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Abstract

In many situations, the resources in organizations are employed to satisfy some demand (or ser-
vices) requirements, which are repeated with some periodicity. These recurrent services appear
in a large variety of processes such as manufacturing, logistics and several other types of services.
This thesis addresses a family of problems that consider services in a recurrent manner. In par-
ticular, we concentrate on recurrent service problems with single-period duration with particular
emphasis on the study of the strategy that is followed to o�er the services over the planning
horizon, that is, the scheduling policy.

The aim in this thesis is to study and analyze di�erent options for such policies. The purpose
is to provide enough support to decision makers to determine the convenience of using (or not)
�exible policies as an alternative to regular strategies. For this, we study alternative models for
two di�erent scheduling policies. First, we present several Mixed Integer Linear Programming
formulations. We develop two di�erent types of formulations, which can be classi�ed as sparse
and dense, according to the type of coe�cients matrices they are associated with, respectively.
For each type of formulation, we present two versions. In the �rst one decision variables are
associated with individual demand customers whereas in the second one decision variables are
associated with classes of customers with similar characteristics. Additionally, for the �exible
policy we propose two di�erent formulations suitable for column generation, which are embedded
within a branch-and-price framework. All formulations are compared trough extensive compu-
tational experience. We also develop a heuristic algorithm suitable for both scheduling policies,
which produces good quality solutions for the studied problems, specially for the �exible policy.

Finally, the structure of the solutions obtained with both scheduling policies are analyzed
giving important insights on the trade-o� between the regular and the �exible policies.

Keywords: combinatorial optimization, mixed-integer programming, multi-period prob-
lems, service scheduling, scheduling policies, heuristics, column generation, branch-and-price.
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Resumen

En muchas situaciones los recursos en las organizaciones se usan para satisfacer requerimientos
de demanda (o servicios) los cuales se repiten con cierta periodicidad. Estos servicios recurrentes
suelen aparecer en una gran variedad de procesos de manufactura, logística y varios otros tipos
de servicios. Esta tesis aborda una familia de problemas con servicios que se aparecen de manera
recurrente. En particular, nos concentramos en problemas de servicio recurrente con duración
de un solo periodo haciendo énfasis en el estudio de la estrategia que se sigue para ofrecer los
servicios en el horizonte de planeación, es decir, la política de calendarización.

El objetivo de esta tesis es el estudio y análisis de diferentes opciones para este tipo de
políticas. El propósito es proporcionar una base su�ciente para los tomadores de decisiones para
determinar la conveniencia de utilizar (o no) políticas �exibles como alternativa a estrategias
regulares. Para ello, se estudian modelos alternativos para dos diferentes políticas de calen-
darización. En primer lugar, se presentan varias formulaciones de Programación Lineal Entera
Mixta en donde desarrollamos dos tipos de formulaciones, las cuales se clasi�can en dispersas y
densas, segú el tipo de matrices de coe�cientes con las cuales están asociadas. Para cada tipo
de formulación, se plantean dos versiones. En la primera versión las variables de decisión están
asociadas con las demanadas de clientes individuales, mientras que en la segunda las variables
de desición se asocian con clases de clientes con características similares. Adicionalmente, para
la política �exible se proponen dos diferenes formulaciones adecuadas para generación de colum-
nas, las cuales introducimos dentro de un marco de branch-and-price. Todas las formulaciones
son comparadas por medio de una amplia experiencia computacional. También desarrollamos
un algoritmo heurístico adecuado para las dos políticas de alendarización, las cuales producen
soluciones de buena calidad para los problemas estudiados, especialmente para la política �exible.

Para �nalizar, la estructura de las soluciones obtenidas con las dos políticas de calendarización
se analizan dando una visión importante de las ventajas entre la política regular y la �exible.

Palabras clave: optimización combinatoria, programación entera mixta, problemas multi-
periodo, programación de servicios, políticas de calendarización, heuristicos, generación de colum-
nas, branch-and-price.
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Introduction

In order to ensure competitiveness, companies continuously address the challenge of optimizing
their resources. Since the last century, great e�orts have been made in order to reduce the uti-
lization of many types of resources such as goods or services, particularly nowadays when the
world is more and more concerned about environmental sustainability. It is unanimously agreed
that good use of natural, energy and other types of resources plays a core role in the e�ciency
of processes.

There is a wide range of situations where resources are used to satisfy some demand (or
services) requirements, which are repeated with some periodicity. In particular, they appear
in various processes such as manufacturing, logistics and several other types of services. Some
examples are services for procurement and production, transportation and distribution, as well
as information processing and communication. Recurrent services can be found both at strategic
and operational planning levels.

Operations Research (OR) is a very versatile discipline that applies analytical methods to
identify the best decisions involved in numerous and diverse processes. By employing techniques
such as mathematical modelling, statistical analysis, and mathematical optimization, OR pro-
vides optimal or near-optimal solutions to complex decision-making processes such as scheduling,
facility planning and forecasting and yield management, to mention just a few.

Scheduling determines one of the largest �elds of OR, speci�cally within combinatorial op-
timization. Scheduling usually deals with tasks that possibly have priority levels, precedence
relationships, earliest starting times, and due dates. The objectives for scheduling problems are
very diverse. Some of the most frequent ones are the minimization of the completion time of the
last task (makespan) or the minimization of the number of tasks completed after their respective
due dates.

In this thesis, we focus on a particular family of problems involving the planning of recurrent
services. In these problems resources are assigned to o�er recurrent services over a planning hori-
zon. Even if these problems can be classi�ed as scheduling problems, this speci�c characteristic
makes them di�er from the typical scheduling problems studied in the literature. A very special
characteristic of the problems that we study is that services are considered as single-period tasks.
That is, the time needed to start and complete a service never exceeds one time period of the
planning horizon. Furthermore, we focus on identifying the single periods when each service is
repeated within the time horizon, instead of on the sequence according to which the di�erent
services are executed along the time horizon.

We concentrate on modelling aspects for recurrent service problems with single-period dura-
tion, and on solution techniques for e�ciently �nding solutions. Particular emphasis is placed
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Introduction

on the study of the strategy that is followed to o�er the services over the planning horizon, that
is, the policy for scheduling. Our aim is to analyze di�erent options for such scheduling policies.
The purpose is to provide enough support to decision makers to determine the convenience of us-
ing (or not) �exible policies as an alternative to regular strategies. For this, we study alternative
models for two di�erent scheduling policies. These models are addressed from a mathematical
programming point of view and, therefore, we present several Mixed Integer Linear Programming
(MILP) formulations. We develop two di�erent types of formulations: the �rst type can be seen
as a natural initial approach to the problem and produces sparse coe�cients matrices whereas
the second type is focused on determining the very �rst service period for each customer and
gives dense matrices. For each type of formulation, we present two versions: an extensive and a
compact one. In the �rst one decision variables are associated with individual demand customers
whereas in the second one decision variables are associated with classes of customers with similar
characteristics. For the regular policy we develop both types of formulations whereas for the �ex-
ible policy we only study the extensive formulation. Figure 1 gives a summary on the di�erent
formulations developed for both policies. The formulations for each policy are compared trough
extensive computational experience.

  

Sparse Dense

Regular 
policy

Flexible 
policy

Extensive Compact Compact

X

X X XX

X

Extensive

Figure 1: MILP formulations classi�cation for each scheduling policy.

Since the �exible policy results harder to solve than the regular one, we make use of com-
binatorial optimization techniques that permit alternative solution methods. In particular, we
propose two di�erent formulations suitable for column generation (CG). For each formulation we
study the pricing subproblem that allows generating new columns, the initialization phase, as
well as a procedure to tackle infeasibility issues. Additionally, we apply stabilization procedures
in order to avoid the generation of an excessive number of columns. Each CG algorithm is embed-
ded within a branch-and-price (BP) framework, which combines di�erent branching strategies.
The BP was implemented for each CG formulation producing very interesting results that we
present and analyze.

Heuristics are alternative combinatorial optimization techniques that provide optimal and
near optimal values within small computational times. In this thesis we also propose a heuristic
algorithm suitable for both scheduling policies. The heuristic produces good quality solutions
for the studied problems, specially for the �exible policy.

Finally, we devote a chapter to compare empirically the structure of the solutions obtained
with both scheduling policies. This analysis gives an important insight on the trade-o� between
the regular and the �exible policies.

The contributions of this thesis are summarized below:

- We propose a new family of problems for scheduling recurrent services with single-period
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tasks.

- For these problems, we study two di�erent scheduling policies, a regular policy that is based
on �xed time intervals between two consecutive services and a �exible one that allows for
early services. We analyze the solutions for both policies and compare them in order to
decide the best strategy to follow.

- We study several alternative MILP formulations for both scheduling policies and we com-
pare their computational performance.

- We develop a branch-and-price algorithm as an alternative method for solving the �exible
policy for the problem studied.

- We propose a heuristic algorithm suitable for both policies to provide good quality and
quick solutions.

In the following chapters we give the details of the problems we have addressed and the
formulations and solution techniques we have developed. The remainder of this document is as
follows. In Chapter 1 we give a general overview of scheduling problems in the literature, as
well as of the main features of the family of problems addressed in this thesis. We also include a
review of potential applications for them. The formal de�nition of the problems that we study
and some basic properties are presented in Chapter 2. In Chapter 3 we study di�erent MILP
formulations for the regular scheduling policy. MILP formulations for a �exible scheduling policy
are presented in Chapter 4. Following with the �exible policy, we dedicate Chapter 5 to present
alternative MILP formulations suitable for column generation. In this chapter we give the details
of the proposed column generation algorithm as well as for the branch-and-price framework.
Chapter 6 is devoted to the heuristic algorithm proposed for each scheduling policy. We dedicate
Chapter 7 to present the results to all the computational experiments we have run with the
di�erent formulations and heuristics proposed in this the thesis Finally, Chapter 8 includes the
empirical comparison of the structure of the solutions obtained for the studied policies. This
comparison provides guidelines for the best scheduling policy to use for the recurrent service
problems that we study. Chapter 9 concludes this thesis with some remarks and comments on
future research.
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Chapter 1

Multi-period Scheduling: State of the Art

In this chapter we introduce the problems that we study and discuss their relation to other
problems in the literature. In particular, there is some connection with three type of problems
that appear often as a core component in many practical applications from very diverse �elds:
allocation, assignment and scheduling. The chapter is divided into four sections. The �rst
section gives a general overview of the typical scheduling problems studied in the literature. In
the second section, we describe the main elements for the family of problems from which this
thesis is derived whereas the third section provides the details and characteristics of the speci�c
problems we study. In the last section we discuss and present a literature review of several
applications for these problems.

1.1 Scheduling problems

Scheduling can be seen as the allocation of resources over time to perform a set of tasks. Broadly
speaking, managerial decisions address three kinds of questions: (1) What product or service
to provide? (2) on what scale should it be provided? and (3) what resources should be made
available? Establishing answers to these questions determines the planning phase, whereas the
scheduling phase presumes that answers to the above questions already exist and the resource
availabilities have already been �xed by the long term commitments of a prior planning decision.
Hence, the scheduling phase does not become a concern until some fundamental planning prob-
lems are solved (Baker, 1974).

In its turn, the scheduling phase must answer two kinds of questions: what resources should
be made allocated? and, when should each task be performed? In other words, the essence
of scheduling problems is divided into two di�erent decisions: (1) allocation decisions and (2)
sequencing decisions. More precisely, scheduling problems can be decomposed in two parts: a
pure scheduling problem, where a start date and an end date have to be decided for each task,
and a sequencing problem, where tasks that compete for the use of the same resource only have
to be ordered (Lopez and Roubellat, 2013).

Typically, scheduling theory has been associated with mathematical models. Moreover, the
development of useful models and techniques has been the continuing interface between theory
and practice. The theoretical perspective is mainly a quantitative approach, which begins with
a translation of decision-making goals into an explicit objective function and decision-making
restrictions into explicit constraints. Ideally, the objective function should account for all costs
in the system that depend on scheduling decisions. Unfortunately, such costs are often di�cult
to measure in practice, or even to identify completely (Baker and Trietsch, 2009). Concerning
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feasibility constraints, two families of constraints are commonly found in the literature: the limits
on the capacity of the available resource, and the technological restrictions on the order in which
tasks can be performed.

Indeed, scheduling conforms a wide research �eld that deals with a large variety of topics
and problems. A detailed overview of scheduling models and solution techniques is beyond the
scope of this thesis. For up to date comprehensive surveys the reader is addressed to Allahverdi
et al. (2008), Atef et al. (2015), Cardoen et al. (2010), Chaudhry and Khan (2015), Deshmane
and Pandhare (2015), Gautam et al. (2015), Hartmann and Briskorn (2010), Janiak et al. (2015),
Kalra and Singh (2015) or Pinedo (2001, 2005).

1.2 Problems with recurrent services

Recurrent services refer to demand requirements that have to be satis�ed with some periodicity.
The problems addressed in this thesis consider services in a recurrent or periodic manner. Even
if these problems can be classi�ed as scheduling ones, they hold some speci�c characteristics,
which make them di�er from the classical scheduling problems in the literature: All services
for the recurrent services problems that we study have equal priority levels and no precedence
relationships. In the following we give a general overview of the main features of this family of
problems.

The allocation of resources for recurrent services may arise in several situations. In some of
them more than one entity is responsible for the execution of the services. In a no-collaborative
scenario the entities work autonomously, and therefore, they develop individual plans. When no
collaboration exists, each entity assigns its own resources to the services it is in charge of. Hence,
there are as many single-service problems as entities exist. Instead, in a collaborative scenario
the entities involved are committed to work together. Such scenario arises when the entities
have some common interests, for example, when entities work together in order to avoid monop-
olies (Fernández et al., 2009). In a collaborative scenario entities elaborate a joint planning for
the assignment of resources, which may imply (or not) the use of shared resources (e.g. Wäldrich
et al., 2006). Within a collaborative scenario operative limitations may apply. For instance, en-
tities may not be allowed to o�er some speci�c service or may have a limited number of services
that can provide. Other limitations refer to loyalty issues, as it is the case when services can only
be performed by a particular entity or group of entities. When some service must be provided by
only a particular entity we say that there exists a service-entity loyalty relationship. Figure 1.1
shows scenario classi�cations for problems with recurrent services.

In this thesis we focus on a special type of services, which are denoted as single-period. The
time required to complete one such service does not exceed the duration of the time period.
Thus, each service starts and ends during the time period to which it is assigned. This type of
services arise in many practical applications and can be of di�erent kinds. Some examples are
collection, delivery and replenishment activities, inspections in a job-shop, service and mainte-
nance of technical equipment and transmission of information pages (see Cheung et al., 2005,
Karush and Vazsonyi, 1957, Rossi and Braun, 1996). Independently of their collaborative sit-
uation, problems with single-period recurrent services may exhibit some other particularities.
The resources availability plays a very important role now as there exists the possibility that
resources are used to execute more than one activity in a given time period, since we are con-
sidering single-period services, In fact, the number of services that a resource can provide in the
same time period depends on its capacity and/or on the duration of the services. In particular,
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Periodic
 service problems

Collaborative 
scenario

No-collaborative
scenario

Resource
sharing

No resource
sharing

Figure 1.1: Scenarios for recurrent service problems.

the capacities of the resources can be equal (homogeneous) or di�erent (heterogeneous). Fur-
thermore, the duration of the services can be equal (homogeneous) or di�erent (heterogeneous).
In the simplest case the time required to complete the services is so short that the total amount
of time needed to complete all the services is shorter than the duration of the time period itself.
Then, the number of services that a single resource can execute only depends on its capacity.
On the contrary, for resources with very large capacities, the number of services provided within
a time period will only depend on the duration of the services. A very particular case arises
when the capacity of the resources is only limited by the duration of the services. Therefore, an
homogeneous service length scenario produces an homogeneous capacity scenario. Conversely,
an heterogeneous service length scenario produces an heterogeneous capacity scenario.

In some situations providing services produces some bene�ts (Liu et al., 2011). In a homogeneous-
pro�t scenario all the services equally contribute to pro�t. On the contrary, in a heterogeneous-
pro�t scenario di�erent services contribute with di�erent amounts to the overall bene�t. Fig-
ure 1.2 summarizes the possible alternatives for problems with single-period recurrent services.

Recurrent service problems can be further classi�ed according to their scheduling policy;
that is, the strategy followed for scheduling the services. We apply a general classi�cation,
which is based on two di�erent schemes: frequency-based and interval-based scheduling poli-
cies. Frequency refers, by de�nition, to the number of occurrences per time unit. Therefore,
frequency-based scheduling policies deal with the number of times that a service is provided
within the planning horizon (e.g. Bommisetty et al., 1998). This value may be imposed as a
�xed number (regular policy) or may be �exible by setting minimum and/or maximum limits
(�exible policy). On the other hand, a time interval is, by de�nition, a metric of the time space
between two events of the same nature. Therefore, interval-based scheduling policies deal with
the time periods between two consecutive executions of a particular service (Kovalyov et al.,
2007). Similarly to the previous scheme, when a regular policy is applied, the time interval
between two consecutive services is set to a �xed value whereas in a �exible policy, the time
interval between two consecutive executions of a service is restricted within a minimum and/or
maximum limit (e.g. Kolen et al., 2007). Figure 1.3 displays the two possible scheduling schemes.
Indeed a frequency-based approach can be transformed into an equivalent interval-based policy
and vice-versa.
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Figure 1.2: Alternatives for single-period recurrent service problems.
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Figure 1.3: Scheduling schemes for recurrent service problems.

In general, �nding a way of measuring �exibility in scheduling is a real challenge. In some
cases, �exibility is thus considered as a measure of deviation from a given target value (Billaut
et al., 2013). This target may be the �xed value considered for regular policies. On the other
hand, �exibility may be allowed from di�erent perspectives. One option is to admit positive or
negative deviations from the �xed value and to establish thresholds for their possible maximum
values. For a frequency-based scheduling policy, the �exibility may be translated as limiting,
with lower and/or upper values, the number of times that a service must be provided within
the time horizon. For an interval-based scheduling policy, the �exibility may be translated as
setting limits for minimum and/or maximum time intervals between consecutive executions of
the services.

Another approach to manage �exibility is penalizing the deviations from target values (Lau�
and Werner, 2004). For a frequency-based scheduling policy, the �exibility will be translated as
a penalty on the surplus or de�cit on the number of times that services must be provided within
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the time horizon. For an interval-based scheduling policy, the �exibility will be translated as a
penalty on the deviation from �xed interval values in the actual executions of the services. Under
this policy, the measure of �exibility can produce positive or negative values, which are somehow
related to the earliness and tardiness concepts of the typical scheduling problems (Choi et al.,
1994, Sidney, 1977). Figure 1.2 shows the above described approaches to �exibility for recurrent
services.

  

Flexibility management

Bounds Penalties

Frequency-
based

Interval-
based

Frequency-
based

Interval-
based

Shorter 
invervals

Larger 
intervals

Max/min 
number 

of repetitions

Limit
interval 

width

Shorter 
number of 
repetitions

Larger 
number of 
repetitions

Figure 1.4: Flexibility management for recurrent service problems.

As we will see in the following chapters, the problems that we study are single-period re-
current service problems within a no-collaborative scenario. There is one entity with enough
resources, which is the only one responsible for providing the services. All services are of equal
length and the capacity of the resources is uniquely determined by the time duration of the
services. Hence, resources have homogeneous capacities. For these problems, the execution of
services does not provide any type of pro�t. We focus on two di�erent scheduling policies: one
regular and one �exible. Both policies are interval-based, that is, both policies focus on the
time interval between two consecutive services. In the regular scheduling policy, we consider
that all time intervals between two consecutive executions of a service must be of the same �xed
length. In the �exible policy, intervals between consecutive services of lengths larger than some
given values are forbidden. Instead, shorter intervals between consecutive services are allowed,
although early executions are penalized. Below we give more details of the problems we study.

1.3 Multi-period service scheduling problems

Multi-period service scheduling problems consider single-period recurrent services, and can be
described as follows. We are given a �nite planning horizon that is partitioned into a �xed set
of time periods of equal length. Moreover, we are given a set of customers who periodically have
demand of some type of service. These services are translated to visits, which can be any type
of collection, delivery, or maintenance activity. Each time a customer has demand in a certain
period, we call this a service request. We assume that no request spans more than one period
and that a customer has not more than one request per period. The time between consecutive
service requests can either be �xed or vary over time. Moreover, the duration of each service
request within a period is considered of equal size, that is, we consider homogeneous service
time lengths. To satisfy the service requests, we are given a set of servers or operators that
can provide the service at the customer location, or remotely. In this problem the capacity of
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operators depends uniquely on the required time to complete the services. Hereby, each oper-
ator has a �xed capacity per time period. Furthermore, a �xed cost is incurred whenever an
operator serves to one or more customers in a period. If a customer is serviced by an operator
in a given period, we call this a service period for the customer and we say that the operator
executes a service visit. Concerning the occurrence of service requests, instead of predetermined
service requests, we assume that there is just a maximum duration between two consecutive
service visits, which is speci�ed for each customer. Each time a customer receives service in a
period this �generates� a new service request that has to be satis�ed within a maximum duration.

In the multi-period service scheduling problems that we study, neither the number of service
requests nor the actual periods when they occur are known in advance. Moreover, the satisfaction
of a request may incur an additional cost. Concerning the satisfaction of service requests, we
consider two di�erent policies. In the �rst one, each service request has to be satis�ed in the
period of the request �due date�. Hence, given the maximum duration, we schedule the next
visit as late as possible. The rationale behind this policy is that it will result in regular visiting
schedules for customers, provided that the maximum duration does not change over time. In the
second policy, we assume that a customer may be visited ahead of time, i.e., before the period
or �due date� of the service request. Even if this might increase the total number of visits and
result in irregular visiting schedules, it will often allow planners to determine more e�cient and
better utilized service schedules. However, visits ahead of time may also incur additional costs.
Therefore, we have to decide for each customer in which periods we schedule its service visits,
in such a way that all customers receive their desired service within the required time and the
overall costs for scheduling the operators and satisfying the service requests is minimal.

1.4 Practical applications and related literature

The �rst and primary application to the multi-period service problems faced in this thesis refers
to the logistics of the collection or delivery of commodities, raw materials, or waste. In these
problems, customers either produce or consume items at a given rate per period and they can
only store a certain amount at their location. Therefore, customers have to be collected or deliv-
ered from time to time with an appropriate vehicle and items must be transported to or picked
up from some facility, e.g., a warehouse, factory, or recycling center. In this problem the task
is to determine in which periods to service each customer such that the storage limitations at
the customers are adhered to and as few tours as possible are needed. This problem arises, for
example, in the collection and recycling activities of waste of electrical and electronic equipment
(WEEE). According to the EU regulation, inhabitants can return their WEEE free of charge at
collection points which are run by the local municipalities. Once a storage container- usually an
iron-barred box- at a collection point is full, one of the companies selling electrical or electronic
products has to organize the pickup of the box and the recycling of its contents. Some examples
are presented in Queiruga et al. (2008) and Fernández et al. (2009). As 5-10 iron-barred boxes
�t in a truck, the logistics provider can schedule a truck to visit several collection points in
a day. As the �lling rate of these boxes di�ers between collection points, one should organize
individual routes that allow for irregular visiting schedules for the collection points and aim at
maximizing the vehicle utilizations. Herrmann (2011) describes an application where waste has
to be periodically collected from waste collection rooms in a healthcare facility.

A similar situation occurs if customers resemble retailers where the stock has to be replen-
ished. In these applications operators correspond to vehicles and tours have to be built such
that no stock-outs occur at the retailers and the routing and inventory costs are minimal. Some
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examples are mentioned in Campbell and Wilson (2014) and Coelho et al. (2013). The operator
costs resemble costs for vehicle usage and the service request costs can model inventory costs.
In both settings it is possible to schedule a visit to a customer ahead of time to pick up a not
yet full container or replenish inventory before reaching the re-order point. Although this will
often increase the underlying travel distances, the total number of tours required will be smaller.
Some similar decisions are faced in lot-sizing and inventory/routing problems, which deal with
variables to control activities between two consecutive periods (see Avella et al., 2015, Coelho
and Laporte, 2013, Pochet and Wolsey, 2006, Solyal� and Süral, 2011).

Multi-period service scheduling problems can be seen as a �rst level decision related to some
Vehicle Routing Problems (VRPs), like the periodic VRP (Archetti et al., 2014, Fargeas et al.,
2012, Francis and Smilowitz, 2006, Gaudioso and Paletta, 1992, Gonçalves et al., 2005) and the
inventory routing problems (IRPs) (Gaur and Fisher, 2004, Le Blanc et al., 2006, Rusdiansyah
and Tsao, 2005), when �exible visit frequencies are allowed. It is important to note that in some
of these problems, the modeling hypotheses do not coincide with the ones stated in this thesis.
One example is the work of Gaudioso and Paletta (1992), which considers a periodic VRP in
which the scheduling policy for each customer must be determined, but for each customer the
times between two successive visits must be of equal length. Furthermore, the main objective in
these models is to minimize the total travel distances or to minimize the �eet size. As can be
seen with small examples, minimizing any of these objectives does not necessarily minimize the
total number of tours, which is the objective that we consider throughout our work.

Focussing on the tactical modeling aspects of reducing the �eet size and, hence, maximiz-
ing the utilization of vehicles coincides with the current trend in vehicle routing problems, not
only for economic savings but also due the environmental bene�ts, see Sbihi and Eglese (2007).
Related to this, but without the routing aspect, are joint replenishment problems (cf. Khouja
and Goyal, 2008). There are also applications where customers do not receive their service on-
the-spot but have to travel to the operators; mainly in the public sector. For example public
libraries or banks organized on a truck traveling from community to community, which are still
common in rural areas, or medical teams that organize and carry out blood donation sessions.
These trucks or teams periodically visit communities. In this way, a reasonable goal is to min-
imize the total number of in-the-�eld periods of trucks or teams (cf. Je�ries and O'Hanley, 2012).

Another application is the scheduling of inspectors visits for preventive service and mainte-
nance of technical equipment, e.g. production machines or airplanes. For these regular activities,
there is a �xed cost for each service visit and an operational cost that is proportional to the time
between two consecutive service visits. The goal is to determine a maintenance schedule mini-
mizing the total costs. Bar-Noy et al. (2002) discuss a machine maintenance problem in which
a �xed number of machines can be inspected in each period. The goal is to minimize the total
costs, consisting of a �xed cost for carrying out an inspection plus a variable cost that is pro-
portional to the number of periods between two consecutive maintenance periods. The authors
showed that the problem is NP-hard and present several approximation algorithms. Moreover,
Grigoriev et al. (2006) consider the special case where just one machine can be inspected per
period. In this work, di�erent linear and non-linear programming formulations for the problem
are presented, as well as an exact solution approach using column generation.

There exist other applications in which, in addition, it has to be ensured that the time
between consecutive visits does not exceed a given threshold. Han et al. (1996) discuss the
distance-constrained task scheduling problem where the distance-constraints specify the maximal
time between two consecutive executions of a task. The authors focus on feasibility aspects and
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schedulability conditions instead of formulations and solution approaches.

Alternatively, some other authors try to obtain regular schedules by minimizing the variation
of the time between consecutive service visits over all customers. Corominas et al. (2010) try
to maximize the regularity of the service schedules for each machine by minimizing the variabil-
ity between consecutive service periods. A linear programming formulation for the problem is
discussed and several improvements for it are introduced. In subsequent papers, García-Villoria
et al. (2013) present a specially tailored branch-and-bound algorithm and Corominas et al. (2012)
propose various heuristics for the same problem. Although the essential task of scheduling service
periods is the same, the objectives and/or constraints of the problems addressed in the references
above di�er from the problems faced in this thesis, especially concerning the maximum duration
constraint, rendering the developed solution approaches no longer applicable.

When technicians can maintain more than one machine per time period and they are not
committed to working each period on maintenance, a reasonable goal is to minimize, in addition,
the total number of in-the-�eld periods of technicians. A problem with these characteristics is
related to sensor scheduling. One example is due to Yavuz and Je�coat (2007). There exist some
other �non-physical� applications, for example, scheduling problems referring to maintenance and
backups of computer systems.

Another example occurs in broadcasting environments where transmissions of information
pages have to be periodically scheduled in channels. For each page a maximum time between
two consecutive transmissions is given and each channel may broadcast only one page per time
unit. The goal is to schedule the transmissions of all pages on a minimum number of channels.
This problem is called windows scheduling. Operators coincide with channels and pages with
customers. Bar-Noy and Ladner (2003) present an algorithm to construct asymptotically close to
optimal schedules for the windows scheduling problem where each page has a unit transmission
time. Bar-Noy et al. (2012) introduce a constant approximation scheme for the case of inte-
ger length transmission times of pages. They also present a greedy method based on classical
bin packing algorithms. Bar-Noy et al. (2007) establish a relation between window scheduling
and bin packing. While the window scheduling problem allows the ahead of time scheduling of
services, each channel, i.e., operator, may only transmit one page, i.e., customer, per period.
Moreover, the focus is on minimizing the maximal number of required channels over all periods.
A similar problem arises in media-on-demand systems.

More works related to multi-period service scheduling problems can be found in Campbell
and Hardin (2005) and Korst et al. (1994). The former considers a replenishment activity on
�xed time intervals. In this work a direct shipping is assumed, i.e., every vehicle can only be
assigned to one customer. The objective is to minimize the total �eet size. Korst et al. (1994)
address a periodic assignment problem where the executions of periodic operations with �xed
start times must be scheduled over an in�nite time horizon. The objective is to minimize the
number of identical processors needed for the executions.

An alternative view to the problems that we study is that of scheduling problems for multiple
visits to customers. In this case processing times are discarded. If we assume that we have a
�nite set of machines whose capacity is measured as the number of tasks they can process, the
objective is to minimize the number of machines simultaneously working in each period. Some
related periodic and single period scheduling problems can be found in Chan et al. (2008), Co�-
man et al. (1978), Korst et al. (1994), Orlin (1982), Park and Yun (1985).

