
1 

Calibrating Cross-Training to Meet Demand Mix Variation and Employee 
Absence 

Jordi Olivella2, David Nembhard1 

1Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 
16802, USA. dan12@psu.edu 
2Institute of Industrial and Control Engineering and Management Department, Universitat Politècnica de 
Catalunya, Av. Diagonal, 647, 08028, Barcelona, Spain. jorge.olivella@upc.edu 

Abstract: We address the problem of determining the cross-training that a work team needs in order 
to cope with demand mix variation and absences. We consider the case in which all workers can be 
trained on all tasks, the workforce is a resource that determines the capacity and a complete 
forecasting of demand is not available. The demand mix variation that the organization wants to be 
able to cope with is fixed by establishing a maximum time to devote to each product. We contend that 
this approach is straightforward, has managerial practicality and can be applied to a broad range of 
practical scenarios. It is required that the demand mix variation be met, even if there are a certain 
level of absences. To numerically solve the mathematical problem, a constraint-based selection 
procedure is developed, which we term CODEMI. We provide illustrated examples demonstrating 
solution quality for the approximation, and we report on an illustrative set of computational cases. 
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1. Introduction

Demand-mix flexibility, also called product flexibility and process flexibility, consists of the 
capacity of a production process to produce a variety of products to meet demand mix 
variability. The benefits of this flexibility have been demonstrated by Jordan and Graves 
(1995). Cross-training workers can increase production flexibility, thereby helping it to 
efficiently deliver a broader range of products by increasing overall workforce skills, so that 
they can cope with a wider range of possible demands (Hopp and VanOyen, 2004). Thus, 
cross-training workers is potentially an effective source of demand mix flexibility. 

The question of ‘who should be trained on which tasks?’ is an important one for many 
organizations, some of whom adopt cross-training policies not as a response to direct skill 
requirements, but rather for employee job enrichment, to reduce boredom, or to create greater 
agility globally. To obtain some of these benefits, the specification of particular levels of 
cross-training may not be necessary. More often, cross-training is necessary for gaining 
flexibility in order to cope with demand variations, and redundancy, as a compensation for 
employee absences. In this case, the effectiveness of cross-training depends in largely upon 
how cross-training is carried out. When acquiring ability in new tasks requires significant 
durations and concomitant training cost, establishing the appropriate cross-training goals 
becomes critical. 

http://ees.elsevier.com/ejor/download.aspx?id=540494&guid=e8cdf8cf-e8a5-4bef-97dc-332a492f1a72&scheme=1
http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=29846&rev=1&fileID=540494&msid={841F5075-9AFB-48DF-867E-25800C4D0DD9}
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The literature distinguishes between cases in which various specific patterns of flexibility are 
considered, and when full flexibility is assumed or allowed. Furthermore, situations in which 
the workforce is the only essential resource must be distinguished from those in which other 
resources are involved (see §2.1). The problem addressed here corresponds to full flexibility, 
with the workforce as the critical resource, as is common in practice. This situation can be 
found in call centers (Batta et al., 2007), maintenance service operations (Brusco and Johns, 
1998), nurse staffing (Bard and Purnomo, 2005) and retail services (Berman and Larson, 
2004), among others. In fact, labor is often the limiting resource in practice (Slomp and 
Molleman, 2002). 

Some literature addresses demand mix variation by considering a set of future demands along 
with the corresponding probabilities of occurrence (see §2.2). In this paper, the demand 
scenarios to be covered will be defined by establishing the degree of variability that the 
organization wants to be able to meet. This approach had not been previously dealt with in 
the literature and has practical applicability, as we will support below.  

When addressing cross-training and demand coverage, different complementary 
characteristics can be considered. The skills involved can be either categorical or hierarchical. 
Categorical skills are binary in nature, and as such are either possessed or not possessed at all 
(Bruecker et al., 2014). When skills are hierarchical, they can be performed at different 
levels, as it has been assumed by some previous research (Pinker, 2009; Azizi & Liang, 
2013). Similarly, the literature has considered homogenous or heterogeneous workers from 
the point of view of learning capacity (Shafer et al., 2001). 

In addition, cross-training in a single department or between departments can be considered 
(Van den Bergh, 2013), the possibility of overtime can be included (Wright & Mahar, 2013) 
and, for each worker, primary and secondary skills can be distinguished (de Matta & Peters, 
2009; Guerry et al., 2013). In this paper, several straightforward assumptions regarding these 
options have been adopted: categorical skills, homogeneity of workers regarding learning, 
one single department, with no overtime considered. Primary and secondary skills are not 
differentiated when defining cross-training objectives.  

The objective of this paper is to develop a method for determining cross-training goals for a 
work team in order to meet a certain level of demand mix variation, which is established by 
using the time devoted to each product. It is assumed that there is some level of worker 
absenteeism and that all workers can be trained to perform each task. Previous cross-training 
is taken into account to consider cases wherein there may be preexisting teams and cross 
trained skills. The problem is analyzed and solved via the development and use of a 
constraints-based selection procedure, which we term CODEMI. We will examine this novel 
approach using several computational cases. A primary contribution of the paper is the 
development of this novel and practical approach for addressing the cross-training problem. 

In the remainder of this paper we discuss the relevant literature review in Section 2, followed 
by definitions and description of the problem, along with definitions of the relevant variables 
for our modeling approach in Section 3. Section 4 presents a novel procedure for generating 
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solutions, illustrative examples, an evaluation of the solution approximation obtained, and 
computational performance. We report our conclusions in Section 5, while references are 
presented in Section 6. 

2. Literature review

2.1 Flexibility and cross-training 

The operations management literature on flexibility can be classified into two main streams 
(Chou et al., 2010): (1) work that describes and examines the value of different patterns of 
flexibility and (2) work assuming potential full flexibility, in which any resource, such as 
machines or workers, can eventually perform any task. The first group of work focuses on 
schemes that, with limited resource flexibility, provide outcome flexibility that is not far from 
optimal. This result is obtained by using chaining strategies, initially developed for 
production lines. For instance, in D-skill-chaining, each worker is trained at a primary station 
and also on the D stations succeeding it. Park (1991) analyzed the effect of worker cross-
training in a dual resource constrained job shop and showed that cross-training produces the 
most significant improvement when no previous cross-training exists. The benefits of skill-
chaining in serial production lines was further analyzed by Hopp et al. (2004), among others. 
Xu et al. (2011) provides a thorough review of the research on Dual Resource Constrained 
(DRC) systems, including studies that provide insights into worker cross-training policies. 
Other related work includes, Tharmmaphornphilas and Norman (2004) who describe a 
method for obtaining effective job rotation interval lengths, and Kim and Nembhard (2010) 
who consider cross training with a heterogeneous workforce that includes learning and 
forgetting behavior.  

