many established and novel classifiers including selective ensembles, ii) using 

multiple data sets of considerable size, iii) considering several conceptually different 

performance criteria, and iv) using suitable statistical testing procedures. 

3  Classification algorithms for scorecard construction  

We illustrate the development of a credit scorecard in the context of application scoring. 

Let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ ℝ𝑚 be an m-dimensional vector with application characteristics, 

and let 𝑦 ∈ {−1; +1} be a binary variable that distinguishes good (𝑦 = −1) and bad loans 

(𝑦 = +1). A scorecard estimates the (posterior) probability 𝑝(+|𝒙𝑖) that a default event will 

be observed for loan i; where 𝑝(+|𝒙) is a shorthand form of 𝑝(𝑦 = +1|𝒙). To decide on an 

application, a credit analyst compares the estimated default probability to a threshold 𝜏; 

approving the loan if 𝑝(+|𝒙) ≤ 𝜏, and rejecting it otherwise. The task to estimate 𝑝(+|𝒙) 

belongs to the field of classification (e.g., Hand & Henley, 1997). A scorecard is a 

classification model that results from applying a classification algorithm to a data set 𝐷 =

(𝑦𝑖, 𝒙𝑖)𝑖=1
𝑛  of past loans. 

This study compares 41 different classification algorithms. Our selection draws inspiration 

from previous studies (e.g., Baesens, et al., 2003; Finlay, 2011; Verbeke, et al., 2012) and 

covers several different approaches (linear/nonlinear, parametric/non-parametric, etc.). The 

algorithms split into individual and ensemble classifiers. The eventual scorecard consists of a 

single classification model in the first group. Ensemble classifiers integrate the prediction of 

multiple models, called base models. We distinguish homogeneous ensembles, which create 

the base models using the same algorithm, and heterogeneous ensembles, which employ 

different algorithms. Figure 1 illustrates the modeling process using different classifiers.  
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ensemble
algorithm

Individual 
classification 

algorithm

Homogeneous
ensemble 
algorithm

Training 
set

Validation 
set

Test
set

Data
Train

classifier

Test set 
prediction

Train 
ensemble

Ensemble 
models2

Apply
model

Apply 
model

Benchmark
classifier
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Figure 1: Classifier development and evaluation process 

Given the large number of classifiers, it is not possible to describe all algorithms in detail. 

We summarize the methods used here in Table 2 and briefly describe the main algorithmic 

approaches underneath different classifier families. A comprehensive discussion of the 41 

classifiers and their specific characteristics is available in an online appendix.
4
  

Note that most algorithms exhibit meta-parameters. Examples include the number of 

hidden nodes in a neural network or the kernel function in a support vector machine (e.g., 

Baesens, et al., 2003). Relying on literature recommendations, we define several candidate 

settings for such meta-parameters and create one classification model per setting (see 

Table 2). A careful exploration of the meta-parameter space ensures that we obtain a good 

estimate how well a classifier can perform on a given data set. This is important when 

comparing alternative classifiers. The specific meta-parameter settings and implementation 

details of different algorithms are documented in Table A.I in the online appendix.
5
  

TABLE 2: CLASSIFICATION ALGORITHMS CONSIDERED IN THE BENCHMARKING STUDY 
 BM selection Classification algorithm Acronym Models

 

In
d

iv
id

u
a

l 

cl
a

ss
if

ie
r
 

(1
6

 

a
lg

o
ri

th
m

s 

a
n

d
 9

3
3

 

m
o

d
el

s 
in

 

to
ta

l)
 

n.a. 

Bayesian Network  B-Net 4 

CART CART 10 

Extreme learning machine ELM 120 

Kernalized ELM ELM-K 200 

k-nearest neighbor kNN 22 

                                                 

4
 Available at: (URL will be inserted by Elsevier when available) 

5
 Available at: (URL will be inserted by Elsevier when available) 
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J4.8 J4.8 36 

Linear discriminant analysis
1
 LDA 1 

Linear support vector machine SVM-L 29 

Logistic regression
1
 LR 1 

Multilayer perceptron artificial neural 

network 
ANN 171 

Naive Bayes  NB 1 

Quadratic discriminant analysis
1
 QDA 1 

Radial basis function neural network  RbfNN 5 

Regularized logistic regression LR-R 27 

SVM with radial basis kernel function SVM- Rbf 300 

Voted perceptron  VP 5 

Classification models from individual classifiers 16 933 

H
o

m
o

g
en

o
u

s 

en
se

m
b

le
s 

n.a. 

Alternating decision tree ADT 5 

Bagged decision trees Bag 9 

Bagged MLP BagNN 4 

Boosted decision trees Boost 48 

Logistic model tree LMT 1 

Random forest RF 30 

Rotation forest RotFor 25 

Stochastic gradient boosting SGB 9 

Classification models from homogeneous ensembles 8 131 

H
et

er
o

g
en

eo
u

s 
en

se
m

b
le

s 

n.a. 

Simple average ensemble AvgS 1 

Weighted average ensemble AvgW 1 

Stacking
 

Stack 6 

Static direct 

Complementary measure CompM 4 

Ensemble pruning via reinforcement 

learning 
EPVRL 4 

GASEN
 

GASEN 4 

Hill-climbing ensemble selection
 

HCES 12 

HCES with bootstrap sampling
 

HCES-Bag 16 

Matching pursuit optimization 

ensemble  
MPOE 1 

Top-T ensemble Top-T 12 

Static indirect 

Clustering using compound error CuCE 1 

k-Means clustering 
 

k-Means 1 

Kappa pruning KaPru 4 

Margin distance minimization
 

MDM 4 

Uncertainty weighted accuracy UWA 4 

Dynamic 

Probabilistic model for classifier 

competence
 PMCC 1 

k-nearest oracle 
 

kNORA 1 

Classification models from heterogeneous ensembles 17 77 

Overall number of classification algorithms and models 41 1141 
1
 To overcome problems associated with multicollinearity in high-dimensional data sets, we use correlation-

based feature selection (Hall, 2000) to reduce the variable set prior to building a classification model. 