Finally, multi-period service scheduling problems can also be seen as a multi-period multi-
machine scheduling problems in which a set of jobs with varying processing times have to be
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scheduled periodically and there is a �nite set of machines with a �nite capacity. In addition, it
is assumed that, once one of the jobs has been scheduled on a machine in a period, this machine
cannot be used in the same period for jobs of the same set (e.g., because of too large set-up
times). Then, a reasonable objective is to minimize the total number of machines used in all
periods, i.e., the total number of blocked �machine-periods�.

To the best of our knowledge, the multi-period service scheduling problems that we study
have not been yet been addressed in the literature.
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Chapter 2

Problem De�nition

In this thesis we study a multi-period service problem, which was originally motivated by the
WEEE application presented in Chapter 1.4. In this problem we consider interval-based schedul-
ing policies, and we assume that the maximum duration between two consecutive service visits
for each customer is known in advance and independent from time. Moreover, there is no fun-
damental distinction between customers service requests so any of them can be satis�ed by any
operator. In addition, a customer can be visited by a di�erent operator each time. We want to
determine a service schedule such that all service requests are satis�ed and the total costs for
using operators and ahead of time visits are minimal. We name this problem as the Multi-period
Service Scheduling Problem (MSSP).

A �rst aim of this work is to compare two di�erent policies for scheduling service visits for the
MSSP. In particular, there is a special interest in the trade-o� between e�ciency, measured as
the total number of operators needed, and regularity, measured as a function of the total number
of periods when visits are scheduled ahead of time. A second objective is to propose alternative
ways of solving the MSSP, for both considered scheduling policies.

In this chapter we give the formal de�nition for the MSSP. Moreover, we give the details
for each of the scheduling policies we consider by describing the two versions for the problem.
We include a comprehensive example to better perceive the practical implications between the
scheduling. The chapter ends with some basic properties for the MSSP.

2.1 Formal De�nition

We denote by T the index set of (discretized) time periods (or simply, periods). Thus, |T | de-
notes the length of the time horizon, measured in number of periods. We assume that all time
periods have the same length. The index set of customers is denoted by I and the maximum
duration between two consecutive visits to customer i ∈ I, measured in periods, by ti ∈ N. ti is
also called the service interval of i. The index set of operators is denoted by K. The maximal
number Q of customers an operator can serve per period is �xed and identical for all operators.
We assume that all customers have been served just before the start of the planning horizon.

For a customer i, a calendar Ci ⊆ T is an ordered sequence of periods such that the number
of periods between any two consecutive elements in Ci does not exceed the service interval ti.
The periods of a given calendar of a customer are referred to as service periods of the customer.
A service cluster consists of a set of customers visited by the same operator in the same period.
The size of service clusters must not exceed the capacity of the operator. We say that a customer
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is scheduled (unscheduled) if we have already (not yet) determined a calendar for him. Because
di�erent customers may have di�erent service intervals, the number of operators to be used along
the time horizon is established on a per period basis. This means that we do not assume that
regular schedules should apply. Therefore, a speci�c service cluster may be formed just once
throughout the time horizon and service clusters may be di�erent for each period of the time
horizon.

In the MSSP the following decisions must be made:

• Determine a calendar for each customer, i.e., the set of periods when each customer will
be visited. That is, determine a schedule S = {Ci : i ∈ I}.

• Assign each service period of a customer to an operator. This assignment must take into
account the capacity of the operators.

2.2 Scheduling policies

In the MSSP we focus on modelling aspects aimed at reducing the total number of operators.
Thus, we consider two alternative policies for the schedules. Both policies are described below.

2.2.1 Periodic service policy

In the periodic service (PS) policy, the time intervals between two consecutive service periods
of a customer are always of the same length and coincide with its service interval. With this
policy, once the �rst service period is decided for a given customer, subsequent service periods for
this customer are uniquely determined. Since we are not assuming that all customers have the
same service intervals, even if each customer is visited periodically, this policy does not produce
identical service clusters. The goal with this policy is thus to minimize the total number of
operators used over all periods of the planning horizon (z). We call the MSSP with a periodic
service policy the Periodic MSSP, for short P-MSSP.

2.2.2 Aperiodic service policy

In the aperiodic service (AS) policy, customers may be visited ahead of time. This means that
the time intervals between two consecutive service periods of a customer are not established in
advance and can be of di�erent lengths. With this policy, it is still not allowed that the time
between two consecutive visits to the same customer exceeds his or her service interval. However,
it is permitted to visit a customer before the end of the service interval. If the number of periods
h between two consecutive service periods for customer i is smaller than his service interval ti,
then we call this an early visit and ti−h the earliness of the visit. The earliness of a schedule is
the total earliness of all visits in the calendars and the earliness of a customer is the earliness of
his calendar. The goal with this policy is then to minimize a weighted sum of the total number of
operators used over all periods of the time horizon (z) and the total earliness of all customers (e).
Both criteria are considered within di�erent scenarios by assigning di�erent values to a weight
parameter β ∈ [0, 1]. In particular, the solution value for a schedule with this policy is de�ned
as:

f(S) = βz + (1− β)e (2.1)

The MSSP with aperiodic service policy is referred to as Aperiodic MSSP, for short A-MSSP.
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In the following, periodic and aperiodic service policies will be simply denoted as PS and
AS policies, respectively. The rationale behind the AS policy is that allowing early visits may
reduce the overall number of operators needed throughout the time horizon, by making a better
use of the operator capacities. Of course, allowing early services may cause a negative e�ect
since customers are not collected periodically (thus, possibly needing additional planning at the
customers).

2.3 Example

We next present a small example to illustrate the MSSP and to highlight the utility of the AS
policy. Suppose there are four customers I = {1, 2, 3, 4} to be visited in a time horizon of |T | = 12
periods. The service intervals of the customers are t1 = 2, t2 = 3, t3 = 4 and t4 = 3 periods,
respectively. There are |K| = 2 operators available, where each one can serve Q = 3 customers
per period. Figure 2.1 displays schedule SA, which is a feasible solution for the P-MSSP and
A-MSSP, and optimal for the P-MSSP.
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Figure 2.1: Schedule solution SA.

For schedule SA, the calendars for the customers are: C1 = {2, 4, 6, 8, 10, 12}, C2 = {3, 6, 9, 12},
C3 = {4, 8, 12}, C4 = {3, 6, 9, 12}. Since Q = 3, we need one operator for each of the periods 2,
3, 4, 6, 8, 9, and 10, and two operators for period 12. Hence, we need in total zA = 9 operators
over the twelve periods.

If, however, the AS policy is applied, schedule SB of Figure 2.2 is also a feasible solution
for the A-MSSP. For schedule SB, the calendars for the customers are: C1 = {2, 4, 6, 8, 9, 11},
C2 = {3, 6, 9, 12}, C3 = {4, 8, 12}, C4 = {3, 6, 9, 12}.
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Figure 2.2: Schedule solution SB.

17



Chapter 2. Problem De�nition

We can observe that for schedule SB we just need zB = 8 operators instead of nine. That is,
we save an entire operator by moving the service period of customer 1 from period 10 to period
9. Hence, we visit customer 1 one period before its next designated service period. Therefore,
the operator scheduled to serve just one customer in period 10 is saved with a total earliness of
eB = 1.

The optimality for schedule SB for the A-MSSP depends, however, on the parameter β.
Table 2.1 displays the solution value for schedules SA and SB for di�erent values of β. We can
observe that, for β = 0.1, f(SA) = 0.9 < 1.7 = f(SB), whereas for β = 0.9, f(SA) = 8.1 > 7.3 =
f(SB). In fact, SA is an optimal solution for the A-MSSP with β = 0.1. On the contrary, SB is
an optimal solution for the A-MSSP with β = 0.9.

SA SB
β

βzA (1− β)eA f(SA) βzB (1− β)eB f(SB)

0.0 0.0 0.0 0.0 0.0 1.0 1.0

0.1 0.9 0.0 0.9 0.8 0.9 1.7

0.2 1.8 0.0 1.8 1.6 0.8 2.4

0.3 2.7 0.0 2.7 2.4 0.7 3.1

0.4 3.6 0.0 3.6 3.2 0.6 3.8

0.5 4.5 0.0 4.5 4.0 0.5 4.5

0.6 5.4 0.0 5.4 4.8 0.4 5.2

0.7 6.3 0.0 6.3 5.6 0.3 5.9

0.8 7.2 0.0 7.2 6.4 0.2 6.6

0.9 8.1 0.0 8.1 7.2 0.1 7.3

1.0 9.0 0.0 9.0 8.0 0.0 8.0

Table 2.1: Solution values for the A-MSSP for di�erent values of β.

2.4 Properties

Below we discuss some properties of the P-MSSP and the A-MSSP. First we introduce some
additional notation. For customer i ∈ I, we de�ne by T 1

i ∈ {1, . . . , ti} as the �rst service period
of customer i. Thus, the calendar of customer i can be denoted as Ci = {T 1

i , . . . , T
n∗i
i }, where n∗i

is the maximum number of service periods of customer i. We assume that these service periods
are ordered by increasing values, i.e., Ti

1 < Ti
2 < . . . < Ti

n∗i .

Property 1. A calendar is feasible for customer i ∈ I for the PS policy, if Tni = Tn−1
i + ti, for

n ∈ {2, . . . , n∗i }, with n∗i = 1 +
⌊
|T |−T 1

i
ti

⌋
. For the AS policy, a calendar is feasible for customer

i if Tni = Tn−1
i + hni , with h

n
i ∈ {1, . . . , ti}, n ≥ 2 with Tn ≤ |T |.

Property 2. If Q < |I|, and |K| is small, it is possible to build instances for the P-MSSP and

A-MSSP that are infeasible. A su�cient condition that guarantees that an instance is feasible

for both P-MSSP and A-MSSP is |K| ≥
⌈
|I|
Q

⌉
.

Property 3. An upper bound on the total number of operators used over all periods of the

planning horizon for the PS policy is obtained when all customers are served for the �rst time

at time period 1, i.e. T 1
i = 1, i ∈ I. In this case, the set of customers served at time period t is

It = {i ∈ I | t = 1 + kti for some k ≥ 0}. Then, the upper bound is given by:

z =
∑
t∈T

⌈
|It|
Q

⌉
.
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Since feasible solutions to the P-MSSP are also feasible to the A-MSSP and have 0 earliness,

the above solution also gives a valid upper bound to the A-MSSP of value βz. Similar bounds can

be obtained by �xing the �rst visit to all customers at any time period t ≤ t̂ = min
i∈I

ti.

Property 4. If β = 0, any feasible solution to the P-MSSP is optimal for the A-MSSP, as

its objective function value for the A-MSSP is zero. Hence, the set of optimal solutions to the

A-MSSP coincides with the set of feasible solution to the P-MSSP.

Property 5. If |I| = 1, each visit �consumes� one server, independently of the value of Q. Thus,
earliness does not reduce the number of servers needed so the set of optimal solutions for the P-

MSSP and the A-MSSP coincide, independently of the value of β. In particular, the solution

that visits the customer for the �rst time in period T 1
1 = t1 and then in periods T 1

1 + kt1, with

k = 1, . . . ,
⌈
T−t1
t1

⌉
is optimal. Its objective function value for both P-MSSP and the A-MSSP is⌈

T−t1
t1

⌉
.

Property 6. If ti = t̄, for all i ∈ I, then the set of optimal solutions for the P-MSSP and the

A-MSSP coincide, independently of the value of β. Again in this case, earliness cannot reduce the

number of servers used when all customers are visited with no earliness in time periods T 1
i = t̄,

T 1
i + kt̄, with k = 1, . . . ,

⌈
T−ti
ti

⌉
. Such a solution is optimal and its objective function value is⌈

|I|
Q

⌉⌈
T−t̄
t̄

⌉
.

Property 7. If Q = 1 each visit �consumes� one server, independently of the value of |I|. Again,
in this case earliness will not reduce the number of servers and the set of optimal solutions for

the P-MSSP and the A-MSSP coincide, independently of the value of β. Now the solution where

each customer i ∈ I is visited for the �rst time in period T 1
i = ti and then in periods T 1

i + kti,

with k = 1, . . . ,
⌈
T−ti
ti

⌉
is optimal. Its value is

∑
i∈I

⌈
T−ti
ti

⌉
.

Property 8. If Q ≥ |I| and for all i ∈ I, ti is multiple of t̂ = min
i∈I

ti, then set of optimal solutions

to the P-MSSP and the A-MSSP coincide, independently of the value of β. When Q ≥ |I|, any
schedule where the calendars respect the service intervals of the customers is feasible. Moreover,

any schedule that minimizes the number of time periods when services occur will be optimal to

the P-MSSP (as it would use just one server at any �busy� time period). Since, for all i ∈ I ti is
multiple of t̂, such an optimal schedule will serve customers only at time periods t multiple of t̂.
The above schedule is also optimal to the A-MSSP, as it minimizes the overall number of servers

and its earliness is zero.
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Chapter 3

Formulations for the P-MSSP

In this chapter, we present four alternative MILP formulations for the P-MSSP. We have classi�ed
these formulations into two di�erent types: sparse and dense, according to the type of coe�cients
matrices to which they are associated. For each type, we develop two variants, which we refer
to as customer-based and class-based formulations. In the following sections we give the details
for these formulations. In Chapter 7.2, we present and analyze the numerical results of the
computational experiments we have run. We also include a comparison of the computational
performance of the formulations.

3.1 Sparse formulations

The sparse MILPs we present below are a �rst approach to a formal statement of the P-MSSP.
That is, we base the formulations on decision variables that determine the allocation of customers
to operators at all time periods. For the MSSP, these MILP formulations are associated with
sparse coe�cient matrices.

3.1.1 A customer-based sparse

The very �rst formulation we propose for the P-MSSP uses the following sets of binary decision
variables:

For i ∈ I, t ∈ T ,

xti =

{
1 if customer i is visited in period t
0 otherwise

For i ∈ I, k ∈ K, t ∈ T ,

ytik =

{
1 if customer i is visited by operator k in period t
0 otherwise

For k ∈ K, t ∈ T ,

ztk =

{
1 if operator k is used in period t
0 otherwise
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Chapter 3. Formulations for the P-MSSP

The customer-based sparse formulation for the P-MSSP is as follows:

(PS) min
∑
t∈T

∑
k∈K

ztk (3.1)

s.t.

ti∑
t=1

xti = 1 i ∈ I (3.2)

xti = xt+tii i ∈ I, t ∈ {1, ..., |T | − ti} (3.3)

xti =
∑
k∈K

ytik i ∈ I, t ∈ T (3.4)∑
i∈I

ytik ≤ Qztk k ∈ K, t ∈ T (3.5)

Qztk ≤
∑
i∈I

yti,k−1 k ∈ K \ {1}, t ∈ T (3.6)

xti, z
t
k, y

t
ik ∈ {0, 1}, i ∈ I, k ∈ K, t ∈ T (3.7)

The objective (3.1) minimizes the total number of operators needed for the service throughout
the time horizon. The �rst visit for each customer is established by constraints (3.2), whereas
consecutive service periods throughout the time horizon are imposed by constraints (3.3). Con-
straints (3.4) guarantee that if a customer is visited at period t, then it is assigned to some
operator in that period. Constraints (3.5) are capacity constraints that ensure that the number
of customers assigned to each operator must not exceed the operator capacity. Constraints (3.6)
are symmetry breaking constraints which imposes that at each period t, operator k will not be
required unless operator 1, . . . , k − 1 are full, i.e., each of them has Q assigned customers. Note
that these constraints are valid because the objective is to minimize the total number of operator.
Finally, Constraints (3.7) enforce the variables to be binary.

3.1.2 A class-based sparse

The formulation below is based on the observation that the service intervals of several customers
may coincide. If we classify all customers according to their service intervals, we obtain groups
(or classes) of customers instead of single customers. This formulation takes advantage of such
classes of customers. In the following, the formulations that make use of classes instead of single
customers are referred to as class-based formulations. Below we describe the details for such
formulations, and we present its version for the sparse formulation for the P-MSSP.

According to the di�erent values of the service intervals, ti, we classify customers i ∈ I into
interval classes (or simply, classes). That is, customers with equal service interval belong to the
same class. If the service intervals were the same for all customers, we would have a single class
of size |I|. On the contrary, if the service intervals were all di�erent, we would have |I| classes,
each of size one. We de�ne J as the set of indices for the classes, where |J | ≤ |I|. For each
class j ∈ J , uj denotes the service interval for class j, i.e., the common service interval for all
customers of class j, and wj , the size of class j, i.e., the number customers with common service
interval equal to uj .

The class-based sparse formulation for the P-MSSP uses the following sets of decision vari-
ables:
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3.1. Sparse formulations

For j ∈ J , t ∈ T ,

xtj = number of customers of class j that are visited in period t.

For j ∈ J , k ∈ K, t ∈ T ,

ytjk = number of customers of class j that are visited by operator k in period t.

For k ∈ K, t ∈ T ,

ztk =

{
1 if operator k is used in period t
0 otherwise

The class-based sparse formulation for the P-MSSP is as follows:

(PSc) min
∑
t∈T

∑
k∈K

ztk (3.8)

s.t.

uj∑
t=1

xtj = wj j ∈ J (3.9)

xtj = x
t+uj
j j ∈ J, t ∈ {1, ..., |T | − uj} (3.10)

xtj =
∑
k∈K

ytjk j ∈ J, t ∈ T (3.11)∑
j∈J

ytjk ≤ Qztk k ∈ K, t ∈ T (3.12)

Qztk ≤
∑
j∈J

ytj,k−1 k ∈ K \ {1}, t ∈ T (3.13)

ztk ∈ {0, 1}, k ∈ K, t ∈ T (3.14)

xtj , y
t
jk integer, j ∈ J, k ∈ K, t ∈ T (3.15)

The objective of PSc minimizes the total number of operators needed for the service through-
out the time horizon. Constraints (3.9) guarantee that all the customers of each class are visited
for the �rst time within their service interval, whereas consecutive visit periods throughout the
time horizon are determined by Constraints (3.10). Constraints (3.11) guarantee that customers
of class j visited at period t are assigned to some operator in that period. Constraints (3.12)
are capacity constraints that ensure that the number of customers assigned to each operator
does not exceed the operator capacity. Constraints (3.13) are symmetry breaking constraints
already explained. Again, these constraints are valid because the objective is to minimize the
total number of operators. Finally, Constraints (3.14) enforce variables ztk to be binary, while
constraints (3.15) enforce the integrality of variables xtj and y

t
jk.

PSc has same structure as PS of Section 3.1.1. The di�erence between both formulations
relies on the use of customer classes J instead of customers I, changing accordingly the x and y
variables from binary to general integer and reducing therefore the number of decision variables,
at the expenses of changing their domain to that of general integer values. When J = I, PS and
PSc are the same.
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Chapter 3. Formulations for the P-MSSP

3.2 Dense formulations

The dense formulations for the P-MSSP are based on the core idea that the leading decision for
the periodic policy is to determine the period in which customers are visited for the �rst time
over the time horizon. For customer i, the very �rst service visit must occur within the initial ti
periods. Given that we assume a periodic policy, if customer i is �rst visited in period ri ∈ Ri,
with Ri = {1, . . . , ti}, his consecutive service periods will occur on periods ri + ti, ri + 2ti,. . .,

ri + nti, with n =
⌈
|T |−ri
ti

⌉
. Therefore, the service periods for customer i will be all periods t

such that t− ri are multiple of ti.

3.2.1 A customer-based dense

Below we present a customer-based dense formulation. This formulation uses the following sets
of decision variables:

For i ∈ I, r ∈ {1, . . . , ti},

xri =

{
1 if customer i is visited for the �rst time in period r
0 otherwise

For t ∈ T ,

zt = the number of operators needed in period t.

The customer-based dense formulation for the P-MSSP is as follows:

(PD) min
∑
t∈T

zt (3.16)

s.t.
∑
r≤ti

xri = 1 i ∈ I (3.17)

∑
i∈I

∑
r≤ti
t−r=ṫi

arti x
r
i ≤ Qzt t ∈ T (3.18)

xri ∈ {0, 1}, i ∈ I, r ∈ R (3.19)

zt integer, t ∈ T (3.20)

In formulation PD, the objective (3.16) minimizes the total number of operators needed for
providing service throughout the time horizon. The �rst visit for each customer is established
by constraints (3.17), whereas the consecutive service periods throughout the time horizon are
implicitly imposed by constraints (3.18). In particular, the coe�cient arti = 1, if t − r is multi-
ple of ti, and a

rt
i = 0, otherwise. Constraints (3.18) operate also as capacity constraints since

they ensure that the number of customers assigned to operators in period t does not exceed the
operators capacity. Finally, constraints (3.19) enforce the variables xri to be binary and con-
straints (3.20) enforce the integrality of variables zt.
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3.3. Size of the formulations

3.2.2 A class-based dense

An alternative dense formulation for the P-MSSP can be derived by applying the class-based idea
described in Section 3.1.2. In the class-based version of the dense formulation, the �rst visit to
customers in class j must occur within the initial uj periods. Given that we are assuming peri-
odic policy, if any customer of class j is �rst visited in period rj ∈ Rj , with Rj = {1, . . . , uj}, his
consecutive service periods will occur in periods rj +uj , rj +2uj ,. . ., rj +nuj , with n =

⌈
|T |−rj
uj

⌉
.

Therefore, the service periods for a customer of class j will be all periods t such that t− rj are
multiple of uj . In particular, the dense class-based formulation use the following sets of decision
variables:

For j ∈ J , r ∈ {1, . . . , uj},

xtj = the number of customers of class j that are visited for the �rst time in period r.

For t ∈ T ,

zt = the number of operators needed in period t.

The class-based dense formulation for the P-MSSP is as follows:

PDc min
∑
t∈T

zt (3.21)

s.t.
∑
r≤uj

xrj = wj j ∈ J (3.22)

∑
i∈I

∑
r≤uj
t−r=u̇j

artj x
r
j ≤ Qzt t ∈ T (3.23)

xrj , z
t integer, j ∈ J, r ∈ R, t ∈ T (3.24)

In formulation PDc, objective (3.21) minimizes the total number of operators needed for the
services throughout the time horizon. Constraints (3.22) are the same as (3.9) and impose that
all the customers of each class are visited for the �rst time within their service interval. Similarly
to formulation PD, the consecutive service periods throughout the time horizon are implicitly
imposed by Constraints (3.23), in which now the coe�cient artj = 1, if t − r is multiple of uj ,
and artj = 0, otherwise. Again, Constraints (3.23) work also as capacity constraints. Finally,
Constraints (3.24) enforce the integrality of the variables.

PDc has same structure as PD of Section 3.2.1. The di�erence between formulations relies on
the use of the set of classes of customers J instead of the set of customers I, changing accordingly
the x variables from binary to general integer variables and reducing therefore the number of
such variables. When J = I, PD and PDc are the same.

3.3 Size of the formulations

We devote this section to compare of the dimensions of the P-MSSP formulations presented in
Sections 3.1 and 3.2. Table 3.1 displays the total number of variables (n), constraints (m) and
non-zero elements in the coe�cients matrix (nonzero) for each of the P-MSSP formulations.
The density for each coe�cient matrix is computed as d = nonzero

n . We can observe the density
di�erence between sparse (PS, PSc) and dense (PD, PDc) formulations.
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Chapter 4

Formulations for the A-MSSP

In the AS policy, the �rst visit of a customer is not enough to determine the subsequent visits
during the time horizon. The only information we have is that if customer i is visited at period
t, then it must be visited again no more than mt

i = min{ti, |T | − t} periods later, but we do not
know the speci�c period when it will be visited again within the time interval [t+ 1, t+mt

i]. In
order to reduce the negative e�ect that early services may cause, for the A-MSSP, we minimize
not only the total number of operators but also the total earliness. We de�ne earliness as the
number of early periods within the visits of the customers.

Below we present two alternative MILPs for the A-MSSP which are classi�ed as sparse. For
this, we introduce variables that identify the number of periods between two consecutive visits
at a given customer. We have developed two variants, which we refer to as customer-based and
class-based. We study their properties and compare them computationally. The numeral results
are presented in Chapter 7.3.

4.1 Sparse formulations

The sparse MILPs represent a �rst approach to a formal statement of the A-MSSP. Similarly to
the sparse P-MSSP formulations of Chapter 3.1, the sparse versions of the A-MSSP we introduce
below use decision variables that determine the customers that are visited in each period, and
the operator that provides service to each customer served at a given period. For the MSSP,
these formulations are also associated with sparse coe�cient matrices.

4.1.1 A customer-based sparse formulation

In addition of the variables de�ned in Section 3.1.1, we de�ne variables to identify the number of
periods between two consecutive visits at a given customer. Let Ht

i be the set of potential periods
to schedule a visit for customer i ∈ I after period t ∈ {0, ..., |T | − 1}, i.e., Ht

i = {1, . . . ,mt
i}.

Therefore, for i ∈ I, t ∈ {0, . . . , |T | − 1}, h ∈ Ht
i we de�ne

f thi =

{
1 if t and t+ h are consecutive service periods for customer i,
0 otherwise

The customer-based MILP for the A-MSSP uses the sets of binary decision variables de�ned
in Section 3.1.1 plus the set of binary variables f thi explained above. The formulation is the
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Chapter 4. Formulations for the A-MSSP

following:

(AS0) min β
∑
t∈T

∑
k∈K

ztk + (1− β)
∑
i∈I

|T |−1∑
t=1

mti∑
h=1

(ti − h)f thi (4.1)

s.t.

ti∑
h=1

f0h
i ≥ 1 i ∈ I (4.2)

xti ≤
ti∑
h=1

xt+hi i ∈ I, t ∈ {0, ..., |T | − ti} (4.3)

xti =

ti∑
h=1

f thi i ∈ I, t ∈ {0, ..., |T | − ti} (4.4)

mti∑
h=1

f thi ≤ xti i ∈ I, t ∈ {|T | − ti + 1, ..., |T | − 1} (4.5)

xti + xt+hi ≤
h−1∑
s=1

xt+si + f thi + 1 i ∈ I, t ∈ {0, ..., |T | − 1}, h ∈ Ht
i (4.6)

ztk ≤
∑
i∈I

ytik k ∈ K, t ∈ T (4.7)

xti =
∑
k∈K

ytik i ∈ I, t ∈ T (4.8)∑
i∈I

ytik ≤ Qztk k ∈ K, t ∈ T (4.9)

Qztk ≤
∑
i∈I

yti,k−1 k ∈ K \ {1}, t ∈ T (4.10)

xti, z
t
k, y

t
ik, f

th
i ∈ {0, 1} i ∈ I, k ∈ K, t ∈ T, h ∈ Ht

i (4.11)

In AS0 the objective (4.1) minimizes a weighted sum of the total number of operators used in
the time horizon and the total earliness. By assigning di�erent values to β ∈ [0, 1], both criteria
can be considered within di�erent scenarios. Constraints (4.2) guarantee that the �rst visit period
for each customer occurs within his service interval. Constraints (4.3) are scheduling constraints,
which ensure that the number of periods between two consecutive visits to the same customer
never exceeds his service interval. Constraints (4.4) and (4.5) are logical constraints, which relate
the x and f variables. In particular, Constraints (4.4) force that if customer i is visited at period
t, then it is revisited for the �rst time at most ti periods after period t. Constraints (4.6) are
logical constraints, which ensure the variable f thi to be one only if the �rst visit of customer i
after period t is period t+ h, i.e., if customer i has been visited at periods t and t+ h and there
is no other visit for i between periods t and t+h. Because of the objective function, the variable
f thi will be zero whenever possible, hence, we do not have to enforce this. Constraints (4.7)
relate the z and y variables, which ensure that visited customers are only assigned to active
operators. The rationale behind this constraints is to strengthen the formulation when β = 0.0.
Constraints (4.8)-(4.10) have the same meaning as constraints (3.4)-(3.6) in formulation PS of
Section 3.1.1. Finally, constraints (4.11) enforce the variables to be binary.
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4.1. Sparse formulations

4.1.1.1 Improvements of AS0

We observe that the following constraints are also valid for AS0:

f thi ≤ xt+hi i ∈ I, t ∈ {0, ..., |T | − 1}, h ∈ Ht
i (4.12)

We denote by Ω0 the domain de�ned by constraints (4.2)-(4.11) and by Ω1 the domain de�ned by
(4.2), (4.4)-(4.12). Let also Ω0 and Ω1 denote the respective domains when the binary conditions
on the variables are replaced by non-negativity constraints. That is:

Ω0 = {(x, y, z, f) : satisfying (4.2)-(4.11)}.
Ω1 = {(x, y, z, f) : satisfying (4.2),(4.4)-(4.12)}.

Ω0 = {0 ≤ (x, y, z, f) ≤ 1 : satisfying (4.2)-(4.10)}.
Ω1 = {0 ≤ (x, y, z, f) ≤ 1 : satisfying (4.2), (4.4)-(4.10),(4.12)}.

where 0 and 1 are vectors of appropriate dimensions with 0's and 1's, respectively. Next we see
that both Ω0 and Ω1 give equivalent formulations for the A-MSSP. In particular, the following
statements hold:

Proposition 1. Ω0 = Ω1.

Proof. (a) Ω1 ⊆ Ω0. Consider (x, y, z, f) ∈ Ω1 such that (x, y, z, f) /∈ Ω0. Therefore, there exist

indices i ∈ I and t ∈ {1, ..., ti} with xti >
ti∑
h=1

xt+hi . Then, by the de�nition of variables, xti = 1

and xt+hi = 0, for all h ∈ {1, . . . , ti}. By (4.4) and (4.5),
ti∑
h=1

f thi = 1, so f thi = 1 for some

h ∈ {1, . . . , ti}. Therefore (4.12) is violated, contradicting (x, y, z, f) ∈ Ω1.

