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Abstract

In university buildings with many rooms spread over different floors, large stu-
dent flows between two consecutive lectures might cause congestion problems.
These congestions result in long queues at elevators or at stairwells, which might
lead to delays in lecture starts. The course timetable clearly has an important
impact on these congestions. This paper presents a two-stage integer program-
ming approach for building a university course timetable that aims at mini-
mizing the resulting student flows. The first stage minimizes the violation of
the teacher and educational preferences by assigning lectures to timeslots and
rooms. The second stage reassigns classrooms to lectures of the timetable of the
first stage and minimizes the student flow. The conceptual model is applied to
the dataset of the Faculty of Economics and Business of the KU Leuven Cam-
pus Brussels and is tested and validated with 21 adapted instances from the
literature. In contrast to a monolithic model, the two-stage model consistently
succeeds in finding good quality feasible solutions. Moreover, the generated
timetables entail significantly reduced student flows compared to the flows of
the manually developed course timetable.
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1. Introduction

The growing student numbers at colleges and universities have resulted in
an enlarged complexity in terms of planning and organization. One of the tasks
that becomes increasingly complex is the development of course timetables.
Daskalaki et al. [1] define the University Course Timetabling Problems (UCTP)
as the construction of a weekly timetable in which all operational rules and
requirements of the academic institution are met and as many wishes as possible
of the staff and students are satisfied. According to Carter and Laporte [2] the
UCTP can be formulated as a multi-dimensional assignment problem. Students
and lecturers need to be assigned to lectures which are in turn assigned to rooms
and timeslots such that no overlap occurs. Course timetables have to satisfy
various requirements of different stakeholders including non-overlap of courses,
free hours, lecturers’ preferences, student preferences, etc. Furthermore, the
course timetable can have a huge impact on queues in stair halls and elevators,
particularly for universities or colleges with many students that follow courses
in a single building. The congestion problems in stair halls and elevators are
caused by traveling students that all have to switch rooms at the same time
between two consecutive lectures. Clearly, student flows can be controlled and
monitored via the course timetables. For example, if the schedules are arranged
so that consecutive lessons take place in rooms situated on the same floor (or on
a floor as close as possible), there will be far fewer queues at the elevators and in
the stairwells. Thus, next to the various constraints and preferences of different
stakeholders, the resulting student flows should also be taken into account when
building the course timetable.

This research was motivated by the UCTP at the KU Leuven Faculty of
Economics and Business (FEB) campus Brussels. As described in Mercy [3] the
FEB campus Brussels has gone through a process of campus consolidation in
which several buildings at different locations in Brussels have been sold and the
lectures of all economic programs have been concentrated at a single location
in the center of Brussels. As a result, over 8000 students daily follow classes in
a single building, which inevitably causes major congestion problems at the el-
evators and the stairwells during lecture transitions. This congestion is already
alleviated by assigning different starting times for the academic and professional
programmes. However, long waiting times and difficult passages remained to
exist. Student flows could also be minimized by maximally spreading the lec-
tures over the day and over the week. However, students and teachers are often
dissatisfied with a timetable with free periods in-between. Being not able to at-
tend or to teach lectures consecutively requires more time for traveling towards
and away from classrooms. Commuting students especially often prefer to have
a compact timetable instead of having free time between lectures. Particularly,
days with only one scheduled lecture should be avoided.

Despite the large complexity in building UCTPs, many educational institutes
still develop their UCTP manually, which requires a lot of time and creativity of
the planners. It is nearly impossible for human planners to solve the enormous
puzzle taking into account the constraints and preferences of all stakeholders, let
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alone to incorporate the resulting student flows. After showing that a monolithic
integer programming (IP) model is intractable for a state-of-the-art commercial
solver for solving real-life UCTPs taking into account student flows, this paper
presents a two-stage IP approach. In the first stage, lectures are assigned to
timeslots taking into account the various constraints and maximizing the stake-
holders’ preferences. The second stage uses the timetable of the previous stage
as input and reassigns the classrooms with the objective of minimizing the re-
sulting student flows. Through extensive computational tests, we show that,
in contrast to a monolithic IP, this two-stage IP approach is capable of finding
good quality solutions with minimized student flows for real-life UCTPs.

The remainder of this paper is organized as follows: Section 2 discusses
related literature of different timetabling problems, modeling and solving tech-
niques. Section 3 introduces the timetabling problem of the KU Leuven Campus
Brussels. Next, a mathematical formulation for the problem is discussed in Sec-
tion 4, followed by a discussion of the solution method used in Section 5. Section
6 subsequently applies the model to the data of the Faculty of E&B of the KU
Leuven Campus Brussels. The latter section also reports on results from tests
using data available from the literature. Section 7 concludes this paper and lists
directions for future research.

2. Literature Review

In the following subsections, we first give an overview of the solution tech-
niques that have been developed in the literature. Next, we look at the issue of
compact timetables, where free hours between consecutive lectures are avoided
as much as possible as this is preferred by most students and staff. In the third
subsection, we discuss the literature on the incorporation of student flows into
the timetabling problem. In the last subsection, we outline the approach taken
in this paper.

2.1. Solution Techniques

Various methods have been proposed for automating the development of
course timetables ([4]). Overviews were given by Carter and Laporte ([5], [2]),
Schaerf [6], Burke and Petrovic [7], Petrovic and Burke [8], Lewis [9], MirHassani
and Habibi [10] and Babaei et al. [11]. Below, we discuss three approaches that
are most widely used for course timetabling in more detail, namely graph color-
ing, metaheuristic approaches, and mathematical programming. Other solution
approaches include constraint logic programming (e.g., Guéret et al. [12]), case-
based reasoning (e.g., Burke et al., [13] and [14]), and neural networks (e.g.,
Carrasco and Pato [15]).

Graph coloring approaches are often used for timetabling thanks to the ease
of implementation (Petrovic and Burke [8]). In graph coloring approaches the
timetabling problem is modeled as a graph in which the nodes correspond to
the events (lectures) and the arcs correspond to the event-clash constraints (De
Causmaecker et al., [16]). Next, each node needs to be assigned to a color,
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which represents a timeslot, such that connected nodes have a different color.
The goal is to find a solution in which the number of colors used does not exceed
the number of available timeslots (Lewis [9]).