3.1 Individual classifiers 

Individual classifiers pursue different objectives to develop a (single) classification model. 

Statistical methods either estimate 𝑝(+|𝒙) directly (e.g., logistic regression), or estimate 

class-conditional probabilities 𝑝(𝒙|𝑦), which they then convert into posterior probabilities 

using Bayes rule (e.g., discriminant analysis). Semi-parametric methods such as artificial 

neural networks or support vector machines operate in a similar manner, but support different 
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functional forms and require the modeler to select one specification a priori. The parameters 

of the resulting model are estimated using nonlinear optimization. Tree-based methods 

recursively partition a data set so as to separate good and bad loans through a sequence of 

tests (e.g., is loan amount > threshold). This produces a set of rules that facilitate assessing 

new loan applications. The specific covariates and threshold values to branch a node follow 

from minimizing indicators of node impurity such as the Gini coefficient or information gain 

(e.g., Baesens, et al., 2003). 

3.2 Homogeneous ensemble classifiers 

Homogeneous ensemble classifiers pool the predictions of multiple base models. Much 

empirical and theoretical evidence has shown that model combination increases predictive 

accuracy (e.g., Finlay, 2011; Paleologo, et al., 2010). Homogeneous ensemble learners create 

the base models in an independent or dependent manner. For example, the bagging algorithm 

derives independent base models from bootstrap samples of the original data (Breiman, 1996). 

Boosting algorithms, on the other hand, grow an ensemble in a dependent fashion. They 

iteratively add base models that are trained to avoid the errors of the current ensemble (Freund 

& Schapire, 1996). Several extensions of bagging and boosting have been proposed in the 

literature (e.g., Breiman, 2001; Friedman, 2002; Rodriguez, et al., 2006). The common 

denominator of homogeneous ensembles is that they develop the base models using the same 

classification algorithm. 

3.3 Heterogeneous ensemble classifiers 

Heterogeneous ensembles also combine multiple classification models but create these 

models using different classification algorithms. In that sense, they encompass individual 

classifiers and homogeneous ensembles as special cases (see Figure 1). The idea is that 

different algorithms have different views about the same data and can complement each other. 

Recently, heterogeneous ensembles that prune some base models prior to combination have 

attracted much research (e.g., Partalas, et al., 2010). This study pays special attention to such 

selective ensembles because they have received little attention in credit scoring (see Table 1).  

Generally speaking, ensemble modeling involves two steps: base models development and 

forecast combination. Selective ensembles add a third step. After creating a pool of base 

models, they search the space of available base models for a ‘suitable’ model subset that 

enters the ensemble. An interesting feature of this framework is that the search problem can 

be approached in many different ways. Hence, much research concentrates on developing 

different ensemble selection strategies (e.g., Caruana, et al., 2006; Partalas, et al., 2009). 
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Selective ensembles split into static and dynamic approaches, depending on how they 

organize the selection step. Static approaches perform the base model search once. Dynamic 

approaches repeat the selection step for every case. More specifically, using the independent 

variables of a case, they compose a tailor-made ensemble from the model library. Dynamic 

ensemble selection might violate regulatory requirements in credit scoring because one would 

effectively use different scorecards for different customers. In view of this, we focus on static 

methods, but consider two dynamic approaches (Ko, et al., 2008; Woloszynski & Kurzynski, 

2011) as benchmarks.  

The goal of an ensemble is to predict with high accuracy. To achieve this, many selective 

ensembles chose base models so as to maximize predictive accuracy (e.g., Caruana, et al., 

2006). We call this a direct approach. Indirect approaches, on the other hand, optimize the 

diversity among base models, which is another determinant of ensemble success (e.g., 

Partalas, et al., 2010).  

4 Experimental Setup 

4.1 Credit scoring data sets 

The empirical evaluation includes eight retail credit scoring data sets. The data sets 

Australian credit (AC) and German credit (GC) from the UCI Library (Lichman, 2013) and 

the Th02 data set from Thomas, et al. (2002) have been used in several previous papers (see 

Section 2). Three other data sets, Bene-1, Bene-2, and UK, also used in Baesens, et al. (2003), 

were collected from major financial institutions in the Benelux and UK, respectively. Note 

that our data set UK encompasses the UK-1, …, UK-4 data sets of Baesens, et al. (2003). We 

pool the data because it refers to the same product and time period. Finally, the data sets PAK 

and GMC have been provided by two financial institutions for the 2010 PAKDD data mining 

challenge and the “Give me some credit” Kaggle competition, respectively. 

The data sets include several covariates to develop PD scorecards and a binary response 

variable, which indicates bad loans. The covariates capture information from the application 

form (e.g., loan amount, interest rate, etc.) and customer information (e.g., demographic, 

social-graphic, and solvency data). Table 3 summarizes some relevant data characteristics.  

TABLE 3: SUMMARY OF CREDIT SCORING DATA SETS 

Name Cases 
Independent 

variables 

Prior  

default rate 

Nx2 cross-

validation 
Source 

AC 690 14 .445 10 (Lichman, 2013) 

GC 1,000 20 .300 10 (Lichman, 2013) 
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Th02 1,225 17 .264 10 (Thomas, et al., 2002)
6
 

Bene 1 3,123 27 .667 10 (Baesens, et al., 2003) 

Bene 2 7,190 28 .300 5 (Baesens, et al., 2003) 

UK 30,000 14 .040 5 (Baesens, et al., 2003) 

PAK 50,000 37 .261 5 http://sede.neurotech.com.br/PAKDD2010/ 

GMC 150,000 12 .067 3 http://www.kaggle.com/c/GiveMeSomeCredit 

 

The prior default rates of Table 3 report the fraction of bad loans in a data set. For 

example, GC includes 1,000 loans, 300 of which defaulted. Thus, the prior default rate is 0.3.  

It has been shown that class imbalance impedes classification. In particular, a classifier 

may overemphasize the majority class while paying insufficient attention to the minority 

group. Resampling approaches such as under-/oversampling or SMOTE have been proposed 

as a remedy (e.g., Verbeke, et al., 2012). However, we refrain from balancing classes for three 

reasons. First, our objective is to examine relative performance differences across different 

classifiers. If class imbalance hurts all classifiers in the same way, it would affect the absolute 

level of observed performance but not the relative performance differences among classifiers. 