A second stream of work involves cases in which human resources are prepared to perform 
any task, should the need arise. In general, the goal is to determine the most appropriate level 
of resource flexibility by considering the acquisition cost of resource flexibility and the need 
for flexible outcomes. For example, Fine and Freund (1990) address the trade-offs involved 
in investing in product-flexible manufacturing capacity. The future demand is characterized 
by a certain finite set of future ‘states of the world’. It is explicitly assumed that organizations 
identify possible future states and assess their corresponding likelihoods. Iravani et al. (2005) 
proposes indices that quantify the ability of a system to respond to variability by taking 
advantage of the flexibility of resources, such as cross-training of workers, the flexibility of 
machines, or the reallocation of factories.  

Furthermore, situations in which the workforce is the only essential resource must be 
distinguished from situations in which other secondary and tertiary resources are involved. 
When resources other than worker capacity are important, scenarios must be developed by 
analyzing specific cases (Agnihothri and Mishra, 2004). Here, we address the situation in 
which the only critical resource is the work performed by workers, and consequently, 
workforce capacity is directly linked with production capacity. 
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2.2 Determining cross-training levels to cope with demand 

The determination of preferred cross-training levels has been considered extensively in the 
literature. Perhaps due to the complexities of the broadest problem, studies tend to address 
very specific subsets and cases. Solutions found in each case are based on the particular 
characteristics and the data available. Table 1 outlines many papers that correspond to the 
establishment of useful cross training levels.  

We note that the evaluation of candidate cross training policies is one potential means for 
organizations to determine how best to meet dynamic demands. The current study is a further 
response to this need. Further, Pinker et al (2009) showed that flexibility policies can lead a 
firm to staff with too little slack to be flexible to demand shocks, thus leading to higher total 
costs.  

Table 1. Literature on Establishing Cross-Training Levels 

Citation(s) Sector Description 

Brusco and Johns, 1998 Maintenance Address the problem of paper mill service in establishing cross-
training levels. 

McCreery and Krajewski, 1999 Manufacturing Analyzes the case of a U-shaped assembly line. 

Askin and Huang, 2001 Manufacturing Model for guiding the formation of worker teams for manufacturing 
cells. 

Bordoloi and Matsuo, 2001 Manufacturing A Large semiconductor equipment manufacturing company is 
considered. 

Slomp and Molleman, 2002 Manufacturing The situation studied concerns a team of 10 operators responsible for 
15 different tasks. 

Agnihothri et al., 2003 Field service Field service operations of a leading supplier of capital equipment is 
presented. 

Agnihothri and Mishra, 2004 Equipment 
repair 

Analyzed the case of an equipment repair service, in which travel 
time and downtime cost is taken into account. 

Azizi and M Liang, 2013 Manufacturing Simultaneous solving of workforce assignment, task rotation, and 
cross-training. 

Chakravarthy and Agnihothri, 
2005 

Field service Addresses the same case that Agnihothri et al., 2003 

Wirojanagud and Gel, 2007 Semiconductor 
manufacturing 

A realistic problem corresponding to the semiconductor 
manufacturing industry is considered.  

Chevalier and Van den Schrieck, 
2008 

Call centers It describes call centers of business-to-business environments. 

Cezik and L'Ecuyer, 2010 Call centers Two examples of moderate size are considered, one with 5 call types 
and. 

Liu et al. 2013 Assembly line. Training and assignment problem corresponding to the so-called seru 
production system. 

Paul and MacDonald, 2014 Nurses Analysis of a Chaining problem for two and multi-department setups 
corresponding to a hospital. 
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Following this line of work, Marentette et al. (2009) proposed an approach for pairing skills 
that, successfully compares the costs of training to the benefits of increased staffing level 
efficiencies. Colen and Lambrecht (2012) simulate and evaluate the performance obtained in 
a maintenance and repair operation according to the proportion between the technicians 
dedicated to preventive maintenance and the fully cross-trained technicians. Andradóttir et al. 
(2013) identify the characteristics of desirable flexibility structures, that include achieving the 
maximum possible capacity and viewing the entire network as a bottleneck. To distinguish 
these cross-training structures allow discarding non-useful cross-training. Despite the broad 
set of aims in these studies, each ultimately whole or in part involves the determination of 
one or more policies for calibrating a cross training level. 

On an alternate tack, Easton (2014) analyzes the improved benefits that can be obtained by 
considering joint variability of demand and workforce attendance when scheduling. Optimal 
worker allocation decisions are determined across the plausible set of realizations of 
attendance and demand. In a more specific nursing allocation application, Paul and 
MacDonald (2014) develop optimization models to maximize the benefits of cross-training in 
two departments and multi-department configurations, wherein they consider the costs of 
temporary nurses and the service levels that organizations aim to achieve. In a related nurse 
allocation problem, Gnanlet and Gilland (2014) analyze the influence of nurse productivity 
when working on secondary cross trained tasks as well as their effects when working under 
various cross training policies.  

Recalling that Fine and Freund (1990) explicitly assume that organizations identify possible 
future ‘states of the world’, Brusco and Johns (1998) and Agnihothri and Mishra (2004) 
analyzed cases where future requirements are extrapolated from previous experience. Thus, 
an alternative approach for determining cross training levels is to prepare a set of future 
demands and corresponding probabilities of occurrence in order to address demand mix 
variations. The information requirements are a strong limitation on the practical application 
of these approaches, since a complete forecasting of demand is not generally available and 
the preparation of such a set of possible demands as inputs is in itself a challenging problem. 
The current study contributes to this stream of research, wherein we propose to define a set of 
possible demands based on a business decision, as explicated in §3.  

3. Methodology

3.1 Introduction 

We consider the problem of meeting work team cross-training goals while meeting a level of 
demand mix variation and employee absences, with worker skill capability as the only critical 
resource. That is, we consider a so-called skill-matrix for each team. A skill-matrix is 
generically a matrix with as many rows as workers belonging to the team and as many 
columns as jobs the teams must perform. Each row of the matrix corresponds to a specific 
worker with an indication of whether that worker is trained on and can perform the 
corresponding columnar job. Similarly, columns (jobs) indicate the set of workers who may 
perform that job (see Daniels et al., 2004).  