(b) Ω0 ⊆ Ω1. Let us suppose there exists (x, y, z, f) ∈ Ω0 such that (x, y, z, f) /∈ Ω1. Therefore,

there exist indices t ∈ {0, ..., |T | − 1} and h ∈ Ht
i with f

t h
i > xt+hi . Then, by the de�nition of

variables, f t hi = 1 and xt+hi = 0. In addition, by (4.5), xti = 1 and f thi = 0, for all h ∈ Ht
i ,

h 6= h. We apply induction to see that xt+hi = 0 for all h ∈ Ht
i , h 6= h. For h = 1, by (4.6) we

have xti + xt+1
i ≤ f t1i + 1. Since f t1i = 0, then xt+1

i = 0. Let us suppose that for a given h < mt
i,

h 6= h, it holds that xt+si = 0 for all s ∈ {1, . . . , h}, and let us see that if h+ 1 6= h, xt+si = 0 for

all s ∈ {1, . . . , h+ 1}. By (4.6), xti + x
t+(h+1)
i ≤

(h+1)−1∑
s=1

xt+si + f
t(h+1)
i + 1. Since f

t(h+1)
i = 0 and

xt+si = 0 for all s ∈ {1, . . . , h}, it holds that xt+(h+1)
i = 0. Therefore xt+hi = 0 for all h ∈ Ht

i ,
and (4.3) is violated. This contradicts that (x, y, z, f) ∈ Ω0 .

Let,

(AS1) min β
∑
t∈T

∑
k∈K

ztk + (1− β)
∑
i∈I

|T |−1∑
t=1

mti∑
h=1

(ti − h)f thi

s.t. (x, y, z, f) ∈ Ω1

As a consequence of Proposition 1 we have:

Corollary 1. AS1 is a valid formulation for the A-MSSP.
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Next we compare the Linear Programming (LP) relaxations of AS0 and AS1.

Proposition 2. Ω1 ⊆ Ω0.

Proof. Consider (x, y, z, f) ∈ Ω1. Then, for all i ∈ I, t ∈ T, h ∈ Ht
i it holds that f

th
i ≤ xt+hi .

Thus, for any t ∈ {0, . . . , T − ti}, we have
ti∑
h=1

f thi ≤
ti∑
h=1

xt+hi . In addition, by (4.4), xti ≤
ti∑
h=1

f thi .

Thus, xti ≤
ti∑
h=1

xt+hi , which is in fact (4.3) and therefore (x, y, z, f) ∈ Ω0.

Remark 1. The reverse of the above condition is not true. Table 4.1 gives an example to

illustrate that Ω0 * Ω1. In particular, Table 4.1 displays the values of the x and f variables for

the solution of the LP-relaxation of AS0 for the instance with |I| = 1, |T | = 13, |Q| = 3, |R| = 1,
t1 = 3 and β = 0.3. We observe that f0,3

1 > x3
1. In fact, f thi > xt+hi for i = 1, t = {3, 6, 7, 8, 9, 10}

and h = 3. Therefore, (4.12) is not satis�ed. This implies that a solution in Ω0 is not necessarily

contained in Ω1.

i t h t+ h xti f thi xt+hi

1 0 0 0 - - 1
1 0 1 1 - 1/17 1/17
1 0 2 2 - 0 1/17
1 0 3 3 1 16/17 53/60
1 1 3 4 1/17 1/17 7/60
1 2 3 5 1/17 1/17 7/60
1 3 3 6 53/60 53/60 13/20
1 4 3 7 7/60 7/60 7/20
1 5 3 8 7/60 7/60 1/5
1 6 3 9 13/20 13/20 1/10
1 7 3 10 7/20 7/20 1/20
1 8 3 11 1/5 1/5 1/20
1 9 3 12 1/10 1/10 0
1 10 3 13 1/20 1/20 0
1 11 - - 1/20 - -

Table 4.1: x and f values for the LP relaxation solution of AS0.

As a consequence of Proposition 2 and Remark 1 we have:

Corollary 2. The LP relaxation of AS1 is tighter than the LP relaxation of AS0.

Moreover, AS1 can be further reinforced with the following constraints:

min{ti,t}∑
h=1

f t−h,hi = xti i ∈ I, t ∈ T (4.13)

The role of Constraints (4.13) is similar to Constraints (4.4), but forcing that if customer i
is visited in period t, then t is the �rst visit to i after some previous visit in time period
h ≥ t − ti. In particular, if customer i is visited in period t, then it must be previously visited
in no more than pti = min{ti, t} periods earlier. The role of Constraints (4.13) is complementary
to Constraints (4.4) (for fractional solutions).
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Furthermore, it can be observed that Cconstraints (4.12) are actually dominated by Con-

straints (4.13). By setting t′ = t + h, we can rewrite Constraints (4.12) as f t
′−h,h
i ≤ xt

′
i , for all

i ∈ I, t ∈ T, h ∈ {1, . . . , pti}. By the de�nition of the variables, we have that
pti∑
h=1

f t−h,hi ≤ 1. In

particular,
pti∑
h=1

f t−h,hi = 0, if customer i is not visited in period t. Conversely,
pti∑
h=1

f t−h,hi = 1, if

customer i is indeed visited in period t. Therefore,
pti∑
h=1

f t−h,hi = xti, which is in fact (4.13).

We denote by Ω = {(x, y, z, f) : satisfying (4.2),(4.4)-(4.11), (4.13)}. Let

(AS) min β
∑
t∈T

∑
k∈K

ztk + (1− β)
∑
i∈I

|T |−1∑
t=0

mti∑
h=1

(ti − h)f thi

s.t. (x, y, z, f) ∈ Ω

Preliminary computational tests indicate that the LP relaxation of AS provides a lower bound
72% tighter than those of formulation AS0. The same tests indicate that the computing times
for formulation AS are 94% smaller than those of formulation AS0. From now on, we will use
AS as the sparse formulation for the A-MSSP.

4.1.2 A class-based sparse formulation

In this section we present the class-based formulation for the A-MSSP. The details of this for-
mulation are similar to the class-based formulation for the P-MSSP presented in Chapter 3.1.2.
We adapt some parameters:

mt
j = min{uj , |T | − t} : number of potential periods for visits to customers of class j ∈ J after

period t ∈ {0, ..., |T | − 1}.

Ht
j = {1, . . . ,mt

j} : set of potential periods for visits to customers of class j ∈ J after period
t ∈ {0, ..., |T | − 1}.

ptj = min{uj , t} : number of potential periods for visits to customers of class j ∈ J before period
t ∈ T .

In the formulation below we use the already de�ned variables of Chapter 3.1.2. Moreover, in
order to identify the number of periods between two consecutive visits, we de�ne the following
set of general integer variables:

For j ∈ J , t ∈ {0, . . . , |T | − 1}, h ∈ Ht
j ,

f thj : number of customers of frequency class j who are visited consecutively in periods t
and t+ h.

Then, the class-based sparse MILP for the A-MSSP is the following:
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(ASc) min β
∑
t∈T

∑
k∈K

ztk + (1− β)
∑
j∈J

|T |−1∑
t=1

mtj∑
h=1

(uj − h)f thj (4.14)

s.t.

uj∑
h=1

f0h
j = wj j ∈ J (4.15)

xtj =

uj∑
h=1

f thj j ∈ J, t ∈ {0, ..., |T | − uj} (4.16)

mtj∑
h=1

f thj ≤ xtj j ∈ J, t ∈ {|T | − uj + 1, ..., |T | − 1} (4.17)

ptj∑
h=1

f t−h,hj = xtj j ∈ J, t ∈ T (4.18)

ztk ≤
∑
j∈J

ytjk k ∈ K, t ∈ T (4.19)

xtj =
∑
k∈K

ytjk j ∈ J, t ∈ T (4.20)∑
j∈J

ytjk ≤ Qztk k ∈ K, t ∈ T (4.21)

Qztk ≤
∑
j∈J

ytj,k−1 k ∈ K \ {1}, t ∈ T (4.22)

ztk ∈ {0, 1} k ∈ K, t ∈ T (4.23)

xtj , y
t
jk, f

th
j integer, j ∈ J, k ∈ K, t ∈ T, h ∈ Ht

j (4.24)

In ASc the objective (4.14) minimizes a weighted sum of the total number of operators used
in the time horizon and the total earliness. By assigning di�erent values to β ∈ [0, 1], both
criteria can be considered within di�erent scenarios. Constraints (4.15) guarantee that the �rst
visit period for customers in class j occurs within their service interval. Constraints (4.16)
and (4.17) are logical constraints, which relate the x and f variables. Constraints (4.18) are
logical constraints, which force that visits to customers in class j have a previous visit in no
more than ptj periods before. Constraints (4.19) relate the z and y variables, and ensure that
visited customers are only assigned to active operators. The rationale behind these constraints
is to strengthen the formulation when β = 0.0. Constraints (4.20)-(4.22) have the same meaning
as constraints (3.11)-(3.13) of PSc of Chapter 3.1.2. Finally, Constraints (4.23) enforce variables
ztk to be binary, while Constraints (4.24) enforce integrality on the variables xtj , y

t
jk and f

th
j .

As can be observed, ASc has a structure similar to that of AS of Section 4.1.1. The di�erence
between both formulations relies on the use of the set of frequency classes (J) instead of the set
of customers (I), changing the nature of variables xtj , y

t
jk and f thj to be general integer and

reducing therefore the number of variables of each of these types. When J = I, variables xtj , y
t
jk

and f thj become binary variables. In this case, AS yields a tighter LP relaxation than ASc due
to the existence of Constraints (4.6).
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Chapter 5

Branch-and-Price for the A-MSSP -

Branch-and-price (BP) is a solution method for combinatorial optimization, widely used for solv-
ing MILPs with many variables. BP is a branch-and-bound method in which at each node of
the search tree new columns may be added to the current subproblem. At the start of the al-
gorithm many columns are excluded from the formulation in order to reduce the computational
and memory requirements. Then, columns are incorporated to current formulation as needed.
The process of adding new columns is usually referred to as column generation. It is based on
the idea that for large problems most columns will have their corresponding variable at value
zero in an optimal solution (Barnhart et al., 1998). Indeed, such columns are unnecessary for
solving the problem.

Typically, a column generation algorithm is applied to a reformulation, known as the Master
Problem (MP). Since the reformulation usually contains too many variables, a restricted ver-
sion is used, called the Restricted Master Problem (RMP), which only considers a subset of the
total columns (Feillet, 2010). New columns to MP are generated from the optimal solution to
the RMP. When MP and RMP are MILPs, as in our case, this process is applied to their LP
relaxations (LMP and LRMP, respectively). The motivation for resorting to column generation
in this case is that it is expected that the problems that are solved give better LP bounds than
their original counterparts.

To check for optimality with respect to LMP of the optimal solution to LRMP, we solve a
pricing problem to �nd columns to enter the basis and reduce the objective function value. This
involves solving a pricing problem, which consists of �nding a column with negative reduced cost.
When the pricing problem is di�cult to solve, heuristic and local search methods are generally
used in order to �nd columns with negative reduced costs (Mehrotra and Trick, 2007). The sub-
problem is then only solved to completion in order to prove that an optimal solution to LRMP is
also optimal o LMP. Each time a column with negative reduced cost is found, it is added to the
RMP and LRMP is re-optimized. If no columns can enter the basis and the solution to LRMP
is not integer, then branching occurs. Figure 5.1 gives a general outline of the branch-and-price
algorithm.

In this chapter, we describe the BP developed to solve the A-MSSP. In the following sections
we present two di�erent formulations, both suitable for column generation. For each formulation,
we provide the pricing problem necessary for the generation of columns. In addition, we include
the algorithmic details for the implementation. The results of the computational experiments as
well as the comparison with the results of the A-MSSP formulations of Chapter 4.1 are shown
in Chapter 7.4.
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Figure 5.1: Outline of the branch-and-price algorithm

5.1 Column generation formulations for the A-MSSP

Below, we present two alternative MILP formulations for the A-MSSP, both suitable for column
generation. These formulations are reformulations of the sparse MILP formulations presented
in Chapter 4.1. Therefore, we refer to the �rst one as "customer-based" and the second one as
"class-based" formulation.

5.1.1 A customer-based column generation formulation

The A-MSSP formulation we present below can be seen as the column generation reformulation
of formulation AS presented in Chapter 4.1.1. In this formulation columns correspond to pat-

terns for visits. A pattern c ⊆ I consists of a subset of customers that are served in a given
period. For every period t ∈ T , we denote by Ct the set of all patterns for possible visits in
period t, whereas Cti ⊆ Ct is the set of all patterns for period t containing customer i. Since,
for every period, a pattern can contain 0, 1, . . . , |I| customers, the total number of patterns for

period t is thus |Ct| =
|I|∑
i=0

(
|I|
i

)
=
|I|∑
i=1

|I|!
i!(|I|−i)! . The cost of pattern c is computed as nc =

⌈
|c|
Q

⌉
.

For the �rst column generation formulation, we de�ne two sets of binary decision variables:
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5.1. Column generation formulations for the A-MSSP

For t ∈ T ∪ {0}, c ∈ Ct

xtc =

{
1 if pattern c is visited in period t
0 otherwise

For i ∈ I, t ∈ {0, ..., |T | − 1}, h ∈ Ht
i

f thi =

{
1 if two consecutive visits to customer i happen in time periods t and t+ h
0 otherwise

Therefore the MP for the customer-based column generation formulation for the A-MSSP is as
follows:

(MP) min β
∑
t∈T

∑
c∈Ct

ntcx
t
c + (1− β)

∑
i∈I

|T |−1∑
t=1

mti∑
h=1

(ti − h)f thi (5.1)

s.t.

ti∑
h=1

f0h
i ≥ 1 i ∈ I (5.2)∑

c∈Cti

xtc ≤ 1 i ∈ I, t ∈ T (5.3)

∑
c∈Cti

xtc =

ti∑
h=1

f thi i ∈ I, t ∈ {0, ..., |T | − ti} (5.4)

mti∑
h=1

f thi ≤
∑
c∈Cti

xtc i ∈ I, t ∈ {|T | − ti + 1, ..., |T | − 1} (5.5)

pti∑
h=1

f t−h,hi =
∑
c∈Cti

xtc i ∈ I, t ∈ T (5.6)

xtc, f
th
i ∈ {0, 1} i ∈ I, t ∈ T, c ∈ Ct, h ∈ Ht

i (5.7)

As in formulation AS of Chapter 4.1.1, the weight β ∈ [0, 1] in the objective (5.1) allows to
consider di�erent scenarios on the number of operators and the number of early periods within
visits. Constraints (5.2) guarantee that the �rst visit period for each customer takes place within
his service interval. Constraints (5.3) avoid multiple visits to the same customer within the same
period. Constraints (5.4) and (5.5) relate the x and f variables, and ensure that the number of
periods between two consecutive service periods for the same customer never exceeds his service
interval. Additionally, Constraints (5.6) ensure that if customer i is visited in period t, then it
must be previously visited in no more than pti = min{ti, t} periods earlier. Finally, Constraints
(5.7) enforce the variables to be binary.

Remark 2. Because of the de�nition of x variables, we have that∑
c∈Ct

xtc ≤ 1 t ∈ T (5.8)

is an optimality cut for MP. Furthermore, it can be easily observed that Constraints (5.8)
dominate (5.3).
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Formulation MP has an exponential number of x variables and O(n3) variables f . We call
Restricted Master Problem RMP to MP restricted to only a subset of the x variables but with
all the f variables. We use the following notation for the dual variables associated with the LP
relaxation of RMP:

γt: t ∈ T , for Constraints (5.8).

ϕti: i ∈ I, t ∈ {0, ..., |T | − ti}, for Constraints (5.4).

πti : i ∈ I, t ∈ {|T | − ti + 1, ..., |T | − 1}, for Constraints (5.5).

σti : i ∈ I, t ∈ T , for Constraints (5.6).

To formulate the pricing problem for period t ∈ T we use the following set of binary variables:

For k ∈ K,

vk =

{
1 if operator k is used
0 otherwise

For i ∈ I, k ∈ K,

yik =

{
1 if customer i is visited by operator k
0 otherwise

Therefore, the Pricing Problem for period t is:

(P t) zt = γt + min β
∑
k∈K

vk −
∑
i∈I

αi
∑
k∈K

yik (5.9)

s.t.
∑
k∈K

yik ≤ 1 i ∈ I (5.10)∑
i∈I

yik ≤ Qvk k ∈ K (5.11)

Qvk ≤
∑
i∈I

yi,k−1 k ∈ K \ {1} (5.12)

vk, yik ∈ {0, 1} i ∈ I, k ∈ K (5.13)

with αi = −ϕti + πti + σti .

Objective (5.9) minimizes the reduced cost of any possible visit pattern for period t relative
to the dual multipliers vector (γt, ϕti, π

t
i , σ

t
i). Constraints (5.10) avoid multiple visits to the

same customer. Constraints (5.11) are capacity constraints, which ensure that the number of
customers assigned to each operator does not exceed the operator capacity. Constraints (5.12)
are symmetry breaking constraints imposing that, at each period, the operator k is not used
unless operators 1, . . . , k − 1 are full, i.e., each of them has Q assigned customers. Finally, Con-
straints (5.13) enforce the variables to be binary.

If zt < 0, we obtain a new variable, which may improve the current LP solution of the RMP.
The new variable xtc is associated with the pattern c = {i ∈ I : yik = 1, k ∈ K} with cost
ntc =

∑
k∈K

vk.
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To solve P t we can apply, for every t ∈ T , a simple algorithm. Initially we sort the indices
of customers with strictly positive coe�cient αi, by non increasing values of the coe�cients, i.e.
αi1 ≥ αi2 ≥ ...αis > 0. At each iteration we try to activate a new operator and to assign to it
up to Q customers, not previously assigned. Customers are tentatively assigned to the initial
ordering. If ik−1 denotes the index of the last customer assigned at iteration k-1, at iteration k
we assign to a new operator customers ik, ik+1...ih, where h = min{(k−1)+Q, s}, provided that
min{Qk,s}∑

r=h

αir > β. Otherwise the process terminates and the operators activated so far, together

with their assigned customers, de�ne an optimal solution to the pricing problem. Algorithm 5.1
gives an outline of the pricing solving algorithm for P t.

Algorithm 5.1: Solution algorithm for P t

Data: β, αi, i ∈ I
1 sort αi1 ≥ αi2 ≥ . . . ≥ αis ;
2 stop ← false ;
3 k ← 1;
4 while not stop do

5 h = Q(k − 1) + 1;

6 if
min{Qk,s}∑

r=h

αir > β and k < |K| then

7 yir,k = 1, r = h, . . . ,min{Qk, s};
8 vk = 1;
9 k ← k + 1;

10 else

11 stop;
12 end

13 end

5.1.2 A class-based column generation formulation

In this section we present a class-based version of the column generation formulation presented
in Section 5.1.1, which is a column generation version of formulation ASc of Section 4.1.2.

In this formulation columns correspond again to patterns of visits, but referring to the num-
ber of customers of class j ∈ J that are visited in a given period. We use the following notation
in addition to that introduced in Section 4.1.2.

A pattern is represented by a vector c = (ac1, . . . , a
c
j , . . . , a

c
|J |) whose j-th component, acj ≤ wj ,

indicates the number of customers of class j that are visited in a given period. As before nc is

the cost of pattern c, which is now given by nc =


|J|∑
j=1

acj

Q

. Ct is the set of all possible patterns
c for period t. For each period t ∈ T , the number of all possible patterns is

|J |∏
j=1

(wj + 1). Since

each pattern can be used in any period t ∈ T , we de�ne C as the set of all possibles patterns in

the entire time horizon, C =
⋃
t∈T

Ct, and therefore |C| = |T |
|J |∏
j=1

(wj + 1) + 1.
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For the class-based column generation formulation we use the following sets of decision vari-
ables:

For t ∈ T ∪ {0}, c ∈ Ct

xtc =

{
1 if the pattern c is collected at period t
0 otherwise

For j ∈ J, t ∈ {0, ..., |T | − 1}, h ∈ Ht
j

f thj = the number of customers of class j that are consecutively visited in periods t and t+ h.

The class-based Master Problem for the A-MSSP is as follows:

(MP c) minβ
∑
t∈T

∑
c∈Ct

ncx
t
c + (1− β)

∑
j∈J

|T |−1∑
t=1

mtj∑
h=1

(uj − h)f thj (5.14)

s.t.

uj∑
h=1

f0h
j = wj j ∈ J (5.15)∑

c∈Ct
acjx

t
c ≤ wj j ∈ J, t ∈ T (5.16)

∑
c∈Ct

acjx
t
c =

uj∑
h=1

f thj j ∈ J, t ∈ {0, ..., |T | − uj} (5.17)

mtj∑
h=1

f thj ≤
∑
c∈Ct

acjx
t
c j ∈ J, t ∈ {|T | − uj + 1, ..., |T | − 1} (5.18)

ptj∑
h=1

f t−h,hj =
∑
c∈Ct

acjx
t
c j ∈ J, t ∈ T (5.19)

xtc ∈ {0, 1} t ∈ T, c ∈ Ct (5.20)

f thj , integer j ∈ J, t ∈ {0, ..., |T | − 1}, h ∈ Ht
j (5.21)

Similarly to formulation ASc of Chapter 4.1.2, the weight β ∈ [0, 1] in the objective (5.14)
allows us to consider di�erent scenarios for the number of operators and the number of early
periods within visits. Constraints (5.15) set the starting point for visits along the time horizon.
Constraints (5.16) limit to wj the number of customers of each class that can be visited in the
same period. Constraints (5.17) and (5.18) relate the x and f variables, and ensure that the
number of periods between two consecutive services to the same customer never exceeds his
service interval. Constraints (5.19) guarantee that if customers of class j have been visited in
period t, then they must be previously visited in no more than pti = min{vj , t} periods earlier.
Finally, Constraints (5.20) enforce variables xtc to be binary, while Constraints (5.21) enforce the
integrality on the variables f thj .

Observe that due to the de�nition of x variables, we have that Constraints (5.8) also de�ne
an optimality cut for the MP c. Note also that Constraints (5.16) are dominated by (5.8).
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Formulation MP c also has an exponential number of x variables and O(n3) variables f . We
call Restricted Master Problem (RMP c) to (MP c) restricted to only a subset of the x variables
but with all the f variables. We use the following notation for the dual variables associated with
the LP relaxation of RMP c:

γt: t ∈ T , for Constraints (5.8).

ϕtj : j ∈ J, t ∈ {0, ..., |T | − uj}, for Constraints (5.17).

πtj : j ∈ J, t ∈ {|T | − uj + 1, ..., |T | − 1}, for Constraints (5.18).

σtj : j ∈ J, t ∈ T , for Constraints (5.19).

For every period t ∈ T , the Pricing Problem
(
P t
c

)
for �nding �attractive� visit patterns for time

period t. P t
c uses the following decision variables:

For k ∈ K,

vk =

{
1 if operator k is used
0 otherwise

For j ∈ J, k ∈ K,

yjk = number of customers of class j visited by operator k

Then, the pricing problem for period t is:

(
P t
c

)
ztc = γt + min β

∑
k∈K

vk −
∑
j∈J

αj
∑
k∈K

yjk (5.22)

s.t.
∑
k∈K

yjk ≤ wj j ∈ J (5.23)∑
j∈J

yjk ≤ Qvk K ∈ K (5.24)

Qvk ≤
∑
i∈I

yi,k−1 k ∈ K \ {1} (5.25)

vk ∈ {0, 1} k ∈ K (5.26)

yjk, integer j ∈ J, k ∈ K (5.27)

with αj = −ϕtj + πtj + σtj .

Objective (5.22) minimizes the reduced cost of any possible visit pattern for period t rel-
ative to the dual multipliers vector (γt, ϕti, π

t
i , σ

t
i). Constraints (5.23) avoid multiple visits to

customers. Constraints (5.24) are capacity constraints that ensure that the number of customers
assigned to each operator does not exceed the operator capacity. Constraints (5.25) are symme-
try breaking constraints imposing that at each period operator k is not used unless operators
1, . . . , k − 1 are full, i.e., each of them has Q assigned customers. Finally, Constraints (5.26)
and (5.27) enforce integrality on the variables.
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If ztc < 0, we obtain a new variable, which may improve the current LP solution to the RMP c.
The new variable xtc is then de�ned by c = (acj)j∈J , where a

c
j =

∑
k∈K

yjk, for all j ∈ J and its cost

is thus, ntc =
∑
k∈K

vk.

To solve P tc we apply a variation of Algorithm 5.1 presented in Section 5.1.1. In this case we
take into account the number of customers that have not been assigned of the last class used in
the previous iteration.

5.2 Column generation algorithm for the A-MSSP

A sketch of a generic column generation algoritm is presented in Algorithm 5.2. Below we give
the details for the main elements for the two BP implementations, one for each of the column
generation formulations of Section 5.1. In particular, we describe how to provide an initial set
of columns, the di�erent strategies to apply branching, as well as the method to recover from
unfeasibility after branching. We include a �nal section with a stabilization procedure in order to
avoid the generation of too many columns during the pricing and, thus, speed up the algorithm.

Algorithm 5.2: Column generation algorithm for the MP

1 initialization;
2 stop ← false ;
3 while not stop do

4 solve LP relaxation of RMP;
5 if RMP feasible then

6 solve the pricing problem;
7 if new variables then

8 go to 4 ;
9 else

10 if integer solution then

11 stop;
12 else

13 do branching;
14 end

15 end

16 else

17 solve Farkas's pricing problem ;
18 go to 4 ;

19 end

20 end

5.2.1 Initialization

The �rst step of the column generation algorithm is to obtain an initial RMP. For this we need
an initial set of columns (variables) which contain a feasible primal solution. Since the initial
RMP determines the initial dual variables that will be used in the pricing problem, good quality
initial columns are crucial for the e�ciency of the algorithm. There exist several strategies to
obtain these initial columns. We use a greedy procedure to obtain the feasible solution, which
provides the initial feasible columns. This procedure is described in detail in Chapter 6.1.
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5.2.2 Branching rules

Several branching schemes can be used to enforce the integrality of the variables of MP. General
branching schemes can be found in Barnhart et al. (1998), Vanderbeck (2011). The branching
rules we have applied take advantage of the speci�c structure of our MPs. Observe that with
vt ∈ {0, 1}, for all t ∈ T , the optimality cut (5.8) of Section 5.1.1 can be written as:∑

c∈Ct

xtc + vt = 1 t ∈ T (5.28)

Next we present the branching rules for both MPs detailed in the previous sections.

5.2.2.1 Branching rules for formulation MP -

Below we describe the three di�erent branching strategies we have used in our BP algorithm for
solving MP described in Section 5.1.1. Let, (x, f, v) denote an optimal solution to LRMP . The
three di�erent branching rules are:

Strategy 1: branching on variables vt. A �rst alternative is to branch on variables vt.
Branching on variable vt forces to decide whether or not to schedule a visit in period t. In
particular, we apply the most fractional variable rule, i.e., we choose to branch on variable vt

∗

such that:

t∗ = arg min
t∈T

{∣∣vt − 0.5
∣∣} (5.29)

Figure 5.2 shows the implications for branching strategy 1.

vt* ≤ 0 vt* ≥ 1 

𝑣𝑣𝑡𝑡∗ = 1  
𝑥𝑥𝑐𝑐𝑡𝑡

∗ = 0                  ∀𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡∗  
𝑓𝑓𝑖𝑖𝑡𝑡

∗ℎ = 0               ∀𝑖𝑖 ∈ 𝐼𝐼, ℎ ∈ 𝐻𝐻𝑖𝑖𝑡𝑡
∗       

𝑓𝑓𝑖𝑖
𝑡𝑡∗−ℎ,ℎ = 0          ∀𝑖𝑖 ∈ 𝐼𝐼, ℎ ∈ 𝑃𝑃𝑖𝑖𝑡𝑡

∗  

 
 

 

𝑣𝑣𝑡𝑡∗ = 0  

Figure 5.2: Branching strategy 1 for MP .

Strategy 2: branching on variables f thi . Since MP inherits the original variables f thi from
formulation AS (Section 4.1.1), we take advantage of them and use them in one of the branching
strategies. We also apply the most fractional variable branching rule. In particular, we choose
to branch on variable f t

∗h∗
i∗ for the triplet (i, t, h)∗ such that:

(i, t, h)∗ ∈ arg min
i∈I
t∈T
h∈Ht

i

{∣∣∣f thi − 0.5
∣∣∣} . (5.30)
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Figure 5.3 displays the implications of the branching strategy 2.

 
 

 

𝑓𝑓𝑖𝑖∗
𝑡𝑡∗ℎ∗ ≤ 0 𝑓𝑓𝑖𝑖∗

𝑡𝑡∗ℎ∗≥ 1 

𝑓𝑓𝑖𝑖∗
𝑡𝑡∗ℎ∗ = 0  𝑓𝑓𝑖𝑖∗

𝑡𝑡∗ℎ∗ = 1 
𝑓𝑓𝑖𝑖∗
𝑡𝑡∗ℎ = 0              ∀ℎ ∈ 𝐻𝐻𝑖𝑖∗

𝑡𝑡∗ ,ℎ ≠ ℎ∗ 
𝑥𝑥𝑐𝑐𝑡𝑡

∗ = 0                ∀𝑐𝑐 ∉ 𝐶𝐶𝑖𝑖∗
𝑡𝑡∗  

𝑥𝑥𝑐𝑐𝑡𝑡
∗+ℎ∗ = 0          ∀𝑐𝑐 ∉ 𝐶𝐶𝑖𝑖∗

𝑡𝑡∗  
𝑣𝑣𝑡𝑡∗ = 0  
𝑣𝑣𝑡𝑡∗+ℎ∗ = 0  

Figure 5.3: Branching strategy 2 for MP .