If on the other hand some classifiers are particularly robust toward class imbalance, then such 

trait is a relevant indicator of the classifier’s merit. Resampling would mask differences 

associated with imbalance robustness/sensitivity. Second, it is debatable how prevalent 

resampling is in the corporate landscape. This also suggests that it is preferable to give an 

unbiased picture of the performance of alternative algorithms. Last, Table 3 reveals that most 

of our data sets exhibit a moderate imbalance. We observe a more severe imbalance for two 

larger data sets (UK and GMC). Due to their size, these data sets still include a sizeable 

number of defaults, so that classification algorithms should be able to discern default patterns. 

4.2 Performance indicators 

We consider six indicators to measure the predictive accuracy of a scorecard: the 

percentage correctly classified (PCC), the AUC, a partial Gini index (PG), the H-measure, the 

Brier Score (BS), and the Kolmogorov-Smirnov statistic (KS). We chose these indicators for 

two reasons: they are popular in credit scoring and cover the three types of measures (see 

Section 2). The PCC and KS assess the correctness of categorical predictions, the AUC, H-

measure, and PG assess discriminatory ability, and the BS assesses the accuracy of probability 

predictions. The basis of accuracy calculations are the estimated 𝑝(+|𝒙). Since some 

                                                 

6
 An anonymous referee indicated that some editions of the book may not include a CD with the data set. In such 

case, we are happy to make the data available upon request. 
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classifiers do not produce probability predictions, we calibrate scorecard estimates using 

Platt’s (2000) method. 

The PCC is the fraction of correctly classified observations. It requires discrete class 

predictions, which we obtain by comparing 𝑝(+|𝒙) to a threshold 𝜏 and assigning 𝒙 to the 

positive class if 𝑝(+|𝒙)  > 𝜏, and the negative class otherwise. In practice, appropriate 

choices of 𝜏 depend on the costs associated with granting credit to defaulting customers or 

rejecting good customers (e.g., Hand, 2005). Lacking such information, we compute 𝜏 (for 

every data set) such that the fraction of examples classified as positive equals the fraction of 

positives in the training set. 

The BS is the mean-squared error between 𝑝(+|𝒙) and a zero-one response variable (e.g., 

Hernández-Orallo, et al., 2011). The KS is also based on 𝑝(+|𝒙), but considers a fixed 

reference point. In particular, the KS is the maximum difference between the cumulative score 

distributions of positive and negative cases (e.g., Thomas, et al., 2002). The AUC equals the 

probability that a randomly chosen positive case receives a score higher than a randomly 

chosen negative case.  

The PCC and the KS embody a local scorecard assessment. They measure accuracy 

relative to a single reference point (i.e.,  or the KS point). The AUC and the BS perform a 

global assessment in that they consider the whole score distribution. The former uses relative 

(to other cases) score ranks. The latter considers absolute score values. A global perspective 

assumes implicitly that all thresholds are equally probable. This is not plausible in credit 

scoring (e.g., Hand, 2005). Considering that only applications with a score below the 

threshold will be accepted, the accuracy of a scorecard in the lower tail of the score 

distribution is particularly important. The PG concentrates on one part of the score 

distribution 𝑝(+|𝒙)  ≤ 𝑏 (Pundir & Seshadri, 2012). We chose b=0.4 and compute the Gini 

index among the corresponding cases. 

The H-measure gives a normalized classifier assessment based on expected minimum 

misclassification loss; ranging from zero to one for a random and perfect classifier, 

respectively. Hand (2009) shows that the AUC suffers some deficiencies, which the H-

measure overcomes. In particular, the AUC assumes different cost distributions for different 

classifiers. Instead, the distribution of misclassification costs should depend on the 

classification problem, and not on the classifier (Hand & Anagnostopoulos, 2013). Therefore, 
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the H-measure uses a beta-distribution
7
 to specify the relative severities of classification 

errors in a way that is consistent across classifiers.   

Given that the class distributions in our data show some imbalance (see Table 3), it is 

important to reason whether and how class skew affects the performance measures. The AUC 

is not affected by class imbalance (Fawcett, 2006). This feature extends to the other ranking 

measures (i.e., the PG and the H-measure) because these ground on the same principles as the 

AUC. The BS and the KS are based on the score distribution of a classifier. As such, they are 

robust toward class skew in general (e.g., Gong & Huang, 2012). However, class imbalance 

could exert an indirect effect in that it might bias the scores that the classifier produces. 

Finally, using the PCC in the presence of class imbalance is often discouraged. A common 

critic is that PCC reports high performance for naïve classifiers, which always predict the 

majority class. However, we argue that this critic is misleading in that it misses the important 

role of the classification threshold A proper choice of  for example according to Bayes rule, 

reflects the prior probabilities of the classes and thereby mitigates the naïve classifier 

problem; at least to some extent.  

For the reasons outlined above, we consider each of the six performance measures a viable 

approach for classifier comparisons. In addition, further protection from class imbalance 

biasing the benchmarking results comes from our approach to calibrate predictions prior to 

assessing accuracy (see above). Calibration ensures that we compare different classifiers on a 

common ground. More specifically, calibration sanitizes a classifier’s score distribution and 

thus prevents imbalance from indirectly affecting the BS or the KS. For the PCC, we set  

such that the fraction of cases classified as positive is equal to the prior default probability in 

the training set. With these strategies in place, we argue that the residual effect of class 

imbalance on the observed results comes directly from different algorithms being more or less 

sensitive toward imbalance. Such effects are useful to observe as class imbalance is a 

common phenomenon in credit scoring. 

4.3 Data preprocessing and partitioning 

We first impute missing values using a mean/mode replacement for numeric/nominal 

attributes. Next, we create two versions of each data set; one which mixes nominal and 

numeric variables and one where all nominal variables are converted to numbers using 

weight-of-evidence coding (e.g., Thomas, et al., 2002). This is because some classification 

algorithms are well suited to work with data of mixed scaling level (e.g., classification trees 

                                                 

7
 We use a beta-distribution with parameters 𝛼 = 𝛽 = 2. 
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and Bayes classifiers), whereas others (e.g., ANNs and SVMs) benefit from encoding nominal 

variables (e.g., Crone, et al., 2006).  

