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Abstract

Modern performance measures differ from the classical ones since they assess the per-
formance against a benchmark and usually account for asymmetry in return distributions.
The Omega ratio is one of these measures. Until recently, limited research has addressed
the optimization of the Omega ratio since it has been thought to be computationally in-
tractable. The Enhanced Index Tracking Problem (EITP) is the problem of selecting a
portfolio of securities able to outperform a market index while bearing a limited additional
risk. In this paper, we propose two novel mathematical formulations for the EITP based
on the Omega ratio. The first formulation applies a standard definition of the Omega ratio
where it is computed with respect to a given value, whereas the second formulation considers
the Omega ratio with respect to a random target. We show how each formulation, nonlinear
in nature, can be transformed into a Linear Programming model. We further extend the
models to include real features, such as a cardinality constraint and buy-in thresholds on
the investments, obtaining Mixed Integer Linear Programming problems. Computational
results conducted on a large set of benchmark instances show that the portfolios selected by
the model assuming a standard definition of the Omega ratio are consistently outperformed,
in terms of out-of-sample performance, by those obtained solving the model that considers
a random target. Furthermore, in most of the instances the portfolios optimized with the
latter model mimic very closely the behavior of the benchmark over the out-of-sample period,
while yielding, sometimes, significantly larger returns.

Key words. Enhanced Index Tracking, Omega Ratio, Portfolio Optimization, Linear Program-
ming, Mixed Integer Linear Programming.
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1 Introduction

A financial service company, usually an investment bank, deals with fund management when it
directly manages the asset investments on behalf of its customers. Fund management typically
includes activities as asset screening and selection, asset trading, monitoring, reporting to stake-
holders, and internal audit. In modern financial stock exchanges, market indices have become
standard benchmarks for evaluating the performance of a fund manager. Over the last years,
the number of funds managed by index-based investment strategies has increased tremendously
in different economies such as USA (see Jorion [13]), Japan (see Koshizuka et al. [18]), and
Australia (see Frino et al. [7]). Traditionally, index-based fund management strategies have
been broadly categorized into passive and active management.

• A fund manager that implements a passive management strategy aims at replicating, as
close as possible, the movements of an index of a specific financial market (the so-called
benchmark), like the S&P 500 in the New York Stock Exchange or the FTSE 100 in the
London Stock Exchange. This strategy is usually refereed to as index tracking, and aims at
minimizing a function (the tracking error) that measures how closely the portfolio tracks
the market index to which it is benchmarked. If the manager builds a portfolio containing
all the securities constituting the benchmark in the exact same proportions, it is said to
follow a full replication strategy. Despite full replication can be seen as the most natural
way to track a benchmark, such a strategy is rarely applied in practice mainly due to
the impact of transaction costs. Indeed, several researchers point out that transaction
and administration costs are typically an increasing function of the number of assets in
a portfolio (e.g., see Coleman et al. [5]). Hence, a better strategy consists in trying to
mimic a market index by choosing a subset of the securities constituting the benchmark.
In this case, the fund manager is said to follow a partial replication strategy.

• A fund manager that implements an active management strategy makes specific invest-
ments with the goal of outperforming the benchmark. Based on his/her beliefs, the fund
manager builds a portfolio where some securities are overweighted and some other un-
derweighted compared to the benchmark trying to exploit possible market inefficiencies
(e.g., see Li et al. [21]). Active management strategies often involve frequent trading to
rebalance the portfolio composition in an attempt to beat the benchmark (cf. Lejeune and
Samatlı-Paç [20]), thus generating high transaction costs which diminish the fund return.

Several studies have highlighted pros and cons for each of the two strategies. For instance,
there are evidences that a remarkable number of actively managed funds do not outperform
its benchmark over the long term (see, among others, Gruber [10]). As a consequence, fund
managers often prefer to follow hybrid strategies using both passive and active fund management
to allocate the available capital, usually running a passive strategy to manage the large portion
of the fund investment, and employing active strategies to manage only a limited portion of the
investment (see Scowcroft and Sefton [32]).

Enhanced index tracking, sometimes called enhanced indexation, has evolved as a synthesis
between the two strategies of passive and active management trying to catch the strengths of
both approaches. Indeed, enhanced index tracking is designed to outperform a given benchmark,
therefore resembling active management, incurring only a limited additional risk with respect to
the benchmark, and thus being similar to passive management. The Enhanced Index Tracking
Problem (EITP) is the problem of selecting a portfolio of assets able to outperform a market
index while incurring a limited additional risk. Nowadays, both researchers and fund managers
use optimization models and algorithms to face both the problem of selecting a portfolio that
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replicates or tries to beat a market index. However, while several mathematical formulations
can be found for the index tracking problem, the EITP has been only recently introduced in the
literature, and the number of papers addressing this problem is still quite limited.

In this paper, we deal with the EITP using for the first time the Omega ratio, introduced by
Shadwick and Keating [17], as performance measure. The Omega ratio is a performance measure
that has two interesting features that make it suitable for the EITP. It assesses the performance
against a benchmark, on one side, and it accounts for the asymmetry in returns distributions by
separately considering upside and downside deviations, on the other side. Recently, the Omega
ratio has become known in portfolio selection where the optimization is considered with respect
to a target (see, for instance, Passow [29]).

Contributions. Given the growing popularity of the Omega ratio, the definition and eval-
uation of optimization models maximizing this performance measure is a research area that
is receiving increasing attention both from academics and practitioners. To the best of our
knowledge, this paper is the first attempt to apply the Omega ratio in the context of enhanced
indexation. We introduce two optimization models. In the first formulation we apply the basic
definition of the Omega ratio where the benchmark is a known value. The second formulation
improves on the first one by considering a random target rather than a given benchmark value.
We show that both formulations, that are nonlinear in their natural form, can be transformed
into Linear Programming (LP) models. We extend both optimization models to include two im-
portant real features, that is a cardinality constraint on the number of assets in the portfolio and
buy-in thresholds on the weight of each selected stock. The inclusion of real features requires the
introduction of additional binary variables, thus transforming the LP formulations into Mixed
Integer Linear Programming (MILP) models. The performance of the optimal portfolios selected
by the proposed models has been validated through extensive computational experiments carried
out on benchmark instances taken from the literature. The computational results show that the
portfolios selected by the first formulation that adopts the basic definition of the Omega ratio
are consistently outperformed, in terms of out-of-sample performance, by those obtained solving
the second formulation that considers a random target. Finally, in most of the instances the
portfolios optimized with the latter optimization model track very closely the behavior of the
benchmark over the out-of-sample period, while yielding, sometimes, significantly larger returns.

Structure of the paper. The remainder of the paper is organized as follows. In Section 2
we survey the most recent literature on the EITP, and briefly discuss the use of the Omega ratio
in optimization problems. In Section 3 we introduce the two mathematical formulations for the
EITP based on the Omega ratio. We show how each formulation can be transformed into an LP
model, and how to extend the latter models in order to include the described real features. In
Section 4 we report on the computational experiments and provide an extensive evaluation of
the out-of-sample performance of the optimal portfolios. Finally, in Section 5 some concluding
remarks and future research directions are drawn.

2 Literature Review

Fund managers are increasingly using optimization models to build their portfolios (see Wilding
[37]). Despite the fact that in the literature several authors tackle and propose mathematical
formulations for the index tracking problem (see Beasley et al. [2], Canakgoz and Beasley [4],
Guastaroba and Speranza [12] and references therein), the study of the EITP is a relatively
recent and growing research area. Indeed, to the best of our knowledge, the first formalization
of the EITP is due to Beasley et al. [2] in 2003. In 2009 Canakgoz and Beasley [4] provided
an extensive review of the literature on the enhanced index tracking problem where almost all
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the papers cited date from 2005 or later. Several papers on the enhanced index tracking are
discussed in Guastaroba and Speranza [12] and in the articles mentioned above. For this reason,
we have decided to concentrate the literature review on the papers on the EITP not discussed
in those articles.

In the second part of this section, we describe the Omega ratio and briefly review the main
related literature.

2.1 Recent literature on the Enhanced Index Tracking Problem

A convex minimization model with linear objective function and quadratic constraints for the
EITP is proposed by Koshizuka et al. [18]. The authors aim at minimizing the tracking error
from an index-plus-alpha portfolio, choosing among the portfolios with a composition highly
correlated with the benchmark. The term index-plus-alpha portfolio is sometimes encountered in
the literature on enhanced indexation and refers to a portfolio that outperforms the benchmark
by a given, typically small, amount α. Two alternative measures of the tracking error are
considered in [18]: one based on the absolute deviation between the portfolio and the index-plus-
alpha portfolio values, and the other using the downside absolute deviation between these two
quantities. Mezali and Beasley [26] apply quantile regression to index tracking and enhanced
indexation. Their model includes, among other characteristics, a cardinality constraint and
buy-in thresholds on asset weights. The resulting formulation is a MILP model. Valle et al.
[36] study the problem of determining an absolute return portfolio and propose a three-stage
solution approach. The authors discuss how their approach can be extended to solve the EITP.
In Lejeune [19] the EITP is solved using a game theoretical approach. The problem is formulated
as a stochastic model which aims at maximizing the probabilistic excess return of the portfolio
compared to the benchmark while ensuring that the relative risk, given by the downside absolute
deviation, does not exceed a chosen maximum level. A stochastic mixed integer nonlinear model
for the EITP where asset returns and the return covariance terms are treated as random variables
is proposed in Lejeune and Samatlı-Paç [20]. Two models for the EITP that aim at selecting
a portfolio whose return distribution dominates the distribution of the benchmark with respect
to the second-order stochastic dominance paradigm are introduced in Roman et al. [31].

Although all the above papers propose single-objective formulations, the intrinsic nature
of the enhanced index tracking problem is bi-objective: to maximize the excess return of the
portfolio over the benchmark, on one hand, while minimizing the tracking error, on the other
hand. In Wu et al. [39] the bi-objective EITP is tackled using goal programming techniques.
The two objective functions are the tracking error (to be minimized), given by the standard
deviation of the portfolio return compared to the benchmark return, and the excess portfolio
return over the benchmark (to be maximized). Li et al. [21] formulate the EITP as a bi-objective
optimization model where the excess portfolio return over the benchmark is maximized, while
the tracking error, formulated by the authors as the downside standard deviation of the portfolio
return from the benchmark return, is minimized. Their model includes, among other features,
a cardinality constraint and buy-in threshold limits, and is solved by means of an immunity-
based multi-objective algorithm. Filippi et al. [6] cast the EITP as a bi-objective MILP model
with several real features, including a cardinality constraint and buy-in threshold limits on the
shares. Their optimization model aims at maximizing the excess return of the portfolio over the
benchmark, while minimizing the tracking error, as measured by the absolute deviation between
the portfolio and benchmark values. A bi-objective heuristic framework is then applied to solve
the problem.