Strategy 3: branching on xtc variables. Finally, we can also branch on columns xtc. Fol-
lowing the most fractional branching rule, we choose to branch on variable xt

∗
c∗ for the pair (t, c)∗

such that:

(t, c)∗ ∈ arg min
t∈T
c∈Ct

{∣∣xtc − 0.5
∣∣} (5.31)

Figure 5.4 shows the implications of the branching strategy 3.

 
 

 

𝑥𝑥𝑐𝑐∗
𝑡𝑡∗  ≤ 0 𝑥𝑥𝑐𝑐∗

𝑡𝑡∗  ≥ 1 

𝑥𝑥𝑐𝑐∗
𝑡𝑡∗ = 0  𝑥𝑥𝑐𝑐∗

𝑡𝑡∗ = 1 
𝑥𝑥𝑐𝑐𝑡𝑡

∗ = 0       ∀𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡∗ , 𝑐𝑐 ≠ 𝑐𝑐∗ 
𝑣𝑣𝑡𝑡∗ = 0  

Figure 5.4: Branching strategy 3 for MP .

Branching strategies 1, 2 and 3 were applied in order to solve MP . Preliminary numerical
tests showed that branching on variables vt has a very poor performance. Furthermore, we ob-
served that branching on variables f thi guarantees the integrality of variables xtc. In consequence,
strategy 2 was the only branching strategy applied for solving the integer MP .
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5.2.2.2 Branching rules for formulation MP c -

We next describe the branching strategies used for solving MP c described in Section 5.1.2. Let,
(x, f, v) denote tan optimal solution to LRMP c. The three di�erent branching strategies we
have used are:

Strategy 1: branching on variables vt. Similarly to formulationMP , branching on variable
vt forces to decide whether or not to schedule customers in period t. We apply the same strategy
1 as described in Section 5.2.2.1. That is, we select variable vt

∗
with the most fractional value,

following equation (5.29). Figure 5.5 displays the implications of this strategy.

vt* ≤ 0 vt* ≥ 1 

𝑣𝑣𝑡𝑡∗ = 1  
𝑥𝑥𝑐𝑐𝑡𝑡

∗ = 0                  ∀𝑐𝑐 ∈ 𝐶𝐶𝑡𝑡∗  
𝑓𝑓𝑗𝑗𝑡𝑡

∗ℎ = 0               ∀𝑗𝑗 ∈ 𝐽𝐽,ℎ ∈ 𝐻𝐻𝑗𝑗𝑡𝑡
∗       

𝑓𝑓𝑗𝑗
𝑡𝑡∗−ℎ,ℎ = 0          ∀𝑗𝑗 ∈ 𝐽𝐽,ℎ ∈ 𝑃𝑃𝑗𝑗𝑡𝑡

∗  

 
 

 

𝑣𝑣𝑡𝑡∗ = 0  

Figure 5.5: Branching strategy 1 for the MP c.

Strategy 2: branching on variables f thj . Analogously to formulationMP , formulationMP c

inherits the variables f thj from formulation ASc of Section 4.1.2. Following the most fractional

branching rule, we choose to branch on variable f t
∗h∗
j∗ for the triplet (j, t, h)∗ such that:

(j, t, h)∗ ∈ arg min
j∈J
t∈T
h∈Ht

j

{
min

{⌈
f
th
j

⌉
− f thj , f

th
j −

⌊
f
th
j

⌋}}
(5.32)

Figure 5.6 shows the implications of the branching strategy 2 for formulation MP c.

Strategy 3: branching on xtc variables. Similarly to strategy 3 for formulation MP , we
select variable xt

∗
c∗ with the most fractional value by following equation (5.31). The implications

of the branching strategy 3 for formulation MP c are displayed in Figure 5.4.

Branching strategies 1, 2 and 3 were applied to solve the MP c. In contrast to the behaviour
observed with the branching strategies for theMP , preliminary numerical tests forMP c showed
that branching on variables vt presents a good performance, specially when strategy 1 is ap-
plied together with strategies 2 and 3. Contrary to formulation MP , for formulation MP c,
branching on variables f thj does not guarantee the integrality on variables xtc. The best observed
performance was to apply sequentially branching strategies 1, 2 and 3. That is, we explore the
branching tree �rst branching on variables vt, then on variables f thj and �nally on variables xtc.
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𝑓𝑓𝑗𝑗∗
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𝑡𝑡∗ℎ∗  

𝑥𝑥𝑐𝑐𝑡𝑡
∗+ℎ∗ = 0             ∀𝑐𝑐 ∉ 𝐶𝐶𝑗𝑗∗

𝑡𝑡∗ ,𝑎𝑎𝑗𝑗∗
𝑐𝑐 ≤ 𝑓𝑓𝑗̅𝑗∗

𝑡𝑡∗ℎ∗  
𝑣𝑣𝑡𝑡∗ = 0  
𝑣𝑣𝑡𝑡∗+ℎ∗ = 0  

𝑓𝑓𝑗𝑗∗
𝑡𝑡∗ℎ∗ ≥ 𝑓𝑓𝑗̅𝑗∗

𝑡𝑡∗ℎ∗  

Figure 5.6: Branching strategy 2 for MP c.

5.2.3 Farkas pricing

Infeasibility of the LRMP may arise after branching. Even if Farkas's Lemma (Farkas, 1894)
can prove infeasibility, what we need algorithmically is to �nd a new variable to add to the
MRP and destroy this infeasibility. As we see below, such a variable can be found (or concluded
that it does not exists) by solving the Farkas pricing, which is, in fact, the standard pricing with
cost coe�cients equal to 0 and with an extreme dual ray vector instead of the dual variable vector.

For the customer-based formulation MP , the Farkas pricing problem for every period t ∈ T ,
is formulated as the P t of Section 5.1.1, in which vector (γt, ϕti, π

t
i , σ

t
i) de�nes the dual rays

associated with MP 's constraints (5.8),(5.4), (5.5) and (5.6), respectively. Analogously, for the
class-based formulation MP c, the Farkas pricing problem for every period t ∈ T , is formulated
as the P t

c of Section 5.1.2, with vector (γt, ϕti, π
t
i , σ

t
i) as the dual rays associated with MP c's

constraints (5.8) (5.17), (5.18) and (5.19), respectively.

5.2.4 Stabilization procedure

The convergence of column generation algorithms when using simplex algorithm is usually very
poor, specially for large and degenerate problems. The main reason is that the dual values
obtained from the RMP in the �rst iterations of the procedure do not appear in the optimal
dual solution, and therefore, they move from one extreme solution of the dual domain to another
distant one. There are several approaches to limit this erratic behaviour of the dual variables.
Most of them include the modi�cation of the RMP and introducing several parameters that have
to be adjusted, see Lübbecke (2011). In our work we apply a di�erent approach that does not
need any modi�cation of the RMP and only incorporates a single parameter to be adjusted. This
stabilization procedure was �rst introduced by Wentges (1997) and developed later by Pessoa
et al. (2010) as the smoothing approach. The basic idea of the smoothing approach is to combine
the current dual solution, λ∗, with a previous one, λ̂. That is, for the pricing problem, we do
not use the current value λ∗ but the convex combination:

λ = ∆λ∗ + (1−∆)λ̂ (5.33)

with 0 ≤ ∆ ≤ 1. When a promising column is found relative to vector λ, it is added to the RMP
only if this column has a negative reduced cost with respect to λ∗ as well. Furthermore, when
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the dual multipliers λ improve the dual bound, we update the best known vector to λ̂ = λ. We
denote by L(λ̂) the best (highest) lower bound obtained so far, and by ZMP the current primal
upper bound. Even when no column is added to the RMP (usually called as misprice), the
dual bound always improves by at least a factor of 1/(1 −∆). Because the performance of the
smoothing stabilization approach highly depends on the selection of the parameter ∆, we have
tried with several strategies for de�ning and updating ∆. These strategies are based on Violin
(2014). In particular, the ∆ updating scheme strongly depends on the relative di�erence between
the upper and lower bounds of the MP, de�ned as:

Gap =
ZMP − L(λ̂)

L(λ̂)
(5.34)

In addition, we use a value ε to stop the stabilization procedure. The strategies we have used
are the following:

Strategy 1. We set ∆ equal to a �xed value ∆fix. WhenGap < ε, we stop the stabilization
by setting ∆ = 1.

Strategy 2. We use ∆init ∈ (0, 1] as a initial value for ∆. Every time Gap < 1 −∆init

we make ∆ = 1−Gap. When Gap < ε, then ∆ = 1.

For testing the di�erent stabilization strategies, we solved the LP relaxation of MP c using
smoothing stabilization. Table 5.1 shows the summary comparison for solving the LP relaxation
of the MP c with strategies 1, 2 and without any stabilization. We use the benchmark instances
as well as the computational environment described in Chapter 7.1. The table reports the total
time (in seconds) and the total number of generated columns over the �ve instances of every size
and every value of β. For strategies 1 and 2 the results are presented for the best value for ∆fix

and ∆init, respectively, i.e, 0.1. For both strategies we set ε = 0.01. Results for the best strategy
for each instance size are represented in bold.

We can observe that, in general, stabilization helps reducing not only the number of added
columns but also computing times as well. In addition, strategy 2 outperforms strategy 1, for
values of β ≤ 0.5. For instances with β > 0.5, although strategy 1 produces a smaller number
of columns, it requires longer computing times than those of strategy 2. Therefore, we can say
that strategy 2 favors the e�ciency of the column generation algorithm. On average, strategy 2
allows solutions 18.1% faster generating 12.1% fewer columns.
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Strategy
I10 I30 I50

Total

Q5 Q10 Q5 Q10 Q30 Q5 Q10 Q50

No stab Time 48.2 49.7 69.8 106.6 82.9 86.4 91.0 94.1 628.6

Cols 2927 2410 4219 5984 3791 4414 5171 4391 33307

β = 0.2 Strategy 1 Time 57.1 45.1 55.6 104.3 71.3 89.8 66.2 77.0 566.4

Cols 2943 2445 3003 5311 3964 3550 3854 4438 29508

Strategy 2 Time 53.8 41.6 55.1 93.7 70.6 88.9 67.0 79.4 550.0

Cols 2860 2365 2994 5249 3830 3645 3786 4448 29177

No stab Time 44.4 44.8 75.2 105.4 70.8 93.4 84.5 87.1 605.5

Cols 2617 2058 4148 5674 3157 4573 4877 3733 30837

β = 0.5 Strategy 1 Time 48.4 36.0 54.0 94.0 59.8 90.2 62.2 69.5 514.0

Cols 2525 2032 3013 4899 3292 3478 3622 3927 26788

Strategy 2 Time 46.0 35.9 56.2 89.3 58.8 83.4 61.7 69.3 500.5

Cols 2460 2068 2987 4839 3200 3595 3552 3736 26437

No stab Time 41.4 39.0 73.8 97.9 59.0 91.4 89.1 69.4 560.9

Cols 2337 1785 3947 5470 2779 4073 5006 3304 28701

β = 0.8 Strategy 1 Time 44.4 32.6 55.2 88.8 50.8 76.7 58.8 58.3 465.6

Cols 2285 1812 2889 4673 2910 3017 3535 3319 24440

Strategy 2 Time 42.5 30.7 54.5 81.4 50.6 75.7 60.8 60.9 457.0

Cols 2273 1781 2935 4717 2795 3257 3476 3349 24583

No stab Time 23.5 14.2 28.7 37.9 23.5 32.8 37.2 21.3 219.1

Cols 1536 732 1798 2432 1267 1790 2136 981 12672

β = 1.0 Strategy 1 Time 24.4 12.3 20.9 28.7 20.5 27.4 25.3 23.1 182.7

Cols 1478 601 1513 2380 1019 1681 1812 1008 11492

Strategy 2 Time 26.1 9.3 19.1 29.0 18.8 26.1 22.5 15.5 166.3

Cols 1543 732 1500 2263 1179 1682 1845 999 11743

Table 5.1: Summary stabilization results for MP c.
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Chapter 6

A Heuristic Algorithm for the MSSP

As an alternative to exact solution methods for the MSSP based on formulations, we have de-
signed, developed and implemented heuristic algorithms to obtain good quality solutions in small
computing times. We present in this chapter the heuristics for the P-MSSP and the A-MSSP.

Both heuristics start by building an initial solution using a greedy procedure. Afterwards,
local search is applied to improve the quality of the greedy solution. To diversify the search,
this procedure is also applied to a series of perturbed solutions obtained from the initial greedy
solution. The results of the computational experiments as well as the comparison with those
obtained by CPLEX for the MILP formulations presented in Chapters 3 and 4 are shown in
Chapter 7.5.

6.1 The greedy heuristic

In the greedy heuristic we successively build a solution by selecting a yet unscheduled customer
in each iteration and �nding the best calendar for him. Customers are selected by non-decreasing
values of their �lling intervals ti. The best calendar Ci for a selected customer i ∈ I is then a
calendar with the minimal increase in the total number of operators used over all periods. In
each iteration we have a partial solution in which the calendars of a set of customers have already
been determined. For t ∈ T , we denote by Qt the number of customers that are served in period
t. Operator k = kmaxt is referred to as the last operator in period t and the number of customers
assigned to her in period t ∈ T is denoted by Qkmaxt

. Note that Qkmaxt
= Q indicates that

an additional operator would be needed if one more customer should be served in this period t.
Periods where the last operator is completely full are called saturated, and the set of such periods
is denoted by S =

{
t ∈ T : Qkmaxt

= Q
}
. A saturated period t ∈ S with kmaxt = |K| is called

exhausted, because it is not possible to allocate any more customers to it. The set of exhausted
periods is denoted by E = {t ∈ S : kmaxt = |K|}.

Initially, no customer has a calendar and no operator is used. Thus, we set Qt = kmaxt =
Qkmaxt

= 0, for all t ∈ T , and S = E = ∅. In iteration p, we �rst select an unscheduled cus-
tomer ip and then determine the best calendar Cip ⊆ T for him. For this we solve a shortest
path problem in an auxiliary network. In Sections 6.1.1 and 6.1.2 we show how to do that ef-
�ciently for the P-MSSP and the A-MSSP, respectively. Before the next iteration, the values
Qt, k

max
t , Qkmaxt

, and the sets S and E are updated for all t ∈ T . The heuristic terminates
when calendars have been determined for all customers. Algorithm 6.1 gives an outline of the
greedy procedure. Without loss of generality, we assume that the index set of customers is sorted
by non decreasing values of their �lling intervals, i.e., I = {i1, . . . , i|I|} with ti1 ≤ ti2 ≤ · · · ≤ ti|I| .
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Algorithm 6.1: Greedy Procedure

Data: T , Q, K, I = {ii, i2, . . . , i|I|}, ti, with tik ≤ tik+1
.

1 set Qt = kmaxt = Qkmaxt
= 0, t ∈ T ;

2 set S = E = ∅;
3 for ip ∈ I do
4 determine the best calendar Cip for customer ip;
5 set Qt = Qt + 1, t ∈ Cip ;
6 set kmaxt =

⌈
Qt
Q

⌉
, t ∈ Cip ;

7 set Qkmaxt
= Qt −Q · (kmaxt − 1), t ∈ Cip ;

8 set S = (S ∪ {t ∈ Cip : Qkmaxt
= Q}) \ (S ∩ Cip);

9 set E = E ∪ {t ∈ Cip : t ∈ S, kmaxt = |K|};
10 end

Next, we show how to e�ciently determine the best calendar for a customer by formulating
it as a shortest path problem in an auxiliary network. Hereby, we have to distinguish between
the periodic and aperiodic policy.

6.1.1 Auxiliary shortest path problem for the P-MSSP

Next, we formulate the search for the best calendar for a selected customer i = ip in iteration
p. To that end we de�ne an auxiliary network N = (V,A) as follows. Let V = {vt : t ∈
T \ E} ∪ {v0, v|T |+1}. V contains a node associated with each non-exhausted period t, plus
two pseudo nodes, v0 and v|T |+1. Moreover, A contains three types of arcs: (a) (v0, vt), with
t ∈ {1, . . . , ti} \E; (b) (vt, vt′) with t

′ = t+ ti, t
′, t ∈ T \E; and, (c)

(
vt, v|T |+1

)
with t ∈ T \E,

t > |T | − ti. Figure 6.1 visualizes the network. A node vt ∈ V with t ∈ S is called saturated.
Then, we de�ne the following costs associated with the arcs of A for types (a) and (b):

c(vt, vt′) =

1 if node vt′ is saturated;
Qkmaxt
|T |Q otherwise .

(6.1)

The rationale behind the costs for arcs entering unsaturated vertices is that we want to favor
calendars where operators are well utilized. The costs are chosen such that they are dominated
by the cost of adding a new operator, i.e., the overall utilization of operators is less important
than the number of additional operators. For arcs of type (c), c(vt, v|T |+1) = 0. Any path
from v0 to v|T |+1 in the above network corresponds to a feasible calendar for customer i: Ci =
{t ∈ T \ E : vt is in the path from v0 to v|T |+1}. And a shortest path yields a best calendar for
customer i, i.e., one with the smallest increase in the objective function value.

6.1.2 Auxiliary shortest path problem for the A-MSSP

The set of nodes of the auxiliary network for the aperiodic service policy is identical to that
for the periodic policy. Concerning the arcs, A now contains three types of arcs: (a) (v0, vt),
with t ∈ {1, . . . , ti} \ E; (b) (vt, vt′) with t, t′ ∈ T \ E where t′ = t + h, h ∈ {1, . . . , ti}; and,
(c) (vt, v|T |+1) with t ∈ T \ E, t > |T | − ti. Figure 6.2 visualizes the network. For the costs
associated with the arcs of A, we now also need to calculate the total earliness of a calendar for
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Figure 6.1: Shortest path network representation for customer i ∈ I under the PS policy.

customer i. Thus, we de�ne the following costs associated with the arcs of A for type (a):

c(v0, vt) =

β if node vt is saturated;

β
Qkmaxt
|T |Q otherwise .

(6.2)

The rationale behind the costs for arcs entering unsaturated vertices is the same as for the
periodic policy; we just have to ensure that these costs are now also dominated by the costs of
earliness. For arcs of type (b), the cost of an arc (vt, vt′) must now take into account not only
if the destination node t′ is saturated, but also the earliness between periods t and t′, which is
ti − (t′ − t). Thus,

c(vt, vt′) =

(1− β) [ti − t′ + t] + β if node vt′ is saturated;

(1− β) [ti − t′ + t] + β
Qkmaxt
|T |Q otherwise .

(6.3)

For arcs of type (c), c(vt, v|T |+1) = 0. Again, any path from v0 to v|T |+1 in the above network
yields a calendar for customer i: Ci = {t ∈ T : vt is in the path from v0 to v|T |+1}. The cost
of a path re�ects the increment in the objective function value of the current partial solution

when incorporating calendar Ci, ignoring the utilization term β
Qkmaxt
|T |Q . Indeed this increment

takes into account not only the number of additional operators used over all periods but also the
earliness of the new partial solution. A shortest path again yields a calendar Ci for customer i
with the smallest increase in costs.

6.2 Local search

In the local search we try to improve the solution obtained by the greedy heuristic. To that end,
two di�erent neighbourhoods are explored. The �rst one considers changing the calendar of a
single customer. The second one contemplates simultaneous changes in the calendars of a pair
of customers. For both policies, the goal is to change the calendars of customers in such a way
that we either decrease the number of operators used over all periods (and/or the earliness for
the AS policy) or, if this is not possible, the utilization of the least utilized operator in a period.
The motivation for the latter is that it might be possible to get rid of this operator in subsequent
iterations of the local search.
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Figure 6.2: Shortest path network representation for customer i ∈ I under the AS policy.

6.2.1 Neighborhoods

The single-customer neighbourhood, or simply N1, explores solutions in which the calendars of
all customers remain unchanged, except for a �xed customer i ∈ I. For this customer we want to
�nd out if the solution would improve by using a di�erent calendar. To that end, we �rst delete
his calender Ci and then compute the sets S and E, and the values Qt, k

max
t , and Qkmaxt

for all
t ∈ T . Afterwards, we determine the best calendar for i using the same approach as in Section 6.1.

Since considering the change of the calendar of a single customer may be short-sighted,
we also take into account the simultaneous change of the calendar of pairs of customers. The
two-customers neighbourhood, or simply N2, explores solutions in which all calendars remain un-
changed, except for a pair of customers i, j ∈ I. In this case we want to �nd out if the solution
would improve if the calendars of customers i and j were di�erent.

For the PS policy, this requires to identify the �rst service periods of customers i and j, and
then to change all their subsequent service periods accordingly. Similarly to N1, we can formulate
the simultaneous search for the best calendars for i and j as a shortest path problem. To that end,
we de�ne the auxiliary directed network N = (V ×V,A), where V = {vt : t ∈ T \E}∪{v0, v|T |+1}
is de�ned as in Section 6.1.1. Nodes (vt, vr) ∈ V ×V are of three types: (V1) t and r are equal to
0; (V2) t, r ∈ T \E; (V3) at least one of t and r is equal to |T |+ 1 and t > |T |− ti or r > |T |− tj .
Moreover, arcs {(vt, vr), (vt′ , vr′)} ∈ A are of three types: (A1) (vt, vr) is a node of type (V1) and
(vt′ , vr′) is a node of type (V2), with t

′ ∈ {1, . . . , ti}, r′ ∈ {1, . . . , tj}; (A2) both nodes are of type
(V2) with t

′ = t+ ti and r
′ = r+ tj ; and (A3) (vt, vr) is a node of type (V2) and (vt′ , vr′) is a node

of type (V3). The costs of the arcs are then de�ned accordingly and a shortest path through this
network from node (v0, v0) to (v|T |+1, v|T |+1) yields the best calenders for customers i and j.

It is important to say, however, that the move for the AS policy is much more involved because
earliness is allowed. As a result, we can no longer re-formulate the simultaneous search for the
best calendars of i and j as a shortest path problem. Thus, we considered the two-customers
neighbourhood only for the PS policy.

6.2.2 Search strategies

The neighbourhoods described in the previous section have been used within several strategies
which di�er from each other on the criterion to select the customers. The strategies that we use
to explore neighbourhood N1 are the following:
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SA: explores N1 for every customer i ∈ I. The sequence in which a customer is selected is
random.

SB: �rst detects the operator with the minimum number of assigned customers. Then, N1

is explored for every customer collected by this operator. If there exists more than one
customer, they are selected by increasing index.

We use one single strategy to explore neighbourhood N2, which is the following:

SC : explores N2 for every pair of customers i, j ∈ I. The sequence in which the customers are
selected is random.

We also apply the following combinations of single strategies:

SAB: strategies SA and SB are sequentially applied.

SAC : strategies SA and SC are sequentially applied.

6.2.3 Diversi�cation

In order to avoid getting trapped in local optima, we apply the local search not only to the solution
produced by the greedy procedure but also to a set of perturbed solutions. The perturbed
solutions are obtained by a destroy & repair procedure applied to the initial greedy solution,
which modi�es the calendar of a randomly selected subset of customers, S ⊆ I, with |S| ∼
U(2, |I|). The destroy & repair procedure works as follows: First, we remove the calendar of
every customer in S. Then, we repair the resulting partial solution. For this we obtain, for each
customer i ∈ S, a feasible calendar by solving the auxiliary shortest path problem described
in Section 6.1. The order in which customers in S are selected for repairing their calendars is
random.

6.2.4 Stopping criteria

We stop the local search procedure for every perturbed solution when no improvement has been
found in a complete sequence of the search strategy.

Algorithm 6.2 gives the general outline of the heuristic previously described. The inputMaxDiv
is the number of diversi�cation iterations, whereas F (·) denotes the value of the objective func-
tion for a given solution. Initially, the greedy procedure is applied and then local search followed
by the destroy&repair procedure are applied for MaxDiv iterations.
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Chapter 6. A Heuristic Algorithm for the MSSP

Algorithm 6.2: Heuristic Algorithm

Data: MaxDiv
1 GreedySol ← Greedy;
2 BestSol ← GreedySol;
3 sol ← GreedySol;
4 iter ← 0 ;
5 while iter ≤ MaxDiv do
6 LocalSol ← LocalSearch(sol);
7 if F (LocalSol) ≤ F (BestSol) then
8 BestSol ← LocalSol;
9 end

10 sol ← Destroy&Repair(GreedySol);
11 iter ← iter + 1 ;

12 end
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Chapter 7

Computational experiments

We dedicate this chapter to present and analyze the results of the computational experiments we
have run. First, we give the details of the benchmark instances we have used. Then we present
the numerical results and for the P-MSSP and A-MSSP formulations presented in Chapters 3
and 4. First we give the results and compare the di�erent formulations for the periodic policy and
then we do a similar analysis for the aperiodic policy. In addition, we present the computational
experience of the branch-and-price of Chapter 5. The chapter concludes with the results of the
heuristic algorithm presented in Chapter 6.

7.1 Data generation

Since we are not aware of any benchmark instances for the MSSP, we have generated a set of 450
benchmark instances, which we have used in all the computational experiments described in the
thesis. In this section we describe the characteristics of the instances we have generated. For the
number of customers we chose |I| ∈ {10, 30, 50}. The respective instances are labeled as �I10�,
�I30�, and �I50�. The number of periods is related to a time horizon of one month, i.e., |T | = 30.
For the possible service intervals ti of the customers, we considered two di�erent settings. The
�rst one relates the service intervals to the number of visits per month: ti ∈ {4, 7, 15}, i.e., eight
times, four times, and twice per month, respectively. The second one considers the intervals
ti ∈ {4, 5, . . . , 15}. We abbreviate the two settings by D and U, respectively. In view of the
�physical� services (capacity of the bins for the WEEE collection) mentioned in Chapter 1.4, the
capacity Q of the operators is 5 or 10. Moreover, to re�ect the possibility of �virtual� services,
we also consider the uncapacitated version of the problem, i.e., Q = |I|. Finally, the number of
operators |K| is chosen such that all problems are feasible (see Property 2 of Chapter 2.4). For

this we set |K| =
⌈
|I|
Q

⌉
.

For each combination of values for |I| and Q and for the two di�erent settings for the service
intervals, we generated �ve di�erent problem instances by randomly determining service intervals
for the customers according to a discrete uniform distribution over the respective set of service
intervals. The resulting instances are denoted as �{D,U}_I<|I|>_Q<Q>_C<#instance>�. For
example, the �rst instance with 10 customers, an operator capacity of 5, and service intervals
taken from {4, 7, 15} is denoted �D_I10_Q5_C1�.

For the AS policy we consider four di�erent values for β = {0.2, 0.5, 0.8, 1.0}. The extreme
value of β = 1.0 was used to analyze the e�ect of minimizing the total number of operators used
over all periods without penalizing earliness. The opposite situation, that is, considering the
minimization of total earliness without penalizing the number of operators, was originally tough
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Chapter 7. Computational experiments

to be included. However, because of Property 4 of Chapter 2.4, this scenario was discarded. The
above yields a total of 400 instances, 80 for the PS policy and 320 for the AS policy.

All the computational experiments were coded in C++ and run on an Intel iCore 7@3.4 GHz
with 8 GB Ram. Experiments of Chapters 3, 4 and 6 were implemented under operating system
Windows 7, 64 bit. Moreover, experiments of Chapters 3 and 4 were solved using IBM ILOG
CPLEX 12.5. Experiments of Chapter 5 were implemented under a platform hosting Linux 64
bit Ubuntu 12.04 operating system and solved using SCIP 3.1.1. All experiments were run with
a CPU time limit of one hour.

7.2 Comparison of formulations for the P-MSSP

7.2.1 Comparison of sparse formulations

In order to observe the performance of the P-MSSP formulations introduced in Chapters 3.1.1
and 3.1.2, we present the results of a computational comparison of PS and PSc. We use the
benchmark instances and the computational environment described in Section 7.1.

Table 7.1 presents a summary of the numerical results of PS and PSc, and each type of in-
stances.Columns labeled z display the total number of operators over the �ve instances. Columns
labeled Gap show the average percentage relative deviations of the best-known solutions with
respect to lower bounds at termination; that is, Gap = 100UB−LBLB . The average CPU times in
seconds and the number of optimally solved instances are given in columns labeled Time and
Opt, respectively. The detailed results can be found in Tables A.1 and A.2 in the Appendix A.

CPLEX was able to �nd at least one feasible solution for all instances with both formulations
within the time limit of one hour. It can be observed that PS is totally outperformed by PSc,
independently of the type of instances. Formulation PS presents not only a smaller number of
optimally solved instances but also larger computing times. In particular, PS is able to solve
only 85% and 92.5% of the D- and U-instances, respectively. Speci�cally, PS is not able to
guarantee optimality for instances with a larger number of customers (I = 50) and smaller
operator capacities, Q = 10 and Q = 5. In contrast, formulation PSc, is able to optimally solve
to optimality 100% and 95% of the D- and U-instances, respectively. Only for the U-instances,
with I = 50 and Q = 5, PSc fails for guarantee optimal solutions. Furthermore, the computing
times for PSc are considerably shorter than those of PS. In particular, on average, PSc performs
80% faster than PS.

7.2.2 Comparison of dense formulations

In order to analyze the performance of the formulations introduced in Chapters 3.2.1 and 3.2.2,
we present the results from a computational experience with PD and PDc. As in Section 7.2.1,
we use the benchmark instances as well as the computational environment described in Sec-
tion 7.1.

Table 7.2 presents a summary of the results with PD and PDc, and for each type of in-
stances.The meaning of the headings of the columns is the same as explained in Section 7.2.1.
The detailed results can be found in Tables A.1 and A.2 in the Appendix A.