An important pre-processing decision concerns data partitioning (see Figure 1). We use 

Nx2-fold cross-validation (Dietterich, 1998). This involves i) randomly splitting a data set in 

half, ii) using the first and second half for model building and evaluation, respectively, iii) 

switching the roles of the two partitions, and iv) repeating the two-fold validation N times. 

Compared to using a fixed training and test set, multiple repetitions of two-fold cross-

validation give more robust results, especially when working with small data sets. Thus, we 

set N depending on data set size (Table 3). This is also to ensure computational feasibility.  

Recall that we develop multiple classification models with one algorithm. The models 

differ in terms of their meta-parameter settings (see Table 2). Thus, prior to comparing 

different classifiers, we identify the best meta-parameter configuration for each classification 

algorithm. This requires auxiliary validation data. We also require validation data to prune 

base models in selective ensemble algorithms. To obtain such validation data, we perform an 

additional (internal) five-fold cross-validation on every training set of the (outer) Nx2-cross-

validation loop (Caruana, et al., 2006). The classification models selected in this stage enter 

the actual benchmark, where we compare the best models from different algorithms in the 

outer Nx2 cross-validation loop. Given that model performance depends on the specific 

accuracy indicator employed, we repeat the selection of the best model per classifier for every 

performance measure. This way, we tune every classifier to the specific performance measure 

under consideration and ensure that the algorithm predicts as accurately as possible; given the 

predefined candidate settings for meta-parameters (see Table A.1 in the online appendix
8
). 

5 Empirical Results 

The empirical results consist of performance estimates of the 41 classifiers across the eight 

credit scoring data sets in terms of the six performance measures. Interested readers find these 

raw results in Table A.2 – A.7 in the online appendix
9
. Below, we report aggregated results.  

5.1 Benchmarking results  

In the core benchmark, we rank classifier performance across data sets and accuracy 

indicators. For example, the classifier giving the highest AUC on the AC data sets receives a 

rank of one, the second best classifier a rank of two, and the worst classifier a rank of 41.  

                                                 

8
 Available at: (URL will be inserted by Elsevier when available) 

9
 Available online at: (URL will be inserted by Elsevier when available). 
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Table 4 shows the average (across data sets) ranks per accuracy indicator. The second to 

last column of Table 4 gives a grand average (AvgR), which we compute as the mean 

classifier rank across performance measures. The last column translates the AvgR into a high 

score position (e.g., the overall best performing classifier receives the first place, the second 

best place two, etc.)  

The average ranks of Table 4 are also the basis of a statistical analysis of model 

performance. In particular, we employ a nonparametric testing framework to compare the 

classifiers to a control classifier (Demšar, 2006). The control classifier is the best performing 

classifier per performance measure. The last row of Table 4 depicts the test statistic and p-

value (in brackets) of a Friedman test of the null-hypothesis that all classifier ranks are equal. 

Given that we can reject the null-hypothesis for all performance measures (p < .000), we 

proceed with pairwise comparisons of a classifier to the control classifier using the Rom-

procedure for p-value adjustment (García, et al., 2010). Table 4 depicts the p-values 

corresponding to these pairwise comparisons in brackets. An underscore indicates that we can 

reject the null-hypothesis of a classifier performing equal to the control classifier (i.e., p < 

.05).  

A number of conclusions emerge from Table 4. First, it emphasizes the need to update 

Baesens, et al. (2003) who focused on individual classifiers. With an average rank of 18.8, the 

best individual classifier (ANN) performs only midfield. This evidences notable 

advancements in predictive learning since 2003. Similar to Baesens, et al. (2003), we observe 

ANN to perform slightly better than the industry standard LR (AvgR 19.3). Some authors 

have taken the similarity between LR and advanced methods such as ANN as evidence that 

complex classifiers do not offer much advantage over simpler methods (e.g., Finlay, 2009). 

We do not agree with this view. Our results suggest that comparisons among individual 

classifiers are too narrow to shed light on the value of advanced classifiers. For example, the 

p-values of the pairwise comparisons indicate that the individual classifiers predict 

significantly less accurately than the best classifier. This shows that advanced methods can 

outperform simple classifiers and LR in particular. 
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TABLE 4: AVERAGE CLASSIFIER RANKS ACROSS DATA SETS FOR DIFFERENT PERFORMANCE MEASURES 

Classifier 

family 

BM 

selection 
Classifier AUC PCC BS H PG KS AvgR 

High 

score 

In
d

iv
id

u
al

 c
la

ss
if

ie
r 

n
.a

. 

ANN 16.2 (.000) 18.6 (.000) 27.5 (.000) 17.9 (.000) 14.9 (.020) 17.6 (.000) 18.8 14 

B-Net 27.8 (.000) 26.8 (.000) 20.4 (.000) 28.3 (.000) 23.7 (.000) 26.2 (.000) 25.5 30 

CART 36.5 (.000) 32.8 (.000) 35.9 (.000) 36.3 (.000) 25.7 (.000) 34.1 (.000) 33.6 38 

ELM 30.1 (.000) 29.8 (.000) 35.9 (.000) 30.6 (.000) 27.0 (.000) 27.9 (.000) 30.2 36 

ELM-K 20.6 (.000) 19.9 (.000) 36.8 (.000) 19.0 (.000) 23.0 (.000) 20.6 (.000) 23.3 26 

J4.8 36.9 (.000) 34.2 (.000) 34.3 (.000) 35.4 (.000) 35.7 (.000) 32.5 (.000) 34.8 39 

k-NN 29.3 (.000) 30.1 (.000) 27.2 (.000) 30.0 (.000) 26.6 (.000) 30.5 (.000) 29.0 34 