An alternative to explicitly formulate the EITP as a bi-objective model is to cast the two
objective functions into a single objective expressed as a ratio. Generally speaking, these ratios
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are performance measures that quantify the return per unit of risk, and stem from the observation
that there is an inherent trade-off between the risk and the return of an investment. Ratios of
this type, like the Sharpe ratio (see Sharpe [33]) and the Sortino ratio (see Sortino and Price [34])
are widely used to evaluate, compare and rank different investment strategies. More precisely,
the Sharpe ratio is commonly used as a measure of performance being a reward-to-risk ratio.
Nevertheless, since it is based on the mean-variance approach, it results to be valid only if
returns are normally distributed and preferences are quadratic. Many researchers have replaced
the standard deviation in the Sharpe ratio with an alternative risk measure. For example,
Sortino and Price [34] replace the standard deviation with the downside deviation. To the best
of our knowledge, the only attempt to use a performance measure expressed as a ratio in the
context of enhanced indexation is due to Meade and Beasley [25] who introduce a nonlinear
optimization model based on the maximization of a modified Sortino ratio. Nevertheless, the
nonlinearity of the latter model may represent an undesirable limitation to its use in financial
practice. Indeed, several authors point out that the LP solvability may become relevant for real-
life decisions, when portfolios have to meet several side constraints, to take into consideration
transaction costs or when the size of the instances to be solved is large (see the recent survey
by Mansini et al. [23]).

2.2 The Omega ratio

The Omega ratio is a relatively recent performance measure introduced by Keating and Shadwick
[17] which incorporates the higher moment information of a distribution of returns, and captures
both the downside and upside potential of a portfolio. The basic rationale of the Omega ratio
is that, given a predetermined threshold τ , portfolio returns over the target τ are considered
as profits, whereas returns below the threshold are considered as losses. The Omega ratio can
be defined as the ratio between the expected value of the profits and the expected value of the
losses. The choice of the value for the target τ is left to the decision maker and can be set,
for instance, equal to the risk-free rate of return. Figure 1 gives an illustrative explanation of
the Omega ratio for a given threshold τ = 0.75, and clarifies that the measure is computed
taking into consideration the entire probability distribution. Omega ratio is computed as the
ratio of the dark gray area (on the right of the threshold and above the cumulative distribution
line) over the light gray area (on the left of the threshold and below the cumulative distribution
line). Consequently, if the threshold τ is close to a quite small return (i.e., the left tail of the
distribution) then the Omega ratio takes a large value. Conversely, if τ is close to a rather
large return (i.e., the right tail of the distribution), the Omega ratio takes a value that tends
to 0. Keating and Shadwick [17] point out that, irrespective of the distribution of returns, the
Omega ratio takes value 1 when τ is the mean return of the distribution. Additionally, Keating
and Shadwick [17] claim that, for a given threshold τ , the simple rule of preferring more to
less implies that an investment with a high value of the Omega ratio is better than one with a
smaller value.

Traditionally, the Omega ratio has been used to evaluate and compare different investment
strategies in hedging funds (see Prigent [30]), while limited research has been carried out on
its optimization. The main reason is that maximizing the Omega ratio has been thought, until
recently, to be computationally intractable and, as a consequence, most of the limited research
has been focused on the design of heuristic algorithms. To the best of our knowledge, the first
authors to investigate the use of the Omega ratio as a basis for portfolio selection are Kane et
al. [14]. The authors observe that the maximization of the Omega ratio leads to a non-convex
and non-smooth optimization problem which has many local optima. They use a library for
nonlinear optimization to solve the model and provide some computational experiments. Gilli
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Figure 1: An illustrative explanation of the Omega ratio.

and Schumann [8] apply a heuristic, called threshold accepting, to a non-convex optimization
model optimizing the Omega ratio. Their model includes buy-in thresholds on security weights,
and cardinality constraints settling both an upper and a lower bound on the number of securities
composing the portfolio. Gilli et al. [9] modify the optimization model introduced in [8] to allow
short sales, and investigate the empirical performance of the selected portfolios. The modified
model is again solved by means of a threshold accepting heuristic.

Mausser et al. [24] demonstrate how a simple transformation of the problem variables allows
the solution of a model optimizing the Omega ratio using linear programming. The transfor-
mation only works when the expected return of the optimal portfolio is larger than that of the
benchmark (case of optimal Omega ratio larger than one). The authors model the problem
separating upside and downside variables for each scenario and imposing that the product of
the two variables in each scenario is zero (complementarity constraints). To achieve linearity
the authors drop these complementarity constraints that should ensure that for each scenario
either the upside or the downside variable is zero. The removal is possible since these constraints
surely hold if the mean return of the portfolio is larger than that of the benchmark. They also
discuss how to face Omega optimization when this condition fails.

Kapsos et al. [16] show how the Omega ratio maximization problem can be reformulated
as a quasi-concave optimization problem and thus be solvable in polynomial time by facing a
number of concave problems (Boyd and Vandenberghe [3]). In more details, the authors propose
two alternative approaches to solve an optimization model that maximizes the Omega ratio. For
the case of continuous probability distributions they suggest to use an efficient frontier approach
solving a sequence of optimization problems. Since the resulting frontier is non-decreasing and
concave, the tangent from the origin to the frontier yields the portfolio with the maximum Omega
ratio. On the other side, the authors show that, when the underlying probability distribution
is discrete (has a finite number of samples), the problem reduces to a linear program. More
precisely, the problem is reformulated as a linear-fractional program, where portfolio downside
deviation from the threshold is modeled as a continuous variable for each sample and bounded
in the constraints.

Finally, following the paper by Kapsos et al. [16], in [15] a robust variant of a model
maximizing the Omega ratio is introduced and investigated under three types of uncertainty for
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the probability distribution of the returns.

3 The Optimization Models

In this section, we first provide some basic notation and concepts, and then we introduce the
two LP formulations based on the Omega ratio for the EITP. In particular, we show how
the optimization model based on a standard definition of the Omega ratio can be improved
considering a random target instead of a given value. Finally, we describe how to extend the
proposed formulations to include real features as a cardinality constraint and buy-in threshold
on asset weights.

3.1 Notation

We consider a situation where an investor intends to optimally select a portfolio of securities
and hold it until the end of a defined investment horizon. Let J = {1, 2, . . . , n} denote a set of
securities available for the investment. For each security j ∈ J , its rate of return is represented
by a random variable (r.v.) Rj with a given mean µj = E{Rj}. Furthermore, let x = (xj)j=1,...,n

denote a vector of decision variables xj representing the shares (weights) that define a portfolio
of securities. To represent a portfolio, these weights must satisfy a set of constraints. The basic
set of constraints includes the requirement that the weights must sum to one, i.e.,

∑n
j=1 xj = 1,

and that short sales are not allowed, i.e., xj ≥ 0 for j = 1, . . . , n. An investor usually needs
to consider some other requirements expressed as a set of additional side constraints. Most of
them can be expressed as linear equations and inequalities. We will assume that the basic set
of feasible portfolios P, i.e. the set of solutions that do not violate the basic set of constraints
mentioned above, is a general LP feasible set given in a canonical form as a system of linear
equations with nonnegative variables.

Each portfolio x defines a corresponding r.v. Rx =
∑n

j=1Rjxj that represents the portfolio
rate of return. The mean rate of return for portfolio x is given as µ(Rx) = E{Rx} =

∑n
j=1 µjxj .

We consider T scenarios, each one with probability pt, where t = 1, . . . , T . We assume that,
for each r.v. Rj , its realization rjt under scenario t is known and that, for each security j,

j = 1, . . . , n, its mean rate of return is computed as µj =
∑T

t=1 rjtpt. The realization of the
portfolio rate of return Rx under scenario t is given by yt =

∑n
j=1 rjtxj .

We use a classical look-back approach based on deriving realizations from historical data.
That is, the optimal portfolio composition to hold in the immediate future is determined using
historical data observed in a number of periods immediately preceding the date of portfolio
selection. Additionally, the T historical periods are treated as equally probable scenarios, i.e.,
we set pt = 1/T for t = 1, . . . , T . Nevertheless, it is worth pointing out that the optimization
models presented below remain valid for any arbitrary set of scenarios or probability distribution
function. Therefore, they are introduced, for sake of generality, referring to a general scenario
and an arbitrary probability distribution represented by general probabilities pt.

As mentioned in the introduction, enhanced indexation aims at outperforming the market
index while bearing a minimal additional risk. Hence, we denote the r.v. representing the rate
of return of the market index as RI , its realization under scenario t as rIt , with t = 1, . . . , T ,
and its mean rate of return as µI =

∑T
t=1 r

I
t pt. In the following we will use the notation (.)+

and (.)− to denote the nonnegative and nonpositive part of a quantity, respectively, that is,
(Q)+ = max{Q, 0}, and (Q)− = max{−Q, 0}.
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3.2 Some basic concepts

We highlighted above that a possible formulation for the EITP is based on maximizing a perfor-
mance measure expressed as a ratio. In this context it is natural to express these performance
measures with respect to a market index as a given target. Meade and Beasley [25] (see also
Beasley [1]) introduce a nonlinear optimization model that maximizes the following modified
Sortino ratio:

E{Rx − µI}
√

E{(Rx − µI)2−}
=

µ(Rx)− µI

√

∑T
t=1(max{µI − yt, 0})2pt

. (1)

Compared to the standard Sortino ratio [34], in [25] the required minimum return is replaced
with the mean return of the market index µI . The basic idea of this optimization model is to
pursue a balance between outperforming the mean return of the market index (the numerator
of the ratio) and minimizing a downside risk measure (the denominator), the latter being the
semi-standard deviation of the portfolio rate of return from the mean rate of return of the
market index. Note that when the risk-free rate of return r0 is used instead of the index mean
rate of return µI , the optimization of ratio (1) corresponds to the classical Tobin’s model in
Modern Portfolio Theory (MPT) where the Capital Market Line (CML) is the line drawn from
the intercept corresponding to r0 and that passes tangent to the mean-risk efficient frontier. Any
point on this line provides the maximum return for each level of risk. The tangency (tangent,
super-efficient) portfolio is the portfolio of risky assets corresponding to the point where the
CML is tangent to the efficient frontier. It is a risky portfolio offering the maximum increase of
the mean return with respect to the risk-free investment opportunity. Namely, given the risk-
free rate of return r0 one seeks a risky portfolio x that maximizes the ratio (µ(Rx)− r0)/̺(Rx),
where ̺(Rx) is a measure of risk. Similarly, the optimization of ratio (1) looks for a portfolio
offering the maximum increase of its mean return with respect to the market index mean rate
of return treated like the risk-free return, and using a downside risk measure. Certainly, the
modified Sortino ratio (1) uses the semi-standard deviation of the portfolio rate of return from
µI , whereas the standard deviation is used instead in the classical MPT models.