6 

We define demand mix variation by first establishing a maximum time to devote to each 
product. Then the problem is expressed by using an expression such as the following: 

“Obtain cross-training that makes it possible for a team to meet demand, devoting up to X% 
of time to product 1, up to Y% to product 2, … , and up to A worker absences”  

We employ this perspective for its straightforward practical appeal. For example, assume a 
language service that translates texts from Spanish, Chinese and Arabic to English, with a 
working capacity of 600 hours per week. They expect to translate orders involving 200 hours 
of work of each language per week with some demand variations. Naturally, full flexibility 
may not be obtainable in this context, not least due to the time needed to acquire specific 
language skills. Nonetheless the question of how to establish demand mix variation goals is 
important. We note that the specific bounds in this context must be considered a business 
decision. The objective can be, for example, to be able to accept up to 50% of work time 
devoted to Spanish translations, 40% to Chinese translations and 40% to Arabic translations. 
Demands of 300, 240 and 60 hours, respectively, would be admissible, yet demands of 150, 
150 and 300 would not be. We remark that selection based on the time to be devoted to each 
product does not imply any loss of generality. That is, adapting the problem to other 
measures, such as the number of units or turnover, is straightforward.  

The approach and the model defined below are applicable for groups of workers of any size. 
However, we note that the general problem is NP-hard, as it includes the resolution of 
covering problems, which are known to be NP-hard (Johnson and Garey, 1979). Thus, a 
solution procedure able to handle moderate size instances is presented and tested (see Section 
4). These instances with moderate sizes correspond to practical situations. Cross-training can 
be determined for any scale problem, but it is common to set cross training at a team level. 
Scenarios having these characteristics have been reported in the literature for call centers, 
repair services, and field services that dispatch teams of technicians or other staff into the 
field. These are important for servicing machines in medical electronics, telecommunications 
and information technology, industrial automation, building controls, high-voltage power 
equipment, and office products (Agnihothri and Mishra, 2004). Literature describing middle-
size cross-training problems that have been observed in real cases are showed in Table 1. 

The nature of the specific application will affect the determination of the planning horizon 
and the planning units (blocks), as an important aspect of the problem discussed in §3.4. In 
call centers, for example, significant delays are not reasonable and thus a short planning 
horizon is the norm. For activities such as project work, or repairs, the planning blocks will 
usually coincide with project or repair activities. Ultimately, planning horizons can be 
considered on a case-by-case basis. For instance, in manufacturing, there is greater freedom 
regarding the setting planning horizons and blocks. 

3.2 Problem definition 

The following specific assumptions are used herein. 
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• We consider a work team that can be trained on a given set of task types. The teams will
have a constant productivity rate, and not be able to perform other task types. However,
tasks for which individuals were previously cross-trained, are considered for potential
assignment within the decision process.

• A set of products is produced in differential quantities based on demand scenarios formed
from combinations of units of products (planning blocks). The planning blocks will be
established a priori (fixed planning blocks), or normed to make them more similar (size
leveled planning blocks). Meeting the demand for these planning blocks requires the
determination of decision variables for worker task assignments, given a time horizon,
and scenario information.

• The number of hours of work per worker is established to be feasible for a given time
horizon.

• Workers may be absent at any point in time, noting that what matters here is not only the
number of absent workers, but also the capabilities of the cross-trained workers who are
present. All the potential combinations of worker absences that respect a given limit of the
total number of absent workers are considered, independently of their probability of
occurrence.

• Teams must be able to meet any demand scenario while simultaneously respecting the
established upper bounds for the proportion of the total time to devote to each product.

• It is possible for a manager to establish bounds on: (1) the number of task types for which
a worker can be trained, and (2) the difference between the maximum and the minimum
number of the task types for which the workers will be trained.

• The objective is to minimize the total number of tasks for which the workers will be
trained, noting that training in general entails considerable cost and can be complicated to
organize.

3.3 Model 

A model to solve the problem described above is presented after some preliminary notational 
definitions. 

J = Number of different products (j=1..J). 

K = Number of different task types necessary to complete the products (k=1..K). 

W = Number of workers (w=1..W). 

A = Number of absent workers. 

H = Number of time units of work per worker, based on the planning horizon. 
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vkj = Number of units of time that are necessary to perform task type k to complete a 
unit (or a planning block of a product) j. 

pj = Upper bound on the proportion of time devoted to product j for demand scenarios 
that the workers must meet; i.e., they must be able to meet demand scenarios by 
devoting a proportion of the total time of work from 0 to pj to product j=1..J. 

uw = Upper bound of the number of task types for which the worker w can be trained 
(w=1..W). 

dw = Upper bound of the difference between the maximum and the minimum number 
of task types for which the workers will be trained (w=1..W). 

 x’wk = Binary variable indicating whether worker w=1..J had previously performed task 
type k=1..K. 

The set of demand scenarios that workers are required to meet must be considered. From the 
problem definition, the conditions to impose are: 

(i) The demand scenarios are within the bounds on the proportion of time devoted to each 
product. 

(ii)  The work time required to meet the demand scenarios is less than or equal to the work 
time that the present employees must work. 

The set of demand scenarios satisfying these two conditions are formalized in Equation (1), 
wherein nj, j=1..J, is the component j of an element of Ω, correspond to the number of 
product j to produce. 

( ) ( )1
1 1 1

1( .. ) .. , 1..
J K K

J j kj j kj j
j k k

n n n v W A H n v p j J
W A H= = =

    Ω = ∈ Ν × × Ν ≤ − ⋅ ∧ ≤ =   − ⋅    
∑∑ ∑ (1) 

The set of corresponding indices is also defined as: 

IΩ Set of indexes of the group Ω. The component j, j∈{1..J} , of the element of Ω 
corresponding to θ∈IΩ is notated as πθj. 

Set of groups of present workers 

We let A employees be absent, and correspondingly W−A of the W employees are present. 
The set of the different groups of W−A employees is considered, and the corresponding set of 
indexes is defined: 

Ψ = Set of possible groups of present employees, obtained as variations of W-A 
elements. 
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IΨ = Set of indexes of Ψ. The component w, w∈{1..W-A}, of the element of Ψ 
corresponding to ψ∈IΨ is notated as τψw.  

Variables 

xwk   = Binary variable that indicates whether the employee w=1..W is able to perform 
task type k=1..K after the necessary cross-training is obtained. 

wkyθψ  = Number of units of time that employee w would devote to task type k in the 
assignment of work that proves the demand scenario θ can be met by the group 
of present employees ψ (w=1..W, k=1..K, θ∈IΩ, ψ∈IΨ). Variable y is defined also 
for absent workers, assigning a value of 0 for compactness.