LDA 21.8 (.000) 20.9 (.000) 16.7 (.000) 20.5 (.000) 24.8 (.000) 21.9 (.000) 21.1 20 

LR 20.1 (.000) 19.9 (.000) 13.3 (.000) 19.0 (.000) 23.1 (.000) 20.4 (.000) 19.3 16 

LR-R 22.5 (.000) 22.0 (.000) 34.6 (.000) 22.5 (.000) 21.4 (.000) 21.4 (.000) 24.1 28 

NB 30.1 (.000) 29.9 (.000) 23.8 (.000) 29.3 (.000) 22.2 (.000) 29.1 (.000) 27.4 33 

RbfNN 31.4 (.000) 31.7 (.000) 28.0 (.000) 31.9 (.000) 24.1 (.000) 31.7 (.000) 29.8 35 

QDA 27.0 (.000) 26.4 (.000) 22.6 (.000) 26.4 (.000) 23.6 (.000) 27.3 (.000) 25.5 31 

SVM-L 21.7 (.000) 23.0 (.000) 31.8 (.000) 22.6 (.000) 19.7 (.000) 21.7 (.000) 23.4 27 

SVM-Rbf 20.5 (.000) 22.2 (.000) 31.8 (.000) 22.0 (.000) 21.7 (.000) 21.3 (.000) 23.2 25 

VP 37.8 (.000) 36.4 (.000) 31.4 (.000) 37.8 (.000) 34.6 (.000) 37.6 (.000) 35.9 40 

H
o

m
o

g
en

eo
u

s 
en

se
m

b
le

 

n
.a

. 

ADT 22.0 (.000) 18.8 (.000) 19.0 (.000) 21.7 (.000) 19.4 (.000) 20.0 (.000) 20.2 17 

Bag 25.1 (.000) 22.6 (.000) 18.3 (.000) 23.5 (.000) 25.2 (.000) 24.7 (.000) 23.2 24 

BagNN 15.4 (.000) 17.3 (.000) 12.6 (.000) 16.5 (.000) 15.0 (.020) 16.6 (.000) 15.6 13 

Boost 16.9 (.000) 16.7 (.000) 25.2 (.000) 18.2 (.000) 19.2 (.000) 18.1 (.000) 19.0 15 

LMT 22.9 (.000) 23.4 (.000) 15.6 (.000) 25.1 (.000) 20.1 (.000) 22.9 (.000) 21.7 22 

RF 14.7 (.000) 14.3 (.039) 12.6 (.000) 12.8 (.004) 19.4 (.000) 15.3 (.000) 14.8 12 

RotFor 22.8 (.000) 21.9 (.000) 23.0 (.000) 21.1 (.000) 21.6 (.000) 22.9 (.000) 22.2 23 

SGB 21.0 (.000) 19.9 (.000) 20.8 (.000) 21.2 (.000) 22.5 (.000) 20.8 (.000) 21.0 19 
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H
et

er
o

g
en

eo
u

s 
en

se
m

b
le

 

n
o

n
e 

AvgS 8.7 (.795) 10.8 (.812) 6.6 (.628) 9.2 (.556) 12.0 (.420) 9.2 (.513) 9.4 4 

AvgW 7.3 ( / ) 12.6 (.578) 7.9 (.628) 7.3 ( / ) 10.2 ( / ) 7.9 ( / ) 8.9 2 

Stack 30.6 (.000) 26.6 (.000) 37.4 (.000) 29.6 (.000) 30.7 (.000) 29.5 (.000) 30.7 37 

S
ta

ti
c 

d
ir

ec
t 

 

CompM 18.3 (.000) 15.3 (.004) 36.5 (.000) 17.2 (.000) 20.0 (.000) 18.2 (.000) 20.9 18 

EPVRL 8.2 (.795) 10.8 (.812) 6.8 (.628) 9.3 (.556) 13.7 (.125) 11.0 (.226) 10.0 5 

GASEN 8.6 (.795) 10.6 (.812) 6.5 (.628) 9.0 (.556) 11.4 (.420) 9.0 (.513) 9.2 3 

HCES 10.9 (.191) 11.7 (.812) 7.5 (.628) 10.2 (.449) 14.8 (.020) 13.1 (.010) 11.4 9 

HCES-Bag 7.7 (.795) 9.7 ( / ) 5.8 ( / ) 8.2 (.559) 12.5 (.420) 9.2 (.513) 8.8 1 

MPOE 9.9 (.637) 10.1 (.812) 9.4 (.126) 9.9 (.524) 15.1 (.018) 10.9 (.226) 10.9 6 

Top-T 8.7 (.795) 11.3 (.812) 10.0 (.055) 9.8 (.524) 14.8 (.020) 12.3 (.048) 11.2 8 

S
ta

ti
c 

in
d

ir
ec

t CuCE 10.0 (.637) 12.0 (.812) 10.1 (.050) 10.8 (.220) 12.1 (.420) 11.2 (.226) 11.0 7 

k-Means 12.6 (.008) 13.6 (.118) 9.8 (.073) 11.2 (.109) 14.9 (.020) 12.0 (.077) 12.4 10 

KaPru 27.7 (.000) 25.3 (.000) 15.7 (.000) 28.1 (.000) 25.1 (.000) 25.4 (.000) 24.5 29 

MDM 24.4 (.000) 24.0 (.000) 11.6 (.002) 23.7 (.000) 21.7 (.000) 23.7 (.000) 21.5 21 

UWA 9.3 (.795) 11.8 (.812) 19.5 (.000) 10.1 (.453) 14.3 (.049) 10.9 (.226) 12.7 11 

D
y

n
a-

m
ic

 

kNORA 27.1 (.000) 26.7 (.000) 28.1 (.000) 28.1 (.000) 23.4 (.000) 25.9 (.000) 26.6 32 

PMCC 40.1 (.000) 38.6 (.000) 32.9 (.000) 39.5 (.000) 39.9 (.000) 38.8 (.000) 38.3 41 

Friedman 𝜒40
2  

 
2775.1 (.000) 2076.3 (.000) 3514.4 (.000) 2671.7 (.000) 1462.3 (.000) 2202.6 (.000) 

  
Bold face indicates the best classifier (lowest average rank) per performance measure. Italic script highlights classifiers that perform best in their family (e.g., best 

individual classifier, best homogeneous ensemble, etc.). Values in brackets give the adjusted p-value corresponding to a pairwise comparison of the row classifier to 

the best classifier (per performance measure). An underscore indicates that p-values are significant at the 5% level. To account for the total number of pairwise 

comparisons, we adjust p-values using the Rom-procedure (García, et al., 2010). Prior to conducting multiple comparisons, we employ the Friedman test to verify 

that at least two classifiers perform significantly different (e.g., Demšar, 2006). The last row shows the corresponding 𝜒2 and p-values.  
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On the other hand, a second result of Table 4 is that sophisticated methods do not 

necessarily improve accuracy. More specifically, Table 4 casts doubt on some of the latest 

attempts to improve existing algorithms. For example, ELMs and RotFor extend classical 

ANNs and the RF classifier, respectively (Guang-Bin, et al., 2006; Rodriguez, et al., 2006). 