Metaheuristics start with one or a set of solutions which are iteratively im-
proved using local search operators with a protection mechanism that avoids
getting stuck in a local optimum. Recent examples of metaheuristic approaches
applied to UCTPs can be found in De Causmaecker et al. [16], Lü and Hao
[17], Aladag et al. [18], Zhang et al. [19] and Geiger [20]. A hyperheuristic is a
framework in which an upper-level metaheuristic selects the most appropriate
heuristic out of a set of lower-level heuristics to solve a particular optimization
problem (Petrovic and Burke, [8]). Hyperheuristics are a growing research topic
for tackling timetabling problems (Burke and Petrovic [7]). Hybrid approaches
combine different techniques, for instance Bellio et al. [21] present a hybrid local
search approach, while Gunawan and Kien Ming [22] propose a hybrid approach
that combines Lagrangian relaxation and simulated annealing.

In the past, due to computational difficulties the use of mathematical pro-
gramming for solving UCTPs has been limited to small size instances. However,
thanks to strong advances in computer software and hardware, and in IP formu-
lations, mathematical programming approaches for timetabling problems have
become more popular ([1], [23]). Examples of IP formulations for UCTPs can be
found in [24], [1], [25] and [26]. One advantage of mathematical programming
approaches is the ease of incorporating additional soft constraints ([2]).

Unfortunately, UCTPs continue to cause problems for the planning depart-
ments of universities and colleges, because implementations of the proposed
solution techniques are scarce. According to McCollum [27] this is due to in-
complete data and the difficulty of incorporating implicit knowledge about the
preferences of lecturers and the scheduling policies. There are a few notable
exceptions. Daskalaki et al. [1] apply an integer programming model to the
timetabling problem of the department of Electrical and Computer Engineering
at the University of Patras. De Causmaecker et al. [16] use a decomposed meta-
heuristic approach to solve the timetabling problem for the KaHo Sint-Lieven
School of Engineering. Dimopoulo and Miliotis [24] report on the implementa-
tion of a computer system for the joint development of a course and examination
timetable at The Athens University of Economics and Business. Schimmelpfeng
and Helber [26] describe the implementation of an integer programming ap-
proach to create a complete timetable of all courses for a term at the School of
Economics and Management at Hannover University. Badri [28] develops a two-
stage optimization model to solve a faculty-course-time timetabling problem at
United Arab Emirates University. Finally, Al-Yakoob et al. ([29] and [30]) use
integer programming to obtain, respectively, a course and exam timetable at
Kuwait University.

As shown in this paper, computational difficulties inherent to huge IP models
can be overcome by decomposing the problem in separate stages that can be
solved efficiently with state-of-the-art IP solvers. Badri [28] also uses a two-
stage multi-objective scheduling model for the assignment of faculty members
to courses and timeslots. Four types of preferences, each with an associated
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priority, are grouped into one objective function: the load requirement for each
faculty, the satisfaction of the number of available classrooms, the number of
evening classes and personal preferences of faculties with respect to course-time
assignments. The results of the first stage, the faculty-course assignments, are
the input for the second stage. The second stage assigns faculties to timeslots.
Burke et al. [31] propose a general framework for the decomposition of large
problems into multiple restricted submodels, which only consider a subset of
the objectives at first. The solutions to the subproblems are then aggregated to
obtain feasible solutions to the original problem. An advantage to their method
is that it is easily implemented using a general IP solver and provides bounds
on the solution quality.

2.2. Compact Timetables

Students and teachers often prefer compact timetables. A compact timetable
refers to the absence of free hours between consecutive lectures. Below we de-
scribe three contributions that also focus on compact timetables. Santos et al.
[32] include constraints regarding the number of free periods in the timetables
of the teachers. A compact and an extended formulation are proposed. The au-
thors use cut and column generation to increase the dual bounds of the extended
formulation. Dorneles et al. [33] present a mixed integer linear programming
model to a high school timetabling problem. Among the different requirements
that are considered in Brazilian schools, two compactness constraints must be
met on a teacher’s schedule: the minimization of working days and the avoid-
ance of idle timeslots. The authors propose a fix-and-optimize heuristic com-
bined with a variable neighbourhood descent method using three different types
of decomposition (class, teacher and day). Burke et al. [31] distinguish four
penalty terms: classroom capacity, spread of the lectures of a course, time com-
pactness and classroom stability. The penalization of classroom capacity and
stability is respectively done by penalizing classrooms if insufficient seats are
available and distinct classrooms are used for different lectures of a course. The
spread of the lectures is penalized when the actual spread is smaller than the
prescribed spread. For a given curriculum, every time a lecture is not adjacent
(an isolated lecture) to another lecture on the same day, time compactness is
penalized.