Constraints 

The constraints in Equations (2) - (4) require that each group of present employees ψ is able 
to perform each possible demand scenario θ. Specifically, constraint (2) imposes the work 
time bound for each employee, (3) implies that no work is assigned to an employee that is not 
part of the group of present employees and (4) imposes that a solution meeting the demand 
scenario is obtained. In addition, constraint (5) expresses that an employee devotes time only 
to the task that he or she is able to perform; constraint (6) imposes a bound on the number of 
task types for which a worker can be trained; constraint (7) guarantees that the previous 
cross-training of the workers is included in the final solution; and constraint (8) limits the 
difference between the maximum and the minimum number of task types in which the 
workers will be trained. 

1
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k

y H w W I Iθψ θ ψΩ Ψ
=

≤ = ∈ ∈∑ (2) 

{ } 10, 1.. , , , 1.. , (τ ,..,τ )wk W Ay k K I I w W wθψ
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' 0, 1.. , 1..− ≥ = =wk wkx x k K w W (7) 
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K K

wk wk w
k k

x x d k k K k k w W
= =

− ≤ ∀ ∈ ≠ =∑ ∑ (8) 

Objective function 

The objective function (9) minimizes the total number of tasks to which the set of workers 
will be trained.  

 
1 1

min '
= =

−∑∑
W K

wk wk
w k

x x (9) 

3.4 Scope and level of disaggregation 

The current problem pertains to production planning, since cross-training goals are 
established to make the set of production plans feasible. Thus, the planning horizon and 
planning blocks to be used must be determined. In the hypothetical situation, in which 
selfsame characteristics of a case determine the planning horizon and corresponding blocks, 
this would not be an issue. However, in general their selection must be carefully considered, 
as it determines the scope and the level of disaggregation. Two alternative treatments are 
considered, for planning blocks. First, considering when fixed planning blocks are used, and 
second when size leveled planning blocks are used. These are described in turn below. 

Cases for fixed planning blocks 

The scenario includes a set of products and the time to be devoted to a certain task type for 
producing a unit or a planning block, formed by a certain number of units. These planning 
blocks can be used directly to define the demand scenarios to be considered. In doing so, the 
disaggregation level is effectively fixed. Thus, the size of the problem depends on the 
planning horizon, which is measured by the number of hours of work that it includes, as this 
is the only resource involved.  

Table 2. Illustrative Example for Fixed Planning Blocks 

SCENARIO:  Time devoted to task i to complete a unit 
(or block) of product j (vij): 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 

 Task 
type 

1 3.00 7.00 0.00 0.00 
2 7.00 8.00 0.00 0.00 

Number of products (J): 4 3 5.00 5.00 0.00 5.00 
Number of tasks (K): 5 4 0.00 0.00 7.00 4.00 
Number of workers (W): 5 5 0.00 0.00 5.00 6.00 
Number of absentees (A): 1 Total 15 20 12 15 

 pj 55% 45% 20% 60% 

OPTION 1:  planning horizon corresponding to the work time per worker (H) = 40 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 
Maximum number units (or planning blocks) to be produced: 5 3 2 6 
Percentage of each unit (or planning block) of the work time: 9.38% 12.50% 7.50% 9.38% 
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Total work time: 160 
No. elements Ω: 180 
Objective Value: 13 

OPTION 2:  planning horizon corresponding to the work time per worker (H) = 80 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 
Maximum number units (or blocks) to be produced: 11 7 5 12 

Percentage that each unit (or block) is of the total work time: 4.69% 6.25% 3.75% 4.69% 

Total work time: 320 
No. elements Ω: 4,620 
Objective Value: 15 

Table 2 presents an illustrative example for fixed planning blocks, with time expressed in 
hours. Taking 40 hours of work per worker in option 1 implies 160 hours of total work time 
are available. For example, Product 1 needs to be produced for 15 hours with a 55% upper 
bound on the time devoted to that product. Scenarios including up to 5 units of product 1 will 
be included. We note that the requirements are specific for the different products (i.e., a 
single unit of product 1 uses 9.38% of the total time, while one unit of product 2 uses 12.5%, 
etc.) There are 180 scenarios with an objective value of 13, which corresponds to the number 
of tasks that the workers will need to learn. 

To consider a larger set of scenarios, option 2 (in Table 2) uses 80 hours of work per worker. 
With 320 hours of total work time available, the scenarios can include more units produced, 
implying that the number of scenarios increases to 4,620. The option 2 objective value 
correspondingly increases to 15. While some scenarios can be feasibly produced with 320 
hours of work, and are simple multiples of smaller scenarios (160 total hours), other scenarios 
require new combinations in order to meet the demand mix. These new combinations will 
necessarily give rise to the greater requirements on cross-training.  

Cases for leveled planning blocks 

An alternative possibility is to set the number of planning blocks for the solution of the 
problem. Both the planning horizon and planning blocks must to be set in this case. The 
number of planning blocks will be set by leveling their size while maintaining a minimum 
number of blocks per product. The planning horizon, defined by the total number of work 
hours, will be set wide enough to include the required number of planning blocks. An 
illustrative example is given in Table 3, wherein the planning horizon is fixed at 160 hours. 
Compared to the time necessary for completing the production, it is large enough so as to 
have no direct influence. One possible rule is to take three or more planning blocks per 
product which are less than or equal to 10% of total work time, assuming that the goal is to 
define as few blocks as possible such as in option 1. 

Table 3. Illustrative Example for Size Leveled Planning Blocks 

SCENARIO:  Time to be devoted to task i to 
complete a unit (or block) of product  j (vij): 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 

Task 1 0.12 0.08 0.00 0.00 
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type 2 0.06 0.04 0.00 0.00 
Number of products (J): 4 3 0.00 0.01 0.01 0.00 
Number of tasks (K): 5 4 0.00 0.00 0.06 0.12 
Number of workers (W): 5 5 0.00 0.00 0.08 0.13 
Number of absentees (A): 1 Total 0.18 0.13 0.15 0.25 

pj 60% 55% 15% 70% 
 Time of work per worker (H) = 160 

OPTION 1:  3 or more planning blocks per product which are less than or equal to 10% of total work time 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 
Maximum number of planning blocks to be produced: 6 6 3 7 

Number of units per planning block: 355 451 213 256 
Percentage of each planning block is of the total work time: 10.0% 9.2% 5% 10% 

Total work time: 640 
No. elements Ω: 118 
Objective Value: 15 

OPTION 2:  3 or more planning blocks per product which are less than or equal to 5% of total work time 

Prod. 1 Prod. 2 Prod. 3 Prod. 4 
Maximum number of planning blocks to be produced: 12 11 3 14 

Number of units per planning block: 177 246 213 128 
Percentage that each planning block is of the total work time: 5% 5% 5% 5% 

Total work time: 640 
No. elements Ω: 520 
Objective Value: 15 

If one takes three or more planning blocks per product, which are less than or equal to 5% of 
total work time (option 2), we obtain fully size leveled planning blocks, 520 demand 
scenarios and a solution objective function value of 15. Note that the demand scenarios 
obtained by applying option 2 do not contain the same demand scenarios obtained by 
applying the rule of option 1. The minimum number of blocks and the non-exact divisibility 
illustrate that not all the conditions are proportional. That is, a skill-matrix that allows 
workers to meet the demand scenarios of option 1 do not necessarily allow them to meet 
those of option 2, and vice versa.  