Actually, the investor may be interested in determining a portfolio (the index-plus-alpha
portfolio) that outperforms the rate of return of the market index by a given excess return
α. To model this goal, rather than the market index rate of return RI , one can use some
reference r.v. Rα = RI + α representing the rate of return beating the market index return by
α, with realization rαt = rIt + α under scenario t, with t = 1, . . . , T , and mean rate of return
µα =

∑T
t=1 r

α
t pt. Applying this idea to the above modified Sortino ratio, it becomes:

E{Rx − µα}
√

E{(Rx − µα)2−}
=

µ(Rx)− µα

√

∑T
t=1(max{µα − yt, 0})2pt

. (2)

Note that ratio (1) becomes ratio (2) when α = 0. Moreover, it is worth pointing out here
that also in the special case with α = 0 the maximization of these performance ratios always
allows us to account for both downside and upside parts, and thus can be classified as enhanced
indexation.

3.3 Omega ratio model

Ratio (2) can be simplified if, as risk measure in the denominator, we use the mean below-target
deviation (first Lower Partial Moment, LPM) instead of the semi-standard deviation. For a
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given target value τ , this measure is defined as:

δτ (Rx) = E{(Rx − τ)−} = E{max{τ −Rx, 0}}.

δτ (Rx) is LP computable for returns represented by their realizations as follows:

δτ (Rx) = min{
T
∑

t=1

dtpt : dt ≥ τ −
n
∑

j=1

rjtxj , dt ≥ 0 for t = 1, . . . , T}.

If, in (2), we replace the semi-standard deviation with δτ (Rx) from the target value µα (i.e.,
δµα(Rx)) we obtain the following adapted Sortino ratio:

Sµα(Rx) =
E{Rx − µα}

E{(Rx − µα)−}
=

µ(Rx)− µα

δµα(Rx)
=

µ(Rx)− µα

∑T
t=1max{µα − yt, 0}pt

. (3)

Thus, the maximization of ratio Sµα(Rx) is equivalent to a tangency portfolio model using
δτ (Rx) as risk measure and with target µα treated like a risk-free rate of return.

The upside-potential ratio is a measure that allows us to choose investments with relatively
good upside performance (over a given target) per unit of downside risk. The classical formu-
lation (Sortino et al. [35]) adopts the semi-standard deviation as downside risk measure and,
given the target µα, takes the following form:

E{(Rx − µα)+}
√

E{(Rx − µα)2−}
=

∑T
t=1max{yt − µα, 0}pt

√

∑T
t=1(max{µα − yt, 0})2pt

. (4)

If δτ (Rx) is used as risk measure, the upside-potential ratio (4) takes the form of the Omega
ratio [17] with target value µα, i.e.,

Ωµα(Rx) =
E{(Rx − µα)+}

E{(Rx − µα)−}
=

∑T
t=1max{yt − µα, 0}pt

∑T
t=1max{µα − yt, 0}pt

. (5)

Proposition 1 The maximization of Ωµα(Rx) is equivalent to the maximization of Sµα(Rx).

Proof. Following Ogryczak and Ruszczyński [28], for any target value τ the following equality
holds:

E{(Rx − τ)+} = µ(Rx)− (τ − E{(Rx − τ)−}).

The equality is valid for any distribution. Hence, we can write:

Ωτ (Rx) =
µ(Rx)− (τ − δτ (Rx))

δτ (Rx)
= 1 +

µ(Rx)− τ

δτ (Rx)

that, after replacing τ with µα, leads to:

Ωµα(Rx) = 1 + Sµα(Rx). (6)

It can be proved that Ωµα(Rx) is compatible with the second-order stochastic dominance
(see, for instance, Prigent [30], p. 364).

Mansini et al. [22] show that ratio optimization models for LP computable risk measures
can be transformed into LP form. Indeed, the maximization of the adapted Sortino ratio:

max{Sµα(Rx) | x ∈ P}
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for standard portfolio constraints can be cast as the following nonlinear programming model:

maximize
z − µα

z1
(7)

subject to
n
∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n (8)

n
∑

j=1

µjxj = z (9)

n
∑

j=1

rjtxj = yt for t = 1, . . . , T (10)

T
∑

t=1

dtpt = z1 (11)

dt ≥ µα − yt, dt ≥ 0 for t = 1, . . . , T. (12)

Objective function (7) maximizes the adapted Sortino ratio (3). Constraints (8) ensure that
the sum of the nonnegative weights has to be equal to one. Constraint (9) defines variable z as
the mean portfolio rate of return, whereas constraints (10) define each variable yt as the portfolio
rate of return under scenario t, with t = 1, . . . , T . Under the assumption that there exists a
portfolio satisfying the condition µ(Rx) > µα, constraints (12), along with (11) and objective
function (7), force the nonnegative variable dt to take the value max{µα−yt, 0} in each scenario
t, with t = 1, . . . , T .

Note that, theoretically, a portfolio xmight exist such that yt ≥ µα for all t = 1, . . . , T . Thus,
at the denominator of the ratio, the risk measure z1 may take value 0, and, as a consequence,
an infinite value of the objective function (7) may occur. To keep the problem always solvable,
we introduce the following additional constraint:

z1 ≥ 1/M, (13)

where M is an arbitrary large number. If the optimal value of z1 is equal to 1/M , then the
required level of overstepping benchmark should be increased (α should to be increased).

The nonlinear optimization model (7)–(13) can be linearized as follows (see Mansini et al.
[22]). We introduce variables v = z/z1 and v0 = 1/z1 that lead to the linear criterion v − µαv0.
Additionally, we divide all the constraints by z1 and make the substitutions: d̃t = dt/z1, ỹt =
yt/z1 for t = 1, . . . , T , as well as x̃j = xj/z1, for j = 1, . . . , n. Eventually, we get the following
LP formulation of the Omega Ratio (OR) model:

10
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(OR model) maximize v − µαv0 (14)

subject to
n
∑

j=1

x̃j = v0, v0 ≤ M, x̃j ≥ 0 for j = 1, . . . , n (15)

n
∑

j=1

µj x̃j = v (16)

n
∑

j=1

rjtx̃j = ỹt for t = 1, . . . , T (17)

T
∑

t=1

d̃tpt = 1 (18)

d̃t ≥ µαv0 − ỹt, d̃t ≥ 0 for t = 1, . . . , T. (19)

Once the transformed problem (14)–(19) is solved, the values of original variables xj can be
determined dividing x̃j by v0, while δµα(Rx) = 1/v0 and µ(Rx) = v/v0.

3.4 Extended Omega ratio model

The performance of the portfolios selected by the former model can be improved significantly if
the model is modified in order to take into consideration if the portfolio tracks, falls below or
beats the market index under multiple scenarios. To this aim, one should formulate the Omega
ratio for the random benchmark return Rα, rather than for the mean benchmark rate of return
µα as in (5). This leads to the following ratio:

ΩRα(Rx) =
E{(Rx −Rα)+}

E{(Rx −Rα)−}
=

∑T
t=1max{yt − rαt , 0}pt

∑T
t=1max{rαt − yt, 0}pt

.

Proposition 2 ΩRα(Rx) can be expressed using the same numerator as in Ωµα(Rx), while the
downside risk measure is the only term that must be calculated differently.

Proof. ΩRα(Rx) can be expressed as a standard Omega ratio for r.v. (Rx − Rα) with 0 as
target value, that is:

ΩRα(Rx) = Ω0(Rx −Rα) = 1 +
E{Rx −Rα}

E{(Rx −Rα)−}
= 1 +

µ(Rx)− µα

∑T
t=1max{rαt − yt, 0}pt

,

where the second equality is obtained applying first (6), and then the first equality in (3).

Hence, the maximization of ΩRα(Rx) leads to the following optimization model:

max{
µ(Rx)− µα

E{(Rx −Rα)−}
| x ∈ P}

that, for the standard portfolio constraints, can be cast into the nonlinear programming model
(7)–(13) by substituting inequalities (12) with the following constraints:

dt ≥ rαt − yt, dt ≥ 0 for t = 1, . . . , T (20)

11
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defining the variables dt, in each scenario t, as the downside deviation of the portfolio return yt
from the benchmark return rαt .

Model (7)–(11), (13) and (20) can be linearized in the same manner described above for
model (7)–(13). We obtain the following LP formulation of the Extended Omega Ratio (EOR)
model:

(EOR model) maximize v − µαv0 (21)

subject to
n
∑

j=1

x̃j = v0, v0 ≤ M, x̃j ≥ 0 for j = 1, . . . , n (22)

n
∑

j=1

µj x̃j = v (23)

n
∑

j=1

rjtx̃j = ỹt for t = 1, . . . , T (24)

T
∑

t=1

ptd̃t = 1 (25)

d̃t ≥ rαt v0 − ỹt, d̃t ≥ 0 for t = 1, . . . , T. (26)

As mentioned above, once the transformed LP problem is solved, the values of the variables
xj can be found dividing x̃j by v0, while δµα(Rx) = 1/v0 and µ(Rx) = v/v0.

3.5 Modeling real features

In order to apply the optimization models described above to real contexts, it may be necessary
to consider some trading requirements on the portfolio composition. For instance, an investor
usually prefers to hold a portfolio limited to a few assets in order to control transaction costs,
especially fixed transaction costs that are paid for each security traded. At the same time, an
investor prefers to avoid portfolios with very small weights in some assets or, on the contrary,
very large weights in one or few assets (e.g., see Mitra et al. [27]). These requirements, that
are quite common also in the literature on portfolio optimization, can be included into the
proposed optimization models by introducing a cardinality constraint limiting the maximum
number of assets, and lower and upper bounds on security weights. The introduction of these
real features imposes the use of auxiliary binary variables, thus transforming the LP models into
MILP problems.

The cardinality constraint imposing that a maximum number (say K < n) of assets can be
selected, can be introduced directly into the LP models (14)–(19) and (21)–(26) by means of
the following constraints:

x̃j ≤ Mzj for j = 1, . . . , n (27)
n
∑

j=1

zj ≤ K (28)

zj ∈ {0, 1} for j = 1, . . . , n, (29)

where zj is a binary variable that takes value 1 if security j is selected, and 0 otherwise, whereas
M is the upper bound on variable v0.

12
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As mentioned above, the portfolio structure may be restricted by some requirements, often
called buy-in thresholds, on the weight of each asset held in portfolio. Typical requirements
impose a minimum weight εj and a maximum weight ∆j for each asset j hold in portfolio.
Minimum weights (lower bounds) are introduced to avoid having very small holdings in some
securities, whereas maximum ones (upper bounds) are used to prevent very large holdings in
one or very few assets. Upper bounds on securities can be easily introduced as the following
linear inequalities:

xj ≤ ∆j for j = 1, . . . , n.