2.3. Student Flows

As mentioned earlier, the motivation of this paper is the congestion that
occurs in the corridors and at the stairwells at the Faculty of Economics and
Business at KU Leuven Campus Brussels and the observation that the timetable
has an impact on this. Therefore, we discuss previous work that incorporates
the traveling of students between consecutive lectures into the timetabling prob-
lem. To the best of our knowledge, the studies in [29], [30], [34], [35], [36], and
[37] are the only ones that, to a limited extent, incorporate student flows. Al-
Yakoob and Sherali [29] present a Mixed Integer Programming (MIP) model
for class timetabling problems and consider a related congestion topic. The
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authors address the problem of parking and traffic congestions for students and
faculty members when lectures are inadequately spread over all the available
timeslots. Students and faculty members are adequately spread over all the
available timeslots by constraints that impose an upper bound on the number
of students that follow classes (take exams) during each timeslot. These bounds
are not necessary the same for different timeslots. For example, the timeslots
when employees and staff start and finish working can have a smaller upper
bound. Student flows are also taken into account by Al-Yakoob et al. [30].
The authors present a MIP for exam timetabling and address the same topics:
parking and traffic congestions and an inadequately spread of the exams. There-
fore, scheduling consecutive exams at distant campuses is undesirable. Parking
and traffic congestions are addressed by imposing a constraint on the number
of students that can be involved in one exam period. Pongcharoen et al. [34]
present a stochastic optimization model for the UCTP. They tackle the problem
of student movement by a soft constraint ensuring that students attend lectures
in the same classroom as much as possible. More recently, Ferdoushi et al.
[35] also consider the minimization of the movement of students between rooms
through soft constraints. The authors develop a modified hybrid particle swarm
optimization approach to a highly constrained realistic environment in the Com-
puter Science and Engineering department of Khulna University of Engineering
& Technology, Bangladesh. In both papers, distances between classrooms are
not taken into account. Hertz [36] uses tabu search and graph theory for solving
timetabling problems. In addition to the classical feasibility constraints of the
timetable, precedence requirements and geographical constraints are taken into
account. Precedence requirements are, for example, lectures which should be fol-
lowed by exercise sessions in the same day. Geographical constraints are related
to the distance of two classrooms of two consecutive lectures. The objective
function penalizes infeasible timetables and pairs of consecutive lectures at dis-
tant classrooms. Rudová et al. [37] use a generic iterative forward search and
a branch-and-bound algorithm for a complex university timetabling problem.
They develop a generic method that is not specifically tailored to a single prob-
lem type so that it can be used in practice to solve different real-life timetabling
problems with different constraints. The authors also consider the distances be-
tween rooms and penalize class assignments that require students or instructors
to travel large distances between consecutive lectures.

2.4. Outline Of The Current Article

The approach presented in this paper aims to develop compact timetables for
which the resulting students flows are minimized in order to avoid congestions
in the corridors and at the stairways. To achieve the former objective, two-hour
free time periods are prevented by a hard constraint. To achieve the latter
objective, the flow of students between consecutive lectures is modeled in detail
using a graph that represents the faculty building, where the flow through each
arc and the resulting travel times are optimized by changing the assignment of
lectures to rooms.
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Our method will be tested on a real-life case as well as on instances avail-
able in the literature. International timetabling competitions (ITC) regularly
provide a number of benchmark problems that are widely used in timetabling
literature to develop computational experiments. Badoni et al. [38] describe a
hybrid algorithm combining a genetic algorithm with local search using events
based on groupings of students to solve a UCTP. The authors applied their algo-
rithm on instances based on the datasets from the first international timetabling
competition (ITC2002). Hao and Benlic [39] combine tabu search and IP for
finding new lower bounds for the ITC2007 curriculum based course timetabling
problem. Phillips et al. [25] validate their IP model for solving a UCTP through
a real-life case at the University of Auckland and on instances from the ITC2007.
Dorneles et al. [33] used the ITC2011 instances to test their algorithm dedicated
to a high school timetabling problem.

3. Problem Description

3.1. The KU Leuven Campus Brussels Timetabling Problem

In the timetabling problem for the KU Leuven Campus Brussels, a weekly
timetable needs to be built, where lectures (events) need to be assigned to
timeslots and rooms. Two things need to be taken into account:

• Teachers are already assigned to lectures.

• A series is a group of students that have exactly the same timetable. For
each series, it is known in advance how many students there are in the
series and which lectures they need to attend.

Series are divided in four different types of education: daytime education,
morning education, evening education and evening education only on Tuesday
and Thursday. The number of available timeslots for a series depends on the
type of education of the series. These Educational Preferences (EPF) can be
violated by scheduling a lecture at a timeslot when some student series are
unavailable to attend this lecture due to their type of education.

Every teacher can submit his teaching preferences regarding the timeslots
at the start of the academic year. These Teacher Preferences (TPF) can be
violated by scheduling a lecture at a timeslot when a teacher does not prefer to
teach this lecture. A first objective is then the minimization of the violation of
the aforementioned teacher preferences and educational preferences.

An additional concern in building the timetable for the KU Leuven Campus
Brussels, is the congestion caused by students traveling from one classroom
to another in between consecutive lectures. A consequence of this congestion
is that lectures often start late because it takes a lot of time for students to
travel to their next classroom. Therefore, we include the minimization of the
maximum of the travel time for each series of students for all timeslots as a
second objective.
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3.2. Incorporating Student Flows

To model the flow and resulting travel times of students, we employ some of
the modeling techniques used in traffic assignment models. Traffic assignment
models try to predict traffic flows and the resulting congestion and travel times
on each route in the network, given the estimated number of people who want
to travel between different origin-destination pairs [40]. They represent the road
network as a graph G = (N ,A), where the setN of nodes represents destinations
or junctions and the set A of arcs the roads between them. Analogously, to
model the flow and resulting travel times of students, we represent the layout of
the building by a graph in which a number of adjacent classrooms are grouped
into a single node. The number of classrooms that are combined into one node
is based on a trade-off between the complexity of the model on the one hand
and its realism on the other hand. Next, only nodes which represent physical
locations that are adjacent to each other in the actual building are connected
by an arc, through which a ‘flow’ of students can pass. This implies that it
is possible that students who travel from some classroom A to some classroom
B have to pass through multiple arcs to reach their destinations (e.g., if they
have to travel from the 3rd floor to the 5th floor, they need to pass through
the arc for the stairs between the 3rd and 4th floor first, and then through the
arc for the stairs between the 4th and 5th floor). Secondly, in reality it can be
that there are multiple routes one can take to reach the same destination from
a given location. Therefore, in the model a route choice probability has to be
specified to determine the percentage of students that will cause flow in each
possible arc of a certain route. Figure 1 gives an example of layout of a building
and the corresponding graph to model the student flows.

An important element in the analysis of traffic assignment models is the no-
tion of congestion [40]. As traffic volume on an arc increases, the average travel
speed on the link decreases, until a situation of total congestion is reached. The
travel time of a link is modeled with a link performance function, which relates
the travel time through a link to the volume of traffic on that link. A similar con-
cept has been observed for pedestrian flows. In the literature this relationship
between crowd density and walking speed is called the ‘fundamental diagram’,
because of its importance in models describing human walking behavior (for a
general overview of the pedestrian walking behavior research, see e.g. [41] and
[42]). Since we are interested in the travel time of students between classrooms,
we will describe this concept in more detail.