CPLEX was able to obtain optimal solutions for all instances with both formulations within
the time limit of one hour. Furthermore, PD is totally outperformed by PSc, independently
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PS PSc
Instance

z Gap T ime Opt z Gap T ime Opt

D-instances

I10 Q5 51 0.0 0.8 5 51 0.0 0.2 5

Q10 40 0.0 0.1 5 40 0.0 0.1 5

Q5 140 0.0 1567.6 5 140 0.0 11.2 5

I30 Q10 79 0.0 19.2 5 79 0.0 0.6 5

Q30 50 0.0 0.1 5 50 0.0 0.1 5

Q5 243 4.4 3601.9 0 242 0.0 190.8 5

I50 Q10 132 2.0 1383.9 4 132 0.0 4.8 5

Q50 50 0.0 0.1 5 50 0.0 0.1 5

U-instances

I10 Q5 55 0.0 0.5 5 55 0.0 0.7 5

Q10 55 0.0 0.2 5 55 0.0 0.2 5

Q5 109 0.0 324.4 5 109 0.0 41.0 5

I30 Q10 71 0.0 11.3 5 71 0.0 1.8 5

Q30 70 0.0 0.2 5 70 0.0 0.2 5

Q5 186 1.7 2355.2 2 185 1.1 1471.8 3

I50 Q10 99 0.0 362.8 5 99 0.0 26.9 5

Q50 75 0.0 0.4 5 75 0.0 0.2 5

Cumulative 1505 8.1 9628.7 71 1503 1.1 1750.7 78

Table 7.1: Summary CPLEX results for sparse formulations PS and PSc.

of the type of instances. In particular, on average, PDc performs almost 90% faster than PD.
The main di�erences in computing times appear, however, on instances with a larger number of
customers (I = 50) and smaller operator capacities (Q = 10 and Q = 5). For the rest of the
instances, both formulations obtain optimal solutions in very small computing times, i.e., in less
than 3 seconds.

7.2.3 Comparison between sparse and dense formulations

In Figure 7.1, we give the performance pro�le for all the P-MSSP formulations we presented in
Chapters 3.1 and 3.2. This �gure displays for each P-MSSP formulation, the percentage of opti-
mal solutions obtained over the �rst 100 seconds. As mentioned, in general, dense formulations
PD and PDc outperformed sparse formulations PS and PSc. Moreover, PS and PD are sys-
tematically outperformed by their class-based versions PSc and PDc, respectively. Nonetheless,
we observe that the superiority of class-based formulations is more evident for D-instances than
for the U-instances. As can be seen, the best performance among all P-MSSP formulations is
PDc, independently of the type of instances. All the above suggests that class-based formula-
tions are preferred over customer-based formulations and dense formulations are preferred over
sparse formulations.

The comparison between the class-based sparse formulation PSc and the customer-based
dense formulation PD deserves a special attention. Although in Figure 7.1 we observe a clear
superiority of formulation PD over formulation PSc, In Tables 7.1 and 7.2 we observe that for the
D-instances with I = 50 and Q = 5, computing times for formulation PSc are noticeable lower
than those for formulation PD. The above can be easily observed in Figure 7.2. Note that this
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PD PDc
Instance

z Gap T ime Opt z Gap T ime Opt

D-instances

I10 Q5 51 0.0 0.1 5 51 0.0 0.1 5

Q10 40 0.0 0.2 5 40 0.0 0.1 5

Q5 140 0.0 3.1 5 140 0.0 1.4 5

I30 Q10 79 0.0 0.2 5 79 0.0 0.1 5

Q30 50 0.0 0.2 5 50 0.0 0.1 5

Q5 242 0.0 367.2 5 242 0.0 15.0 5

I50 Q10 132 0.0 2.1 5 132 0.0 0.7 5

Q50 50 0.0 0.2 5 50 0.0 0.1 5

U-instances

I10 Q5 55 0.0 0.1 5 55 0.0 0.1 5

Q10 55 0.0 0.1 5 55 0.0 0.1 5

Q5 109 0.0 2.3 5 109 0.0 2.1 5

I30 Q10 71 0.0 0.2 5 71 0.0 0.2 5

Q30 70 0.0 0.3 5 70 0.0 0.2 5

Q5 183 0.0 24.8 5 183 0.0 12.0 5

I50 Q10 99 0.0 2.5 5 99 0.0 1.2 5

Q50 75 0.0 0.4 5 75 0.0 0.2 5

Cumulative 1501 0.0 404.1 80 1501 0.00 33.9 80

Table 7.2: Summary CPLEX results for dense formulations PD and PDc.

behaviour cannot be observed for the U-instances. These results may suggest that the preference
between formulations PSc and PD is not only related to the type of instances (or rather, on the
variety of the service intervals of the customers) but also with the size (number of customers)
and the capacity of the operators. That is, formulation PSc is preferred over formulation PD
for instances with not only lower number of classes but also with a higher number of customers
and smaller capacities.

7.3 Comparison of formulations for the A-MSSP

In order to observe the performance of the sparse formulations introduced in Chapter 4.1, we
present the numerical results of the computational experiments for each of the MILP formula-
tions. We use the benchmark instances and the computational environment described in Sec-
tion 7.1.

Tables 7.3 and 7.4 give a summary of the results obtained with CPLEX for AS and ASc.
The results are presented for every value of β and both types of instances, D- and U-instances.
Each table displays the total number of operators used (z) and the total earliness (e) of the best
solutions found over the �ve instances. For every instance, the value of the best solution obtained
with CPLEX is computed as UB = βz + (1 − β)e. The meaning headings of the columns have
the same meaning as explained before. The detailed results can be found in Tables B.1.1, B.1.2
in the Appendix B.1 and and Tables B.2.1 and B.2.2 in the Appendix B.2, for formulations AS
and ASc, respectively.
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a) D-instances b) U-instances 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

O
pt

im
al

 S
ol

ut
io

ns
 (%

) 

0 10 20 30 40 50 60 70 80 90

PS

PSc

PD

PDc

CPU time (s.) 

𝑷𝑷𝑷𝑷 

𝑷𝑷𝑷𝑷𝒄𝒄 

𝑷𝑷𝑷𝑷 

𝑷𝑷𝑷𝑷𝒄𝒄 

CPU time (s.) 

Figure 7.1: CPU time performance pro�le for the P-MSSP formulations.
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Figure 7.2: Average CPU times for the P-MSSP formulations.

As can be seen, CPLEX was able to �nd at least one feasible solution for all instances within
the time limit of one hour for both formulations. In general, ASc outperforms AS. For both
types of instances, AS provides not only the largest number of optimally solved instances but
also the smallest computing times. AS is able to guarantee optimality for 74.38% and 88.13% of
the D- and U-instances respectively. The number of optimal solutions obtained with this formu-
lation depends on the selection of the parameter β. For β = 0.2, optimality of the best solution
found was proven for 77.5% and 92.5% of the D-instances and U-instances, respectively. As the
value of β increases, the harder it becomes to obtain proven optimal solutions, especially for the
D-instances. The lowest percentage of optimally solved instances occurs for β = 0.8, for which
optimality was proven for only 60% and 65% of the D-instances and U-instances, respectively.
However, the percentage of optimally solved instances for β = 1.0 is higher than for β = 0.8.
In fact, the percentage of optimally solved instances for β = 1.0 is the highest for all values of
β. The computing times reinforce this situation. The average values for the computing time
also depends on the selection of the parameter β. As the value of β increases, the higher the
CPU time. The highest computing values correspond to β = 0.8. The computing times for
β = 1.0 are however, substantially smaller than for β = 0.8. The fact that β = 1.0 does neither
yield the lowest percentage of optimally solved instances nor the highest average of computing
time might be due to the fact that we do not penalize earliness in the objective function for
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Instance
β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap T ime Opt z e Gap T ime Opt z e Gap T ime Opt z e Gap T ime Opt

D-instances

I10 Q5 51 0 0.0 0.7 5 51 0 0.0 1.3 5 44 14 0.0 3.4 5 43 126 0.0 10.3 5

Q10 40 0 0.0 0.3 5 40 0 0.0 0.4 5 37 8 0.0 1.3 5 29 342 0.0 0.8 5

Q5 141 0 2.6 2612.4 3 139 1 6.5 3217.1 1 132 19 6.5 3603.4 0 130 365 0.0 97.0 5

I30 Q10 79 0 0.0 57.5 5 79 0 0.0 232.0 5 75 10 2.4 1333.8 4 70 455 4.8 2566.4 2

Q30 50 0 0.0 0.9 5 50 0 0.0 2.2 5 50 0 0.0 8.5 5 35 1435 0.0 4.7 5

Q5 243 0 4.4 3601.7 0 243 0 4.4 3603.1 0 236 14 3.0 3602.0 0 234 570 0.0 214.8 5

I50 Q10 132 0 4.5 2605.8 3 130 1 9.5 3261.9 1 125 10 8.3 3602.6 0 119 623 0.0 144.3 5

Q50 50 0 0.0 1.6 5 50 0 0.0 2.7 5 50 0 0.0 16.7 5 35 2190 0.0 8.9 5

Cumulative 786 0 11.6 8881.0 31 782 2 20.4 10320.8 27 749 75 20.2 12171.7 24 695 6106 4.8 3047.2 37

U-instances

I10 Q5 55 0 0.0 1.3 5 55 0 0.0 3.3 5 46 20 0.0 20.3 5 39 197 0.0 5.5 5

Q10 55 0 0.0 0.6 5 55 0 0.0 1.5 5 43 24 0.0 6.0 5 30 320 0.0 1.1 5

Q5 109 0 0.0 678.8 5 109 0 0.0 1109.1 5 107 3 3.7 3604.0 0 106 421 0.0 32.3 5

I30 Q10 71 0 0.0 50.2 5 71 0 0.0 260.8 5 63 17 0.0 1070.4 5 55 413 0.0 564.6 5

Q30 70 0 0.0 4.0 5 69 1 0.0 50.8 5 60 23 0.0 410.1 5 34 1532 0.0 8.1 5

Q5 186 0 1.7 2627.7 2 185 0 1.1 2420.5 3 185 1 2.1 3601.7 0 183 446 0.0 142.9 5

I50 Q10 99 0 0.0 1084.0 5 99 0 0.0 2203.7 5 98 2 6.0 3411.0 1 92 608 0.0 659.5 5

Q50 75 0 0.0 10.3 5 75 0 0.0 72.8 5 68 21 0.0 1468.7 5 35 2091 0.0 19.8 5

Cumulative 720 0 1.7 4457.0 37 718 1 1.1 6122.6 38 670 111 11.8 13592.2 26 574 6028 0.0 1433.8 40

Table 7.3: Summary CPLEX results for formulation AS.

β = 1.0, in contrast to β = 0.8. The optimality gap also underlines the di�culty to solve the
problem with AS. The gap values again depend on the selection of the parameter β and present
a behaviour similar to the percentage of optimally solved instances and the computing times.
In general, the average gaps increase as the value of β increases, with the exception of β = 1.0,
which has the lowest average gaps. The hardness of the problem also depends on the size of the
instances and the value of the Q. Instances of �I10� are optimally solved for every value of β and
Q. For instances of �I30�, optimality becomes more di�cult to prove for larger values of β and
smaller values of Q. For the �I50� instances, optimality is almost unreachable already for values
of Q < |I|, specially for D-instances. In general, the smaller the value of Q and the larger value
of β, the more di�cult to solve the problem. In general, D-instances are more di�cult to solve
than U-instances. This suggests that, for AS, the di�culty to solve the problem increases with
the number of di�erent of service intervals.

ASc, obtains optimal solutions for 99.25% and 96.25% of the D- and U-instances, respectively.
In particular, ASc guarantees optimality for all sizes of instances and every value of Q and β.
The only exception is for �I50� instances with Q = 5. Similarly to AS, the average values for the
computing times depend on the selection of the parameter β. As the value of β increases, the
higher the CPU times. The highest computing times again correspond to β = 0.8. Furthermore,
the computing times for β = 1.0 are also substantially lower than for β = 0.8. This behaviour
coincides with the results of AS, and is due to the fact that, in contrast to β = 0.8, for β = 1.0,
no formulation penalizes earliness in the objective function. Since ASc is able to solve 100% of
the instances, the optimality gaps are basically null and they do not present the same behaviour
as for AS. Nevertheless, the highest values for the optimality gaps are again for β = 0.8. For
a visual comparison of the behaviour of AS and ASc, Figures 7.3 and 7.4 display the average
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Instance
β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap T ime Opt z e Gap T ime Opt z e Gap T ime Opt z e Gap T ime Opt

D-instances

I10 Q5 51 0 0.0 0.4 5 51 0 0.0 0.3 5 44 14 0.0 0.8 5 43 135 0.0 0.8 5

Q10 40 0 0.0 0.2 5 40 0 0.0 0.3 5 37 8 0.0 0.6 5 29 219 0.0 0.2 5

Q5 140 0 0.0 17.2 5 139 1 0.0 24.8 5 133 15 0.0 136.3 5 130 321 0.0 0.8 5

I30 Q10 79 0 0.0 1.5 5 79 0 0.0 1.6 5 75 10 0.0 4.2 5 70 419 0.0 3.5 5

Q30 50 0 0.0 0.2 5 50 0 0.0 0.2 5 50 0 0.0 0.2 5 35 992 0.0 0.2 5

Q5 242 0 0.0 733.9 5 242 0 0.0 786.2 5 236 12 0.2 1785.5 4 234 529 0.0 1.4 5

I50 Q10 132 0 0.0 8.2 5 130 1 0.0 13.3 5 125 10 0.0 21.1 5 119 485 0.0 0.9 5

Q50 50 0 0.0 0.2 5 50 0 0.0 0.2 5 50 0 0.0 0.4 5 35 1565 0.0 0.2 5

Cumulative 784 0 0.0 761.8 40 781 2 0.0 827.0 40 750 69 0.2 1949.0 39 695 4665 0.0 8.2 40

U-instances

I10 Q5 55 0 0.0 1.1 5 54 1 0.0 2.2 5 47 16 0.0 9.2 5 39 213 0.0 6.8 5

Q10 55 0 0.0 1.2 5 54 1 0.0 1.2 5 42 28 0.0 4.0 5 30 410 0.0 0.5 5

Q5 109 0 0.0 92.0 5 109 0 0.0 110.4 5 107 3 0.0 504.8 5 106 395 0.0 3.4 5

I30 Q10 71 0 0.0 6.4 5 70 1 0.0 8.7 5 63 17 0.0 25.4 5 55 384 0.0 15.8 5

Q30 70 0 0.0 0.9 5 70 0 0.0 1.4 5 61 19 0.0 15.6 5 34 1243 0.0 1.4 5

Q5 185 0 1.1 1659.6 3 185 0 1.1 1558.9 3 183 0 0.8 1786.5 3 183 590 0.0 10.3 5

I50 Q10 99 0 0.0 47.4 5 99 0 0.0 66.5 5 97 4 0.0 201.0 5 92 513 0.0 16.3 5

Q50 75 0 0.0 1.8 5 75 0 0.0 3.6 5 68 21 0.0 12.8 5 35 1657 0.0 1.7 5

Cumulative 719 0 1.1 1810.5 38 716 3 1.1 1752.9 38 668 108 0.8 2559.2 38 574 5405 0.0 56.2 40

Table 7.4: Summary CPLEX results for formulation ASc.

computing times and optimality gaps values for every size and capacity of D- and U- instances.
The �gures evidence of robust performance of formulation ASC .

Furthermore, Figure 7.5, shows the computing time performance pro�le for both formulations.
This �gure presents, for each formulation and every type of instance, the percentage of optimal
solutions obtained over the �rst 100 seconds of computing time. We can clearly observe that
AS is outperformed by ASc. In addition, we observe that the performance of the formulations
not only depends on the type of instances but also on the β values. With AS, optimal solutions
for D-instances are obtained in shorter times than those obtained for U-instances, specially for
values of β = 0.2 and β = 0.8. This di�erence is more evident for ASc in which the di�erences
are observed for all values of β. We can thus conclude that ASc, has the best performance over
the formulations for the A-MSSP, independently of the type of instance.

7.4 Branch-and-price results

In order to analyze the performance of the BP algorithm proposed in Chapter 5.2, we present the
numerical results of the computational experiments for the formulationsMP andMP c presented
in Chapter 5.1. We use the benchmark instances as well as the computational environment de-
scribed in Section 7.1. In particular, the BP was implemented within SCIP branch-and-price
framework (Gamrath, 2010).

Table 7.5 gives a summary of the results obtained with SCIP for the BP algorithm with
formulation MP . The table compares the results with those obtained with CPLEX for for-
mulation AS. The results are presented for every value of β and every type of instances, D-
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Figure 7.3: Average CPU times for the A-MSSP formulations.

and U-instances. Each table displays averages over the �ve instances, of the initial lower bounds
(zLP ) (LP-relaxation for the AS and lower bound at the root node forMP ) and the best solution
found (UB). The columns labeled Gap show the average of the percentage relative deviations
of the best-known solutions with respect to the lower bounds at termination (LB); that is,
Gap = UB−LB

LB 100. The average computing times in seconds are given in columns Time. The
detailed results can be found in Tables C.1.1, C.1.2, C.1.3, C.1.4 in the Appendix C.1.

As can be seen, algorithm BP with MP is not able to provide initial lower bounds for most
of the instances of I50. However, for smaller instances, we �nd some interesting results. Column
generation provides better initial lower bounds than the LP-relaxation for formulation AS. The
improvement is more evident for instances with smaller values of Q. In particular, the initial
lower bounds for the MP are, on average, 25.77% and 40.81% higher than the LP-relaxation
for formulation AS. BP with MP guarantees optimality for all solutions for U-instances. For
D-instances, most of the upper bounds are also optimal, except for instances of I30 with Q = 30
and β = {0.5, 0.8}. For these instances, BP yields sizeable gaps.

Regarding computing times, BP withMP outperforms formulation AS in some cases. For D-
instances, average computing times are smaller for instances of I30 and smaller values of Q. For
U-instances, we observe smaller computing times for instances with β = {0.8, 1.0}. Observe that
the improvement regarding computing times are specially attractive for instances with smaller
values of Q. On the contrary, larger computing times can be observed for instances with larger
values of Q. The above and the absence of lower and upper bounds for instances of I50 suggest
the existence of symmetry problems, speci�cally, the symmetry for patterns within columns.
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Figure 7.4: Average Gaps (%) for the A-MSSP formulations.

Table 7.6 gives a summary of the results obtained with SCIP for the BP algorithm with for-
mulationMP c. The table compares the results with those obtained with CPLEX for formulation
ASc. The results are presented in the same manner as for Table 7.5. The detailed results can be
found in Tables C.2.1, C.2.2, C.2.3, C.2.4 in the Appendix C.2.

Contrary to BP algorithm with MP , BP with MP c provides lower and upper bounds for all
the instances, including instances of I50. In fact, upper bounds obtained with BP are optimal
for all D-instances. For U-instances, optimal solutions are not guaranteed for most of the in-
stances of I50 with Q = 5 and β = {0.2, 0.5, 0.8}. For these instances, BP with MP c provides
the same upper bounds as ASc, with similar gaps and computing times. Regarding initial lower
bounds, column generation for MP c provides better initial lower bounds than the LP-relaxation
for formulation ASc. We can observe from Tables 7.5 and 7.6 that values for zLP are almost
the same for MP and MP c. Di�erent values can only be observed for D-instances of I10 with
Q = 10 and β = {0.2, 0.5, 0.8} (note also that, as can be seen in Tables 7.5 and 7.6, values for
the LP-relaxations between formulations AS and ASc are equal). In particular, the initial lower
bounds for MP c are, on average, 23.66% and 36.59% higher than the LP-relaxation of formula-
tion ASc. The di�erence between these percentages and the ones obtained with BP for MP is
due to the little improvement of the initial lower bounds obtained withMP c for instances of I50.

A very remarkable performance can be observed for D-instances of I50 with Q = 5 and
β = 0.8. This set of instances are hard to solve for CPLEX with both formulations AS and ASc.
However, BP with MP c provides optimal solutions with noticeable shorter computing times.
For the remaining optimal solutions obtained with BP, smaller computing times are observed for
D-instances with larger number of customers and smaller values of Q. For U-instances, smaller
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Figure 7.5: CPU time performance pro�le for the A-MSSP formulations.

computing times are observed only in some cases with values of β = {0.2, 1.0}.

From the above results we can observe that even if formulations MP and MP c produce
similar initial lower bounds, they show a noticeable di�erence on the convergence of the BP
algorithm, specially for larger instances and smaller values of Q.

7.5 Computational results of the heuristic

To assess the e�ectiveness of the heuristic, we ran a series of computational experiments using
the benchmark instances and the computational environment described in Section 7.1. For the
local search procedure we set a number of 100 perturbed solutions. Even if we ran computational
experiments using all �ve strategies described in Chapter 6.2.2, below we present the best strat-
egy results for each policy. That is, strategies SAC and SAB for PS and AS policies, respectively.

Table 7.7 allows to perceive the contribution of each component of the heuristic algorithm to
its overall performance for the PS and AS policies, over each group of D- and U-instances, for
every value of I and Q. In particular, for each policy, we compare the results of the heuristic at
the end of each phase with the values of the best solutions obtained with any of the formulations.
Columns HGG, HGL, and HGP denote the averages over the �ve instances in each group of
the relative di�erence between the best-known solution obtained by CPLEX with any of the
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D-instances U-instances

β Instance zLP UB Gap T ime zLP UB Gap T ime

AS MP AS MP AS MP AS MP AS MP AS MP AS MP AS MP

I10 Q5 7.84 7.95 10.2 10.2 0.0 0.0 0.7 15.4 6.88 7.10 11.0 11.0 0.0 0.0 1.3 21.3
Q10 3.92 5.97 8.0 8.0 0.0 0.0 0.3 13.7 3.44 6.28 11.0 11.0 0.0 0.0 0.6 9.9

I30 Q5 25.56 25.56 28.2 28.0 2.6 0.0 2612.4 444.9 20.60 20.60 21.8 21.8 0.0 0.0 678.8 683.4
0.2 Q10 12.78 12.80 15.8 15.8 0.0 0.0 57.5 556.6 10.30 10.34 14.2 14.2 0.0 0.0 50.2 807.5

Q30 4.26 7.29 10.0 10.0 0.0 0.0 0.9 1536.5 3.43 7.31 14.0 14.0 0.0 0.0 4.0 372.0

I50 Q5 46.48 - 48.6 - 4.4 - 3601.7 - 36.28 - 37.2 - 1.7 - 2627.7 -
Q10 23.24 - 26.4 - 4.5 - 2605.8 - 18.14 - 19.8 - 0.0 - 1084.0 -
Q50 4.65 - 10.0 - 0.0 - 1.6 - 3.63 - 15.0 - 0.0 - 10.3 -

I10 Q5 19.60 19.87 25.5 25.5 0.0 0.0 1.3 15.6 17.20 17.74 27.5 27.5 0.0 0.0 3.3 18.2
Q10 9.80 14.93 20.0 20.0 0.0 0.0 0.4 14.6 8.60 15.69 27.5 27.5 0.0 0.0 1.5 10.2

I30 Q5 63.90 63.90 70.0 70.0 6.5 0.0 3217.1 909.5 51.50 51.50 54.5 54.5 0.0 0.0 1109.1 1678.1
0.5 Q10 31.95 32.00 39.5 39.5 0.0 0.0 232.0 1218.4 25.75 25.86 35.5 35.5 0.0 0.0 260.8 1368.4

Q30 10.65 18.21 25.0 25.0 0.0 22.4 2.2 3408.4 8.58 17.77 35.0 35.0 0.0 0.0 50.8 928.5

I50 Q5 116.20 - 121.5 - 4.4 - 3603.1 - 90.70 - 92.5 - 1.1 - 2420.5 -
Q10 58.10 - 65.5 - 9.5 - 3261.9 - 45.35 - 49.5 - 0.0 - 2203.7 -
Q50 11.62 - 25.0 - 0.0 - 2.7 - 9.07 - 37.5 - 0.0 - 72.8 -

I10 Q5 31.36 31.78 38.0 38.0 0.0 0.0 3.4 17.8 27.52 28.39 40.8 40.8 0.0 0.0 20.3 15.0
Q10 15.68 23.89 31.2 31.2 0.0 0.0 1.3 25.7 13.76 25.11 39.2 39.2 0.0 0.0 6.0 9.2

I30 Q5 102.24 102.24 109.4 109.4 6.5 0.0 3603.4 1306.0 82.40 82.40 86.2 86.2 3.7 0.0 3604.0 1713.5
0.8 Q10 51.12 51.19 62.0 62.0 2.4 0.0 1333.8 1042.8 41.20 41.37 53.8 53.8 0.0 0.0 1070.4 986.4

Q30 17.04 29.14 40.0 40.0 0.0 37.3 8.5 3600.0 13.73 28.43 52.6 52.6 0.0 0.0 410.1 600.7

I50 Q5 185.92 - 191.6 - 3.0 - 3602.0 - 145.12 - 148.2 - 2.1 - 3601.7 -
Q10 92.96 - 102.0 - 8.3 - 3602.6 - 72.56 - 78.8 - 6.0 - 3411.0 -
Q50 18.59 - 40.0 - 0.0 - 16.7 - 14.51 - 58.6 - 0.0 - 1468.7 -

I10 Q5 39.20 40.40 43 43 0.0 0.0 10.3 7.5 34.40 36.16 39 39 0.0 0.0 5.5 7.6
Q10 19.60 29.00 29 29 0.0 0.0 0.8 0.6 17.20 30.00 30 30 0.0 0.0 1.1 0.5

I30 Q5 127.80 130.00 130 130 0.0 0.0 97.0 247.5 103.00 106.00 106 106 0.0 0.0 32.3 374.8
1.0 Q10 63.90 64.70 70 70 4.8 0.0 2566.4 174.6 51.50 53.70 55 55 0.0 0.0 564.6 264.6

Q30 21.30 35.00 35 35 0.0 0.0 4.7 1.1 17.17 34.00 34 34 0.0 0.0 8.1 1.2

I50 Q5 232.40 - 234 - 0.0 - 214.8 - 181.40 - 183 - 0.0 - 142.9 -
Q10 116.20 - 119 - 0.0 - 144.3 - 90.70 - 92 - 0.0 - 659.5 -
Q50 23.24 35.00 35 35 0.0 0.0 8.9 1.7 18.14 35.00 35 35 0.0 0.0 19.8 1.9

Table 7.5: Branch-and-price results comparison for formulation MP .

formulations and the value of the solution found by the greedy procedure, the local search
applied to the greedy solution, and the best value after applying the local search, respectively,
over 100 perturbed solutions. The detailed results can be found in Tables D.1.1 and D.1.2 in
the Appendix D.1. As can be seen, the local search produces a signi�cant improvement over the
greedy solution, particularly for β = 0.8 when the greedy solution usually provides poor quality
solutions. On the other hand, we can observe that the repetition over the perturbed solutions is
signi�cant for closing the gaps.

For each |I| and Q, Table 7.8 shows the summary of the results for the PS and AS policies
for the D- and U-instances. Columns z and e display the total number of operators used and
the total earliness, respectively, over the �ve instances. We use columns Time to display the
average computing times needed by the heuristic in seconds. The detailed results can be found
in Tables D.2.1 and D.2.2 in the Appendix D.2.