After the transformation x̃j = xjv0, they take the form of the following linear inequalities:

x̃j ≤ ∆jv0 for j = 1, . . . , n. (30)

Lower bounds can be introduced using the following inequalities:

x̃j ≥ εjv0zj for j = 1, . . . , n

that contain the nonlinear terms v0zj . Such a nonlinearity can be transformed into linear
form by introducing auxiliary variables and constraints (e.g., see [38]). Namely, by introducing
(continuous) nonnegative variables v0j = v0zj , the lower bounds may be expressed as:

x̃j ≥ εjv0j for j = 1, . . . , n (31)

0 ≤ v0j ≤ Mzj for j = 1, . . . , n (32)

v0j ≤ v0 for j = 1, . . . , n (33)

v0 − v0j +Mzj ≤ M for j = 1, . . . , n. (34)

If zj = 0 then variable v0j is forced to take value zero by inequalities (32). On the other
side, when zj = 1, variable v0j takes value v0 forced by constraints (33) and (34).

3.6 Additional modeling issues

We highlighted above that the optimization model (7)–(13) is valid only if the portfolios satisfy
the condition µ(Rx) > µα, on one hand, and the condition µα > yt for at least one scenario t, on
the other hand (note that these conditions are most of the times fulfilled in real-life situations).
This follows from the fact that variable z1 represents only an upper bound on the mean below-
target deviation thus expressing that value only when it is minimized. In order to guarantee a
proper representation in these situations, the optimization model (7)–(13) must be extended by
introducing a new set of auxiliary binary variables ut and by adding the following constraints:

dt ≤ µα − yt +Mut for t = 1, . . . , T (35)

dt ≤ M(1− ut) for t = 1, . . . , T. (36)

Note that when µα − yt > 0, dt takes exactly such a value by forcing ut = 0, whereas when
µα − yt < 0 inequality (35) forces ut = 1 to guarantee a positive right-hand side, and dt takes
value zero thanks to inequality (36).

In order to handle this condition in the OR model (14)-(19), one can introduce additional
continuous nonnegative variables ũt and the following constraints:
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d̃t ≤ µαv0 − ỹt +Mũt for t = 1, . . . , T (37)

d̃t ≤ Mv0 −Mũt for t = 1, . . . , T (38)

0 ≤ ũt ≤ Mut (39)

ũt ≤ v0 (40)

v0 − ũt +Mut ≤ M. (41)

In a similar manner, in order to guarantee a proper representation of the optimal solution
for the EOR model, formulation (21)-(26) has to be extended to include constraints (37)–(41)
where µα is substituted by rαt in inequalities (37).

4 Experimental Analysis

This section is devoted to the presentation and discussion of the computational experiments.
For the experimental analysis, we used a PC Intel Xeon with 3.33 GHz 64-bit processor, 12.0
Gb of RAM and Windows 7 64-bit as Operating System. Optimization models are implemented
in Java and solved by means of CPLEX 12.2. All CPLEX parameters are set to their default
values.

In the computational experiments described below, the procedure first solves the OR model.
Then, a post-optimization procedure is run to check if the optimal solution violates any of the
two conditions µ(Rx) > µα and µα > yt for at least one scenario t. If one of these cases occurs,
variables ũt and constraints (37)–(41) are added to the mathematical formulation, and then the
model is solved again. A similar procedure is applied to solve the EOR model.

It is worth noticing that, in all the computational experiments we carried out, the condition
µ(Rx) > µα was never violated, whereas condition µα > yt for at least one scenario t turned out
to be violated very few times and only when setting α = 0.

The present section is organized as follows. We first describe the testing environment. Then,
we comment on some in-sample characteristics of the optimal portfolios and provide an extensive
evaluation of their out-of-sample performance.

4.1 Data sets

In the computational experiments, we use two data sets. The first data set is taken from
Guastaroba et al. [11], and hereafter, is referred to as GMS from the name of the authors.
This set includes 4 instances created from historical weekly rates of return of the 100 securities
composing the FTSE 100 Index at the date of the 25th of September, 2005. Particularly, the
rate of return of security j in scenario t is computed as rjt =

qjt−qj,t−1

qj,t−1
, where qjt is the closing

price of security j in the observed period t. No dividends are considered. Rates of return rIt for
the market index are computed similarly. Each of the 4 instances consists of 2 years of in-sample
weekly observations (i.e., 104 scenarios) and 1 year of out-of-sample ones (i.e., 52 realizations).
For each instance the optimal composition of the portfolio is first decided solving one of the
optimization models described in Section 3 and using 104 scenarios. Then the performance of
this portfolio is evaluated over the following 52 weeks.

The instances in data set GMS were originally created to span four different market trends.
Specifically, the first instance is characterized by an increasing trend of the market (i.e., the
market index is moving Up) in the in-sample period as well as in the out-of-sample period, and
is hereafter referred to as GMS-UU. The second instance considers an increasing trend of the
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market index in the in-sample period and a decreasing one (i.e., it is moving Down) in the out-
of-sample period, and from now on is referred to as GMS-UD. The third instance (henceforth
referred to as GMS-DU ) is characterized by a decreasing trend in the in-sample period and by
an increasing one in the out-of-sample period. Finally, the last instance (referred to as GMS-DD
in the following) is characterized by a decreasing trend in both the in-sample and the out-of-
sample periods. The temporal positioning of each instance is shown in Figure 2. All instances
in this data set are publicly available on the website of the Operational Research Group at the
University of Brescia (http://or-brescia.unibs.it), section “Benchmark Instances”.

Figure 2: The four different market periods in data set GMS.

The second data set, hereafter referred to as ORL, is generated from the 8 benchmark
instances for the index tracking problem currently belonging to the OR-Library (currently avail-
able at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html). These in-
stances consider the securities included in eight different stock market indices: the Hang Seng
market index (related to the Hong Kong stock market), the DAX 100 (Germany), the FTSE
100 (United Kingdom), the S&P 100 (USA), the Nikkei 225 (Japan), the S&P 500 (USA), the
Russell 2000 (USA) and the Russell 3000 (USA). The number of securities included in each
instance ranges from 31, composing the Hang Seng index, to 2151, composing the Russell 3000
index. For each security, 291 weekly prices are provided in the original data set. Starting from
this data set, we generate 8 instances consisting of the same number of in-sample and out-of-
sample observations considered in data set GMS. Specifically, we used the first 105 prices in each
instance to compute the rate of return of security j in scenario t, using the formula mentioned
above where qjt is taken equal to the (t+1)-th price provided in the original benchmark instance.
In the following, these instances are referred to as ORL-ITβ, β = 1, . . . , 8. All instances of this
set can also be downloaded at the website http://or-brescia.unibs.it.
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Table 1 summarizes the main characteristics of all the tested instances.

Data Set Instance Benchmark n T

GMS

GMS-UU FTSE 100 100 104

GMS-UD FTSE 100 100 104

GMS-DU FTSE 100 100 104

GMS-DD FTSE 100 100 104

ORL

ORL-IT1 Hang Seng 31 104

ORL-IT2 DAX 100 85 104

ORL-IT3 FTSE 100 89 104

ORL-IT4 S&P 100 98 104

ORL-IT5 Nikkei 225 225 104

ORL-IT6 S&P 500 457 104

ORL-IT7 Russell 2000 1318 104

ORL-IT8 Russell 3000 2151 104

Table 1: The main characteristics of the tested data sets.

To achieve some in-depth insights on the effectiveness of the proposed optimization models,
and on the impact of the real features described above, we solved the OR model, the EOR
model, as well as their extensions obtained adding constraints (27)–(34), on all the aforemen-
tioned instances. From now on, the MILP models representing the extensions of OR and EOR
models obtained adding Real Features (RF) are identified as OR-RF model and EOR-RF model,
respectively. In the latter two models, parameter K in the cardinality constraint is set equal
to 20 for all the instances in data set GMS. For data set ORL, K is set equal to 10 in the
experiments concerning the 4 smallest instances (from ORL-IT1 to ORL-IT4), and to 20 for
all the remaining test instances. Furthermore, we set parameters ǫj = 0.01 and ∆j = 0.15, for
j = 1, . . . , n.

The four optimization models were solved for 7 different values of the parameter α. Specif-
ically, we set α equal to 0, 1%, 2%, 5%, 8%, 10% and 15% on a yearly basis (corresponding to
values 0, 1.91371 ∗ 10−4, 3.80892 ∗ 10−4 9.38713 ∗ 10−4, 1.481116 ∗ 10−3, 1.834569 ∗ 10−3 and
2.691345 ∗ 10−3, on a weekly basis, respectively).

Finally, we set to 1 hour (3600 seconds) the threshold time to solve each instance. If the
solver did not terminate within the allowed time, then the best feasible solution found was used
to compute the performance measures reported in the following tables.

4.2 Evaluating the performance of the optimal portfolios

In this section, we comment on the main characteristics and the performance of the optimal
portfolios selected by the proposed optimization models.

Table 2 provides in-sample and out-of-sample statistics for the OR and the OR-RF models,
when solving the instances in the GMS data set. As mentioned above, each instance was solved
for different values of µα. The first two columns of the table show the name of the instance
and the value of µα used, expressed in percentage and on yearly basis. Notice that, for each
instance, the first value of µα corresponds to α = 0, i.e., the figure reported is the mean rate of
return of the market index µI . The main section of the table consists of two parts: the left-hand
part concerns the OR model, whereas the right-hand one refers to the OR-RF model. Each of
these parts consists of 8 columns. The first 4 columns refer to in-sample characteristics of the
optimal portfolios, such as the number of securities selected (column Div.), the minimum (Min
% ) and the maximum (Max % ) portfolio shares (in percentage), and the computing time (in
seconds) taken to optimally solve the instance (CPU (sec.)). The remaining 4 columns concern
the following out-of-sample performance measures: the number of weeks, divided by 52 and in
percentage, that the portfolio rate of return has outperformed the market index return in the
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out-of-sample period (yt > rIt %), the average portfolio rate of return in percentage and on
yearly basis (rav %), and the semi-standard deviation (s-std) computed compared to the market

index return as
√

1
52

∑52
t=1(yt − rIt )

2
−. Finally, the last column with header Sortino Index reports

the average excess return divided by the semi-standard deviation s-std, where the excess return
is measured from the mean return of the market index. For each instance, the average of each
performance measure, computed over all the different values of µα, is reported in the last line.

The same set of statistics is reported in Table 3 for the EOR model and its extension EOR-
RF for the instances of the GMS data set, while the figures in Tables 4 and 5 refer to the
instances in the ORL data set.

We begin the in-sample analysis considering some characteristics of the optimal portfolios
selected by the models without real features. As far as the number of securities composing the
optimal portfolios is concerned, the EOR model tends to be more diversified than that selected
by the OR model. The EOR model tends also to select portfolios with a better composition
than those of OR model. This is especially true if we look at statistic Max %. Indeed, in
almost all the instances the maximum share of the optimal portfolio found by the OR model
is considerably larger than the corresponding one selected by the EOR model. Notice that in
some instances (e.g., see the figures for instances GMS-DU and ORL-IT5 in Tables 2 and 4,
respectively) statistic Max % for the portfolios found by the OR model is larger than 56 %,
independently of the value of µα, while the same statistic for the EOR model is always smaller
than 15.3 % (see the figures reported in Tables 3 and 5). The above limitations of the portfolios
selected by the OR model may be mitigated by the introduction of the real features described in
3.5. In both models, the number of securities composing the optimal portfolios often decreases
as the value of µα increases.