Schadschneider & Seyfried [43] give an overview of the state of empirical
research and examine the data relating to the fundamental diagram. Their
data only consider planar walking facilities such as corridors and do not apply
to stairs. They observe that there is a lot of variance in the data, which has
been attributed to a variety of factors. Secondly, there is no consensus whether
there is even any significant difference between uni- and multidirectional flows.
Therefore, we do not distinguish between uni- and bidirectional flows through
an arc.

Based on the data in [43], we assume the following relationship between
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Figure 1: An example of a building layout and the corresponding graph. In this building,
there are 7 classrooms. Rooms A and B are assigned to node 1, rooms C and D to node 3,
rooms E and F to node 4 and room G to node 6. Rooms E, F , G and the entrance are on the
first floor and rooms A, B, C and D are on the second floor, so arc (2, 5) represents stairs. It
is clear that in this specific layout only one route can be taken between any two classrooms.

crowd density ρ, and walking speed v, i.e.

v(ρ) =
α

ρ
, (1)

where α is a scaling parameter. The reason for this choice is that the travel time
as a function of crowd density is then linear. Another possibility is of course
to assume a linear relationship between crowd density and walking speed, and
afterwards fit a piecewise linear function to the resulting nonlinear travel time
function. There are, however, two arguments to support our choice: (i) at
high crowd densities, walking speed does not actually reach zero, but ‘turbulent
crowd movements’ are observed [44], and (ii) in traffic assignment models it
has been observed that asymptotic travel time functions empirically lead to
unrealistically high travel times [45]. Other empirical studies have looked at the
fundamental diagram for the movement on stairs. As expected, walking speed
here is lower than on planar surfaces, see e.g. [46]. Therefore, we include a
correction term γ ∈ [0, 1], such that

v(ρ) = γ

(
α

ρ

)
. (2)

Then the travel time through arc (i, j) is the length of the physical location
represented by this arc divided by the walking speed of the students walking
through it; that is, it depends on the total flow of students going through the
arc:

Tarc
tij (ρ) =

lengthij

v(ρ)
=

lengthij

α
ρ+

lengthij

vmax
. (3)
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The second term in equation (3) ensures a minimal travel time when the density
is zero. Furthermore, the crowd density ρ at time t equals the number of students
that travel through arc (i, j) at time t, denoted by Ftij , divided by the surface
area of the physical location represented by this arc, i.e.

ρ =
Ftij

areaij
. (4)

This representation can also be extended to a situation where there are
multiple buildings. In this case, it suffices to define an arc between the entrances
of each pair of buildings and assume a fixed travel time for that arc, since in
public spaces and roads the density is ‘given’ and only marginally influenced by
the number of traveling students.

4. MIP formulation

Building on the explanation of the previous section, we are now able to derive
a mixed integer programming formulation for our model to jointly minimize the
violation of teacher and educational preferences on the one hand and the travel
times of students on the other hand.

4.1. Notation

• Constants

– δ: number of available timeslots in one day. This number is assumed
to be the same for every day that lectures can be scheduled.

• Sets

– c, d ∈ C: classrooms. Every lecture needs a classroom of the correct
type and with sufficient capacity. Different types of classrooms, for
example PC-rooms and laboratories, can exist.

– i, j ∈ N: nodes

– k ∈ K: days. These are the days (Monday=1, ..., Friday=5) that
lectures can be scheduled.

– l,m ∈ L: lectures. Every lecture takes two hours, is unique and is
scheduled once. A course that consists of, for example, two lectures
is scheduled twice.

– p ∈ P: paths

– r ∈ R: teachers

– s ∈ S: series of students

– t ∈ T: available timeslots. These are the different time periods that
a lecture can be scheduled.

• Subsets
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– Cl : classrooms that can be used to schedule lecture l

– LC
c : lectures that can be scheduled in classroom c

– LR
r : lectures that are taught by teacher r

– LS
s : lectures that need to be attended by series s

– Pcd : all paths that connect room c and room d

– Tk : timeslots on day k

• Parameters

– apcd : percentage of students who use path p to travel from room c to
room d

– bijp : equals 1 if arc (i, j) is on path p, 0 otherwise

– clt : penalty cost for scheduling lecture l in timeslot t. These costs
include both the teacher preferences and educational preferences.

– ns : number of students in series s

• Decision variables

– xltc ∈ {0,1}: equals 1 if lecture l is scheduled at time t in room c, 0
otherwise

– Utsp ∈ [0,1]: the percentage of students from series s who use path p
at time t

– Ftij ≥ 0: the total student flow through arc (i, j) at time t

– Tarc
tij ≥ 0: the travel time through arc (i, j) at time t

– Ttotal
tsp ≥ 0: the total travel time for those students of series s that

use path p at time t

– Tmax = maxt,s,p{Ttsp}

4.2. The Model

The first set of constraints ensure a feasible timetable. These are hard con-
straints. Constraint set (5) implies that every lecture has to be scheduled in a
feasible timeslot and classroom. Constraints (6) guarantee that every teacher
can teach at most one lecture at a particular timeslot. This lecture is able to
be taught by this teacher and is scheduled in a feasible timeslot. Constraint set
(7) ensures that, for each timeslot, at most one feasible lecture can be scheduled
in each classroom. A series of students can only attend one lecture at a time.
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This is implied by constraint set (8).

∀l ∈ L :
∑
t∈T

∑
c∈Cl

xltc = 1 (5)

∀r ∈ R,∀t ∈ T :
∑
l∈LR

r

∑
c∈Cl

xltc ≤ 1 (6)

∀t ∈ T,∀c ∈ C :
∑
l∈LC

c

xltc ≤ 1 (7)

∀s ∈ S,∀t ∈ T :
∑
l∈LS

s

∑
c∈Cl

xltc ≤ 1 (8)

Labour legislation also enforces a number of constraints regarding the work-
ing hours of teachers. The first constraint is that teachers cannot teach more
than ∆1 lectures of two hours per day. Constraints (9) ensure these terms of
employment. Next, teachers are also not allowed to teach more than ∆2 lectures
consecutively. This is enforced by constraints (10). Here Q denotes a subset of
consecutive timeslots.