As in the previous case, reasonable decisions about the planning horizon and blocks should 
made according to the characteristics of the case and the solvability of the resulting problem. 
The use of size leveled blocks is preferable if the size of the problem has to be decreased to 
make it more readily solvable. Fixed planning blocks in turn are useful when the 
characteristics, and practical needs of an organization make this necessary. This may be the 
case for example with repairs, consulting jobs, or other scenarios when demand is manifested 
in discrete blocks. 

4. Numerical solution

4.1 Solution procedure Algorithm 

We propose a procedural algorithm (COnstraints for DEmand MIxes, CODEMI) for solving 
the general problem posited that applies the concept of constraint selection, which is based on 
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the idea that only a few constraints bind the optimal solution. Various general algorithms 
have been developed for solving a range of linear problems (Myers, 1992, Arsham, 2007). 
The idea of adding constraints based on partial results obtained follows the classical work of 
Dantzig et al. (1954). We present a novel algorithm that strongly differs from those in the 
existing literature, in that it attempts to exploit some of the special characteristics of our 
defined problem. The procedure allows for solving considerably large problem instances, as 
the computational experience described in §4.4 illustrates. 

To reduce the size of the problem to be solved, in the Equation (10) we define the set Ω’ , 
which is a subset of demand scenarios Ω, as defined in Equation (1). That is we impose that 
the workers are able to meet the demand scenarios in Ω’  be no weaker than requiring that 
they be able to meet the demand scenarios in Ω. In effect, if a demand scenario belongs to Ω, 
either it belongs to Ω’  or another product scenario including at least the number of units for 
different products which belong to Ω’ . Consequently, if the workers are able to meet Ω’ , they 
are also able to meet Ω. 

{ }1 1' ( .. ) ( .. 1.. ) , 1..Ω = ∈ Ω + ∉ Ω =J j Jn n n n n j J (10) 

The procedure includes the following eleven key steps, with Pseudo-code given in Table 4. 

1) Determine the initial scope and level of disaggregation. That is, set the planning horizon
and the number of planning blocks. The parameter that determines the planning horizon is
H, time of work per worker in the planning period.

As described in §3.4, the two alternatives are fixed or leveled planning blocks. When 
fixed, they are not adjustable, and when leveled, then number of planning blocks is 
determined from m, the minimum number of blocks per product, and U, the upper bound 
on the percentage that each block that represents the total work time. Initial values of 
theses parameters are defined by trading off the detail in the demand scenarios definition 
and the solvability of the problems steps (6) and (8), noting that this is a practical 
analytical decision without loss of generality.  

Table 4. Pseudo-code for Algorithm to Generate set Ω 

Data J, n.of products, K, n.of tasks, W, n.of employees, A, n.of absent 
employees, H, work time per worker, v kj , time of task k to complete a unit of 
product j, p j , upper bound of the time proportion devoted to product j 

Obtain VJ j , time to complete 1 unit of product j: VJ j =sum(k=1..K)v kj  
Obtain MAXP j  (see Equation 11): MAXP j =int((W-A)*H*p j /VJ j ) 
Initialize J-component vector INCUMBENT (instance that is being generated)
Initialize n, n=1 
1  IF INCUMBENT n<MAXPn

 INCUMBENTn=INCUMBENTn+1   
 Put 0 the components 1 to n-1 of INCUMBENT to generate all instances 
 FOR n’=1..n-1 INCUMBENT n’ =0 
 n=1 
 Obtain SUM, time needed for the scenario:  

   SUM=sum(j=1..J)INCUMBENT j *VJ j

 Take only the scenarios respecting the total time bound: 
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I F SUM<=(W-A)*H 
 Exclude the scenarios where a unit of product can be added: 
 FOR j=1..J   IF SUM+VJ j <=(W-A)*H AND INCUMBENT j <=MAXPn GO TO 1 

 If a unit of product can’t be added: 
 add INCUMBENT to Ω’ 

END IF 
 ELSE 

 Continue with the next component, if exist: 
 IF n<J 

 n=n+1 
 ELSE 

 GO TO 2 
 END IF 

 END IF 
   GO TO 1 
2  END 

2) Determine the calculation parameters. The parameters are the following:

• S1, demand scenarios selected from the initial set in step 0.
• S2, selected scenarios when successive selections are necessary, step 8).
• T, maximum run-time applied in steps 6) and 9).

3) Generate the set Ω, as defined in Equation (1).

4) Generate the set Ω’ , as a subset of the set Ω, demand scenarios that the employees must
meet. For greater practicality, generate only the demand scenarios that use all the
available time, given the indivisibility of the number of products or planning blocks to
produce. That is, we determine the subset of demand scenarios belonging to Ω’ .

5) Prioritize by sorting the demand scenarios belonging to Ω’  according to a measure of the
proximity of a demand scenario θ to the maximum production of each product. To
accomplish this, define mj, the maximum possible number of planning blocks for the
product j (Equation 11), and Dθ, the previously mentioned measure (Equation 12).

( )
1

int , 1..
K

j j kj
k

m W A H p v j J
=

 = − ⋅ ⋅ = 
 

∑ (11) 

( )1

1
’ 0.1

J

j j j

D I
mθ

θ
θ

π Ω
=

= ∈
− +∑ (12) 

In Equation 12, the constant 0.1 is arbitrarily small to prevent divisions by zero. When the 
maximum number of planning blocks is reached, the value of the summand is 10. With 
greater differences the summand will be smaller. The value of Dθ is higher, as the 
numbers of planning blocks of the demand scenario θ are closer to the maximum.  

Select the first S1 demand scenarios with higher values to form set Ω*. Intuitively, these 
demand scenarios are more extreme and may determine the solution for the group. 
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6) Define and solve the mathematical problem corresponding to the set Ω* instead of Ω’ .
Outcomes from this process include:

• Infeasible Formulation. This can be due to insufficient total work time or because the
relation between the tasks necessary to produce the products, the demands to cover
and the bounds to the individual cross-training. In such cases there is also no formal
solution to the originally defined problem.

• The mathematical problem is not solved after a certain time T. A recalibration of the
parameters can aid in reducing the actual solution time – go to step 9.