Computing times are negligible for all instances solved by the OR and EOR models. As
expected, including real features in the optimization models makes their solution more time
consuming, and, in particular, the smaller the value of α, the larger the computing times (this is
evident looking at the figures shown in Table 3 for the EOR-RF model and at those concerning
the first 4 instances in Table 5). Note that, in some cases, computing times reach the imposed
threshold time. We investigated further on this point removing the time limit of 3600 seconds and
solving again all the instances not solved to optimality within such a time threshold. We found
that the solutions obtained in the time limit are indeed the optimal ones, with the exception
of the solution found by the EOR-RF model for instance ORL-IT6 setting µα = 0.4107 whose
percentage gap from the optimal solution is 0.78 %. Hence, we conclude that for those instances
CPLEX is able to find the optimal (or near-optimal) solution relatively quickly, spending an
excessive amount of computing time only to prove optimality.

Now, we move to the out-of-sample performance of the optimal portfolios. Comparing the
figures reported in Tables 2 and 4 for the OR model with those shown in Tables 3 and 5
for the EOR model, the portfolio optimized by means of the latter model often outperforms
the corresponding portfolio selected with the former model, irrespective of which statistic is
considered. Comparing the average values of the statistics computed for the GMS data set,
in three out of four instances the portfolios selected by the EOR model achieve, on average, a
considerably better performance than those found by the OR model (e.g., see at the average
Sortino Index for instance GMS-UD). A similar, though less strong, predominance of the EOR
model over the OR model occurred for the instances in the ORL data set. A clear trend in
the value of the statistics over all the tested instances when α increases is not observed. As
expected, the introduction of real features has a negative impact on the out-of-sample behavior
of the optimal portfolios, especially for those selected by the EOR model (e.g., the average
values of the Sortino Index in Table 5 for the EOR model are almost always better than the
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corresponding values for the EOR-RF model).
Even though the above statistics enable us to give a synthetic measure of the out-of-sample

performance of the portfolios, they do not provide an information of the portfolio performance
over time. To this aim, in Figures 3-5 we analyze and compare the portfolio behavior in terms of
cumulative returns. Cumulative returns of the corresponding market index are included in the
pictures as terms of comparison. This representation allows a clear and complete comparison
among the portfolios selected by the different optimization models, as well as a direct perfor-
mance evaluation compared to the market index. To the sake of brevity, we decided to only
report in the present paper the results concerning a subset of the tested instances and obtained
by setting α = 0%, 2%, and 5% on yearly basis. The complete set of results for all the instances
is provided as electronic supplementary material.

In Figures 3 and 4 we present the cumulative returns for the benchmarks and the portfo-
lios selected by the OR model (upper left panel), the OR-RF model (upper right), the EOR
model (lower left), and the EOR-RF model (lower right) in the instances GMS-UU and GMS-
UD, respectively. In both figures the portfolios optimized by means of the EOR model clearly
outperform those selected by the OR model. Indeed, in approximately the first half of the
out-of-sample period depicted in Figure 3, all the portfolios selected by the OR model yield cu-
mulative returns that fall below that of the benchmark. Subsequently, they perform similarly to
the market index for some ex-post realizations, and, finally, they yield worse cumulative returns
in the last weeks (especially the portfolio selected by setting α equal to 5%). On the other hand,
the portfolios selected by the EOR model track very closely the behavior of the benchmark over
almost the whole out-of-sample period, slightly outperforming the cumulative returns yielded by
the market index in some of the realizations near the end of the period. The prevalence of the
EOR model compared to the OR model is even more evident in Figure 4. The portfolios selected
by the OR model show quite unstable cumulative returns. All these portfolios outperform the
market index at the beginning of the ex-post period, yielding quite larger cumulative returns
than the benchmark for some realizations, while their performance deteriorates significantly in
the second part of the out-of-sample period. Conversely, the performance of the portfolios se-
lected by the EOR model is very satisfactory. All the portfolios mimic closely the behavior of
the benchmark, i.e., cumulative returns for the market index and the portfolios jointly increase
or decrease in most of the ex-post realizations, while yielding larger cumulative returns. The
higher volatility of the portfolios selected by the OR model than those found by the EOR model
is confirmed by the larger values taken by static s-std and shown in Tables 2–5. Similar conclu-
sions to those discussed above can be drawn comparing the cumulative returns yielded by the
portfolios selected by the two models including real features. The only additional remark we
draw is that, as mentioned above, the introduction of the real features often deteriorates the
out-of-sample performance of the optimal portfolios.

Given the worse performance of the OR model, in Figure 5 we decided to show for two
instances in the ORL data set the cumulative returns for some of the portfolios selected by only
the EOR model (left panels) and the EOR-RF model (right panels). Particularly, the upper
panels show the cumulative returns for instance ORL-IT7, whereas the lower panels concern
instance ORL-IT8. In both instances, all the portfolios largely outperform the benchmark over
the whole out-of-sample period. On the one hand, one can notice that the fluctuations of the
market index are replicated by the optimal portfolios but with larger amplitudes. Nevertheless,
the optimal portfolios yield much larger cumulative returns than those achieved by the market
index. For instance, in all panels the portfolios selected by setting α equal to 0% achieve a
cumulative return in week 44 that is approximately equal to 0.9, while the benchmarks yielded
a cumulative return less than 0.11 in instance ORL-IT7 and slightly larger than 0.16 in instance
ORL-IT8. In these two instances, introducing the real features has a remarkable negative effect
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on the performance of the optimal portfolios selected by setting α equal to 2% and 5%.

5 Conclusions and Future Directions

The index tracking problem represents one of the most studied and challenging problems in the
financial literature of the last decades. However, more recently, researchers and practitioners
seem to be more attracted by the enhanced indexation, where tracking is designed to outperform
instead of simply mimic the market index performance. This has given rise to the Enhanced
Index Tracking Problem (EITP) that aims at minimizing the index tracking error of a selected
portfolio, while outperforming the market index.

In this paper we model the EITP by means of the Omega ratio. This is a recent performance
measure that differs from the classical ones since it allows us to assess performance against a
benchmark accounting for asymmetry in returns distribution. We propose two mathematical
formulations for the EITP. In the first model the Omega ratio is computed with respect to a
benchmark represented by the mean rate of return of the market index (OR model). The second
model is obtained considering the portfolio optimization performance under multiple scenarios
by substituting the mean rate of return of the benchmark market index with its random variable
(EOR model). Both formulations, nonlinear in nature, are transformed into linear programming
models and extended to include cardinality constraints and buy-in thresholds on investments
giving rise to mixed integer linear programming models.

All optimization models were solved using CPLEX as solver. Extensive computational results
on two different sets of benchmark instances have shown how the portfolios selected by the EOR
model clearly outperform those found by the OR model in terms of out-of-sample performance.
Furthermore, in most of the instances tested the portfolios optimized with the EOR model
track very closely the behavior of the benchmark over the out-of-sample period, while yielding,
sometimes, significantly larger returns. These results suggest that considering the market index
as a random variable and its performance under all the scenarios is a valuable choice.

Finally, as future developments, one may consider a model extension with multiple levels
of targets Rαi , where the downside deviations are defined as scaled (weighted) deviations for
several targets. Another interesting research direction is the study of possible extensions of the
optimization models proposed in this paper in order to consider the possibility of rebalancing
the portfolio composition, where transaction costs are paid. It is also interesting to investigate
the performance of other optimization models where a different performance measure expressed
as a ratio is adopted instead of the Omega ratio. As most of these ratios cannot be linearized,
another possible development would be the design of efficient methods for their solution.
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OR model OR-RF model

Instance Details In-Sample Out-of-Sample In-Sample Out-of-Sample

CPU yt > Sortino CPU yt > Sortino

Name µα % Div. Min % Max % (sec.) rI
t

% rav % s-std Index Div. Min % Max % (sec.) rI
t

% rav % s-std Index

GMS-UU

15.61 11 1.27 20.33 0.016 50.00 35.60 0.0172 -0.0827 11 1.30 15.00 0.140 48.08 33.28 0.0170 -0.1029
16.61 12 0.01 21.06 0.016 48.08 32.66 0.0182 -0.1011 12 1.00 15.00 0.140 48.08 35.22 0.0167 -0.0884
17.61 11 0.62 23.42 0.016 50.00 33.63 0.0183 -0.0931 12 1.00 15.00 0.156 48.08 35.84 0.0167 -0.0828
20.61 10 0.62 26.65 0.015 46.15 23.00 0.0221 -0.1498 11 1.10 15.00 0.093 48.08 33.64 0.0176 -0.0967
23.61 8 0.18 19.63 0.015 40.38 18.37 0.0237 -0.1704 10 3.19 15.00 0.109 46.15 30.42 0.0184 -0.1179
25.61 6 13.20 19.83 0.031 42.31 13.65 0.0252 -0.1916 9 2.84 15.00 0.125 42.31 24.79 0.0199 -0.1519
30.61 7 0.54 21.23 0.016 42.31 14.03 0.0257 -0.1855 10 1.00 15.00 0.172 42.31 21.28 0.0208 -0.1723

Average 9.29 2.35 21.74 0.018 45.60 24.42 0.0215 -0.1392 10.71 1.63 15.00 0.134 46.15 30.64 0.0182 -0.1161

GMS-UD

17.39 9 0.32 26.75 0.015 44.23 -30.79 0.0329 -0.1623 11 2.05 15.00 0.109 36.54 -32.01 0.0272 -0.2089
18.39 9 0.36 26.98 0.015 44.23 -31.40 0.0331 -0.1663 11 1.54 15.00 0.110 36.54 -32.38 0.0274 -0.2106
19.39 9 0.38 27.14 0.031 42.31 -31.62 0.0332 -0.1679 9 1.71 15.00 0.156 36.54 -33.22 0.0290 -0.2078
22.39 9 1.06 28.70 0.016 42.31 -30.67 0.0336 -0.1578 10 1.00 15.00 0.156 36.54 -34.39 0.0292 -0.2175
25.39 9 0.73 29.00 0.016 42.31 -32.24 0.0342 -0.1678 10 2.94 15.00 0.109 32.69 -35.03 0.0290 -0.2260
27.39 8 2.83 30.20 0.016 44.23 -31.16 0.0351 -0.1550 10 2.63 15.00 0.109 32.69 -34.42 0.0286 -0.2223
32.39 9 1.01 43.96 0.016 42.31 -33.77 0.0417 -0.1482 10 1.23 15.00 0.203 32.69 -41.96 0.0304 -0.2863

Average 8.86 0.96 30.39 0.018 43.13 -31.67 0.0348 -0.1608 10.14 1.87 15.00 0.136 34.89 -34.77 0.0287 -0.2256