∀r ∈ R,∀k ∈ K :
∑
l∈LR

r

∑
t∈Tk

∑
c∈Cl

xltc ≤ ∆1 (9)

∀r ∈ R,∀k ∈ K,∀Q ⊂ Tk , |Q| = ∆2 + 1 :
∑
l∈LR

r

∑
t∈Q

∑
c∈Cl

xltc ≤ ∆2 (10)

Furthermore, teachers are not allowed to teach in the first timeslot if they taught
in the last timeslot on the previous day. Constraint set (11) shows how this
prohibition is enforced. Finally, the legislator does not allow that a docent
teaches in the first and last timeslot of a particular day. This is implied by
constraint set (12).

∀r ∈ R,∀k ∈ {1, ..., |K| − 1} :
∑
l∈LR

r

∑
c∈Cl

(xl,kδ,c + xl,kδ+1 ,c) ≤ 1 (11)

∀r ∈ R,∀k ∈ K :
∑
l∈LR

r

∑
c∈Cl

(xl,1+(k−1)δ,c + xl,kδ,c) ≤ 1 (12)

Constraints (13) are the compactness constraints: these constraints avoid two-
hour free periods in the timetables. If a lecture is scheduled at timeslots t and
t+ 2 of a particular day, then another lecture needs to be scheduled at timeslot
t+ 1 of the same day.

∀s ∈ S,∀k ∈ K,∀t ∈ {δ(k − 1) + 1, ..., δk − 2} :∑
l∈LS

s

∑
c∈Cl

(xltc + xl,t+2 ,c − xl,t+1 ,c) ≤ 1 (13)

The second set of constraints determines the student flows. For every series
of students s we need to determine which paths they use given the assignment
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of lectures to classrooms. To this end, Utsp indicates the percentage of students
from series s that use path p at time t. The relationship between xltc and Utsp

is then as follows:

∀t ∈ {1, ..., |T| − 1},∀s ∈ S,∀l,m ∈ LS
s ,∀p ∈ P,∀c ∈ Cl , d ∈ Cm :

Utsp ≥ apcd (xltc + xm,t+1 ,d − 1) (14)

However, we also need to include the flow caused by students who leave the
building when they do not have class at time t+ 1, and students who enter the
building when they did not have class at time t. The following two expressions
include the first and second type of flow respectively:

∀t ∈ {1, ..., |T| − 1},∀s ∈ S,∀l ∈ LS
s ,∀p ∈ P,∀c ∈ Cl :

Utsp ≥ apc,exit

xltc −
∑
m∈LS

s

∑
d∈Cm

xm,t+1 ,d

 (15)

Utsp ≥ apc,exit

xl,t+1 ,c −
∑
m∈LS

s

∑
d∈Cm

xmtd

 (16)

Then, the flow through each arc (i, j) at time t can be calculated as follows:

∀t ∈ T,∀i, j ∈ N : Ftij =
∑
p∈P

∑
s∈S

nsbijpUtsp (17)

To assure that crowd density does not reach hazardous levels (see e.g. [44]),
the flow through an arc cannot exceed a predetermined maximum level:

∀t ∈ T,∀i, j ∈ N : Ftij ≤ Fmax (18)

Now the travel time through arc (i, j) at time t is derived from the flow as
follows

∀t ∈ T,∀i, j ∈ N : Tarc
tij =

lengthij

α

Ftij

areaij
+

lengthij

vmax
(19)

where the correction factor γ needs to be included if arc (i, j) represents stairs.
Then, the travel time of a given series s from their first classroom c to their
next classroom d is given by the sum of the individual travel times of each arc
(i, j) that is on path p used by that series. When there are multiple paths that
students can take, the travel time of the series is taken as the maximum of the
travel times over all possible paths. To model this, the following two constraints
are added:

∀t ∈ {1, ..., |T| − 1},∀s ∈ S,∀l,m ∈ LS
s ,∀c ∈ Cl , d ∈ Cm ,∀p ∈ Pcd :

−
∑
(i,j)

bijpTarc
tij + Ttotal

tsp ≤M (2− xltc − xm,t+1 ,d) (20)

∑
(i,j)

bijpTarc
tij − Ttotal

tsp ≤M (2− xltc − xm,t+1 ,d) (21)

13



whereM is a large number. These constraints work as follows: if two consecutive
lectures l and m, which are followed by series s, are planned in rooms c and d
respectively, then (20) and (21) reduce to:

−
∑
(i,j)

bijpTarc
tij + Ttotal

tsp ≤ 0 (22)

∑
(i,j)

bijpTarc
tij − Ttotal

tsp ≤ 0, (23)

which is equivalent to Ttotal
tsp =

∑
(i,j) bijpTarc

tij . This means that the travel time
of this series over path p should equal the sum of the individual travel times
of all arcs (i, j) that are on path p. On the other hand, if at least one of the
variables xltc and xm,t+1 ,d equals 0, then

−
∑
(i,j)

bijpTarc
tij + Ttotal

tsp ≤M (24)

∑
(i,j)

bijpTarc
tij − Ttotal

tsp ≤M, (25)

such that nothing is implied for Ttotal
tsp , i.e. Ttotal

tsp can be set to 0. Further-
more, there can be at most one combination of xltc and xm,t+1,d for which both
variables are equal to 1, so Ttotal

tsp is then uniquely defined.
Finally, the maximum travel time Tmax is given by:

∀t ∈ T,∀s ∈ S,∀p ∈ P : Ttotal
tsp ≤ Tmax (26)

We do not include series which do not have lecture at time t+1, because they
leave the building and consequently do not have to arrive at their next lecture as
quickly as possible. Similarly, we do not include series who do not have lecture
at time t, because they enter the building from outside, so they naturally enter
in waves instead of all simultaneously; also, they can come earlier to be in class
on time. We also remark that two consecutive timeslots for which there is a
lunch break in between or that are on two consecutive days should obviously
not be included.