According to Table 4, neither of the augmented classifiers improves upon its ancestor. 

Additional evidence against the merit of sophisticated classifiers comes from the results of 

dynamic ensemble selection algorithms. Arguably, dynamic ensembles are the most complex 

classifiers in the study. However, no matter what performance measure we consider, they 

predict a lot less accurately than simpler alternatives including LR and other well-known 

techniques.  

Given somewhat contradictory signals as to the value of advanced classifiers, our results 

suggest that the complexity and/or recency of a classifier are misleading indicators of its 

prediction performance. Instead, there seem to be some specific approaches that work well; at 

least for the credit scoring data sets considered here. Identifying these ‘nuggets’ among the 

myriad of methods is an important objective and contribution of classifier benchmarks.  

In this sense, a third result of Table 4 is that it confirms and extends previous findings of 

Finlay (2011). We confirm Finlay (2011) in that we also observe multiple classifier 

architectures to predict credit risk with high accuracy. We also extend his study by 

considering selective ensemble methods, and find some evidence that such methods are 

effective in credit scoring. Overall, heterogeneous ensembles secure the first eleven ranks. 

The strongest competitor outside this family is RF with an average rank of 14.8 

(corresponding to place 12). RF is often credited as a very strong classifier (e.g., Brown & 

Mues, 2012; Kruppa, et al., 2013). We also observe RF to outperform several alternative 

methods (including SVMs, ANNs, and boosting). However, a comparison to heterogeneous 

ensemble classifiers – not part of previous studies and explicitly requested by Finlay (2011, p. 

377) – reveals that such approaches further improve on RF. For example, the p-values in 

Table 4 show that RF predicts significantly less accurately than the best classifier.  

Finally, Table 4 also facilitates some conclusions related to the relative effectiveness of 

different types of heterogeneous ensembles. First, we observe that the very simple approach to 

combine all base model predictions through (unweighted) averaging achieves competitive 

performance. Overall, the AvgS ensemble gives the fourth-best classifier in the comparison. 

Moreover, AvgS predicts never significantly less accurately than the best classifier. Second, 

we find some evidence that combining base models using a weighted average (AvgW) might 

be even more promising. This approach produces a very strong classifier with second best 
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overall performance. Third, we observe mixed results for selective ensemble classifiers. 

Direct approaches achieve ranks in the top-10. In many pairwise comparisons, we cannot 

reject the null-hypothesis that a direct selective ensemble and the best classifier perform akin. 

The overall best classifier in the study, HCES-Bag (Caruana, et al., 2006), also belongs to the 

family of direct selective ensembles. Recall that direct approaches select ensemble members 

so as to maximize predictive accuracy (see the online appendix for details
10

). Consequently, 

they compose different ensembles for different performance measures from the same base 

model library. In a similar way, using different performance measures leads to different base 

model weights in the AvgW ensemble. On the other hand, performance-measure-agnostic 

ensemble strategies tend to predict less accurately. Exceptions to this tendency exist, for 

example the high performance of AvgS or the relatively poor performance of CompM. 

However, Table 4 suggests an overall trend that the ability to account explicitly for an 

externally given performance measure is important in credit scoring. 

5.2 Comparison of selected scoring techniques 

To complement the previous comparison of several classifiers to a control classifier (i.e., 

the best classifier per performance measure), this section examines to what extent four 

selected classifiers are statistically different. In particular, we concentrate on LR, ANN, RF, 

and HCES-Bag. We select LR for its popularity in credit scoring, and the other three for 

performing best in their category (best individual classifier, best homogeneous/heterogeneous 

ensemble). 

Table 5 reports the results of a full pairwise comparison of these classifiers. The second 

column reports their average ranks across data sets and performance measures and the last 

row the results of the Friedman test. Based on the observed 𝜒3
2 = 216.2, we reject the null-

hypothesis that the average ranks are equal (p < .000) and proceed with pairwise comparisons. 

For each pair of classifiers, i and j, we compute (Demšar, 2006): 

𝑧 = 𝑅𝑖 − 𝑅𝑗 √
𝑘(𝑘 + 1)

6𝑁
⁄  (1) 

where Ri and Rj are the average ranks of classifier i and j, respectively, k (=4) denotes the 

number of classifiers, and N (=8) the number of data sets used in the comparison. We convert 

the z-values into probabilities using the standard normal distribution and adjust the resulting 

p-values for the overall number of comparisons using the Bergmann-Hommel procedure 

(García & Herrera, 2008). Based on the results shown in Table 5, we conclude that i) LR 

                                                 

10
 Available at: (URL will be inserted by Elsevier when available) 
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predicts significantly less accurately than any of the other classifiers, that ii) HCES-Bag 

predicts significantly more accurately than any of the other classifiers, and that iii) the 

empirical results do not provide sufficient evidence to conclude whether RF and ANN 

perform significantly different. 

TABLE 5: FULL-PAIRWISE COMPARISON OF SELECTED CLASSIFIERS 

  
AvgR 

Adjusted p-values of pairwise comparisons 

  ANN LR RF 

ANN 2.44 

   LR 3.02 .000 

  RF 2.53 .167 .000 

 HCES-Bag 2.01 .000 .000 .000 

Friedman 𝜒3
2 216.2 .000     

 

5.3 Financial implications of using different scorecards 

Previous results have established that certain classifiers predict significantly more 

accurately than alternative classifiers. An important managerial question is to what degree 

accuracy improvements add to the bottom line. In the following, we strive to shed some light 

on this question concentrating once more on the four classifiers LR, ANN, RF, and HCES-

Bag. 