GMS-DU

-21.15 12 0.38 75.47 0.015 51.92 13.08 0.0194 -0.1704 16 1.00 15.00 0.172 57.69 40.97 0.0166 0.0576
-20.15 12 0.03 77.50 0.015 51.92 11.85 0.0197 -0.1788 16 1.00 15.00 0.187 57.69 40.60 0.0166 0.0543
-19.15 12 0.84 74.70 0.015 50.00 14.21 0.0192 -0.1618 17 1.00 15.00 0.171 57.69 40.91 0.0165 0.0572
-16.15 12 0.17 75.22 0.015 50.00 14.94 0.0194 -0.1545 18 1.00 15.00 0.219 55.77 40.16 0.0164 0.0514
-13.15 12 0.61 74.23 0.015 51.92 15.50 0.0195 -0.1485 17 1.00 15.00 0.171 59.62 40.82 0.0164 0.0569
-11.15 12 0.21 73.28 0.016 53.85 15.91 0.0196 -0.1445 18 1.08 15.00 0.125 61.54 42.02 0.0160 0.0686
-6.15 11 0.09 64.24 0.016 53.85 21.38 0.0191 -0.1015 14 1.00 15.00 0.187 57.69 40.58 0.0163 0.0550

Average 11.86 0.33 73.52 0.015 51.92 15.27 0.0194 -0.1514 16.57 1.01 15.00 0.176 58.24 40.86 0.0164 0.0573

GMS-DD

-11.81 18 0.07 52.06 0.016 53.85 -1.50 0.0165 0.2855 20 1.26 15.00 0.125 67.31 -2.59 0.0128 0.3506
-10.81 20 0.02 51.10 0.016 53.85 -1.41 0.0164 0.2888 20 1.00 15.00 0.218 65.38 -2.83 0.0127 0.3494
-9.81 20 0.04 50.72 0.015 55.77 -1.23 0.0163 0.2919 20 1.00 15.00 0.203 65.38 -2.56 0.0128 0.3519
-6.81 18 0.13 48.99 0.016 55.77 -0.78 0.0160 0.3030 18 1.09 15.00 0.218 67.31 -1.02 0.0130 0.3700
-3.81 19 0.09 33.83 0.016 59.62 -0.33 0.0152 0.3239 19 1.00 15.00 0.250 65.38 -2.85 0.0129 0.3451
-1.81 19 0.25 22.72 0.015 59.62 -1.83 0.0142 0.3261 19 1.00 15.00 0.234 65.38 -3.16 0.0130 0.3366
3.19 15 0.71 26.79 0.016 63.46 -4.87 0.0138 0.2934 20 1.00 15.00 0.265 61.54 -4.15 0.0132 0.3179

Average 18.43 0.19 40.89 0.016 57.42 -1.71 0.0155 0.3018 19.43 1.05 15.00 0.216 65.38 -2.74 0.0129 0.3459

Table 2: OR and OR-RF models: In-sample and out-of-sample statistics for the GMS data set.
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EOR model EOR-RF model

Instance Details In-Sample Out-of-Sample In-Sample Out-of-Sample

CPU yt > Sortino CPU yt > Sortino

Name µα % Div. Min % Max % (sec.) rI
t

% rav % s-std Index Div. Min % Max % (sec.) rI
t

% rav % s-std Index

GMS-UU

15.61 38 0.09 6.83 0.062 53.85 46.14 0.0057 0.0051 20 1.92 12.09 217.044 59.62 50.61 0.0071 0.0864
16.61 45 0.09 6.38 0.015 61.54 46.01 0.0052 0.0024 20 1.58 11.39 172.911 57.69 50.35 0.0072 0.0801
17.61 43 0.01 6.90 0.016 59.62 45.73 0.0053 -0.0048 20 2.19 12.25 46.832 57.69 48.29 0.0079 0.0394
20.61 33 0.10 9.10 0.015 50.00 46.89 0.0068 0.0191 20 2.14 14.95 4.415 53.85 45.61 0.0077 -0.0053
23.61 26 0.17 11.64 0.016 50.00 41.76 0.0087 -0.0644 20 1.00 12.48 0.265 50.00 44.72 0.0090 -0.0177
25.61 22 0.11 14.98 0.016 51.92 36.59 0.0109 -0.1169 20 1.27 15.00 0.234 48.08 36.14 0.0110 -0.1222
30.61 15 0.07 18.11 0.015 44.23 31.14 0.0135 -0.1530 14 1.00 15.00 0.172 44.23 30.29 0.0138 -0.1592

Average 31.71 0.09 10.56 0.022 53.02 42.04 0.0080 -0.0447 19.14 1.59 13.31 63.125 53.02 43.72 0.0091 -0.0141

GMS-UD

17.39 33 0.12 10.56 0.078 55.77 -0.20 0.0044 0.3781 20 2.09 11.12 198.058 55.77 -0.70 0.0052 0.3034
18.39 47 0.00 10.09 0.016 67.31 3.70 0.0046 0.5210 20 1.47 9.67 132.725 63.46 -1.61 0.0052 0.2697
19.39 46 0.04 9.98 0.016 65.38 3.35 0.0046 0.5075 20 1.39 10.16 89.326 59.62 -1.61 0.0053 0.2659
22.39 40 0.05 10.59 0.015 65.38 1.45 0.0043 0.4679 20 1.70 10.45 56.768 57.69 -2.78 0.0055 0.2141
25.39 33 0.01 9.76 0.016 59.62 1.37 0.0040 0.4942 20 1.39 11.59 7.473 51.92 -6.71 0.0064 0.0589
27.39 33 0.13 10.19 0.015 51.92 -7.23 0.0059 0.0460 20 1.15 11.02 3.993 42.31 -10.60 0.0071 -0.0613
32.39 28 0.15 11.35 0.016 42.31 -13.64 0.0097 -0.1140 20 1.52 12.11 1.638 40.38 -15.10 0.0103 -0.1387

Average 37.14 0.07 10.36 0.025 58.24 -1.60 0.0054 0.3287 20.00 1.53 10.88 69.997 53.02 -5.59 0.0064 0.1303

GMS-DU

-21.15 41 0.10 11.93 0.015 51.92 33.74 0.0030 -0.0217 20 1.00 11.70 10.686 48.08 31.18 0.0035 -0.1243
-20.15 39 0.11 11.36 0.016 59.62 34.84 0.0029 0.0327 20 1.15 11.78 6.334 48.08 31.47 0.0035 -0.1124
-19.15 37 0.10 10.03 0.016 50.00 33.10 0.0030 -0.0522 20 1.36 11.85 4.149 48.08 31.84 0.0034 -0.1000
-16.15 30 0.16 10.54 0.015 46.15 30.99 0.0035 -0.1334 20 1.08 10.54 2.371 50.00 30.74 0.0038 -0.1327
-13.15 27 0.07 12.03 0.016 46.15 31.69 0.0041 -0.0878 20 1.00 11.94 0.358 55.77 31.68 0.0044 -0.0836
-11.15 27 0.06 12.78 0.015 50.00 34.51 0.0042 0.0109 20 1.00 13.91 0.312 51.92 34.06 0.0043 -0.0042
-6.15 19 0.05 15.23 0.016 50.00 32.88 0.0052 -0.0362 17 1.00 14.40 0.281 48.08 33.69 0.0052 -0.0141

Average 31.43 0.09 11.99 0.016 50.55 33.11 0.0037 -0.0411 19.57 1.08 12.30 3.499 50.00 32.10 0.0040 -0.0816

GMS-DD

-11.81 37 0.23 9.92 0.078 53.85 -21.51 0.0048 0.0729 20 1.96 11.15 1064.514 48.08 -22.23 0.0049 0.0350
-10.81 47 0.14 10.72 0.016 38.46 -24.94 0.0040 -0.1259 20 1.64 10.53 625.780 48.08 -22.57 0.0050 0.0180
-9.81 44 0.07 10.07 0.015 46.15 -25.04 0.0041 -0.1303 20 1.89 11.88 601.225 51.92 -22.28 0.0052 0.0313
-6.81 42 0.02 9.78 0.016 53.85 -23.28 0.0042 -0.0205 20 1.37 10.36 155.220 51.92 -23.99 0.0070 -0.0379
-3.81 38 0.04 10.49 0.015 50.00 -21.64 0.0045 0.0698 20 1.96 10.33 37.549 57.69 -20.32 0.0066 0.0971
-1.81 34 0.27 10.42 0.016 57.69 -20.54 0.0058 0.1013 20 2.25 9.35 6.802 50.00 -20.47 0.0059 0.1019
3.19 30 0.18 10.85 0.016 59.62 -18.52 0.0070 0.1532 20 2.10 11.44 2.714 55.77 -19.81 0.0068 0.1115

Average 38.86 0.14 10.32 0.025 51.37 -22.21 0.0049 0.0172 20.00 1.88 10.72 356.258 51.92 -21.67 0.0059 0.0510

Table 3: EOR and EOR-RF models: In-sample and out-of-sample statistics for the GMS data set.
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OR model OR-RF model

Instance Details In-Sample Out-of-Sample In-Sample Out-of-Sample

CPU yt > Sortino CPU yt > Sortino

Name µα % Div. Min % Max % (sec.) rI
t

% rav % s-std Index Div. Min % Max % (sec.) rI
t

% rav % s-std Index

ORL-IT1

48.60 4 9.50 49.19 0.031 59.62 13.14 0.0195 0.2927 8 1.98 15.00 0.078 55.77 -11.38 0.0116 0.0872
49.60 4 9.84 49.14 0.016 59.62 12.76 0.0195 0.2895 8 1.76 15.00 0.078 55.77 -11.45 0.0116 0.0860
50.60 4 9.68 49.42 0.016 59.62 13.59 0.0195 0.2971 8 2.07 15.00 0.078 55.77 -11.55 0.0116 0.0839
53.60 4 7.97 50.77 0.016 57.69 16.90 0.0196 0.3240 7 11.09 15.00 0.093 55.77 -11.64 0.0115 0.0827
56.60 4 7.90 51.26 0.016 57.69 17.91 0.0196 0.3325 7 11.68 15.00 0.078 53.85 -11.86 0.0115 0.0785
58.60 4 4.05 53.76 0.016 55.77 25.91 0.0199 0.3904 7 12.07 15.00 0.078 53.85 -12.00 0.0115 0.0757
63.60 2 43.04 56.96 0.016 59.62 37.37 0.0207 0.4570 7 10.82 15.00 0.124 55.77 -11.61 0.0116 0.0826

Average 3.71 13.14 51.50 0.018 58.52 19.65 0.0197 0.3405 7.43 7.35 15.00 0.087 55.22 -11.64 0.0116 0.0824