• A solution is obtained. Continue to next step.

7) Test the solution obtained in step 6) with all the demand scenarios of the set Ω’ . If all
demands are satisfied, the problem is solved. If not, add the unmet scenarios to the
previous elements in Ω* and continue.

8) Select a subset of S2 elements of Ω* that may determine the solution of the problem, by
following the same strategy as in step 0.

9) Solve the mathematical problem by using the set Ω*. If a solution is obtained, return to
step 7). If the problem is not solved after a certain time T, consider parameter
recalibration –next step.

10) As the problem has not been solved, the calculation is done again by using different
parameters. A first attempt may be to modify the parameters (S1, S2 and T). Then go to
step 5.

11) If no result is found, the scope and the level of disaggregation of the problem may be
controlled by adjusting their parameters (H, m, U), where m and U are only applicable in
the option of size leveled planning blocks (see §3.4). After this, the step 3 and the
following are performed. Note that, for some combinations of data, the problem may be
infeasible and then no solution will be returned.

When, in step 10, the parameters S1, S2 and T are modified, the problem solved remains the 
same. Contrarily, the change of the parameters that is done in step 11 implies the solving of a 
relaxed version of the problem: the obtained cross-training will be able to cope with demand 
in shorter periods, when the number of hours per worker (H) is decreased, or fewer changes 
of task will be considered, when fewer planning blocks are considered. The quality of the 
solution approximation obtained is tested in §4.3. 

4.2 Example 

We consider an example that includes a set of products along with a set of tasks that must be 
completed in order to produce these products. In Table 5 the time of each task needed to 
complete each product is shown. 
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Table 5. Problem Scenario for Example 

Product 

Hours of task 1..5 to complete one 
unit of product 1..4 

Hours per 
product 1 2 3 4 5 

1 3 2 5 5 0 15 

2 4 6 5 5 0 20 

3 0 2 3 3 2 10 

4 0 2 5 4 4 15 

We assume that the work team has to be able to cover demand scenarios up to 60%, 40%, 
40% and 60% of the time devoted to products 1, 2, 3 and 4, respectively. The schema is 
presented graphically in Figure 1. We assume a group of 6 workers, with one absence; 160 
hours of work per worker in the period under consideration (e.g., one month); that a worker 
can be trained in up to 4 tasks; and no previous cross-training of the workers. The objective is 
to determine the cross-training by minimizing the total number of tasks in which the workers 
will be cross-trained and by guaranteeing the stated conditions. 

Figure 1. Example’ Schema 

Given 5 workers to be present (non-absent), 800 hours of work will be available. A maximum 
of 480, 320, 320 and 480 hours can be devoted to products 1 through 4, allowing for 
maximum production of 32, 16, 32 and 32 units, respectively. Following the algorithm in 
§4.1, the set Ω’  is generated. Ω’ includes 9,565 demand scenarios. Continuing to step 4) and
taking S1=10, a subset of 10 demand scenarios is selected to form the subset Ω* (Table 6). 

Table 6. Solution to Example, subset Ω* 

Product 

Demand 
scenario (θ) 1 2 3 4 Dθ

1

1 32 0 32 0 20.09 

2 0 0 32 32 20.09 

3 32 16 0 0 20.06 

4 0 16 0 32 20.06 

5 31 0 32 1 11.00 
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6 1 0 32 31 11.00 

7 12 15 32 0 10.99 

8 0 15 32 12 10.99 

9 1 15 32 11 10.99 

10 11 15 32 1 10.99 
1Value to sort the demand scenarios, see §4.1, step 4) of 
the procedure 

A solution for the subset Ω*  is obtained in step 6), and is tested with all the demand scenarios 
of the set Ω’  in step 7). All the scenarios of Ω’ can be met, and the problem is solved. The 
solution obtained is presented in the form of a skill-matrix shown in Figure 2. 

Worker 

Task 1 2 3 4 5 6 

1  • • 
2   • • •
3  • • •  
4 • •  •
5  •   • •

• • • • indicates that worker w is able to perform task i    

Figure 2. Example: solution as skill matrix 

4.3 Evaluation of the CODEMI approach 

The solution procedure involves widening the scope and disaggregation level of the problem 
in the cases where a solution is not obtained after a pre-specified time. This is done by 
adjusting the parameters (H, m, U), where m and U are only applicable for size leveled 
planning blocks. By doing so, a relaxed version of the problem is created. The cross-training 
obtained therein will be able to meet the demand in fewer periods, when the number of hours 
per worker (H) is decreased, fewer task changes are allowed, or when fewer planning blocks 
are considered. To evaluate the effect of these relaxations on the obtained result, we examine 
the expected gaps formed by using this approach. The instance sizes are limited in order to 
obtain both exact solutions and solutions using the CODEMI approach. 
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Table 7. Instances for Gap Evaluation, (Fixed Planning Blocks) 

Products(J)= 4; Tasks(I)= 5; Employees(W)=5; Absentees(A)=1, no previous experience 

Time of task i (columns) to complete a unit of product j (rows) (vkj). Positions in bold are entire values randomly 
generated between 0 and 10 while the other ones are taken 0.  

vkj
A= [ 1 7 0 0 0 vkj

B= [ 1 0 7 0 0
0 8 10 0 0 0 2 7 0 0
0 0 3 5 0 0 0 2 9 0
0 0 0 6 2] 0 0 10 7 10]

vkj
C= [ 6 3 5 7 0 vkj

D= [ 9 1 6 3 6
4 7 10 4 0 7 6 7 7 7
0 1 7 8 8 6 6 2 8 10
0 3 4 0 0] 2 4 6 9 3]

Upper bounds of proportion of time devoted to products 1..J (pj): 4 instances randomly generated by assigning to 
each component a randomly generated value between 0.1 and 0.8. 

pj
A  = [ 0,64 0,71 0,11 0,65 ] 

pj
B  = [ 0,35 0,63 0,42 0,73 ] 

pj
C  = [ 0,4 0,69 0,59 0,53 ] 

pj
D  = [ 0,23 0,36 0,53 0,76 ] 

pj
E  = [ 0,6 0,15 0,78 0,33 ] 

Upper bounds of the number of kinds of tasks for which worker w can be trained (nw): the next 5 instances are 
considered, 

nw
A  = [ 5 5 5 5 5 ] 

nw
B  = [ 5 5 5 2 2 ] 

nw
C  = [ 5 5 2 2 2 ] 

nw
D  = [ 4 4 4 2 2 ] 

nw
E  = [ 3 3 3 3 3 ] 