Estimating scorecard profitability at the account level is difficult for several reasons (e.g., 

Finlay, 2009). For example, the time of a default event plays an important role when 

estimating returns and EAD. To forecast time to default, sophisticated profit estimation 

approaches use survival analysis or Markov processes (e.g., Andreeva, 2006; So & Thomas, 

2011). Estimates of EAD and LGD are also required when using sophisticated profit measures 

for binary scorecards (e.g., Verbraken, et al., 2014). In benchmarking experiments, where 

multiple data sets are employed, it is often difficult to obtain estimates of these parameters for 

every individual data set. In particular, our data sets lack specific information related to time, 

LGD, or EAD. Therefore, we employ a simpler approach to estimate scorecard profitability. 

In particular, we examine the costs that follow from classification errors (e.g., Viaene & 

Dedene, 2004). This approach is commonly used in the literature (e.g., Akkoc, 2012; Sinha & 

Zhao, 2008) and can, at least, give a rough estimate of the financial rewards that follow from 

more accurate scorecards.  

We calculate the misclassification costs of a scorecard as a weighted sum of the false 

positive rate (FPR; i.e., fraction of good risks classified as bad) and the false negative rate 

(FNR; i.e., fraction of bad risks classified as good), weighted with their corresponding 
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decision costs. Let 𝐶(+|−) be the opportunity costs that result from denying credit to a good 

risk. Similarly, let 𝐶(−|+) be the costs of granting credit to a bad risk (e.g., net present value 

of EAD*LGD – interests paid prior to default).  Then, we can calculate the error costs of a 

scorecard, C(s), as:  

𝐶(𝑠) = 𝐶(+|−) ∗ FPR + 𝐶(−|+) ∗ FNR (2) 

Given that a scorecard produces probability estimates 𝑝(+|𝒙), FPR and FNR depend on 

the threshold 𝜏. Bayesian decision theory suggests that an optimal threshold depends on the 

prior probabilities of good and bad risks and their corresponding misclassification costs (e.g., 

Viaene & Dedene, 2004). To cover different scenarios, we consider 25 cost ratios in the 

interval 𝐶(+|−): 𝐶(−|+) = 1: 2, … , 1: 50, always assuming that it is more costly to grant 

credit to a bad risk than rejecting a good application (e.g., Thomas, et al., 2002). Note that 

fixing 𝐶(+|−) at one does not constrain generality (e.g., Hernández-Orallo, et al., 2011). For 

each cost setting and credit scoring data set, we i) compute the misclassification costs of a 

scorecard from (2), ii) estimate expected error costs through averaging over data sets, and iii) 

normalize costs such that they represent percentage improvements compared to LR. Figure 2 

depicts the corresponding results. 

 Figure 2: Expected percentage reduction in error costs compared to LR across different 

settings for 𝐶(−|+) assuming 𝐶(+|−) = 1 and using a Bayes optimal threshold.  

Figure 2 reveals that the considered classifiers can substantially reduce the error costs of a 

LR-based scorecard. For example, the average improvements (across all cost settings) of 

ANN, RF, and HCES-Bag over LR are, respectively, 3.4%, 5.7%, and 4.8%. Improvements of 

multiple percent are meaningful from a managerial point of view, especially when considering 

the large number of decisions that scorecards support in the financial industry. Another result 

is that the most accurate classifier, HCES-Bag loses its advantage when the cost of 

misclassifying bad credit risks increases. This shows that the link between (statistical) 
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accuracy and business value is far from perfect. The most accurate classifier does not 

necessarily give the most profitable scorecard. 

RF and ANN achieve a larger cost reduction than HCES-Bag when misclassifying a bad 

risk is eleven and eighteen times more expensive than the opposite error, respectively. Using a 

Bayes-optimal threshold, higher costs of misclassifying a bad risk lower the threshold and 

thus the acceptance rate. Hence, incorrect rejections of actually good risks become the main 

determinant of the error costs of a scorecard. This suggests that the partial superiority of RF 

(and ANN) over HCES-Bag results from the latter producing too conservative predictions for 

clients with low credit risk. It could be interesting to examine whether this pattern persists if 

HCES-Bag were setup to minimize error costs directly (i.e., within ensemble selection). We 

leave this test to future research.  

5.4 Correspondence of classifier performance across performance measures 

Given that many previous studies have used a small number of accuracy indicators, it is 

interesting to examine the dependency of observed results on the chosen indicator. Moreover, 

such an analysis can add some empirical evidence to the recent debate whether and when the 

AUC is a suitable measure to compare different classifiers and retail scorecards in particular 

(e.g., Hand & Anagnostopoulos, 2013; Hernández-Orallo, et al., 2011).  

Table 6 depicts the agreement of classifier rankings across accuracy indicators using 

Kendall’s rank correlation coefficient. With respect to the AUC, we find that empirical results 

do not differ much between this measure and the H-measure (correlation: .93). Thus, if a 

credit analyst were to choose a scorecard among alternatives, the AUC and the H-measure 

would typically give similar recommendations. In fact, Table 6 supports generalizing this 

view even further. Pairwise correlations around .90 indicate high similarity between classifier 

ranks in terms of the KS and the PCC with those of the AUC and the H-measure. Despite 

substantial conceptual differences between these measures (e.g., local versus global 

assessment; see Section 4.3), they rank classifiers rather similarly. Therefore, it appears 

sufficient to use one of them in empirical classifier comparisons.  

A different conclusion emerges for the BS and the PG. Using the same measurement 

approach as the AUC, the PG emphasizes the accuracy of a scorecard in the most important 

segment of the score distribution. Our results confirm that this captures a different aspect of 

performance. For example, the AUC is notably less correlated with the PG than with the H-

measure. However, we observe the smallest correlation between the BS and the other 

measures. The BS is the only indicator that assesses the accuracy of probability estimates. 
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Table 6 reveals that this notion of performance contributes useful information to a classifier 

comparison over and above those captured in the AUC, PCC, H-measure, and KS.  