ORL-IT2

7.16 13 0.32 21.55 0.031 53.85 11.43 0.0155 0.1261 10 5.00 15.00 0.265 51.92 11.59 0.0156 0.1274
8.16 13 0.10 22.15 0.015 51.92 10.09 0.0156 0.1107 10 5.00 15.00 0.375 51.92 11.64 0.0156 0.1277
9.16 12 0.34 23.19 0.016 53.85 9.71 0.0156 0.1062 10 4.38 15.00 0.234 51.92 12.35 0.0156 0.1360

12.16 11 1.47 29.03 0.016 53.85 5.35 0.0160 0.0548 10 2.85 15.00 0.171 48.08 9.02 0.0150 0.1028
15.16 12 0.56 31.79 0.016 55.77 4.62 0.0163 0.0457 10 2.36 15.00 0.156 48.08 9.09 0.0149 0.1042
17.16 12 0.51 31.62 0.031 55.77 3.61 0.0163 0.0343 10 1.78 15.00 0.172 50.00 9.22 0.0149 0.1055
22.16 9 2.21 37.21 0.016 50.00 4.17 0.0167 0.0395 9 6.01 15.00 0.156 46.15 8.72 0.0150 0.0991

Average 11.71 0.79 28.08 0.020 53.57 7.00 0.0160 0.0739 9.86 3.91 15.00 0.218 49.73 10.23 0.0152 0.1147

ORL-IT3

14.20 12 0.08 20.23 0.031 50.00 -10.22 0.0217 -0.0328 10 1.75 15.00 0.172 50.00 -8.55 0.0219 -0.0163
15.20 12 0.00 20.03 0.015 50.00 -10.03 0.0217 -0.0309 10 1.00 15.00 0.156 50.00 -8.69 0.0221 -0.0175
16.20 12 0.29 19.66 0.015 50.00 -9.97 0.0218 -0.0302 10 1.38 15.00 0.187 50.00 -8.83 0.0221 -0.0188
19.20 11 0.63 20.09 0.015 50.00 -9.48 0.0220 -0.0251 9 2.16 15.00 0.156 50.00 -7.91 0.0219 -0.0102
22.20 10 0.17 23.40 0.015 46.15 -9.33 0.0213 -0.0245 9 2.79 15.00 0.141 50.00 -7.51 0.0218 -0.0065
24.20 8 0.41 24.02 0.031 46.15 -8.46 0.0212 -0.0159 9 4.33 15.00 0.109 51.92 -6.38 0.0214 0.0043
29.20 7 3.86 27.55 0.015 44.23 -6.00 0.0208 0.0082 10 1.00 15.00 0.156 48.08 -4.22 0.0209 0.0253

Average 10.29 0.78 22.14 0.020 48.08 -9.07 0.0215 -0.0216 9.57 2.06 15.00 0.154 50.00 -7.44 0.0217 -0.0057

ORL-IT4

6.46 12 1.14 21.61 0.015 48.08 1.77 0.0205 -0.0342 10 4.27 15.00 0.187 50.00 0.64 0.0221 -0.0414
7.46 12 0.95 21.72 0.031 48.08 2.16 0.0204 -0.0307 10 4.32 15.00 0.234 50.00 0.36 0.0222 -0.0437
8.46 12 1.12 22.60 0.031 48.08 1.44 0.0213 -0.0359 10 3.99 15.00 0.203 50.00 0.23 0.0225 -0.0442

11.46 10 3.09 17.94 0.031 50.00 -0.34 0.0234 -0.0473 10 3.01 15.00 0.156 50.00 0.41 0.0228 -0.0422
14.46 10 0.90 23.72 0.031 50.00 -3.28 0.0248 -0.0677 10 2.11 15.00 0.109 48.08 0.97 0.0231 -0.0369
16.46 10 0.77 27.44 0.015 50.00 -3.72 0.0261 -0.0678 10 1.77 15.00 0.171 48.08 0.78 0.0232 -0.0383
21.46 6 2.51 36.10 0.015 51.92 -7.17 0.0322 -0.0767 10 4.46 15.00 0.188 48.08 3.03 0.0230 -0.0202

Average 10.29 1.50 24.45 0.024 49.45 -1.31 0.0241 -0.0515 10.00 3.42 15.00 0.178 49.18 0.92 0.0227 -0.0381

ORL-IT5

-0.88 4 9.81 56.52 0.031 46.15 -28.08 0.0225 -0.1526 9 1.00 15.00 0.187 48.08 -20.57 0.0162 -0.0942
0.12 4 9.96 59.60 0.031 48.08 -28.26 0.0229 -0.1522 8 3.47 15.00 0.141 48.08 -20.58 0.0163 -0.0943
1.12 4 10.02 59.45 0.016 48.08 -28.23 0.0228 -0.1520 8 3.64 15.00 0.140 48.08 -20.62 0.0163 -0.0949
4.12 5 2.83 70.04 0.031 46.15 -28.45 0.0242 -0.1456 8 4.33 15.00 0.140 48.08 -20.79 0.0163 -0.0971
7.12 4 2.78 87.83 0.031 46.15 -28.74 0.0266 -0.1354 8 2.82 15.00 0.141 44.23 -21.63 0.0166 -0.1078
9.12 3 3.11 90.62 0.031 46.15 -28.67 0.0272 -0.1321 8 1.45 15.00 0.140 40.38 -23.09 0.0172 -0.1247

14.12 2 10.73 89.27 0.031 46.15 -29.51 0.0275 -0.1386 9 2.93 15.00 0.281 42.31 -23.44 0.0175 -0.1279
Average 3.71 7.04 73.33 0.029 46.70 -28.56 0.0248 -0.1441 8.29 2.81 15.00 0.167 45.60 -21.53 0.0166 -0.1058

ORL-IT6

26.07 15 0.08 16.43 0.047 46.15 38.42 0.0291 0.0714 14 1.00 15.00 0.421 46.15 39.26 0.0284 0.0772
27.07 15 0.31 17.27 0.031 50.00 50.35 0.0290 0.1267 14 1.00 15.00 0.764 46.15 40.29 0.0283 0.0824
28.07 14 0.05 18.49 0.031 51.92 64.20 0.0291 0.1851 14 1.35 15.00 0.359 46.15 46.98 0.0279 0.1160
31.07 13 0.78 20.65 0.031 53.85 100.82 0.0297 0.3133 13 2.49 15.00 0.327 50.00 54.06 0.0290 0.1429
34.07 11 0.11 22.07 0.046 53.85 106.43 0.0302 0.3263 12 2.05 15.00 0.327 51.92 94.32 0.0291 0.2979
36.07 11 0.09 21.62 0.031 53.85 109.19 0.0303 0.3333 12 1.99 15.00 0.343 51.92 93.15 0.0291 0.2933
41.07 11 0.48 23.06 0.031 55.77 150.30 0.0318 0.4277 12 1.00 15.00 0.437 55.77 105.41 0.0291 0.3343

Average 12.86 0.27 19.94 0.035 52.20 88.53 0.0299 0.2548 13.00 1.55 15.00 0.425 49.73 67.64 0.0287 0.1920

ORL-IT7

9.22 46 0.06 13.58 0.093 53.85 34.39 0.0167 0.1747 20 1.74 15.00 3601.438 55.77 21.10 0.0192 0.0470
10.22 49 0.10 13.47 0.093 53.85 36.57 0.0166 0.1948 20 1.70 15.00 3602.718 53.85 28.83 0.0162 0.1293
11.22 49 0.02 13.57 0.093 53.85 36.78 0.0165 0.1968 20 1.00 12.22 3602.717 53.85 18.01 0.0185 0.0218
14.22 47 0.15 14.43 0.078 53.85 36.03 0.0160 0.1973 20 1.18 15.00 3602.171 59.62 32.08 0.0180 0.1433
17.22 54 0.05 10.68 0.093 51.92 27.88 0.0162 0.1205 20 1.19 12.81 3603.091 57.69 31.56 0.0176 0.1425
19.22 54 0.03 13.12 0.094 55.77 32.54 0.0157 0.1683 20 1.02 12.51 3602.982 53.85 28.43 0.0188 0.1083
24.22 46 0.05 8.64 0.093 51.92 32.21 0.0163 0.1592 20 1.22 12.82 3602.468 48.08 22.09 0.0199 0.0534

Average 49.29 0.07 12.50 0.091 53.57 33.77 0.0163 0.1731 20.00 1.29 13.62 3602.512 54.67 26.01 0.0183 0.0923

ORL-IT8

23.36 57 0.01 10.75 0.140 51.92 24.06 0.0194 0.0028 20 1.40 13.24 3602.936 48.08 30.81 0.0222 0.0485
24.36 56 0.01 11.17 0.156 53.85 25.58 0.0194 0.0149 20 1.78 12.82 3602.390 46.15 36.25 0.0201 0.0927
25.36 55 0.05 12.59 0.156 53.85 25.11 0.0194 0.0112 20 1.41 11.91 3602.842 51.92 28.37 0.0218 0.0329
28.36 48 0.09 11.89 0.156 51.92 28.70 0.0194 0.0394 20 1.43 10.60 3602.046 53.85 32.56 0.0213 0.0628
31.36 47 0.04 8.64 0.156 46.15 31.92 0.0198 0.0627 20 1.62 10.77 3601.968 51.92 33.55 0.0214 0.0692
33.36 47 0.06 8.18 0.156 46.15 32.90 0.0206 0.0672 20 1.07 8.99 3600.190 50.00 22.84 0.0238 -0.0057
38.36 43 0.00 7.75 0.156 51.92 36.02 0.0218 0.0841 20 1.00 11.60 1115.433 51.92 44.23 0.0227 0.1310

Average 50.43 0.04 10.14 0.154 50.82 29.18 0.0200 0.0403 20.00 1.38 11.42 3246.829 50.55 32.66 0.0219 0.0616

Table 4: OR and OR-RF models: In-sample and out-of-sample statistics for the ORL data set.
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EOR model EOR-RF model

Instance Details In-Sample Out-of-Sample In-Sample Out-of-Sample

CPU yt > Sortino CPU yt > Sortino

Name µα % Div. Min % Max % (sec.) rI
t

% rav % s-std Index Div. Min % Max % (sec.) rI
t

% rav % s-std Index

ORL-IT1

48.60 25 0.24 16.53 0.016 59.62 -13.06 0.0027 0.2389 10 6.80 15.00 1.014 59.62 -7.25 0.0053 0.3527
49.60 24 0.43 16.45 0.016 59.62 -13.10 0.0027 0.2357 10 6.47 15.00 0.967 59.62 -7.48 0.0055 0.3360
50.60 25 0.05 16.44 0.015 61.54 -12.43 0.0029 0.2733 10 5.87 15.00 0.796 59.62 -7.63 0.0056 0.3225
53.60 21 0.13 15.81 0.015 61.54 -11.52 0.0036 0.2741 10 4.43 15.00 0.577 61.54 -9.69 0.0057 0.2422
56.60 16 0.08 15.01 0.016 61.54 -10.73 0.0052 0.2191 10 4.36 14.85 0.094 57.69 -8.02 0.0070 0.2448
58.60 14 0.33 14.90 0.016 53.85 -8.18 0.0075 0.2264 10 1.46 15.00 0.078 51.92 -9.32 0.0073 0.1999
63.60 8 3.76 21.34 0.016 50.00 -2.03 0.0101 0.2914 10 1.18 15.00 0.047 53.85 -7.93 0.0082 0.2124