Next, we compare the results of the heuristic with those obtained by CPLEX for the MILP
formulations presented in Chapters 3 and 4, for the P-MSSP and A-MSSP, respectively. For the
PS policy, a summary comparison for the P-MSSP formulations is given in Table 7.9. Columns
HGap denote the relative di�erence (in %) between the best solution found by CPLEX for the
corresponding formulation and the value of the best solution found by the heuristic, averaged
over the �ve instances. Negative values indicate that the heuristic yields better solutions than
the time constrained CPLEX. We use columns HTime to display the di�erence (in seconds)
between the time required by the heuristic and the time required by CPLEX, averaged over the
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D-instances U-instances

β Instance zLP UB Gap T ime zLP UB Gap T ime

ASc MP c ASc MP c ASc MP c ASc MP c ASc MP c ASc MP c ASc MP c ASc MP c

I10 Q5 7.84 7.95 10.2 10.2 0.0 0.0 0.4 1.4 6.88 7.10 11.0 11.0 0.0 0.0 1.1 17.8
Q10 3.92 6.37 8.0 8.0 0.0 0.0 0.2 0.7 3.44 6.28 11.0 11.0 0.0 0.0 1.2 17.3

I30 Q5 25.56 25.56 28.0 28.0 0.0 0.0 17.2 67.5 20.60 20.60 21.8 21.8 0.0 0.0 92.0 197.9
0.2 Q10 12.78 12.80 15.8 15.8 0.0 0.0 1.5 6.7 10.30 10.34 14.2 14.2 0.0 0.0 6.4 34.6

Q30 4.26 7.29 10.0 10.0 0.0 0.0 0.2 1.0 3.43 7.11 14.0 14.0 0.0 0.0 0.9 55.0

I50 Q5 46.48 46.48 48.4 48.4 0.0 0.0 733.9 21.8 36.28 36.28 37.0 37.0 1.1 1.1 1659.6 2119.8
Q10 23.24 23.24 26.4 26.4 0.0 0.0 8.2 64.5 18.14 18.14 19.8 19.8 0.0 0.0 47.4 220.9
Q50 4.65 7.29 10.0 10.0 0.0 0.0 0.2 1.1 3.63 7.40 15.0 15.0 0.0 0.0 1.8 61.7

I10 Q5 19.60 19.87 25.5 25.5 0.0 0.0 0.3 1.6 17.20 17.74 27.5 27.5 0.0 0.0 2.2 60.4
Q10 9.80 15.93 20.0 20.0 0.0 0.0 0.3 1.5 8.60 15.69 27.5 27.5 0.0 0.0 1.2 121.2

I30 Q5 63.90 63.90 70.0 70.0 0.0 0.0 24.8 84.5 51.50 51.50 54.5 54.5 0.0 0.0 110.4 184.5
0.5 Q10 31.95 32.00 39.5 39.5 0.0 0.0 1.6 11.2 25.75 25.86 35.5 35.5 0.0 0.0 8.7 65.1

Q30 10.65 18.21 25.0 25.0 0.0 0.0 0.2 2.0 8.58 17.77 35.0 35.0 0.0 0.0 1.4 288.3

I50 Q5 116.20 116.20 121.0 121.0 0.0 0.0 786.2 21.8 90.70 90.70 92.5 92.5 1.1 1.4 1558.9 2376.7
Q10 58.10 64.46 65.5 65.5 0.0 0.0 13.3 83.8 45.35 45.35 49.5 49.5 0.0 0.0 66.5 253.4
Q50 11.62 18.21 25.0 25.0 0.0 0.0 0.2 1.7 9.07 18.50 37.5 37.5 0.0 0.0 3.6 139.5

I10 Q5 31.36 31.78 38.0 38.0 0.0 0.0 0.8 3.1 27.52 28.39 40.8 40.8 0.0 0.0 2.2 57.0
Q10 15.68 25.29 31.2 31.2 0.0 0.0 0.6 6.2 13.76 25.11 39.2 39.2 0.0 0.0 1.2 159.5

I30 Q5 102.24 102.24 109.4 109.4 0.0 0.0 136.3 88.5 82.40 82.40 86.2 86.2 0.0 0.0 110.4 1367.1
0.8 Q10 51.12 51.19 62.0 62.0 0.0 0.0 4.2 35.2 41.20 41.37 53.8 53.8 0.0 0.0 8.7 217.0

Q30 17.04 29.14 40.0 40.0 0.0 0.0 0.2 6.7 13.73 28.43 52.6 52.6 0.0 0.0 1.4 1010.2

I50 Q5 185.92 185.92 191.2 191.2 1.2 0.0 1785.5 27.5 145.12 145.12 146.4 146.4 1.1 0.8 1558.9 2062.0
Q10 92.96 92.96 102.0 102.0 0.0 0.0 21.1 130.8 72.56 72.56 78.4 78.4 0.0 0.0 66.5 726.2
Q50 18.59 29.14 40.0 40.0 0.0 0.0 0.4 3.1 14.51 29.60 58.6 58.6 0.0 0.0 3.6 906.5

I10 Q5 39.20 40.40 43.0 43.0 0.0 0.0 0.8 1.2 34.40 36.16 39.0 39.0 0.0 0.0 6.8 9.4
Q10 19.60 29.00 29.0 29.0 0.0 0.0 0.2 0.5 17.20 30.00 30.0 30.0 0.0 0.0 0.5 1.4

I30 Q5 127.80 130.00 130.0 130.0 0.0 0.0 0.8 1.0 103.00 106.00 106.0 106.0 0.0 0.0 3.4 2.9
1.0 Q10 63.90 64.70 70.0 70.0 0.0 0.0 3.5 13.1 51.50 53.70 55.0 55.0 0.0 0.0 15.8 137.9

Q30 21.30 35.00 35.0 35.0 0.0 0.0 0.2 1.0 17.17 34.00 34.0 34.0 0.0 0.0 1.4 2.8

I50 Q5 232.40 234.00 234.0 234.0 0.0 0.0 1.4 1.3 181.40 183.00 183.0 183.0 0.0 0.0 10.3 3.9
Q10 116.20 119.00 119.0 119.0 0.0 0.0 0.9 1.1 90.70 92.00 92.0 92.0 0.0 0.0 16.3 3.4
Q50 23.24 35.00 35.0 35.0 0.0 0.0 0.2 0.6 18.14 35.00 35.0 35.0 0.0 0.0 1.7 2.5

Table 7.6: Branch-and-price results comparison for formulation MP c.

�ve instances. The detailed values can be found in Tables D.3.1 and D.3.2 in the Appendix D.3.

Relative to sparse formulations, we can make the following observations: the heuristic obtains
optimal solutions for all instances in which CPLEX does for formulations PS and PSc. For
instances not optimally solved by CPLEX, the heuristic produces the same (or a better) upper
bound with signi�cantly less time, specially for larger instances and small values of Q. Relative to
dense formulations, the heuristic is outperformed by both formulations PD and PDc. Moreover,
the heuristic is not able to �nd optimal solutions for some of the harder instances for which
CPLEX does (instances of ”I50” with Q = 5). In addition, computing times for the optimal
solutions found by the heuristic are larger than those of the dense formulations.

A summary comparison of the heuristic and the A-MSSP formulations is given in Table 7.10.
The table displays the results for each value of β and for each series of instances. The meaning
of the columns in the tables is the same as in Table 7.9. The detailed values can be found in
Tables D.4.1 and D.4.2 in the Appendix D.4.

The heuristic solutions are, on average, 0.16% and 0.38% worse than CPLEX, with a max-
imum relative deviation of 5.00% and 5.36% for the D- and U-instances, respectively. As for
the di�erent values of β, for β = 1.0 the heuristic �nds the same solutions as CPLEX, 100%
of which were proven to be optimal with formulation ASc. The same results are obtained for
β = 0.2 and β = 0.5, 100% and 92.5% of which were proven to be optimal, for the D- and U-
instances, respectively. The worst outcome of the heuristic is observed for β = 0.8, with average
HGaps of 0.75% and 1.52% for the D- and U-instances, respectively. However, in spite of this,
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PS policy
AS policy

β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP

D-instances

I10 Q5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 1.0 0.0 5.0 2.5 0.0
Q10 6.0 0.0 0.0 2.0 0.0 0.0 6.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0

Q5 3.4 0.7 0.0 2.7 0.7 0.0 3.4 0.0 0.0 14.3 1.6 1.6 4.6 3.9 0.0
I30 Q10 9.0 2.6 0.0 6.4 0.0 0.0 9.0 1.2 0.0 37.7 2.3 2.3 5.8 1.4 0.0

Q30 10.0 0.0 0.0 6.0 0.0 0.0 10.0 0.0 0.0 48.5 12.0 0.0 0.0 0.0 0.0

Q5 2.5 0.8 0.0 1.7 0.5 0.0 2.5 0.5 0.0 5.6 0.3 0.1 2.1 2.1 0.0
I50 Q10 6.0 2.2 0.0 3.8 0.0 0.0 6.8 2.2 0.0 39.3 2.1 2.1 5.9 5.9 0.0

Q50 10.0 0.0 0.0 2.0 0.0 0.0 10.0 0.0 0.0 71.5 29.5 0.0 0.0 0.0 0.0

U-instances

I10 Q5 7.6 0.0 0.0 5.9 0.0 0.0 7.6 0.0 0.0 18.1 0.0 0.0 2.5 2.5 0.0
Q10 7.6 0.0 0.0 5.9 0.0 0.0 7.6 0.0 0.0 12.2 0.0 0.0 0.0 0.0 0.0

Q5 7.6 2.9 0.0 9.0 2.9 0.0 8.4 4.6 0.0 38.8 3.1 3.1 3.9 3.0 0.0
I30 Q10 10.1 1.7 0.0 8.4 1.7 0.0 10.1 4.4 0.0 62.9 7.7 2.5 14.9 5.3 0.0

Q30 5.9 0.0 0.0 5.9 0.0 0.0 5.9 0.0 0.0 37.6 10.2 2.1 0.0 0.0 0.0

Q5 7.6 3.2 1.1 8.2 2.1 0.0 8.1 5.4 0.0 33.9 2.4 0.7 2.8 2.8 0.0
I50 Q10 13.2 6.1 0.0 11.2 5.2 0.0 13.2 10.1 0.0 109.4 4.3 2.3 8.8 5.5 0.0

Q50 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 83.2 11.2 2.4 0.0 0.0 0.0

Table 7.7: Average relative contribution of each heuristic phase.

PS AS policy

Policy β = 0.2 β = 0.5 β = 0.8 β = 1.0

z Time z e Time z e Time z e Time z e Time

D-instances

I10 Q5 51 1.9 51 0 3.0 51 0 3.0 46 6 2.5 43 69 2.1
Q10 40 2.9 40 0 2.9 40 0 3.0 37 8 4.8 29 200 2.2

Q5 140 9.1 140 0 28.7 140 0 66.4 137 8 221.5 130 270 27.5
I30 Q10 79 15.7 79 0 20.7 79 0 40.2 78 5 43.7 70 337 30.1

Q30 50 13.7 50 0 24.3 50 0 29.1 50 0 36.5 35 999 28.4

Q5 242 30.3 242 0 28.3 242 0 53.2 238 5 58.2 234 453 45.1
I50 Q10 132 56.4 132 0 57.0 131 0 56.6 128 9 89.1 119 485 44.5

Q50 50 58.7 50 0 23.7 50 0 72.9 50 0 65.9 35 1356 62.7

U-instances

I10 Q5 55 1.8 55 0 3.2 55 0 3.5 49 8 3.0 39 139 2.1
Q10 55 3.8 55 0 3.6 55 0 3.9 47 8 5.8 30 169 2.4

Q5 109 9.5 109 0 47.7 109 0 58.3 109 8 58.7 106 322 36.1
I30 Q10 71 42.5 71 0 20.2 71 0 66.5 67 8 33.9 55 384 29.8

Q30 70 26.8 70 0 23.5 70 0 56.8 65 9 42.8 34 771 49.0

Q5 185 48.7 185 0 108.6 185 0 82.8 184 1 9.4 183 529 51.6
I50 Q10 99 75.7 99 0 68.4 99 0 65.7 99 5 152.1 92 490 62.1

Q50 75 56.3 75 0 41.6 75 0 219.4 72 12 219.2 35 1054 130.5

Table 7.8: Summary of heuristic results for the D- and U-instances.

for larger instances ("I30" and "I50") and no trivial capacities (Q 6= I), the computing times
of the heuristic are in some cases noticeably shorter than those of CPLEX. The same behaviour
can also be observed for values of β ∈ {0.2, 0.5}.

In summary, the heuristic produces good quality solutions in short cpu times, for the A-MSSP,
particularly for larger instances and non-trivial capacities, which are the most di�cult ones for
CPLEX. Nevertheless, the heuristic is not competitive relative to the P-MSSP formulations,
which is the most e�ective formulations for the periodic case. The explanation can be found in
the high e�ectiveness of formulations PD and PDc, which obtain optimal solutions in very short
amounts of computing time. Additionally, the heuristic needs to apply a local search procedure
to perturbed solutions in order to close the gaps, which reduces its e�ciency.
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Sparse formulations Dense formulations

PS PSc PD PDc

HGap HTime HGap HTime HGap HTime HGap HTime

D-instances

I10 Q5 0.0 1.1 0.0 1.7 0.0 1.8 0.0 1.9
Q10 0.0 2.8 0.0 2.8 0.0 2.7 0.0 2.8

Q5 0.0 -1558.5 0.0 -2.0 0.0 6.0 0.0 7.7
I30 Q10 0.0 -3.5 0.0 15.1 0.0 15.5 0.0 15.6

Q30 0.0 13.6 0.0 13.6 0.0 13.6 0.0 13.6

Q5 -0.5 -3571.7 0.0 -160.6 0.0 -336.9 0.0 15.3
I50 Q10 0.0 -1327.5 0.0 51.6 0.0 54.4 0.0 55.7

Q50 0.0 58.6 0.0 58.6 0.0 58.6 0.0 58.6

U-instances

I10 Q5 0.0 1.3 0.0 1.2 0.0 1.7 0.0 1.7
Q10 0.0 3.6 0.0 3.6 0.0 3.7 0.0 3.6

Q5 0.0 -314.8 0.0 -31.5 0.0 7.2 0.0 7.4
I30 Q10 0.0 31.2 0.0 40.7 0.0 42.2 0.0 42.2

Q30 0.0 26.6 0.0 26.6 0.0 26.5 0.0 26.6

Q5 -0.5 -2306.5 0.0 -1423.1 1.1 23.9 1.1 -34.6
I50 Q10 0.0 -287.1 0.0 48.7 0.0 73.1 0.0 74.4

Q50 0.0 55.9 0.0 56.1 0.0 55.8 0.0 56.1

Table 7.9: Summary heuristic comparison for the P-MSSP formulations.

AS ASc

β = 0.2 β = 0.5 β = 0.8 β = 1.0 β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime

D-instances

I10 Q5 0.0 2.3 0.0 0.6 0.0 -0.0 0.0 -0.0 0.0 2.6 0.0 0.9 0.0 0.7 0.0 0.7
Q10 0.0 2.6 0.0 2.6 0.0 3.5 0.0 1.4 0.0 2.7 0.0 2.7 0.0 4.3 0.0 2.0

Q5 -0.6 -2583.7 0.0 -3150.7 1.6 -3381.9 0.0 -69.5 0.0 11.5 0.0 41.6 1.6 85.3 0.0 26.7
I30 Q10 0.0 -36.7 0.0 -191.8 2.3 -1290.1 0.0 -2536.2 0.0 19.2 0.0 38.6 2.3 39.5 0.0 26.6

Q30 0.0 23.4 0.0 26.9 0.0 28.0 0.0 23.7 0.0 24.1 0.0 28.8 0.0 36.3 0.0 28.2

Q5 -0.4 -3573.5 -0.4 -3549.9 -0.1 -3543.9 0.0 -169.7 0.0 -705.6 0.0 -733.0 0.1 -1727.3 0.0 43.7
I50 Q10 0.0 -2548.8 0.0 -3205.4 2.1 -3513.6 0.0 -99.8 0.0 48.8 0.0 43.3 2.1 68.0 0.0 43.5

Q50 0.0 22.1 0.0 70.3 0.0 49.2 0.0 53.8 0.0 23.5 0.0 72.7 0.0 65.5 0.0 62.5

U-instances

I10 Q5 0.0 2.0 0.0 0.1 0.0 -0.8 0.0 -0.3 0.0 2.1 0.0 0.4 0.0 -0.4 0.0 -0.2
Q10 0.0 2.9 0.0 2.3 0.0 -0.2 0.0 1.4 0.0 2.4 0.0 2.7 0.0 1.9 0.0 2.0

Q5 0.0 -631.2 0.0 -1050.9 3.1 -3545.3 0.0 3.8 0.0 -44.4 0.0 -52.1 3.1 -446.1 0.0 32.7
I30 Q10 0.0 -30.0 0.0 -194.3 2.5 -1036.5 0.0 -534.8 0.0 13.8 0.0 57.8 2.5 8.5 0.0 14.0

Q30 0.0 19.4 0.0 5.9 2.1 -367.3 0.0 40.9 0.0 22.5 0.0 55.3 2.1 27.2 0.0 47.6

Q5 -0.5 -2519.1 0.0 -2337.8 -0.5 -3592.3 0.0 -91.4 0.0 -1551.1 0.0 -1476.1 0.7 -1777.1 0.0 41.2
I50 Q10 0.0 -1015.6 0.0 -2138.0 1.8 -3258.8 0.0 -597.4 0.0 21.0 0.0 -0.8 2.3 -48.8 0.0 45.8

Q50 0.0 31.3 0.0 146.6 2.4 -1249.5 0.0 110.7 0.0 39.9 0.0 215.7 2.4 206.4 0.0 128.8

Table 7.10: Summary heuristic comparison for the A-MSSP formulations.
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Chapter 8

Comparison of the policies for the MSSP

The last chapter of this thesis focuses on the implications derived from the modeling hypotheses
of the two studied scheduling policies. In particular, this chapter is devoted to analyze the struc-
ture of the solutions obtained with each of the two studied policies and to evaluate the trade-o�
between them. The chapter is divided in two sections. In the �rst one, we present an analysis
on the impact of the parameter β for the A-MSSP. In the second section, we compare indicators
associated with solutions for both scheduling policies in order to evaluate the suitability of each
of them.

8.1 Impact of the parameter β on the A-MSSP

As observed in Chapter 7.3, the parameter β has a crucial impact on the solutions of the for-
mulations for the A-MSSP. To better perceive the e�ect of this parameter, Figure 8.1 displays
the frequency chart that shows the smallest value of β for which the solution to an instance
does apply earliness. The results presented in this chart correspond to optimal or best-known
solutions for the A-MSSP. The frequencies are split into two subsets, proven optimal solutions
and solutions with a positive Gap. We observe that for β = 0.2 earliness is not applied at all
in any of the best solutions found. Ahead of time visits �rst appear in solutions for β = 0.5.
Therefore, the computational experience suggests that earliness is only worth if the cost per
operator is at least the same as the penalty for early visits. We observe that for almost 50%
of the D-instances, earliness is only presented for β = 1.0, i.e., only when early visits are not
penalized in the objective function. However, this percentage is only 35% for the U-instances.
In particular, the average values for this �earliness breakpoint� are β̄bp = 0.88 and β̄bp = 0.85 for
the D- and U-instances, respectively. This seems to suggest that the higher number of di�erent
service intervals for the customers, the less visits ahead of time appear in the solutions to the
A-MSSP.

8.2 Comparison of solutions with PS and AS policies

In Figure 8.2 we present a comparative chart of the number of operators used over all periods
with the PS policy and the AS policy, for the di�erent values of β. For this comparison we have
considered the sets of instances where the best-known solutions were proven optimal for every
value of β. For values of β ≤ 0.5 we observe the same number of operators for solutions with
both service policies. This implies, together with Figure 8.1, that for values of β ≤ 0.5, the
P-MSSP and the A-MSSP have the same solutions, given that that we obtain the same number
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Figure 8.1: Observed earliness breakpoint for the A-MSSP solutions.

of operators and there are no early visits in these solutions. We can observe, however, that the
number of operators used with the AS policy decreases clearly for values of β > 0.5.
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Figure 8.2: Total number of operators for optimally solved instances.

We next analyze the savings on the number of operators that can be obtained by applying
the AS policy. Table 8.1 displays the percentage of operators saved with respect to the PS policy.
The entries of the table are average percentage savings over all the instances of the same type
and for the di�erent values of β. We observe that the savings noticeably increase as the value
of β does. In particular, for β = 0.2, the AS policy does not produce any saving, however, the
highest values are for β = 1.0, which presents, on average, 16.38% and 26.48% of the operators
saved, for the D- and U-instances, respectively. In addition, the type of instance has an im-
portant impact on this percentages. We can observe that the number of operators that can be
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saved for the U-instances are twice the values for the D-instances. Moreover, we observe higher
percentages for instances with larger values of I and larger values of Q. On the contrary, the
lower percentages are for instances with larger values of I and smaller values of Q. The savings
behaviour can be visually appreciated in Figure 8.3.

D-instances U-instances

Instance β value

0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

I10 Q5 0.00 0.00 12.22 13.89 0.00 1.54 13.75 28.56

Q10 0.00 0.00 8.00 26.00 0.00 1.54 23.36 46.22

Q5 0.00 0.67 4.78 7.01 0.00 0.00 1.78 2.89

I30 Q10 0.00 0.00 4.58 11.05 0.00 1.33 11.10 22.62

Q30 0.00 0.00 0.00 30.00 0.00 0.00 12.87 51.23

Q5 0.00 0.00 2.47 3.31 0.00 0.00 0.00 0.00

I50 Q10 0.00 1.43 5.14 9.74 0.00 0.00 1.95 7.02

Q50 0.00 0.00 0.00 30.00 0.00 0.00 9.33 53.33

Average 0.00 0.26 4.65 16.38 0.00 0.55 9.27 26.48

Table 8.1: Operators saved (in %) with AS policy.
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Figure 8.3: Operators saved (in %) with AS policy.

Figure 8.4 displays the average computing times for �nding the best solutions for both the
PS and AS policies. We can observe that the P-MSSP is actually easier to solve than the A-
MSSP, for almost all values of β. Regarding the AS policy, we observe that the di�culty of the
A-MSSP increases with the value of β. The only exception is β = 1.0. In this case, where we do
not penalize earliness, all instances were solved to optimality with the smallest computational
e�ort, even if in the comparison we also include the P-MSSP. On the other hand, we observe
that, despite the fact that the A-MSSP solutions coincide with to those of P-MSSP for values
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of β ≤ 0.5, the computational e�ort needed to obtain solutions to the A-MSSP is substantially
higher than the computing time needed to obtain solutions to the P-MSSP. In other words, the
use of the AS policy is only relevant for the cases in which the cost of employing a operator is
cheaper than the cost associated to visit customers one period earlier.
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Figure 8.4: Average CPU times for the best-found solutions.
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Chapter 9

Conclusions and Future Research

Decisions involving recurrent services can be found in a large variety of processes. The planning
of such activities requires to determine the periods in which these services have to take place,
that is, the scheduling. In this thesis, we have studied MSSPs, a family of problems in which
the time duration for the services does not exceed one single period. The goal in the MSSPs is
to reduce the total number of operators used over a planning horizon.

For these problems, we focus on two alternative scheduling policies. In the P-MSSP, where
we apply the PS policy, the time intervals between two consecutive service periods of a customer
are always of the same length and coincide with its service interval. In the A-MSSP, where we
apply the AS policy, the time intervals between two consecutive service periods of a customer
are not established in advance and can be of di�erent lengths. In this policy customers may be
visited ahead of time, however, is not allowed that the time between two consecutive visits to
the same customer exceeds his service interval.

For the P-MSSP, we have developed four alternative MILP formulations: two sparse and two
dense. For each of them we have developed a customer-based and a class-based formulation.
The computational experience shows a noticeable better performance of the dense formulations.
In particular, CPLEX guaranteed optimal solutions for all the tested instances. Additionally,
class-based formulations have outperformed customer-based formulations, specially for the D-
instances.

For the A-MSSP we have developed two alternative sparse MILPs, one customer-based and
one class-based. In these formulations we have resorted to the earliness concept, that is the
total number of early periods within the visits of the customers. To reduce the negative e�ect
that such early services may cause, we minimize a weighted sum of the total number of opera-
tors and the total earliness. We have analyzed both formulations, deriving some reinforcements.
The numerical results show that the class-based formulation provides better results that the
customer-based formulation, particularly for the D-instances.

Because, A-MSSP formulations turned out to be harder to solve than MILPs for P-MSSP,
we have proposed two alternative MILPs, which are CG reformulations of the sparse A-MSSP.
For both formulations we have provided their corresponding pricing problem to generate new
columns. We have also developed an initialization procedure in order to provide good quality
initial solutions. Both CG formulations have been embedded within a BP framework, in which
we combined several branching strategies. We have also included a procedure to recover infeasi-
bility after branching. Furthermore, we tried several stabilization techniques in order forbid the
generation of too many columns and therefore to speed up the algorithm.
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The computational experience shows that CG formulations give better initial lower bounds
than the LP-relaxation of the sparse formulations. A very interesting fact is that both formula-
tions MP and MP c provide almost the same initial lower bounds, for the cases in which MP
is able to provide them. In spite of this, both CG formulations show a noticeable di�erence
on the convergence of the BP algorithm, specially for larger instances and smaller values of Q.
In particular, the numerical results of BP with MP formulation are not very encouraging. For
most of the cases the computing times with MP are not competitive as compared to the sparse
MILPs. In addition, for some of the larger instances and larger capacities, the program termi-
nated because of the CPU time limit without providing a initial lower bound by solving the root
node.

On the contrary, BP with MP c provides lower and upper bounds for all the instances,
including the largest ones. Moreover, the upper bounds obtained with MP c are optimal for
all D-instances. For U-instances, optimal solutions are not guaranteed for some of the larger
instances and small capacities. However, for these instances, BP with MP c provides the same
upper bounds as its corresponding sparse MILP, producing similar gaps and computing times.

The e�ectiveness of the BP with MP c relies on the remarkable performance that is observed
for D-instances in which the A-MSSP is hard to solve with both sparse formulations, specially
for larger instances and small capacities. For these instances BP with MP c provides optimal
solutions with considerably shorter computing times. This suggests that BP with MP may be
preferred to sparse formulations for even larger instances and smaller capacities, which are in
fact the most di�cult instances to solve with sparse MILP formulations.

As an alternative solution technique for the MSSP we have also proposed a heuristic algo-
rithm suitable for both of the scheduling policies. The algorithm is divided into a greedy and
a local search procedure. For the LS we have tried several search strategies using two di�erent
neighborhoods. Additionally, we apply a diversi�cation procedure which is crucial for closing
the gaps. The computational experience shows that, for the PS policy, the heuristic results are
outperformed by formulation PDc, which produces optimal solutions within shorter CPU times.
For the AS policy, the heuristic results are very competitive for larger instances and smaller
capacities.

The solutions for the two alternative scheduling policies have been analyzed, concluding that
the AS policy is only pro�table in cases for which the cost of a single operator is cheaper than
the cost of associated with visiting a customer one period before the end of his service interval.
The numerical results show that using the AS policy may reduce the number of operators up to
26.48%, depending on the type of instance and the value of β.

This thesis has produced the following research papers:

- Scheduling policies for multi-period services. Cristina Núñez, Elena Fernández, Jörg Kalc-
sics, Stefan Nickel. European Journal of Operational Research. (Accepted).

- A branch-and-price for the Multi-period Service Scheduling Problem. Cristina Núñez,
Elena Fernández, Jörg Kalcsics. In preparation.

- Improved formulations for the Multi-period Service Scheduling Problem. Cristina Núñez,
Elena Fernández, Jörg Kalcsics. In preparation.

In addition, the results of this thesis have appeared in several presentations of international
conferences and workshops as enlisted below:
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- Scheduling policies for periodic collection with balancing constraints. Cristina Núñez, Elena
Fernández, Stefan Nickel, Jörg Kalcsics. 4th Workshop on Combinatorial Optimization,
Routing and Location (CORAL). Benicassim, Spain, May 2012.

- Scheduling policies for periodic collection. Cristina Núñez, Fernández, Stefan Nickel, Jörg
Kalcsics. 1st Meeting of the EURO Working Group on Vehicle Routing and Logistics
Optimization (Verolog). Bologna, Italy, June 2012.

- Policies for the Multi-period Collection Scheduling Problem. Cristina Núñez, Elena Fer-
nández, Stefan Nickel, Jörg Kalcsics. 4th International Workshop on Locational Analysis
and Related Problems (RedLoca). Torremolinos, Spain, June 2013.

- The Multi-period Collection Scheduling Problem. Elena Fernández, Cristina Núñez, Stefan
Nickel, Jörg Kalcsics. 26th European Conference on Operational Research (EURO). Rome,
Italy, July 2013.

- The Multi-period Collection Scheduling Problem with Balancing Constraints. Cristina
Núñez, Elena Fernández, Stefan Nickel, Jörg Kalcsics. 20th Conference of the Interna-
tional Federation of Operational Research Societies (IFORS). Barcelona, Spain, July 2014.

- Solution algorithms for the multi-period collection Scheduling Problem. Cristina Núñez,
Elena Fernández, Jörg Kalcsics, Stefan Nickel. 17th Latin-Iberian-American Conference
on Operations Research (CLAIO). Monterrey, Mexico, October 2014.

- A column generation algorithm for the multi-period collection scheduling problem. Cristina
Núñez, Elena Fernández, Jörg Kalcsics, Stefan Nickel. 6th International Workshop on
Freight Transportation and Logistics (Odysseus). Ajaccio, France, June 2015.

- Scheduling policies for Multi-period Collection. Cristina Núñez, Elena Fernández, Jörg
Kalcsics, Stefan Nickel. 5th Workshop on Combinatorial Optimization, Routing and Lo-
cation (CORAL). Salamanca, Spain, September 2015.

Several research opportunities arise from this thesis. One of them appears when two or more
entities are involved in the execution of the services. This scenario arises for collaborative systems
in which entities have some common interests such as avoiding monopolies. For this scenario,
entities may share the utilization of resources, and operative and balancing limitations may apply.
A di�erent avenue for research is to consider non-homogeneous capacities. In particular, this
scenario appears for operators with di�erent capacities or abilities, and/or customers requiring
di�erent types of services. Finally, a clear extension of our study is to consider problems in which
the demand of all customers is not the same.
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Notation and Abbreviations

Notation

T Set of discretized time periods.

I Set of customers.

ti service interval for customer i ∈ I (in number of periods).

Q Capacity of the operators (in number of customers to visit on a given period).

K Set of operators for each period.

β Weight parameter on the importance between number of operators and early periods within services.

Ci Calendar for customer i.

S Schedule for the MSSP (set of periods for which each customer is served). S = {Ci : i ∈ I}.

z Total number of operators used in the schedule.

e Total earliness in the schedule.

mt
i Maximum number of potential periods to schedule a visit for customer i ∈ I after period t ∈
{0, ..., |T | − 1}.

Ht
i Set of potential periods to schedule a visit for customer i ∈ I after period t ∈ {0, ..., |T | − 1}.

Ht
i = {1, . . . ,mt

i}.

pti Number of potential periods to schedule a visit for customer i ∈ I before period t ∈ T .

J Set of the di�erent interval classes.

wj Number of customers of class j.

uj Service interval of class j.

mt
j Number of potential periods to schedule a visit for customers of class j ∈ J after period t ∈ {0, ..., |T |−

1}.

Ht
j Set of potential periods to schedule a visit for customers of class j ∈ J after period t ∈ {0, ..., |T |−1}.

Ht
j = {1, . . . ,mt

j}.

ptj Number of potential periods to schedule a visit for customers of class j ∈ J before period t ∈ T .

c Pattern of customers to serve in a given period.

acj j-th element of pattern c.

nc Cost of pattern c.

Ct Set of all patterns for visits in period t.

C t
i Set of patterns for period t containing customer i.

C Set of all possibles patterns in the entire time horizon.
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Abbreviations

A-MSSP Aperiodic Multi-Period Service Scheduling Problem.

AS Aperiodic service policy.

BP Branch-and-price.

CG Column Generation.

LP Linear Programming.

MILP Mixed Integer Linear Programming.

MP Master Problem.

MSSP Multi-Period Service Scheduling Problem.

OR Operation Research.

P-MSSP Periodic Multi-Period Service Scheduling Problem.

PS Periodic service policy.