Based on Table 6 we recommend that future studies use at least three performance 

measures: the AUC, the PG, and the BS, whereby one could replace the AUC with the H-

measure. The PG and the BS offer an additional angle from which to examine predictive 

accuracy. Thus, they should routinely be part of scorecard comparisons.  

TABLE 6: CORRELATION OF CLASSIFIER RANKINGS ACROSS PERFORMANCE MEASURES  

 
AUC PCC BS H PG KS 

AUC 1.00      

PCC .88 1.00     

BS .54 .54 1.00    

H .93 .91 .56 1.00   

PG .79 .72 .51 .76 1.00 
 

KS .92 .89 .54 .91 .79 1.00 

 

6 Conclusions 

We set out to update Baesens, et al. (2003) and to explore the relative effectiveness of 

alternative classification algorithms in retail credit scoring. To that end, we compared 41 

classifiers in terms of six performance measures across eight real-world credit scoring data 

sets. Our results suggest that several classifiers predict credit risk significantly more 

accurately than the industry standard LR. Especially heterogeneous ensembles classifiers 

perform well. We also provide some evidence that more accurate scorecards facilitate sizeable 

financial returns. Finally, we show that several common performance measures give similar 

signals as to which scorecard is most effective, and recommend the use of two rarely 

employed measures that contribute additional information.  

Our study consolidates previous work in PD modeling and provides a holistic picture of 

the state-of-the-art in predictive modeling for retail scorecard development. This has 

implications for academia and industry. From an academic point of view, an important 

question is whether efforts into the development of novel scoring techniques are worthwhile. 

Our study provides some support but also raises concerns. We find some advanced methods to 

perform extremely well on our credit scoring data sets, but never observe the most recent 

classifiers to excel. ANNs perform better than ELMs, RF better than RotFor, and dynamic 

selective ensembles worse than almost all other classifiers. This may indicate that progress in 

the field has stalled (e.g., Hand, 2006), and that the focus of attention should move from PD 
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models to other modeling problems in the credit industry including data quality, scorecard 

recalibration, variable selection, and LGD/EAD modeling.  

On the other hand, we do not expect the desire to develop better, more accurate scorecards 

to end any time soon. Likely, future papers will propose novel classifiers and the “search for 

the silver bullet” (Thomas, 2010) will continue. An implication of our study is that such 

efforts must be accompanied by a rigorous assessment of the proposed method vis-à-vis 

challenging benchmarks. In particular, we recommend RF as benchmark against which to 

compare new classification algorithms. HCES-Bag might be even more difficult to 

outperform, but is not as easily available in standard software. Furthermore, we caution 

against the practice to compare a newly proposed classifier to LR (or some other individual 

classifier) only, which we still observe in the literature. LR is the industry standard and it is 

useful to examine how a new classifier compares to this approach. However, given the state-

of-the-art, outperforming LR can no longer be accepted as a signal of methodological 

advancement. 

An important question to be answered in future research is whether the characteristics of a 

classification algorithm and a data set facilitate appraising the classifier’s suitability for this 

data set a priori. We have identified classifiers that work well for PD modeling, but cannot 

explain their success. Nonetheless, our benchmark can be seen as a first step toward gaining 

explanatory insight in that it provides an empirical fundament for meta-analytic research. For 

example, gathering features of individual classifiers and characteristics of the credit scoring 

data sets, and using these as covariates in a regression framework to explain classifier 

performance (as dependent variable) could help to uncover the underlying drivers of classifier 

efficacy in credit scoring. 

From a managerial perspective, it is important to reason whether the superior performance 

that we observe for some classifiers generalizes to real-world applications, and to what extent 

their adoption would increase returns. These questions are much debated in the literature (e.g., 

Finlay, 2011). From this study, we can add some points to the discussion.  

First, we show that advancements in computer power, classifier learning, and statistical 

testing facilitate rigorous classifier comparisons. This does not guarantee external validity. 

Several concerns why laboratory experiments (as this one) may overestimate the advantage of 

advanced classifiers remain valid; and might be insurmountable (e.g., Hand, 2006). However, 

experimental designs with several cross-validation repetitions, different performance 

measures, and appropriate multiple-comparison procedures overcome some limitations of 
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previous studies and, thereby, provide stronger support that advanced classifiers have the 

potential to increase predictive accuracy not only in the laboratory but also in industry.  

Second, our results facilitate some remarks related to the organizational acceptance of 

advanced classifiers. In particular, a lack of acceptance can result from concerns that much 

expertise is needed to handle such classifiers. Our results show that this is not the case. The 

accuracy differences that we observe result from a fully-automatic modeling approach. 

Consequently, certain advanced classifiers do not require human intervention to predict 

significantly more accurately than simpler alternatives. Furthermore, the current interest in 

Big Data indicates a shift toward a data-driven decision making paradigm among managers. 

This might further increase the acceptability of advanced scoring methods. 

Finally, the business value of more accurate scorecard predictions is a crucial issue. Our 

preliminary simulation provides some evidence that the “higher (statistical) accuracy equals 

more profit equation” might hold. Furthermore, retail scorecards support a vast number of 

business decisions. Consider for example the credit card industry or scoring tasks in online 

settings. In such environments, one-time investments (e.g., for hardware, software, and user 

training) into a more elaborate scoring technique will pay-off in the long run when small but 

significant accuracy improvements are multiplied by hundreds of thousands of scorecard 

applications. The difficulties of introducing advanced scoring methods including ensemble 

models are more psychological than business related. Using a large number of models, a 

significant minority of which give contradictory answers, is counterintuitive to many business 

leaders. Such organizations will need to experiment fully before accepting a change from the 

historic industry standard procedures. 

Regulatory frameworks and organizational acceptance constrain and sometimes prohibit 

the use of advanced scoring techniques today; at least for classic credit products. However, 

given the current interest in data-centric decision aids and the richness of online-mediated 

forms of credit granting, we foresee a bright future for advanced scoring methods in credit 

scoring.  
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