The objective function then consists of two parts: the minimization of the
violation of the teacher and educational preferences on the one hand, and the
minimization of the maximum travel time on the other hand.

minimize λ
∑
l∈L

∑
t∈T

∑
c∈C

cltxltc + (1− λ) Tmax (27)

The weight of λ ∈ [0, 1] reflects the importance of each of the respective terms
in the objective function. This parameter should be set by the university based
on the relative importance they attach to each term.
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5. Solution Approach

We have tried to solve the mathematical model presented in Section 4 di-
rectly using an integer programming solver. However, the ‘Big M ’ constraints
make the problem formulation intractable for real-world instances. Therefore,
we use a two-stage integer programming approach, which is an adaption of the
decomposition method of Burke et al. [31]. The first stage then finds a timetable
that is feasible with respect to the hard constraints and minimizes the viola-
tion of the teacher and educational preferences. Next, the second stage uses
the timetable obtained in stage 1 as input and minimizes the student flows by
reassigning lectures to classrooms.

The first stage model uses the same decision variable xltc as the monolithic
model. It consists of equations (5) - (13) and its objective function is the first
part of equation (27). The second stage model uses a variable wlc which equals
1 if lecture l is assigned to room c and 0 otherwise. It consists of the following
constraints: firstly, every lecture should be planned in a room; secondly, for each
timeslot, there can be at most one lecture per room; and thirdly, the constraints
(14) - (26) from the monolithic model, where xltc is replaced by wlc if lecture l
is planned at time t in the solution of the first stage.

It is thus a hierarchical approach where the first objective is solved to global
optimality first, and only then the second objective is improved as much as
possible without changing the value of the first objective. This reflects the
fact that the first objective is deemed considerably more important than the
second one. An advantage of the two-stage model is also that the second stage
is guaranteed to find a feasible solution since the first stage already ensures the
feasibility of classroom assignments.

6. Experimental Results

This section discusses the input data of the two-stage model for the FEB
Campus Brussels and shows the results of the two-stage model. In addition, this
section briefly describes the adaptation of the data available from the literature,
as well as the results obtained for the two-stage model with these instances.

6.1. Data of the KU Leuven FEB Campus Brussels

An academic year consists of two semesters with 13 weeks of teaching per
semester. Lectures can be scheduled from Monday till Friday. Every class takes
two hours. This permits an efficient use of the classrooms. Six different timeslots
can be distinguished: from 8h30 to 10h30, from 10h30 to 12h30, from 13h30 to
15h30, from 15h30 to 17h30, from 17h30 to 19h30 and from 19h30 to 21h30.
There is a lunch break between the second and the third timeslot.

Every course has a certain number of Teaching Hours (THs): 13, 26, 39
or 52. The number of THs determines how many course lectures need to be
scheduled per week. A course of 26 THs and 52 THs is scheduled once and
twice per week respectively. One lecture per two weeks is needed for a course of
13 THs. A course of 39 THs needs to be scheduled alternately once or twice per

15



Table 1: Number of series that attends a particular type of education.

Type of education Number of series
Daytime education 365
Morning education 23
Evening education 41
Evening education on Tuesday and Thursday 7

Table 2: Available timeslots for each type of education. The dotted lines indicate the lunch
breaks.

Monday Tuesday Wednesday Thursday Friday

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Daytime education x x x x x x x x x x x x x x x x x x x x x x x x x

Morning education x x x x x x x x x x

Evening education x x x x x x x x x x

Evening education
on Tuesday and
Thursday

x x x x

week. Courses of 13 and 39 THs that are attended by the same series can be
coupled to each other. Two courses of 13 THs can use the same timeslot every
week by scheduling these courses alternately in this particular timeslot. The
same can be done for two courses of 39 THs: two timeslots of one week can be
used for scheduling two courses. The course scheduled in one of these timeslots
alternates weekly. The availability of the teachers needs to be taken into account
when courses are coupled. The coupling of courses allows to timetable one week
and using this timetable for the whole semester.

The FEB Campus Brussels offers academic programmes, preparatory pro-
grammes and bridging programmes. There exist 436 series in total. Table 1
shows the number of series that attend a particular type of education. As can
be deducted from this table, the majority of the series attends daytime edu-
cation. The available timeslots for each type of education are shown in Table
2.

The compactness constraints given by equation (13) need to be built only for
series that attend daytime education to avoid a free period between the third
and fifth timeslot. The reason is that there can never be a free period before
lunch break, because at most two lectures can be scheduled in the morning and
daytime education assumes that no lecture can be scheduled in the last timeslot.
For other types of education, there can never be free timeslots in between.

For these series, 396 lectures need to be scheduled. A PC-room is required
for 31 lectures. The other lectures can be scheduled in normal classrooms. The
FEB has 56 classrooms at its disposal: 9 PC-rooms and 47 standard classrooms.
As shown in Figure 2 these rooms are distributed over 9 floors (from -1 (cellar)
till 7) in one building, called the Hermes building.

16



Figure 2: The FEB campus Brussels building.

All the lectures are taught by 171 teachers. Teacher working time regulations
state that teachers cannot teach more than eight hours per day or more than six
hours consecutively. This implies that ∆1 = 4 in constraint (9) and ∆2 = 3 in
constraint (10). Four types of teachers are distinguished to determine teacher
preferences: guest speakers, researchers, part-time and full-time teachers. Every
teacher can submit his teaching preferences regarding the timeslots at the start
of the academic year. The penalty cost for violating the teacher preferences
depends on the type of the teacher. Guest speakers have the highest freedom
regarding their preferences which translates to a preference violation cost of 20.
Next, active researchers have a preference violation cost of 15. Finally, part-time
and full-time teachers receive the lowest weights, 10 and 5 respectively. A cost of
1000 is incurred for a lecture when at least one series cannot attend this lecture
because of the series’ unavailability at the timeslot under consideration. These
are the penalty costs for the violation of the educational preferences. There is no
‘correct’ value for the penalty value for the violation of each type of preferences;
it should be set by management considerations on the importance attached
to each of them. In the case of the FEB timetable, the satisfaction of the
educational preferences is deemed much more important than the satisfaction
of teacher preferences.