Table 7 and Table 8 present the input conditions for the instances solved corresponding to 
fixed planning blocks and size leveled planning blocks, respectively. A total of 200 instances 
were considered. A total of 178 were solved successfully with the remaining 22 terminating 
as infeasible. We remark that this is a function of the initial problem conditions rather than 
the algorithm, and highlights the general difficulty in predetermining the most appropriate a 
priori  resource levels. Results obtained from the analyses are summarized in Table 9. Note 
that difference between the cross-training needed in the exact solution and in the 
approximation is always below 10%, with averages below 1%. In practice, feasible solutions 
for the initial problem could be necessary. The development of heuristics to start with a 
feasible problem instances for this problem is an objective of future research.  
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Table 8. Instances for Gap Evaluation, (Size Leveled Planning Blocks) 

Products(J)= 4; Tasks(I)= 5; Employees(W)=5; Absentees(A)=1, no previous experience 

Time of task i (columns) to complete a unit of product j (rows) (vkj). Positions in bold are values random generated 
between 0 and 0.09, with two decimals, while the other ones are taken 0.  

vkj
A= [ 0.01 0.08 0 0 0 vkj

B= [ 0.01 0.07 0.05 0 0 
0 0.08 0.01 0 0 0.05 0 0.01 0.07 0 
0 0 0.03 0.08 0 0 0 0.03 0.02 0.08 
0 0 0 0.03 0.09 ] 0 0 0.06 0.04 0.04 ] 

vkj
C= [ 0.08 0.05 0.06 0 0 vkj

D= [ 0.06 0.03 0 0.08 0 
0.08 0.08 0.08 0.05 0 0.02 0.02 0.09 0.01 0.07 

0 0.01 0 0 0.09 0.01 0.01 0.03 0.06 0 
0 0.03 0.06 0.09 0.08 ] 0.06 0 0 0.08 0.05 ] 

Upper bounds of proportion of time devoted to products 1..J (pj): 4 instances randomly generated by assigning to 
each component a randomly generated value between 0.1 and 0.8. 

pj
A  = [ 0.39 0.74 0.77 0.13 ] 

pj
B  = [ 0.26 0.59 0.31 0.26 ] 

pj
C  = [ 0.19 0.69 0.42 0.5 ] 

pj
D  = [ 0.75 0.76 0.23 0.78 ] 

pj
E   = [ 0.19 0.77 0.34 0.75 ] 

Upper bounds of the number of kinds of tasks for which worker w can be trained (nw): see Table 7. 

Table 9. Results of Gap Evaluation 

Differences in cross-training  

Test Planning Blocs Instances Parameter changed Maximum Minimum Average 

1 Fixed Table 7 Time of work per worker (H) 
from 100 to 75 

7,14% -8,33% -0,06% 

2 Size leveled Table 8 Time of work per worker (H) 
from 100 to 75 

0,00% -7,14% -0,38% 

3 Size leveled Table 8 Upper bound of the percentage 
that each block is of the total work 
time (U), from  5% to 10% 

7,69% 0,00% 0,62% 

4.4 Computational experience 

The instances with fixed planning blocks consider 5 products, 12 tasks, 8 employees and 1 
absence. The instances with size leveled planning blocks are similar in dimension but 
marginally higher: 6 products, 12 tasks, 10 employees and 1 absence. For clarity, and to 
allow for slightly larger problem instances, we did not consider previous experience in these 
comparisons. We note that with size leveled planning blocks, the dimensions of planning 
blocks is homogeneous. However, with fixed planning blocks, the widest planning block 
determines the granularity of the entire problem; to widen the scope and the level of 
disaggregation implies, in general, higher losses of precision. Size leveled planning blocks 
make it easier to widen the problem and then to solve for instances with greater dimension.  
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Table 10. Instances for Computational Evaluation, (Fixed Planning Blocks) 

Products(J)= 5; Tasks(I)= 12; Employees(W)=8; Absentees(A)=1, no previous experience 

Time of task i (columns) to complete a unit of product j (rows) (vkj). Positions in bold are integer values randomly 
generated between 0 and 10 while the other ones are taken 0.  

vkj
A= [ 2 6 2 1 0 0 0 0 0 0 0 0 vkj

B= [ 9 3 5 3 1 9 0 0 0 0 0 0
8 1 6 10 0 0 0 0 0 0 0 0 8 1 2 3 7 4 0 0 0 0 0 0
0 0 0 0 10 5 6 1 0 0 0 0 0 0 8 1 8 7 0 10 1 5 0 0
0 0 0 0 0 0 0 0 1 2 9 9 0 0 0 0 0 0 7 8 10 6 9 4
0 0 0 0 0 0 0 0 1 7 5 3] 0 0 0 0 0 0 2 9 8 9 4 1]

vkj
C= [ 6 3 5 5 9 3 0 1 0 0 0 0 vkj

D= [ 10 4 6 6 2 2 3 9 1 7 5 4
8 1 0 8 10 10 8 9 0 0 0 0 2 2 10 3 6 3 10 2 7 2 2 7
0 0 2 10 1 3 8 2 1 2 0 0 5 2 1 3 4 7 1 3 8 3 4 9
0 0 0 0 1 1 6 10 1 5 3 2 9 4 3 6 4 5 5 9 4 4 6 8
0 0 0 0 3 4 3 6 5 8 9 4] 4 10 10 10 5 2 3 1 8 5 4 6]

Upper bounds of proportion of time devoted to products 1..J (pj): 5 instances randomly generated by assigning to each 
component a randomly generated value between 0.1 and 0.8. 

pj
A  = [ 0.33 0.58 0.58 0.47 0.17 ] 

pj
B  = [ 0.18 0.57 0.57 0.36 0.39 ] 

pj
C  = [ 0.67 0.32 0.75 0.20 0.47 ] 

pj
D  = [ 0.16 0.41 0.76 0.75 0.70 ] 

pj
E  = [ 0.22 0.53 0.51 0.66 0.67 ] 

Upper bounds of the number of kinds of tasks for which worker w can be trained (nw): the next 5 instances are 
considered, 

nw
A  = 

[ 12 12 12 12 12 12 12 12 ] 
nw

B  = 
[ 12 12 12 12 3 3 3 3 ] 
nw

C = 
[ 12 12 12 7 7 3 3 3 ] 
nw

D = 
[ 7 7 7 7 3 3 3 3 ] 
nw

E  = 
[ 5 5 5 5 5 5 5 5 ] 