Average 19.00 0.72 16.64 0.016 58.24 -10.15 0.0049 0.2513 10.00 4.37 14.98 0.510 57.69 -8.19 0.0064 0.2729

ORL-IT2

7.16 49 0.03 9.51 0.015 50.00 1.55 0.0196 0.0087 10 7.21 15.00 459.233 50.00 -1.78 0.0183 -0.0257
8.16 58 0.01 9.83 0.031 50.00 0.81 0.0195 0.0015 10 6.49 15.00 184.970 48.08 -1.81 0.0182 -0.0262
9.16 55 0.08 9.46 0.016 51.92 1.39 0.0194 0.0073 10 6.56 15.00 63.024 48.08 -1.89 0.0182 -0.0270

12.16 34 0.26 10.04 0.016 46.15 -0.29 0.0190 -0.0095 10 6.47 15.00 3.666 48.08 -1.95 0.0183 -0.0275
15.16 19 0.74 11.29 0.016 42.31 -1.60 0.0180 -0.0242 10 3.04 15.00 1.201 46.15 -3.09 0.0189 -0.0386
17.16 19 0.00 13.11 0.016 46.15 -2.82 0.0183 -0.0369 10 2.61 15.00 0.249 50.00 -3.51 0.0179 -0.0455
22.16 10 0.76 20.75 0.016 46.15 -3.06 0.0186 -0.0389 10 1.32 15.00 0.140 42.31 -4.46 0.0180 -0.0557

Average 34.86 0.27 12.00 0.018 47.53 -0.58 0.0189 -0.0131 10.00 4.81 15.00 101.783 47.53 -2.64 0.0182 -0.0352

ORL-IT3

14.20 42 0.05 7.88 0.016 46.15 -7.17 0.0211 -0.0033 10 7.33 13.16 3600.065 46.15 -7.20 0.0218 -0.0035
15.20 46 0.07 7.31 0.016 46.15 -6.84 0.0211 -0.0001 10 6.46 13.08 3600.018 48.08 -7.53 0.0219 -0.0066
16.20 46 0.05 7.71 0.031 48.08 -6.21 0.0208 0.0061 10 5.46 15.00 3600.019 44.23 -6.12 0.0210 0.0070
19.20 55 0.01 6.32 0.031 48.08 -4.99 0.0204 0.0184 10 5.29 14.62 814.696 44.23 -5.88 0.0209 0.0094
22.20 48 0.23 6.37 0.032 48.08 -5.22 0.0208 0.0158 10 4.16 15.00 142.022 48.08 -7.27 0.0206 -0.0044
24.20 42 0.00 8.43 0.032 50.00 -6.23 0.0208 0.0059 10 3.95 15.00 16.926 48.08 -7.42 0.0206 -0.0059
29.20 30 0.19 11.10 0.016 48.08 -7.00 0.0209 -0.0016 10 4.51 15.00 1.545 50.00 -5.97 0.0201 0.0088

Average 44.14 0.09 7.87 0.025 47.80 -6.24 0.0208 0.0059 10.00 5.31 14.41 1682.184 46.98 -6.77 0.0210 0.0007

ORL-IT4

6.46 45 0.06 8.01 0.031 46.15 4.53 0.0164 -0.0113 10 3.46 15.00 3600.062 48.08 2.33 0.0200 -0.0297
7.46 44 0.11 6.85 0.031 46.15 5.56 0.0161 0.0001 10 5.56 14.83 3600.049 50.00 4.95 0.0194 -0.0056
8.46 46 0.11 6.09 0.031 46.15 6.00 0.0159 0.0052 10 5.46 14.79 3585.321 50.00 5.09 0.0194 -0.0043

11.46 54 0.08 4.86 0.031 44.23 5.91 0.0156 0.0043 10 4.79 15.00 308.818 46.15 4.24 0.0191 -0.0125
14.46 37 0.09 9.17 0.032 44.23 4.52 0.0168 -0.0112 10 3.83 15.00 19.344 51.92 0.61 0.0221 -0.0417
16.46 32 0.30 11.08 0.031 46.15 4.58 0.0175 -0.0101 10 3.82 15.00 3.822 50.00 -0.02 0.0225 -0.0463
21.46 20 0.61 17.26 0.031 51.92 0.23 0.0211 -0.0472 10 3.84 15.00 1.529 50.00 0.49 0.0227 -0.0416

Average 39.71 0.19 9.05 0.031 46.43 4.48 0.0171 -0.0100 10.00 4.39 14.94 1588.421 49.45 2.53 0.0208 -0.0260

ORL-IT5

-0.88 39 0.12 11.87 0.015 46.15 -17.25 0.0184 -0.0407 20 1.69 14.68 20.841 44.23 -17.93 0.0183 -0.0496
0.12 40 0.03 11.43 0.031 46.15 -16.98 0.0182 -0.0377 20 1.77 14.39 31.466 44.23 -17.88 0.0182 -0.0490
1.12 41 0.00 11.49 0.015 46.15 -16.75 0.0180 -0.0350 20 1.50 12.79 3600.033 46.15 -16.66 0.0182 -0.0335
4.12 48 0.07 10.10 0.031 46.15 -15.77 0.0178 -0.0230 20 1.46 9.85 3601.469 46.15 -15.43 0.0180 -0.0184
7.12 68 0.03 7.17 0.031 44.23 -13.87 0.0175 0.0012 20 1.52 11.54 3602.030 44.23 -16.99 0.0188 -0.0365
9.12 67 0.07 8.07 0.031 48.08 -13.98 0.0179 -0.0002 20 1.93 13.33 3600.096 46.15 -18.25 0.0188 -0.0520

14.12 36 0.02 13.57 0.031 48.08 -19.23 0.0190 -0.0636 20 1.20 12.66 3.759 46.15 -19.72 0.0191 -0.0694
Average 48.43 0.05 10.53 0.026 46.43 -16.26 0.0181 -0.0284 20.00 1.58 12.75 2065.671 45.33 -17.55 0.0185 -0.0441

ORL-IT6

26.07 39 0.07 10.55 0.031 44.23 39.71 0.0268 0.0842 20 1.15 12.74 638.400 44.23 23.88 0.0282 -0.0025
27.07 40 0.09 10.38 0.031 46.15 41.21 0.0266 0.0926 20 1.35 12.50 861.044 48.08 39.92 0.0262 0.0872
28.07 41 0.06 10.16 0.046 46.15 40.81 0.0265 0.0908 20 1.98 12.42 1278.641 44.23 20.90 0.0282 -0.0192
31.07 41 0.06 10.03 0.031 46.15 39.44 0.0267 0.0830 20 1.22 12.54 2053.120 48.08 37.65 0.0256 0.0769
34.07 41 0.05 9.42 0.047 46.15 42.60 0.0265 0.1000 20 2.24 10.86 3600.299 46.15 34.16 0.0265 0.0556
36.07 42 0.07 8.74 0.031 48.08 41.43 0.0265 0.0940 20 1.58 8.97 3601.406 46.15 27.19 0.0279 0.0157
41.07 49 0.03 6.32 0.046 46.15 35.62 0.0263 0.0639 20 1.01 7.88 3604.745 46.15 33.21 0.0269 0.0495

Average 41.86 0.06 9.37 0.038 46.15 40.12 0.0265 0.0869 20.00 1.50 11.13 2233.951 46.15 30.99 0.0271 0.0376

ORL-IT7

9.22 30 0.17 14.44 0.047 57.69 88.01 0.0242 0.3895 20 1.68 12.31 110.277 65.38 93.22 0.0226 0.4400
10.22 31 0.12 14.16 0.063 57.69 87.41 0.0241 0.3884 20 1.32 15.00 200.351 55.77 60.13 0.0252 0.2501
11.22 32 0.03 13.84 0.047 55.77 87.12 0.0240 0.3890 20 1.39 14.77 121.446 55.77 60.25 0.0252 0.2511
14.22 33 0.01 13.32 0.093 55.77 82.62 0.0238 0.3720 20 1.44 14.19 188.183 57.69 58.44 0.0259 0.2354
17.22 38 0.01 13.08 0.094 55.77 78.70 0.0239 0.3530 20 1.89 11.75 508.281 57.69 56.88 0.0244 0.2421
19.22 38 0.02 12.78 0.078 55.77 75.18 0.0240 0.3360 20 1.68 11.16 863.477 57.69 59.19 0.0243 0.2554
24.22 39 0.11 11.49 0.093 57.69 70.70 0.0234 0.3231 20 1.94 11.50 3600.159 57.69 41.38 0.0261 0.1494

Average 34.43 0.07 13.30 0.074 56.59 81.39 0.0239 0.3644 20.00 1.62 12.96 798.882 58.24 61.36 0.0248 0.2605

ORL-IT8

23.36 31 0.01 15.25 0.078 53.85 96.72 0.0243 0.3704 20 1.13 14.58 171.772 53.85 100.69 0.0247 0.3793
24.36 31 0.16 15.39 0.078 53.85 96.27 0.0242 0.3696 20 1.19 14.52 168.808 53.85 102.38 0.0246 0.3883
25.36 31 0.23 15.52 0.078 53.85 95.82 0.0242 0.3687 20 1.03 15.00 288.335 53.85 51.01 0.0267 0.1445
28.36 32 0.01 15.88 0.078 53.85 93.18 0.0240 0.3604 20 1.00 15.00 335.931 50.00 61.13 0.0259 0.1972
31.36 31 0.07 16.40 0.078 50.00 88.20 0.0240 0.3390 20 1.05 15.00 517.266 50.00 59.34 0.0257 0.1905
33.36 33 0.06 16.35 0.078 50.00 81.11 0.0243 0.3039 20 1.00 15.00 646.652 51.92 60.84 0.0260 0.1954
38.36 40 0.04 16.36 0.140 50.00 70.67 0.0245 0.2548 20 1.43 15.00 899.217 50.00 54.18 0.0254 0.1677

Average 32.71 0.08 15.88 0.087 52.20 88.85 0.0242 0.3381 20.00 1.12 14.87 432.569 51.92 69.94 0.0256 0.2376

Table 5: EOR and EOR-RF models: In-sample and out-of-sample statistics for the ORL data set.
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Figure 3: Out-of-sample cumulative returns (instance GMS-UU): A comparison among the four optimization models and the market index.
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Figure 4: Out-of-sample cumulative returns (instance GMS-UD): A comparison among the four optimization models and the market index.
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Figure 5: Out-of-sample cumulative returns (instances ORL-IT7 and ORL-IT8): A comparison among the EOR and the EOR-RF opti-
mization models and the market index.
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