6.2. Data from the Literature

In order to test and validate the two-stage model, we adapted a set of 21
instances from the literature (denoted by comp instances). These are real cases
taken mainly from the University of Udine which were used for the International
Timetabling Competition in 2007-08 (ITC2007) [47]. Since the objective of the
timetabling problem of the FEB Campus Brussels is novel in the literature
(minimization of the student flow between classrooms), we do not intend to

17



Table 3: Description of the instances tested.

Instance δ |K| |L| |C| |P| |SD| |SM | |SE | |SETT | |S|
FEB 6 5 396 56 171 365 23 41 7 436

comp01 6 5 160 7 24 13 1 0 0 14
comp02 5 5 283 16 71 61 6 3 0 70
comp03 5 5 251 16 61 48 13 7 0 68
comp04 5 5 286 18 70 29 15 10 3 57
comp05 6 6 152 9 47 70 68 0 1 139
comp06 5 5 361 18 87 54 12 4 0 70
comp07 5 5 434 20 99 60 6 10 1 77
comp08 5 5 324 18 76 26 25 7 3 61
comp09 5 5 279 18 68 35 29 8 3 75
comp10 5 5 370 18 88 53 12 2 0 67
comp11 9 5 162 5 24 10 1 2 0 13
comp12 6 6 218 11 74 30 120 0 0 150
comp13 5 5 308 19 77 32 25 8 1 66
comp14 5 5 275 17 68 45 10 5 0 60
comp15 5 5 251 16 61 48 12 8 0 68
comp16 5 5 366 20 89 52 11 8 0 71
comp17 5 5 339 17 80 49 12 9 0 70
comp18 6 6 138 9 47 0 52 0 0 52
comp19 5 5 277 16 66 37 22 7 0 66
comp20 5 5 390 19 95 62 5 11 0 78
comp21 5 5 327 18 76 47 20 10 1 78

compare the results or validate the solutions obtained with the ones available
in the web application1 for benchmarking.

Table 3 shows the main features of the comp instances: number of available
timeslots in one day (δ), number of days (|K|), number of lectures (|L|), number
of classrooms (|C|), number of teachers (|R|), number of series of students (|S|),
and number of students that attends a particular type of education (|SD| for
daytime education, |SM | for morning education, |SE | for evening education,
and |SETT | for evening education on Tuesday and Thursday). The available
timeslots for each type of education for the cases with five and nine timeslots
in one day (δ = 5 and δ = 9, respectively) are shown in Table 4 (the cases with
six available timeslots per day are described in Table 2). For simplicity evening
education on Tuesday and Thursday is removed from the table since this type
of education uses the same timeslots as evening education but only on Tuesday
and Thursday.

1http://satt.diegm.uniud.it/ctt
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Table 4: Available timeslots for each type of education on a single day with 5 and 9 available
timeslots. The dotted lines indicate the lunch breaks.

δ = 5 δ = 9
1 2 3 4 5 1 2 3 4 5 6 7 8 9

Daytime education x x x x x x x x x x x x
Morning education x x x x x
Evening education x x x x x

Figure 3: The test layouts.

Information not available in comp instances was randomly generated accord-
ing to the distribution of the corresponding information in the dataset of the
FEB Campus Brussels. For each course with unavailability constraints, the type
of teacher (guest speaker, researchers, part-time or full-time teachers) was ran-
domly generated in order to fix the penalty cost for the violation of the teacher
preferences. A type of education was assigned to each series in such a way that
the number of available timeslots are sufficient to schedule all the lectures that
need to be attended by the corresponding series. Finally, in the comp instances
the rooms are distributed among buildings. Courses at The FEB Campus Brus-
sels take place in only one building (as shown in Figure 2) and the congestion
of the students at the escalators and corridors is a real problem. In order to
test the two-stage model with the objective of minimizing the student flow,
classrooms were randomly assigned to nodes in the layout graph. We use two
different layout graphs to represent a possible building layout: one for instances
with a small number of rooms (the instances with 5 and 7 rooms), Figure 3A;
and one for instances with a large number of rooms (all other instances), Fig-
ure 3B. We have made all the information on these instances available at the
following website: https://feb.kuleuven.be/Jeroen.Beliën

6.3. Results

The monolithical model and the two-stage model of Section 4 are pro-
grammed in Microsoft Visual Studio 2013 and use the callable library of ILOG
CPLEX 12.3. The code is executed on a PC with an Intel Core i7-6400U pro-
cessor of 2.10 GHz and a RAM of 8 GB.
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The second stage model requires many variables and constraints to represent
the flow through the different arcs in the graph. To reduce memory require-
ments, we split our model into a number of submodels, where each submodel
solves the problem for the morning or afternoon of each different day respec-
tively. This is possible since no flows occur between the lunch breaks or between
different days, so that the classroom assignments in one submodel do not affect
flows in another submodel.

For the harder instances, a large computation time is required to solve each
submodel to optimality. The is because the ‘Big M ’ constraints of equations
(20)-(21) provide poor bounds in the LP relaxation of the problem. However,
we observe that during the search process, large improvements in the objective
function are obtained early on, but after that only very small improvements are
found, while the LP bounds are still close to zero. Therefore, we set a time limit
of 5 minutes on the allowed computation time for each submodel. To show that
even with such a short time limit our model is able to obtain good solutions,
we compare the objective value for the second stage of the solution obtained
after stage 1, which does not take student flows into account, to the improved
objective value after the model has been solved. It turned out that significant
improvements in the maximum travel time can be achieved.