RMP Restricted Master Problem.
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Appendix A

Results for Formulations for the P-MSSP

Sparse formulations Dense formulations

PS PSc PD PDc
Instance

z Gap Time z Gap Time z Gap Time z Gap Time

D_I10_Q5_C1 6 0.0 0.47 6 0.0 0.03 6 0.0 0.02 6 0.0 0.02
D_I10_Q5_C2 12 0.0 0.98 12 0.0 0.25 12 0.0 0.20 12 0.0 0.06
D_I10_Q5_C3 9 0.0 1.09 9 0.0 0.17 9 0.0 0.09 9 0.0 0.09
D_I10_Q5_C4 12 0.0 0.86 12 0.0 0.23 12 0.0 0.08 12 0.0 0.09
D_I10_Q5_C5 12 0.0 0.67 12 0.0 0.34 12 0.0 0.03 12 0.0 0.08

I10
D_I10_Q10_C1 5 0.0 0.19 5 0.0 0.03 5 0.0 0.25 5 0.0 0.08
D_I10_Q10_C2 10 0.0 0.08 10 0.0 0.28 10 0.0 0.11 10 0.0 0.27
D_I10_Q10_C3 5 0.0 0.22 5 0.0 0.06 5 0.0 0.28 5 0.0 0.06
D_I10_Q10_C4 10 0.0 0.08 10 0.0 0.09 10 0.0 0.11 10 0.0 0.09
D_I10_Q10_C5 10 0.0 0.13 10 0.0 0.13 10 0.0 0.16 10 0.0 0.09

D_I30_Q5_C1 23 0.0 817.12 23 0.0 8.52 23 0.0 2.08 23 0.0 1.01
D_I30_Q5_C2 29 0.0 1550.42 29 0.0 8.55 29 0.0 1.81 29 0.0 0.94
D_I30_Q5_C3 28 0.0 1171.81 28 0.0 8.14 28 0.0 1.25 28 0.0 0.94
D_I30_Q5_C4 30 0.0 2227.84 30 0.0 13.59 30 0.0 7.22 30 0.0 2.56
D_I30_Q5_C5 30 0.0 2070.85 30 0.0 17.08 30 0.0 3.29 30 0.0 1.62

D_I30_Q10_C1 14 0.0 4.43 14 0.0 0.59 14 0.0 0.27 14 0.0 0.27
D_I30_Q10_C2 17 0.0 35.72 17 0.0 0.66 17 0.0 0.34 17 0.0 0.17

I30 D_I30_Q10_C3 15 0.0 5.80 15 0.0 0.28 15 0.0 0.16 15 0.0 0.06
D_I30_Q10_C4 18 0.0 47.22 18 0.0 1.12 18 0.0 0.34 18 0.0 0.08
D_I30_Q10_C5 15 0.0 2.62 15 0.0 0.17 15 0.0 0.09 15 0.0 0.08

D_I30_Q30_C1 10 0.0 0.27 10 0.0 0.22 10 0.0 0.25 10 0.0 0.31
D_I30_Q30_C2 10 0.0 0.14 10 0.0 0.22 10 0.0 0.16 10 0.0 0.13
D_I30_Q30_C3 10 0.0 0.09 10 0.0 0.09 10 0.0 0.14 10 0.0 0.06
D_I30_Q30_C4 10 0.0 0.11 10 0.0 0.09 10 0.0 0.14 10 0.0 0.05
D_I30_Q30_C5 10 0.0 0.08 10 0.0 0.08 10 0.0 0.14 10 0.0 0.05

D_I50_Q5_C1 45 5.8 3601.72 44 0.0 356.70 44 0.0 923.72 44 0.0 43.98
D_I50_Q5_C2 47 4.3 3602.29 47 0.0 324.16 47 0.0 852.55 47 0.0 15.09
D_I50_Q5_C3 49 4.1 3602.05 49 0.0 136.40 49 0.0 12.36 49 0.0 3.71
D_I50_Q5_C4 50 5.2 3601.86 50 0.0 96.73 50 0.0 24.12 50 0.0 8.66
D_I50_Q5_C5 52 2.7 3601.78 52 0.0 40.25 52 0.0 23.35 52 0.0 3.48

D_I50_Q10_C1 25 0.0 1604.57 25 0.0 8.04 25 0.0 5.15 25 0.0 1.70
D_I50_Q10_C2 24 0.0 433.62 24 0.0 2.34 24 0.0 0.55 24 0.0 0.11

I50 D_I50_Q10_C3 27 0.0 1047.99 27 0.0 3.54 27 0.0 1.87 27 0.0 0.36
D_I50_Q10_C4 28 10.0 3600.88 28 0.0 7.88 28 0.0 2.25 28 0.0 1.15
D_I50_Q10_C5 28 0.0 232.52 28 0.0 2.42 28 0.0 0.55 28 0.0 0.17

D_I50_Q50_C1 10 0.0 0.12 10 0.0 0.05 10 0.0 0.14 10 0.0 0.11
D_I50_Q50_C2 10 0.0 0.13 10 0.0 0.11 10 0.0 0.14 10 0.0 0.09
D_I50_Q50_C3 10 0.0 0.15 10 0.0 0.23 10 0.0 0.14 10 0.0 0.25
D_I50_Q50_C4 10 0.0 0.14 10 0.0 0.09 10 0.0 0.17 10 0.0 0.03
D_I50_Q50_C5 10 0.0 0.12 10 0.0 0.09 10 0.0 0.17 10 0.0 0.03

Cumulative 785 32.0 32869.19 784 0.0 1040.04 784 0.0 1866.23 784 0.00 88.17

Table A.1: Detailed CPLEX results for the P-MSSP formulations (D-instances).
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Sparse formulations Dense formulations

PS PSc PD PDc
Instance

z Gap Time z Gap Time z Gap Time z Gap Time

U_I10_Q5_C1 7 0.0 0.55 7 0.0 0.55 7 0.0 0.28 7 0.0 0.11
U_I10_Q5_C2 13 0.0 0.61 13 0.0 0.98 13 0.0 0.06 13 0.0 0.05
U_I10_Q5_C3 12 0.0 0.48 12 0.0 0.50 12 0.0 0.05 12 0.0 0.23
U_I10_Q5_C4 13 0.0 0.46 13 0.0 0.87 13 0.0 0.06 13 0.0 0.19
U_I10_Q5_C5 10 0.0 0.48 10 0.0 0.36 10 0.0 0.12 10 0.0 0.06

I10
U_I10_Q10_C1 7 0.0 0.25 7 0.0 0.16 7 0.0 0.20 7 0.0 0.23
U_I10_Q10_C2 13 0.0 0.09 13 0.0 0.09 13 0.0 0.08 13 0.0 0.09
U_I10_Q10_C3 12 0.0 0.25 12 0.0 0.28 12 0.0 0.19 12 0.0 0.25
U_I10_Q10_C4 13 0.0 0.09 13 0.0 0.08 13 0.0 0.09 13 0.0 0.05
U_I10_Q10_C5 10 0.0 0.19 10 0.0 0.22 10 0.0 0.05 10 0.0 0.11

U_I30_Q5_C1 18 0.0 110.99 18 0.0 14.65 18 0.0 1.37 18 0.0 0.69
U_I30_Q5_C2 22 0.0 855.59 22 0.0 97.53 22 0.0 5.48 22 0.0 4.73
U_I30_Q5_C3 22 0.0 121.96 22 0.0 40.15 22 0.0 1.72 22 0.0 3.70
U_I30_Q5_C4 24 0.0 128.36 24 0.0 5.79 24 0.0 0.49 24 0.0 0.09
U_I30_Q5_C5 23 0.0 404.88 23 0.0 46.69 23 0.0 2.51 23 0.0 1.40

U_I30_Q10_C1 12 0.0 5.99 12 0.0 3.31 12 0.0 0.17 12 0.0 0.11
U_I30_Q10_C2 15 0.0 18.03 15 0.0 1.25 15 0.0 0.28 15 0.0 0.16

I30 U_I30_Q10_C3 14 0.0 11.39 14 0.0 1.36 14 0.0 0.17 14 0.0 0.28
U_I30_Q10_C4 15 0.0 10.76 15 0.0 1.20 15 0.0 0.27 15 0.0 0.23
U_I30_Q10_C5 15 0.0 10.08 15 0.0 2.00 15 0.0 0.31 15 0.0 0.47

U_I30_Q30_C1 12 0.0 0.28 12 0.0 0.33 12 0.0 0.45 12 0.0 0.23
U_I30_Q30_C2 15 0.0 0.19 15 0.0 0.13 15 0.0 0.47 15 0.0 0.25
U_I30_Q30_C3 13 0.0 0.22 13 0.0 0.16 13 0.0 0.41 13 0.0 0.09
U_I30_Q30_C4 15 0.0 0.17 15 0.0 0.22 15 0.0 0.19 15 0.0 0.27
U_I30_Q30_C5 15 0.0 0.29 15 0.0 0.09 15 0.0 0.19 15 0.0 0.09

U_I50_Q5_C1 34 0.0 122.43 34 0.0 25.29 34 0.0 2.42 34 0.0 0.64
U_I50_Q5_C2 38 0.0 851.36 38 0.0 24.66 38 0.0 1.87 38 0.0 1.25
U_I50_Q5_C3 38 2.6 3600.12 38 2.6 3600.80 37 0.0 70.67 37 0.0 15.05
U_I50_Q5_C4 37 2.7 3600.01 37 2.7 3600.23 36 0.0 29.72 36 0.0 39.59
U_I50_Q5_C5 39 3.1 3602.05 38 0.0 108.02 38 0.0 19.38 38 0.0 3.70

U_I50_Q10_C1 18 0.0 159.08 18 0.0 14.04 18 0.0 0.72 18 0.0 0.78
U_I50_Q10_C2 20 0.0 569.65 20 0.0 22.00 20 0.0 3.24 20 0.0 1.39

I50 U_I50_Q10_C3 20 0.0 226.22 20 0.0 20.33 20 0.0 0.84 20 0.0 0.87
U_I50_Q10_C4 20 0.0 328.08 20 0.0 18.38 20 0.0 3.48 20 0.0 1.33
U_I50_Q10_C5 21 0.0 530.73 21 0.0 59.86 21 0.0 4.38 21 0.0 1.78

U_I50_Q50_C1 15 0.0 0.40 15 0.0 0.30 15 0.0 0.41 15 0.0 0.27
U_I50_Q50_C2 15 0.0 0.36 15 0.0 0.11 15 0.0 0.48 15 0.0 0.14
U_I50_Q50_C3 15 0.0 0.39 15 0.0 0.31 15 0.0 0.44 15 0.0 0.16
U_I50_Q50_C4 15 0.0 0.43 15 0.0 0.11 15 0.0 0.30 15 0.0 0.13
U_I50_Q50_C5 15 0.0 0.51 15 0.0 0.16 15 0.0 0.52 15 0.0 0.11

Cumulative 720 8.4 15274.42 719 5.3 7713.55 717 0.0 154.49 717 0.00 81.33

Table A.2: Detailed CPLEX results for the P-MSSP formulations (U-instances).
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Appendix B

Results for Formulations for the A-MSSP

B.1 Detailed results for formulation AS

AS

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap Time z e Gap Time z e Gap Time z e Gap Time

D_I10_Q5_C1 6 0 0.0 0.2 6 0 0.0 0.3 6 0 0.0 0.3 6 5 0.0 0.3
D_I10_Q5_C2 12 0 0.0 0.9 12 0 0.0 2.0 8 10 0.0 4.3 8 12 0.0 2.8
D_I10_Q5_C3 9 0 0.0 1.1 9 0 0.0 1.5 8 1 0.0 5.3 8 60 0.0 42.9
D_I10_Q5_C4 12 0 0.0 1.0 12 0 0.0 1.8 11 1 0.0 5.4 10 36 0.0 4.6
D_I10_Q5_C5 12 0 0.0 0.5 12 0 0.0 1.0 11 2 0.0 1.7 11 13 0.0 0.8

I10
D_I10_Q10_C1 5 0 0.0 0.3 5 0 0.0 0.4 5 0 0.0 0.7 4 48 0.0 0.6
D_I10_Q10_C2 10 0 0.0 0.3 10 0 0.0 0.5 9 2 0.0 1.9 7 77 0.0 2.1
D_I10_Q10_C3 5 0 0.0 0.3 5 0 0.0 0.3 4 3 0.0 0.5 4 55 0.0 0.3
D_I10_Q10_C4 10 0 0.0 0.4 10 0 0.0 0.5 9 3 0.0 1.5 7 86 0.0 0.5
D_I10_Q10_C5 10 0 0.0 0.3 10 0 0.0 0.4 10 0 0.0 2.0 7 76 0.0 0.5

D_I30_Q5_C1 23 0 0.0 1558.8 23 0 0.0 1676.2 23 0 7.0 3600.8 22 87 0.0 148.4
D_I30_Q5_C2 29 0 4.1 3601.7 29 0 7.2 3601.5 27 6 7.4 3602.3 27 41 0.0 14.9
D_I30_Q5_C3 28 0 0.0 2380.1 28 0 7.1 3602.5 26 4 5.2 3602.6 26 84 0.0 220.3
D_I30_Q5_C4 31 0 9.0 3601.4 29 1 9.3 3602.9 28 4 6.9 3606.7 27 74 0.0 94.7
D_I30_Q5_C5 30 0 0.0 1920.2 30 0 8.7 3602.5 28 5 6.3 3604.7 28 79 0.0 6.8

D_I30_Q10_C1 14 0 0.0 12.5 14 0 0.0 30.7 14 0 0.0 578.1 12 94 0.0 1668.7
D_I30_Q10_C2 17 0 0.0 65.7 17 0 0.0 275.3 15 6 0.0 1624.6 14 72 0.0 355.6

I30 D_I30_Q10_C3 15 0 0.0 25.7 15 0 0.0 83.4 15 0 0.0 492.8 14 95 8.3 3605.2
D_I30_Q10_C4 18 0 0.0 176.2 18 0 0.0 737.9 16 4 11.8 3603.2 15 111 7.6 3600.1
D_I30_Q10_C5 15 0 0.0 7.4 15 0 0.0 32.7 15 0 0.0 370.4 15 83 8.1 3602.2

D_I30_Q30_C1 10 0 0.0 1.1 10 0 0.0 3.0 10 0 0.0 9.4 7 322 0.0 5.7
D_I30_Q30_C2 10 0 0.0 0.8 10 0 0.0 1.6 10 0 0.0 10.1 7 364 0.0 3.7
D_I30_Q30_C3 10 0 0.0 0.8 10 0 0.0 2.8 10 0 0.0 7.2 7 261 0.0 4.9
D_I30_Q30_C4 10 0 0.0 0.9 10 0 0.0 1.4 10 0 0.0 7.4 7 252 0.0 3.1
D_I30_Q30_C5 10 0 0.0 0.9 10 0 0.0 2.3 10 0 0.0 8.3 7 236 0.0 6.3

D_I50_Q5_C1 45 0 5.8 3601.7 45 0 5.8 3600.6 43 3 3.1 3601.2 43 92 0.0 97.7
D_I50_Q5_C2 47 0 4.3 3602.2 47 0 4.3 3604.2 46 3 3.7 3601.2 45 94 0.0 653.4
D_I50_Q5_C3 49 0 4.1 3602.2 49 0 4.1 3603.7 48 3 3.6 3602.6 47 173 0.0 93.8
D_I50_Q5_C4 50 0 5.2 3600.3 50 0 5.2 3603.9 48 4 3.3 3604.1 48 105 0.0 113.2
D_I50_Q5_C5 52 0 2.7 3602.3 52 0 2.7 3603.0 51 1 1.3 3601.0 51 106 0.0 116.1

D_I50_Q10_C1 25 0 7.6 3601.0 25 0 15.2 3601.7 24 1 12.6 3601.1 22 117 0.0 51.1
D_I50_Q10_C2 24 0 0.0 2481.6 24 0 0.0 1902.9 24 0 6.3 3603.1 23 182 0.0 47.0

I50 D_I50_Q10_C3 27 0 0.0 467.6 27 0 11.9 3600.1 25 3 6.2 3603.9 24 111 0.0 221.2
D_I50_Q10_C4 28 0 15.0 3601.6 26 1 12.2 3602.9 24 6 7.1 3602.7 24 149 0.0 269.3
D_I50_Q10_C5 28 0 0.0 2877.3 28 0 8.2 3602.0 28 0 9.6 3602.2 26 64 0.0 133.0

D_I50_Q50_C1 10 0 0.0 1.3 10 0 0.0 3.5 10 0 0.0 13.8 7 633 0.0 12.9
D_I50_Q50_C2 10 0 0.0 1.4 10 0 0.0 2.6 10 0 0.0 16.6 7 465 0.0 8.8
D_I50_Q50_C3 10 0 0.0 1.3 10 0 0.0 2.6 10 0 0.0 20.9 7 362 0.0 9.2
D_I50_Q50_C4 10 0 0.0 2.0 10 0 0.0 2.7 10 0 0.0 14.6 7 391 0.0 9.2
D_I50_Q50_C5 10 0 0.0 2.0 10 0 0.0 2.0 10 0 0.0 17.6 7 339 0.0 4.6

Table B.1.1: Detailed CPLEX results for formulation AS (D-instances).
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AS

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap Time z e Gap Time z e Gap Time z e Gap Time

U_I10_Q5_C1 7 0 0.0 1.3 7 0 0.0 2.6 6 2 0.0 8.1 5 35 0.0 0.3
U_I10_Q5_C2 13 0 0.0 1.5 13 0 0.0 4.3 9 9 0.0 12.5 8 37 0.0 9.6
U_I10_Q5_C3 12 0 0.0 1.3 12 0 0.0 1.8 11 2 0.0 33.8 9 38 0.0 8.7
U_I10_Q5_C4 13 0 0.0 1.3 13 0 0.0 6.2 10 7 0.0 39.0 9 51 0.0 6.6
U_I10_Q5_C5 10 0 0.0 0.9 10 0 0.0 1.9 10 0 0.0 8.1 8 36 0.0 2.1

I10
U_I10_Q10_C1 7 0 0.0 0.6 7 0 0.0 1.1 5 2 0.0 2.7 3 37 0.0 0.2
U_I10_Q10_C2 13 0 0.0 0.6 13 0 0.0 2.6 10 5 0.0 9.4 7 113 0.0 1.2
U_I10_Q10_C3 12 0 0.0 0.6 12 0 0.0 1.3 10 4 0.0 4.3 7 72 0.0 1.1
U_I10_Q10_C4 13 0 0.0 1.0 13 0 0.0 1.7 9 11 0.0 8.2 7 66 0.0 0.9
U_I10_Q10_C5 10 0 0.0 0.5 10 0 0.0 1.1 9 2 0.0 5.6 6 32 0.0 1.9

U_I30_Q5_C1 18 0 0.0 225.9 18 0 0.0 541.0 18 0 4.1 3600.2 17 63 0.0 5.2
U_I30_Q5_C2 22 0 0.0 1938.7 22 0 0.0 2098.3 21 1 3.6 3611.2 21 95 0.0 7.3
U_I30_Q5_C3 22 0 0.0 570.4 22 0 0.0 933.5 22 0 3.6 3603.2 22 118 0.0 24.7
U_I30_Q5_C4 24 0 0.0 407.9 24 0 0.0 449.2 24 0 3.3 3604.4 24 93 0.0 113.4
U_I30_Q5_C5 23 0 0.0 251.1 23 0 0.0 1523.5 22 2 3.8 3601.0 22 52 0.0 11.0

U_I30_Q10_C1 12 0 0.0 28.0 12 0 0.0 79.8 11 2 0.0 861.9 9 78 0.0 120.7
U_I30_Q10_C2 15 0 0.0 76.8 15 0 0.0 326.3 13 4 0.0 1283.2 11 80 0.0 220.0

I30 U_I30_Q10_C3 14 0 0.0 37.3 14 0 0.0 284.0 13 2 0.0 1186.4 11 74 0.0 524.6
U_I30_Q10_C4 15 0 0.0 41.2 15 0 0.0 398.9 13 4 0.0 757.0 12 69 0.0 257.6
U_I30_Q10_C5 15 0 0.0 67.7 15 0 0.0 214.9 13 5 0.0 1263.7 12 112 0.0 1700.0

U_I30_Q30_C1 12 0 0.0 4.1 11 1 0.0 54.5 10 4 0.0 254.3 6 511 0.0 6.0
U_I30_Q30_C2 15 0 0.0 4.9 15 0 0.0 102.7 12 8 0.0 571.0 7 258 0.0 10.4
U_I30_Q30_C3 13 0 0.0 3.7 13 0 0.0 9.3 12 3 0.0 549.7 7 292 0.0 5.2
U_I30_Q30_C4 15 0 0.0 3.5 15 0 0.0 12.1 13 4 0.0 278.8 7 211 0.0 7.7
U_I30_Q30_C5 15 0 0.0 4.2 15 0 0.0 75.5 13 4 0.0 396.5 7 260 0.0 11.0

U_I50_Q5_C1 34 0 0.0 662.5 34 0 0.0 811.6 34 0 2.4 3601.2 34 71 0.0 170.6
U_I50_Q5_C2 38 0 0.0 1671.9 38 0 0.0 1564.4 38 0 1.6 3600.2 38 108 0.0 57.8
U_I50_Q5_C3 38 0 2.6 3600.3 38 0 2.6 3600.0 38 0 2.6 3607.1 37 111 0.0 256.9
U_I50_Q5_C4 37 0 2.7 3600.1 37 0 2.7 3601.0 37 0 2.7 3600.2 36 89 0.0 103.0
U_I50_Q5_C5 39 0 3.1 3603.7 38 0 0.0 2525.5 38 1 1.2 3600.2 38 67 0.0 126.5

U_I50_Q10_C1 18 0 0.0 608.7 18 0 0.0 978.5 18 0 0.0 2653.1 17 134 0.0 999.8
U_I50_Q10_C2 20 0 0.0 1448.7 20 0 0.0 3561.3 20 0 6.5 3600.3 19 106 0.0 890.8

I50 U_I50_Q10_C3 20 0 0.0 641.5 20 0 0.0 1522.0 20 0 7.5 3600.5 19 118 0.0 271.4
U_I50_Q10_C4 20 0 0.0 1393.8 20 0 0.0 2345.5 19 2 6.9 3600.4 18 75 0.0 736.6
U_I50_Q10_C5 21 0 0.0 1327.3 21 0 0.0 2611.0 21 0 9.2 3600.7 19 175 0.0 399.0

U_I50_Q50_C1 15 0 0.0 10.4 15 0 0.0 38.9 13 5 0.0 1051.1 7 361 0.0 20.1
U_I50_Q50_C2 15 0 0.0 10.2 15 0 0.0 55.5 15 0 0.0 2467.9 7 415 0.0 23.7
U_I50_Q50_C3 15 0 0.0 9.3 15 0 0.0 167.3 13 6 0.0 821.5 7 594 0.0 15.1
U_I50_Q50_C4 15 0 0.0 11.3 15 0 0.0 69.7 14 3 0.0 1821.7 7 422 0.0 14.7
U_I50_Q50_C5 15 0 0.0 10.3 15 0 0.0 32.7 13 7 0.0 1181.2 7 299 0.0 25.5

Table B.1.2: Detailed CPLEX results for formulation AS (U-instances).
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B.2 Detailed results for formulation ASc

ASc

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap Time z e Gap Time z e Gap Time z e Gap Time

D_I10_Q5_C1 6 0 0.0 0.1 6 0 0.0 0.0 6 0 0.0 0.0 6 25 0.0 0.1
D_I10_Q5_C2 12 0 0.0 0.7 12 0 0.0 0.5 8 10 0.0 0.9 8 17 0.0 0.6
D_I10_Q5_C3 9 0 0.0 0.4 9 0 0.0 0.5 8 1 0.0 0.3 8 28 0.0 0.5
D_I10_Q5_C4 12 0 0.0 0.5 12 0 0.0 0.3 11 1 0.0 1.8 10 44 0.0 1.9
D_I10_Q5_C5 12 0 0.0 0.3 12 0 0.0 0.2 11 2 0.0 0.8 11 21 0.0 0.9

I10
D_I10_Q10_C1 5 0 0.0 0.1 5 0 0.0 0.2 5 0 0.0 0.2 4 35 0.0 0.3
D_I10_Q10_C2 10 0 0.0 0.6 10 0 0.0 0.2 9 2 0.0 0.6 7 62 0.0 0.4
D_I10_Q10_C3 5 0 0.0 0.2 5 0 0.0 0.2 4 3 0.0 0.2 4 30 0.0 0.1
D_I10_Q10_C4 10 0 0.0 0.2 10 0 0.0 0.3 9 3 0.0 0.6 7 51 0.0 0.3
D_I10_Q10_C5 10 0 0.0 0.1 10 0 0.0 0.5 10 0 0.0 1.2 7 41 0.0 0.2

D_I30_Q5_C1 23 0 0.0 17.7 23 0 0.0 12.5 23 0 0.0 371.2 22 66 0.0 1.0
D_I30_Q5_C2 29 0 0.0 12.1 29 0 0.0 16.5 28 2 0.0 136.4 27 79 0.0 0.7
D_I30_Q5_C3 28 0 0.0 20.4 28 0 0.0 26.9 26 4 0.0 14.1 26 43 0.0 0.6
D_I30_Q5_C4 30 0 0.0 19.1 29 1 0.0 22.2 28 4 0.0 82.1 27 65 0.0 1.3
D_I30_Q5_C5 30 0 0.0 16.7 30 0 0.0 46.1 28 5 0.0 77.4 28 68 0.0 0.7

D_I30_Q10_C1 14 0 0.0 0.8 14 0 0.0 1.2 14 0 0.0 4.9 12 144 0.0 2.5
D_I30_Q10_C2 17 0 0.0 1.5 17 0 0.0 1.2 15 6 0.0 4.9 14 51 0.0 1.6

I30 D_I30_Q10_C3 15 0 0.0 0.8 15 0 0.0 1.0 15 0 0.0 2.1 14 103 0.0 4.7
D_I30_Q10_C4 18 0 0.0 3.7 18 0 0.0 4.1 16 4 0.0 8.6 15 56 0.0 4.5
D_I30_Q10_C5 15 0 0.0 0.9 15 0 0.0 0.8 15 0 0.0 0.6 15 65 0.0 4.2

D_I30_Q30_C1 10 0 0.0 0.4 10 0 0.0 0.5 10 0 0.0 0.3 7 214 0.0 0.3
D_I30_Q30_C2 10 0 0.0 0.1 10 0 0.0 0.1 10 0 0.0 0.2 7 84 0.0 0.2
D_I30_Q30_C3 10 0 0.0 0.2 10 0 0.0 0.2 10 0 0.0 0.1 7 296 0.0 0.2
D_I30_Q30_C4 10 0 0.0 0.2 10 0 0.0 0.3 10 0 0.0 0.2 7 177 0.0 0.2
D_I30_Q30_C5 10 0 0.0 0.1 10 0 0.0 0.2 10 0 0.0 0.4 7 221 0.0 0.3

D_I50_Q5_C1 44 0 0.0 1997.2 44 0 0.0 1602.7 43 3 0.0 2620.8 43 95 0.0 1.0
D_I50_Q5_C2 47 0 0.0 1226.2 47 0 0.0 1612.7 46 2 1.2 3600.3 45 135 0.0 1.2
D_I50_Q5_C3 49 0 0.0 180.6 49 0 0.0 227.2 48 2 0.0 1276.9 47 117 0.0 3.0
D_I50_Q5_C4 50 0 0.0 198.1 50 0 0.0 332.3 48 4 0.0 1218.9 48 127 0.0 1.8
D_I50_Q5_C5 52 0 0.0 67.2 52 0 0.0 156.4 51 1 0.0 210.6 51 55 0.0 0.2

D_I50_Q10_C1 25 0 0.0 16.2 25 0 0.0 22.9 24 1 0.0 50.6 22 138 0.0 1.0
D_I50_Q10_C2 24 0 0.0 1.9 24 0 0.0 3.2 24 0 0.0 10.4 23 123 0.0 0.6

I50 D_I50_Q10_C3 27 0 0.0 6.0 27 0 0.0 14.1 25 3 0.0 11.3 24 100 0.0 1.1
D_I50_Q10_C4 28 0 0.0 11.5 26 1 0.0 19.4 24 6 0.0 15.6 24 17 0.0 1.1
D_I50_Q10_C5 28 0 0.0 5.5 28 0 0.0 6.9 28 0 0.0 17.7 26 107 0.0 0.8

D_I50_Q50_C1 10 0 0.0 0.2 10 0 0.0 0.2 10 0 0.0 0.5 7 431 0.0 0.2
D_I50_Q50_C2 10 0 0.0 0.1 10 0 0.0 0.4 10 0 0.0 0.4 7 375 0.0 0.2
D_I50_Q50_C3 10 0 0.0 0.2 10 0 0.0 0.2 10 0 0.0 0.3 7 262 0.0 0.3
D_I50_Q50_C4 10 0 0.0 0.3 10 0 0.0 0.1 10 0 0.0 0.4 7 304 0.0 0.2
D_I50_Q50_C5 10 0 0.0 0.2 10 0 0.0 0.3 10 0 0.0 0.5 7 193 0.0 0.3

Table B.2.1: Detailed CPLEX results for formulation ASc (D-instances).
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ASc

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0

z e Gap Time z e Gap Time z e Gap Time z e Gap Time

U_I10_Q5_C1 7 0 0.0 0.9 7 0 0.0 0.7 6 2 0.0 1.6 5 25 0.0 1.0
U_I10_Q5_C2 13 0 0.0 2.1 12 1 0.0 3.7 10 5 0.0 12.8 8 52 0.0 11.7
U_I10_Q5_C3 12 0 0.0 1.1 12 0 0.0 1.4 11 2 0.0 12.1 9 43 0.0 11.8
U_I10_Q5_C4 13 0 0.0 1.0 13 0 0.0 3.4 10 7 0.0 16.3 9 46 0.0 9.1
U_I10_Q5_C5 10 0 0.0 0.6 10 0 0.0 1.5 10 0 0.0 3.0 8 47 0.0 0.5