For this computational evolution, we ran a total of 100 instances with fixed planning blocks, 
and 100 instances with size leveled planning blocks. The instances are generated by 
considering the number of units of time to perform the tasks to complete a unit of product 
(vkj); the upper bounds on proportion of time devoted to products (pj); and the upper bounds 
on the number of kinds of tasks for which worker w can be trained (nw). Regarding the 
number of units of time to perform the tasks to complete a unit of product, different patterns 
of zero and non-zero models are included to reflect a range possible scenarios on the 
similitude among tasks. Non-zero values are randomly generated between 0 and 10 and 
rounded. Instances of upper bounds on the proportion of time devoted to products are 
randomly generated by assigning to each component a randomly generated value between 0.1 
and 0.8. For the upper bounds on the number different tasks for which a worker can be 
trained, instances have been defined to include balanced and unbalanced values and multiple 
levels.  
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Table 11. Instances for Computational Evaluation, (Size Leveled Planning Blocks) 

Products(J)=6; Tasks(I)=12; Employees(W)=10; Absentees(A)=1, no previous experience 

Time of task i (columns) to complete a unit of product j (rows) (vkj). Positions in bold are values randomly 
generated between 0 and 0.09, with two decimals, while the other ones are taken 0.  

vkj
A= [ 0.05 0.05 0.04 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.05 0.03 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.07 0.02 0.10 0.02 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.01 0.01 0.08 0.06 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.01 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.09 ] 

vkj
B= [ 0.06 0.06 0.05 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.05 0.03 0.02 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.02 0.04 0.04 0.09 0.04 0.03 0.00 0.00 0.00 
0.00 0.00 0.00 0.05 0.10 0.03 0.04 0.03 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.03 0.06 0.06 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.03 0.06 0.03 ] 

vkj
C= [ 0.09 0.00 0.08 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.07 0.08 0.03 0.10 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.09 0.07 0.03 0.06 0.06 0.07 0.09 0.00 0.00 0.00 
0.00 0.00 0.07 0.01 0.05 0.03 0.04 0.06 0.01 0.08 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.08 0.02 0.08 0.06 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.05 0.05 0.03 ] 

vkj
D= [ 0.04 0.06 0.03 0.05 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

0.01 0.08 0.02 0.04 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.08 0.09 0.04 0.01 0.08 0.06 0.02 0.09 0.00 0.00 
0.00 0.00 0.07 0.08 0.02 0.01 0.05 0.07 0.10 0.02 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.07 0.08 0.09 0.06 0.07 
0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05 0.08 0.10 0.05 0.08 ] 

Upper bounds of proportion of time devoted to products 1..J (pj): 5 instances randomly generated by assigning 
to each component a randomly generated value between 0.1 and 0.8. 

pj
A  = [ 0.61 0.72 0.52 0.32 0.21 0.61 ] 

pj
B  = [ 0.59 0.29 0.22 0.15 0.41 0.50 ] 

pj
C  = [ 0.72 0.75 0.11 0.44 0.19 0.19 ] 

pj
D  = [ 0.68 0.44 0.25 0.80 0.60 0.12 ] 

pj
E  = [ 0.55 0.57 0.15 0.79 0.27 0.79 ] 

Upper bounds of the number of kinds of tasks for which worker w can be trained (nw): see Table 10. 

The calculation of the instances in which fixed planning blocks are used have been performed 
by taking parameter H, the time of work per worker, to be 100; H defines the scope of the 
problem, and the parameters of the resolution procedure are established as follows: S1, 
number of demand scenarios selected from the initial set, 15; S2, number of selected scenarios 
in the successive selections of subsets, 5; and T, the maximum computational time of 120 
minutes for the step 4 of the procedure. A summary of the data for 100 instances are shown in 
Table 10. A total of 95 instances were solved with the initial parameters; 4 required a change 
of the strategy to S1=10, S2=5; and 1 was solved when the scope of the problem was 
diminished by taking H, time of work per worker, 75 hours. The number of attempts until a 
solution was obtained ranges from 1 to 29, while the solution time ranges from 47 seconds to 
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29 hours, 8 minutes using IBM ILOG CPLEX 12.1.0 on an Intel(R) Pentium(R) D 3.4GHz 
with 2GB RAM.  

To solve instances in which size leveled planning blocks are defined, the initial values of the 
parameters defining the scope and level of problem aggregation are: H, time of work per 
worker, 75; m, minimum number of blocks per product, 3; and U, upper bound of the 
percentage that each block represents of the total work time, 5%. The initial values of the 
resolution procedure parameters are: S1, number of demand scenarios selected from the initial 
set, 15; S2, number of selected scenarios in the successive selections of subsets, 5; and T, the 
maximum calculation time of 120 minutes. Data from the 100 instances that were solved are 
shown in Table 11. A total of 47 instances were solved by maintaining the initial 
characteristics of the problem, 33 of them by maintaining all the initial calculation parameters 
and another 12 using S1=10, and S2=5. Using the proposed approach, the other instances are 
solved by changing the granularity of the problem, in this case by diminishing upper bound of 
the percentage that each block represents of the total work time (U) and the minimum number 
of blocks per product (m). A total of 41 instances were solved with U =15%, m =3; 6 with U 
=20%, m =3; 1 with U =25%, m =3; and, finally, 5 with U =25%, m =2. 

5. Conclusions

We addressed the problem of determining a cross-training skill matrix that a work team must 
have in place in order to meet a level of demand mix variation and workplace absences. 
Demand mix variations are defined in a straightforward manner in order to relate well to 
common business practices, thereby allowing for practical use and future improvements of 
the proposed approach. This paper contributes to the literature on determining appropriate 
cross training levels and skill matrices for groups of workers, wherein we developed a novel 
approach using the CODEMI algorithm for solving problems in this class. An appropriate 
solution is to define demand mix variation by means of establishing the upper bounds for the 
proportion of total time devoted to each product. 

As the problem is defined in terms of ‘level of variation’ and ´level of absenteeism’, the 
scope and level of disaggregation are not part of the original definition problem. The 
influence on the results, which arises from the definition of the parameters that determine the 
scope and level of disaggregation, was analyzed in detail in order to guide their selection in 
real cases. The solution approach we present is based on constraint selection, and we report 
the performance based on computational experience. The approach is effective in solving 
problems in the range selected, with average optimality gaps of less than 1%, with the largest 
gap observed less than 9%.  

The dimensions of the solved instances suggest that the proposed approach and the solution 
method described can be a basis for future, practical applications. For such applications, it 
would be most useful to obtain feasible solutions of the problem, even if they are suboptimal, 
rather than solving a relaxed version of the problem. Future research in developing such an 
approach will extend the practicality of the current study as well as the broader problem of 
determining well-scaled math programming formulations. Extension of our approach and 
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CODEMI algorithm to a heterogeneous set of workers is also of considerable interest for 
future work. The effect on cross-training cost of the variability of demand and of the number 
of workers involved is also an interesting topic for future research. 
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