Unfortunately, the high number of lectures, classrooms, and more impor-
tantly series of students in the FEB instance lead to an intractable number
of variables and especially constraints, so that CPLEX is unable to solve our
second-stage model for this instance. However, because the problem of conges-
tion is situated mainly at the stairwells, we adapted the model to only include
arcs that represent stairs in the building and minimize the sum of the travel
times over all these arcs. This avoids the huge amount of difficult constraints of
equations (20)-(21). Then, the two-stage model is able to achieve a good quality
solution in a short amount of time. The first stage model contains 24,860 con-
straints and 665,280 variables. CPLEX finds a solution value of 36,170 with an
optimality gap of 8.36% before the search is stopped due to memory problems.
The first stage then requires 4.19 minutes of computation time and the final ob-
jective function value is equal to 36,170, consisting of 36,000 for the educational
preferences and 170 for the teacher preferences. This is a significant decrease
compared to the manual timetabling procedure, which has a value of 535 for the
teacher preferences, while leaving out the scheduling of 31 of the 396 lectures
due to planning difficulties for these specific lectures. For the second stage, the
largest submodel consists of 707,695 constraints and 48,537 binary variables.
The objective function value is equal to 34,941.40, which is also a significant
improvement compared to the value of 73,303.75 of the solution of the first
stage, which does not consider student flows. For all the comp instances, the
second stage model could be solved without any problems. The overall results
are shown in Table 5.

Concerning the two-stage model, the first stage can be solved to optimality
for all comp instances, except for instance 19, which encounters memory issues
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during the search and achieves a 1.36% optimality gap. Concerning the second
stage, all submodels can be solved to optimality within the specified time limit
for instances 1, 5, 11, 18, which are the instances with a small number of rooms
(5 to 9 rooms). For the other instances, only some or even none of the submodels
is solved to optimality within the time limit. However, we see that there are
large improvements in the objective function of the second stage compared to
the ‘random’ room assignments of the solution of the first stage model, ranging
between 1% and 74% and averaging 49.5%. The results in Table 5 thus show
that our two-stage approach is able to achieve good feasible solutions in a short
amount of time for both objectives and as such can be used in practice to
generate course timetables for a university.

6.4. Solution Quality and Scalability of the Two-Stage Model

Finally, we discuss the solution quality and the scalability of our two-stage
model. When only the first objective is considered (i.e., the minimization of the
violation of the preferences), which means that λ = 1 in equation (27) of the
monolithic model, the decomposition losses equal 0, since the first stage of the
two-stage model finds the optimal solution with respect to this objective. Cur-
rently, this is the only objective that is considered in many university timetables.
The losses are maximal when λ = 0, i.e. when only student flows are considered.
To show the potential magnitude of these losses, we compare the results of both
models on a small instance for which the monolithic model can be solved. Our
example consists of 28 lectures, followed by 8 different series of students, which
need to be planned over 4 available timeslots and 7 classrooms. For simplicity,
we assume that every lecture is taught by a different teacher and do not take
the type of education of each series into account. We first solve the monolithic
model for three different values of λ, namely λ = 1, λ = 0.5, and λ = 0 and the
two-stage model. Then, we solve the monolithic model again with a constraint
stating that the value of the preferences cannot exceed its corresponding value
from the two-stage model, which gives us one endpoint on the Pareto-optimal
frontier. This can of course only be tested when this objective value is known.
The results are shown in Table 6. We see that Tmax equals 308.41 in the two-
stage model, which is only 8.60% removed from the Pareto-optimal solution of
281.89 of the constrained monolithic model, for which the value of the prefer-
ences equals 110 in both models. Of course, if the value of λ decreases, then
the gap between the global objective of the two-stage model and that of the
unconstrained monolithic model aggravates because of the hierarchical nature
of our approach, which prioritizes the preferences over the travel time.

Concerning the scalability, the results in Table 6 show that the unconstrained
monolithic model requires around 70 times (for λ = 0.5) up to 170 times (for
λ = 1) the computation time of the two-stage model for this small instance.
The constrained model requires only around 7 to 10 times the computation
time of the two-stage model, because the constraint on the value of the first
objective implies a huge reduction in the set of feasible solutions that need to
be examined. We can thus conclude that our method achieves a significant
reduction in required computation time, and at the same time is still able to
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Table 6: Results for the test example.

Model
Global

Pref. Tmax Constr. Var.
CPU

obj. (s)

Unconstrained
monolithic

λ = 1 110 110 726
11,608 1,569

0.72
λ = 0.5 147.28 120 174.57 57.03
λ = 0 174.07 250 174.57 137.97

Constrained
monolithic

λ = 0.5 195.94 110 281.89
11,609 1,569

8.47
λ = 0 281.89 110 281.89 6.24

Two-stage
Stage 1 - 110 - 256 784 0.09
Stage 2 - - 308.41 924 981 0.72

obtain good quality solutions that are close to one of the endpoints on the
Pareto-optimal frontier.

7. Conclusions

This paper has presented a two-stage IP model for the UCTP with the
aim of building compact timetables with minimized student flows. The first
stage minimizes the violation of the teacher preferences by assigning lectures
to timeslots and rooms. The second stage reassigns classrooms to lectures of
the timetable of the first stage and minimizes the student flow. Student flows
in the corridors and at the stairwells are modeled using a graph in which the
arcs represent the corridors and stairs in the building. The total travel time of
each series of students to go from their first classroom to their next classroom
is calculated as the sum of the travel times through each arc on their route,
which itself is a function of the total student flow through each arc. For series
that attend daytime education, the timetables are subjected to compactness
constraints: two-hour free time periods are avoided. The idea is to improve
the compactness of timetables and reduce the free time between lectures for
students. This is especially appreciated by students who travel by train or
bus. However, more compactness constraints can be generated. An example
is adequately spreading the lectures over the whole week (avoiding days with
a high number of lectures or no lectures). Other preferences can also be taken
into account by changing the penalty cost in the objective function of the first
stage. This method can be applied to all types of education. A higher cost
can be set for, for example, timeslots on Friday such that less lectures will be
scheduled on Friday.

Through extensive computational tests we have shown that, in contrast to
a monolithic IP model, our two-stage IP approach is capable of finding good
quality solutions with minimized student flows for real-life UCTPs. The model
has been used to find a timetable with substantially smaller student flows as
compared to the manually developed schedule at the KU Leuven FEB Cam-
pus Brussels. Moreover, our approach can find good quality solutions for all
ITC2007 instances proving its applicability to a wide range of real-life problem
dimensions.
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A possible direction for future research is the derivation of tighter bounds
for the second stage model to reduce the computation time required to solve the
model to optimality.
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