I10
U_I10_Q10_C1 7 0 0.0 0.3 7 0 0.0 0.8 5 2 0.0 0.7 3 39 0.0 0.3
U_I10_Q10_C2 13 0 0.0 1.1 13 0 0.0 2.3 9 9 0.0 4.9 7 88 0.0 0.3
U_I10_Q10_C3 12 0 0.0 0.8 12 0 0.0 0.8 10 4 0.0 1.8 7 42 0.0 0.8
U_I10_Q10_C4 13 0 0.0 3.2 12 1 0.0 1.5 9 11 0.0 11.2 7 119 0.0 0.5
U_I10_Q10_C5 10 0 0.0 0.4 10 0 0.0 0.6 9 2 0.0 1.2 6 122 0.0 0.4

U_I30_Q5_C1 18 0 0.0 19.9 18 0 0.0 30.0 18 0 0.0 378.1 17 59 0.0 2.2
U_I30_Q5_C2 22 0 0.0 227.0 22 0 0.0 357.2 21 1 0.0 721.0 21 83 0.0 3.9
U_I30_Q5_C3 22 0 0.0 116.3 22 0 0.0 85.8 22 0 0.0 905.5 22 76 0.0 1.4
U_I30_Q5_C4 24 0 0.0 20.3 24 0 0.0 7.3 24 0 0.0 122.4 24 96 0.0 1.0
U_I30_Q5_C5 23 0 0.0 76.6 23 0 0.0 71.6 22 2 0.0 396.9 22 81 0.0 8.6

U_I30_Q10_C1 12 0 0.0 5.6 12 0 0.0 8.2 11 2 0.0 24.8 9 69 0.0 3.8
U_I30_Q10_C2 15 0 0.0 11.5 14 1 0.0 18.5 13 4 0.0 37.7 11 99 0.0 8.6

I30 U_I30_Q10_C3 14 0 0.0 7.4 14 0 0.0 5.9 13 2 0.0 25.7 11 65 0.0 4.6
U_I30_Q10_C4 15 0 0.0 2.7 15 0 0.0 2.3 13 4 0.0 7.9 12 67 0.0 20.3
U_I30_Q10_C5 15 0 0.0 4.7 15 0 0.0 8.6 13 5 0.0 31.0 12 84 0.0 41.5

U_I30_Q30_C1 12 0 0.0 1.5 12 0 0.0 1.5 10 4 0.0 13.9 6 230 0.0 1.8
U_I30_Q30_C2 15 0 0.0 1.3 15 0 0.0 1.6 13 4 0.0 22.0 7 193 0.0 1.6
U_I30_Q30_C3 13 0 0.0 0.7 13 0 0.0 1.1 12 3 0.0 16.6 7 235 0.0 0.4
U_I30_Q30_C4 15 0 0.0 0.5 15 0 0.0 1.2 13 4 0.0 6.2 7 345 0.0 0.5
U_I30_Q30_C5 15 0 0.0 0.7 15 0 0.0 1.8 13 4 0.0 19.3 7 240 0.0 2.5

U_I50_Q5_C1 34 0 0.0 14.1 34 0 0.0 41.9 34 0 2.4 3601.0 34 103 0.0 6.8
U_I50_Q5_C2 38 0 0.0 85.7 38 0 0.0 137.1 38 0 1.6 3600.6 38 102 0.0 3.5
U_I50_Q5_C3 38 0 2.6 3600.3 38 0 2.6 3600.0 37 0 0.0 631.0 37 156 0.0 11.1
U_I50_Q5_C4 37 0 2.7 3600.4 37 0 2.7 3600.5 36 0 0.0 473.1 36 78 0.0 15.7
U_I50_Q5_C5 38 0 0.0 997.8 38 0 0.0 414.9 38 0 0.0 626.8 38 151 0.0 14.6

U_I50_Q10_C1 18 0 0.0 18.8 18 0 0.0 48.1 18 0 0.0 51.7 17 63 0.0 28.6
U_I50_Q10_C2 20 0 0.0 69.4 20 0 0.0 115.5 20 0 0.0 186.4 19 123 0.0 13.4

I50 U_I50_Q10_C3 20 0 0.0 36.1 20 0 0.0 45.6 20 0 0.0 260.8 19 95 0.0 4.0
U_I50_Q10_C4 20 0 0.0 21.6 20 0 0.0 27.0 19 2 0.0 136.7 18 139 0.0 17.8
U_I50_Q10_C5 21 0 0.0 91.0 21 0 0.0 96.1 20 2 0.0 369.4 19 93 0.0 17.6

U_I50_Q50_C1 15 0 0.0 1.4 15 0 0.0 3.3 13 5 0.0 13.7 7 195 0.0 2.0
U_I50_Q50_C2 15 0 0.0 1.5 15 0 0.0 3.9 15 0 0.0 12.4 7 310 0.0 1.9
U_I50_Q50_C3 15 0 0.0 2.0 15 0 0.0 3.5 13 6 0.0 9.3 7 634 0.0 1.1
U_I50_Q50_C4 15 0 0.0 2.0 15 0 0.0 3.9 14 3 0.0 19.7 7 279 0.0 1.5
U_I50_Q50_C5 15 0 0.0 2.0 15 0 0.0 3.6 13 7 0.0 8.9 7 239 0.0 2.0

Table B.2.2: Detailed CPLEX results for formulation ASc (U-instances).
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Appendix C

Branch-and-Price Results

C.1 Detailed results for the branch-and-price algorithm with for-

mulation MP

D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

AS MP AS MP AS MP AS MP AS MP AS MP AS MP AS MP

C1 1.20 1.20 1.2 1.2 0.0 0.0 0.2 12.8 1.00 1.02 1.4 1.4 0.0 0.0 1.3 19.4
C2 1.52 1.58 2.4 2.4 0.0 0.0 0.9 16.3 1.40 1.47 2.6 2.6 0.0 0.0 1.5 20.6

Q5 C3 1.36 1.36 1.8 1.8 0.0 0.0 1.1 10.9 1.48 1.53 2.4 2.4 0.0 0.0 1.3 25.3
C4 1.72 1.75 2.4 2.4 0.0 0.0 1.0 18.5 1.44 1.52 2.6 2.6 0.0 0.0 1.3 23.8
C5 2.04 2.05 2.4 2.4 0.0 0.0 0.5 18.5 1.56 1.56 2.0 2.0 0.0 0.0 0.9 17.3

I10
C1 0.60 0.80 1.0 1.0 0.0 0.0 0.3 8.2 0.50 0.65 1.4 1.4 0.0 0.0 0.6 14.4
C2 0.76 1.46 2.0 2.0 0.0 0.0 0.3 9.6 0.70 1.47 2.6 2.6 0.0 0.0 0.6 8.1

Q10 C3 0.68 0.80 1.0 1.0 0.0 0.0 0.3 24.2 0.74 1.48 2.4 2.4 0.0 0.0 0.6 8.6
C4 0.86 1.46 2.0 2.0 0.0 0.0 0.4 10.8 0.72 1.48 2.6 2.6 0.0 0.0 1.0 7.9
C5 1.02 1.46 2.0 2.0 0.0 0.0 0.3 15.9 0.78 1.20 2.0 2.0 0.0 0.0 0.5 10.5

C1 4.28 4.28 4.6 4.6 0.0 0.0 1558.8 584.6 3.36 3.36 3.6 3.6 0.0 0.0 225.9 776.7
C2 5.28 5.28 5.8 5.8 4.1 0.0 3601.7 495.7 4.08 4.08 4.4 4.4 0.0 0.0 1938.7 640.2

Q5 C3 5.12 5.12 5.6 5.6 0.0 0.0 2380.1 367.4 4.24 4.24 4.4 4.4 0.0 0.0 570.4 593.1
C4 5.40 5.40 6.2 6.0 9.0 0.0 3601.4 381.5 4.64 4.64 4.8 4.8 0.0 0.0 407.9 714.6
C5 5.48 5.48 6.0 6.0 0.0 0.0 1920.2 395.1 4.28 4.28 4.6 4.6 0.0 0.0 251.1 692.6

C1 2.14 2.14 2.8 2.8 0.0 0.0 12.5 655.3 1.68 1.70 2.4 2.4 0.0 0.0 28.0 888.7
C2 2.64 2.64 3.4 3.4 0.0 0.0 65.7 611.5 2.04 2.04 3.0 3.0 0.0 0.0 76.8 742.6

I30 Q10 C3 2.56 2.57 3.0 3.0 0.0 0.0 25.7 481.0 2.12 2.12 2.8 2.8 0.0 0.0 37.3 868.5
C4 2.70 2.70 3.6 3.6 0.0 0.0 176.2 561.8 2.32 2.32 3.0 3.0 0.0 0.0 41.2 750.3
C5 2.74 2.75 3.0 3.0 0.0 0.0 7.4 473.2 2.14 2.16 3.0 3.0 0.0 0.0 67.7 787.1

C1 0.71 1.46 2.0 2.0 0.0 0.0 1.1 1063.5 0.56 1.46 2.4 2.4 0.0 0.0 4.1 274.2
C2 0.88 1.46 2.0 2.0 0.0 0.0 0.8 1498.0 0.68 1.46 3.0 3.0 0.0 0.0 4.9 284.3

Q30 C3 0.85 1.46 2.0 2.0 0.0 0.0 0.8 1069.8 0.71 1.46 2.6 2.6 0.0 0.0 3.7 556.0
C4 0.90 1.46 2.0 2.0 0.0 0.0 0.9 1574.6 0.77 1.46 3.0 3.0 0.0 0.0 3.5 458.0
C5 0.91 1.46 2.0 2.0 0.0 0.0 0.9 2476.4 0.71 1.48 3.0 3.0 0.0 0.0 4.2 287.3

C1 8.48 - 9.0 - 5.8 - 3601.7 - 6.64 - 6.8 - 0.0 - 662.5 -
C2 9.00 - 9.4 - 4.3 - 3602.2 - 7.48 - 7.6 - 0.0 - 1671.9 -

Q5 C3 9.40 - 9.8 - 4.1 - 3602.2 - 7.40 - 7.6 - 2.6 - 3600.3 -
C4 9.48 - 10.0 - 5.2 - 3600.3 - 7.20 - 7.4 - 2.7 - 3600.1 -
C5 10.12 - 10.4 - 2.7 - 3602.3 - 7.56 - 7.8 - 3.1 - 3603.7 -

C1 4.24 - 5.0 - 7.6 - 3601.0 - 3.32 - 3.6 - 0.0 - 608.7 -
C2 4.50 - 4.8 - 0.0 - 2481.6 - 3.74 - 4.0 - 0.0 - 1448.7 -

I50 Q10 C3 4.70 - 5.4 - 0.0 - 467.6 - 3.70 - 4.0 - 0.0 - 641.5 -
C4 4.74 - 5.6 - 15.0 - 3601.6 - 3.60 - 4.0 - 0.0 - 1393.8 -
C5 5.06 - 5.6 - 0.0 - 2877.3 - 3.78 - 4.2 - 0.0 - 1327.3 -

C1 0.85 - 2.0 - 0.0 - 1.3 - 0.66 1.48 3.0 3.0 0.0 102.7 10.4 3600.1
C2 0.90 - 2.0 - 0.0 - 1.4 - 0.75 - 3.0 - 0.0 - 10.2 -

Q50 C3 0.94 - 2.0 - 0.0 - 1.3 - 0.74 1.48 3.0 3.0 0.0 102.7 9.3 3601.7
C4 0.95 - 2.0 - 0.0 - 2.0 - 0.72 1.48 3.0 3.0 0.0 102.7 11.3 3601.6
C5 1.01 - 2.0 - 0.0 - 2.0 - 0.76 - 3.0 - 0.0 - 10.3 -

Table C.1.1: Branch-and-price results comparison for formulation MP (β = 0.2).
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D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

AS MP AS MP AS MP AS MP AS MP AS MP AS MP AS MP

C1 3.00 3.00 3.0 3.0 0.0 0.0 0.3 13.3 2.50 2.54 3.5 3.5 0.0 0.0 2.6 20.7
C2 3.80 3.94 6.0 6.0 0.0 0.0 2.0 15.4 3.50 3.67 6.5 6.5 0.0 0.0 4.3 17.5

Q5 C3 3.40 3.40 4.5 4.5 0.0 0.0 1.5 15.8 3.70 3.83 6.0 6.0 0.0 0.0 1.8 17.4
C4 4.30 4.39 6.0 6.0 0.0 0.0 1.8 17.7 3.60 3.80 6.5 6.5 0.0 0.0 6.2 19.9
C5 5.10 5.14 6.0 6.0 0.0 0.0 1.0 15.7 3.90 3.90 5.0 5.0 0.0 0.0 1.9 15.6

I10
C1 1.50 2.00 2.5 2.5 0.0 0.0 0.4 2.9 1.25 1.63 3.5 3.5 0.0 0.0 1.1 16.2
C2 1.90 3.64 5.0 5.0 0.0 0.0 0.5 11.4 1.75 3.67 6.5 6.5 0.0 0.0 2.6 8.0

Q10 C3 1.70 2.00 2.5 2.5 0.0 0.0 0.3 27.3 1.85 3.70 6.0 6.0 0.0 0.0 1.3 8.8
C4 2.15 3.64 5.0 5.0 0.0 0.0 0.5 12.6 1.80 3.70 6.5 6.5 0.0 0.0 1.7 7.8
C5 2.55 3.64 5.0 5.0 0.0 0.0 0.4 18.8 1.95 3.00 5.0 5.0 0.0 0.0 1.1 10.3

C1 10.70 10.70 11.5 11.5 0.0 0.0 1676.2 1349.2 8.40 8.40 9.0 9.0 0.0 0.0 541.0 1965.2
C2 13.20 13.20 14.5 14.5 7.2 0.0 3601.5 901.9 10.20 10.20 11.0 11.0 0.0 0.0 2098.3 1396.7

Q5 C3 12.80 12.80 14.0 14.0 7.1 0.0 3602.5 810.3 10.60 10.60 11.0 11.0 0.0 0.0 933.5 1487.8
C4 13.50 13.50 15.0 15.0 9.3 0.0 3602.9 714.4 11.60 11.60 12.0 12.0 0.0 0.0 449.2 1841.4
C5 13.70 13.70 15.0 15.0 8.7 0.0 3602.5 771.7 10.70 10.70 11.5 11.5 0.0 0.0 1523.5 1699.6

C1 5.35 5.35 7.0 7.0 0.0 0.0 30.7 1171.2 4.20 4.25 6.0 6.0 0.0 0.0 79.8 1687.3
C2 6.60 6.60 8.5 8.5 0.0 0.0 275.3 896.7 5.10 5.11 7.5 7.5 0.0 0.0 326.3 1341.7

I30 Q10 C3 6.40 6.42 7.5 7.5 0.0 0.0 83.4 1212.3 5.30 5.30 7.0 7.0 0.0 0.0 284.0 1501.4
C4 6.75 6.75 9.0 9.0 0.0 0.0 737.9 1334.3 5.80 5.80 7.5 7.5 0.0 0.0 398.9 1281.0
C5 6.85 6.88 7.5 7.5 0.0 0.0 32.7 1477.4 5.35 5.40 7.5 7.5 0.0 0.0 214.9 1030.3

C1 1.78 3.64 5.0 5.0 0.0 0.0 3.0 2650.9 1.40 3.00 6.0 6.0 0.0 0.0 54.5 677.3
C2 2.20 3.64 5.0 5.0 0.0 0.0 1.6 3591.0 1.70 3.70 7.5 7.5 0.0 0.0 102.7 788.8

Q30 C3 2.13 3.64 5.0 5.0 0.0 37.3 2.8 3600.0 1.77 3.67 6.5 6.5 0.0 0.0 9.3 1093.5
C4 2.25 3.64 5.0 5.0 0.0 37.3 1.4 3600.0 1.93 3.70 7.5 7.5 0.0 0.0 12.1 1182.1
C5 2.28 3.64 5.0 5.0 0.0 37.3 2.3 3600.0 1.78 3.70 7.5 7.5 0.0 0.0 75.5 900.7

C1 21.20 - 22.5 - 5.8 - 3600.6 - 16.60 - 17.0 - 0.0 - 811.6 -
C2 22.50 - 23.5 - 4.3 - 3604.2 - 18.70 - 19.0 - 0.0 - 1564.4 -

Q5 C3 23.50 - 24.5 - 4.1 - 3603.7 - 18.50 - 19.0 - 2.6 - 3600.0 -
C4 23.70 - 25.0 - 5.2 - 3603.9 - 18.00 - 18.5 - 2.7 - 3601.0 -
C5 25.30 - 26.0 - 2.7 - 3603.0 - 18.90 - 19.0 - 0.0 - 2525.5 -

C1 10.60 - 12.5 - 15.2 - 3601.7 - 8.30 - 9.0 - 0.0 - 978.5 -
C2 11.25 - 12.0 - 0.0 - 1902.9 - 9.35 - 10.0 - 0.0 - 3561.3 -

I50 Q10 C3 11.75 - 13.5 - 11.9 - 3600.1 - 9.25 - 10.0 - 0.0 - 1522.0 -
C4 11.85 - 13.5 - 12.2 - 3602.9 - 9.00 - 10.0 - 0.0 - 2345.5 -
C5 12.65 - 14.0 - 8.2 - 3602.0 - 9.45 - 10.5 - 0.0 - 2611.0 -

C1 2.12 - 5.0 - 0.0 - 3.5 - 1.66 3.70 7.5 7.5 0.0 102.7 38.9 3600.2
C2 2.25 - 5.0 - 0.0 - 2.6 - 1.87 - 7.5 - 0.0 - 55.5 -

Q50 C3 2.35 - 5.0 - 0.0 - 2.6 - 1.85 - 7.5 - 0.0 - 167.3 -
C4 2.37 - 5.0 - 0.0 - 2.7 - 1.80 - 7.5 - 0.0 - 69.7 -
C5 2.53 - 5.0 - 0.0 - 2.0 - 1.89 - 7.5 - 0.0 - 32.7 -

Table C.1.2: Branch-and-price results comparison for formulation MP (β = 0.5).
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D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

AS MP AS MP AS MP AS MP AS MP AS MP AS MP AS MP

C1 4.80 4.80 4.8 4.8 0.0 0.0 0.3 14.4 4.00 4.06 5.2 5.2 0.0 0.0 8.1 16.7
C2 6.08 6.31 8.4 8.4 0.0 0.0 4.3 16.6 5.60 5.88 9.0 9.0 0.0 0.0 12.5 14.9

Q5 C3 5.44 5.44 6.6 6.6 0.0 0.0 5.3 19.7 5.92 6.12 9.2 9.2 0.0 0.0 33.8 15.8
C4 6.88 7.02 9.0 9.0 0.0 0.0 5.4 21.8 5.76 6.09 9.4 9.4 0.0 0.0 39.0 14.7
C5 8.16 8.22 9.2 9.2 0.0 0.0 1.7 16.8 6.24 6.24 8.0 8.0 0.0 0.0 8.1 12.9

I10
C1 2.40 3.20 4.0 4.0 0.0 0.0 0.7 31.3 2.00 2.60 4.4 4.4 0.0 0.0 2.7 12.2
C2 3.04 5.83 7.6 7.6 0.0 0.0 1.9 11.6 2.80 5.87 9.0 9.0 0.0 0.0 9.4 8.3

Q10 C3 2.72 3.20 3.8 3.8 0.0 0.0 0.5 47.0 2.96 5.92 8.8 8.8 0.0 0.0 4.3 7.4
C4 3.44 5.83 7.8 7.8 0.0 0.0 1.5 16.6 2.88 5.92 9.4 9.4 0.0 0.0 8.2 7.5
C5 4.08 5.83 8.0 8.0 0.0 0.0 2.0 21.8 3.12 4.80 7.6 7.6 0.0 0.0 5.6 10.8

C1 17.12 17.12 18.4 18.4 7.0 0.0 3600.8 1934.3 13.44 13.44 14.4 14.4 4.1 0.0 3600.2 1280.3
C2 21.12 21.12 22.8 22.8 7.4 0.0 3602.3 1318.9 16.32 16.32 17.0 17.0 3.6 0.0 3611.2 1613.7

Q5 C3 20.48 20.48 21.6 21.6 5.2 0.0 3602.6 1294.0 16.96 16.96 17.6 17.6 3.6 0.0 3603.2 1641.5
C4 21.60 21.60 23.2 23.2 6.9 0.0 3606.7 946.8 18.56 18.56 19.2 19.2 3.3 0.0 3604.4 1895.7
C5 21.92 21.92 23.4 23.4 6.3 0.0 3604.7 1036.0 17.12 17.12 18.0 18.0 3.8 0.0 3601.0 2136.4

C1 8.56 8.56 11.2 11.2 0.0 0.0 578.1 997.8 6.72 6.80 9.2 9.2 0.0 0.0 861.9 1198.0
C2 10.56 10.56 13.2 13.2 0.0 0.0 1624.6 1206.5 8.16 8.18 11.2 11.2 0.0 0.0 1283.2 935.3

I30 Q10 C3 10.24 10.27 12.0 12.0 0.0 0.0 492.8 973.3 8.48 8.48 10.8 10.8 0.0 0.0 1186.4 1004.6
C4 10.80 10.80 13.6 13.6 11.8 0.0 3603.2 1056.6 9.28 9.28 11.2 11.2 0.0 0.0 757.0 820.0
C5 10.96 11.00 12.0 12.0 0.0 0.0 370.4 980.0 8.56 8.63 11.4 11.4 0.0 0.0 1263.7 974.1

C1 2.85 5.83 8.0 8.0 0.0 37.3 9.4 3600.0 2.24 4.80 8.8 8.8 0.0 0.0 254.3 537.8
C2 3.52 5.83 8.0 8.0 0.0 37.3 10.1 3600.0 2.72 5.92 11.2 11.2 0.0 0.0 571.0 608.0

Q30 C3 3.41 5.83 8.0 8.0 0.0 37.3 7.2 3600.0 2.83 5.87 10.2 10.2 0.0 0.0 549.7 828.7
C4 3.60 5.83 8.0 8.0 0.0 37.3 7.4 3600.0 3.09 5.92 11.2 11.2 0.0 0.0 278.8 638.8
C5 3.65 5.83 8.0 8.0 0.0 37.3 8.3 3600.0 2.85 5.92 11.2 11.2 0.0 0.0 396.5 390.1

C1 33.92 - 35.0 - 3.1 - 3601.2 - 26.56 - 27.2 - 2.4 - 3601.2 -
C2 36.00 - 37.4 - 3.7 - 3601.2 - 29.92 - 30.4 - 1.6 - 3600.2 -

Q5 C3 37.60 - 39.0 - 3.6 - 3602.6 - 29.60 - 30.4 - 2.6 - 3607.1 -
C4 37.92 - 39.2 - 3.3 - 3604.1 - 28.80 - 29.6 - 2.7 - 3600.2 -
C5 40.48 - 41.0 - 1.3 - 3601.0 - 30.24 - 30.6 - 1.2 - 3600.2 -

C1 16.96 - 19.4 - 12.6 - 3601.1 - 13.28 - 14.4 - 0.0 - 2653.1 -
C2 18.00 - 19.2 - 6.3 - 3603.1 - 14.96 - 16.0 - 6.5 - 3600.3 -

I50 Q10 C3 18.80 - 20.6 - 6.2 - 3603.9 - 14.80 - 16.0 - 7.5 - 3600.5 -
C4 18.96 - 20.4 - 7.1 - 3602.7 - 14.40 - 15.6 - 6.9 - 3600.4 -
C5 20.24 - 22.4 - 9.6 - 3602.2 - 15.12 - 16.8 - 9.2 - 3600.7 -

C1 3.39 - 8.0 - 0.0 - 13.8 - 2.66 5.92 11.4 11.4 0.0 92.6 1051.1 3601.4
C2 3.60 - 8.0 - 0.0 - 16.6 - 2.99 5.92 12.0 12.0 0.0 102.7 2467.9 3600.1

Q50 C3 3.76 - 8.0 - 0.0 - 20.9 - 2.96 5.92 11.6 11.6 0.0 96.0 821.5 3601.6
C4 3.79 - 8.0 - 0.0 - 14.6 - 2.88 5.92 11.8 11.8 0.0 99.3 1821.7 3601.4
C5 4.05 - 8.0 - 0.0 - 17.6 - 3.02 - 11.8 - 0.0 - 1181.2 -

Table C.1.3: Branch-and-price results comparison for formulation MP (β = 0.8).

95



D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

AS MP AS MP AS MP AS MP AS MP AS MP AS MP AS MP

C1 6.00 6.00 6 6 0.0 0.0 0.3 5.5 5.00 5.00 5 5 0.0 0.0 0.3 4.5
C2 7.60 8.00 8 8 0.0 0.0 2.8 8.6 7.00 8.00 8 8 0.0 0.0 9.6 7.3

Q5 C3 6.80 6.80 8 8 0.0 0.0 42.9 6.4 7.40 7.61 9 9 0.0 0.0 8.7 11.4
C4 8.60 8.60 10 10 0.0 0.0 4.6 9.5 7.20 7.55 9 9 0.0 0.0 6.6 9.3
C5 10.20 11.00 11 11 0.0 0.0 0.8 7.5 7.80 8.00 8 8 0.0 0.0 2.1 5.3

I10
C1 3.00 4.00 4 4 0.0 0.0 0.6 0.5 2.50 3.00 3 3 0.0 0.0 0.2 0.4
C2 3.80 7.00 7 7 0.0 0.0 2.1 0.6 3.50 7.00 7 7 0.0 0.0 1.2 0.5

Q10 C3 3.40 4.00 4 4 0.0 0.0 0.3 0.6 3.70 7.00 7 7 0.0 0.0 1.1 0.6
C4 4.30 7.00 7 7 0.0 0.0 0.5 0.6 3.60 7.00 7 7 0.0 0.0 0.9 0.4
C5 5.10 7.00 7 7 0.0 0.0 0.5 0.5 3.90 6.00 6 6 0.0 0.0 1.9 0.6

C1 21.40 22.00 22 22 0.0 0.0 148.4 62.6 16.80 17.00 17 17 0.0 0.0 5.2 811.6
C2 26.40 27.00 27 27 0.0 0.0 14.9 145.4 20.40 21.00 21 21 0.0 0.0 7.3 232.8

Q5 C3 25.60 26.00 26 26 0.0 0.0 220.3 228.1 21.20 22.00 22 22 0.0 0.0 24.7 56.3
C4 27.00 27.00 27 27 0.0 0.0 94.7 628.4 23.20 24.00 24 24 0.0 0.0 113.4 159.4
C5 27.40 28.00 28 28 0.0 0.0 6.8 173.1 21.40 22.00 22 22 0.0 0.0 11.0 614.2

C1 10.70 10.70 12 12 0.0 0.0 1668.7 106.5 8.40 9.00 9 9 0.0 0.0 120.7 411.0
C2 13.20 14.00 14 14 0.0 0.0 355.6 172.8 10.20 11.00 11 11 0.0 0.0 220.0 160.3

I30 Q10 C3 12.80 12.80 14 14 8.3 0.0 3605.2 187.7 10.60 11.00 11 11 0.0 0.0 524.6 257.5
C4 13.50 13.50 15 15 7.6 0.0 3600.1 172.6 11.60 12.00 12 12 0.0 0.0 257.6 303.2
C5 13.70 13.70 15 15 8.1 0.0 3602.2 233.7 10.70 10.70 12 12 0.0 0.0 1700.0 190.9

C1 3.57 7.00 7 7 0.0 0.0 5.7 1.2 2.80 6.00 6 6 0.0 0.0 6.0 1.3
C2 4.40 7.00 7 7 0.0 0.0 3.7 1.3 3.40 7.00 7 7 0.0 0.0 10.4 1.1

Q30 C3 4.27 7.00 7 7 0.0 0.0 4.9 0.9 3.53 7.00 7 7 0.0 0.0 5.2 1.1
C4 4.50 7.00 7 7 0.0 0.0 3.1 1.1 3.87 7.00 7 7 0.0 0.0 7.7 1.1
C5 4.57 7.00 7 7 0.0 0.0 6.3 0.9 3.57 7.00 7 7 0.0 0.0 11.0 1.4

C1 42.40 - 43 - 0.0 - 97.7 - 33.20 34.00 34 34 0.0 0.0 170.6 1360.7
C2 45.00 - 45 - 0.0 - 653.4 - 37.40 - 38 - 0.0 - 57.8 -

Q5 C3 47.00 - 47 - 0.0 - 93.8 - 37.00 - 37 - 0.0 - 256.9 -
C4 47.40 - 48 - 0.0 - 113.2 - 36.00 - 36 - 0.0 - 103.0 -
C5 50.60 - 51 - 0.0 - 116.1 - 37.80 - 38 - 0.0 - 126.5 -

C1 21.20 22.00 22 22 0.0 0.0 51.1 2352.4 16.60 - 17 - 0.0 - 999.8 -
C2 22.50 - 23 - 0.0 - 47.0 - 18.70 19.00 19 19 0.0 0.0 890.8 3592.5

I50 Q10 C3 23.50 - 24 - 0.0 - 221.2 - 18.50 19.00 19 19 0.0 0.0 271.4 3511.5
C4 23.70 - 24 - 0.0 - 269.3 - 18.00 - 18 - 0.0 - 736.6 -
C5 25.30 - 26 - 0.0 - 133.0 - 18.90 - 19 - 0.0 - 399.0 -

C1 4.24 7.00 7 7 0.0 0.0 12.9 1.3 3.32 7.00 7 7 0.0 0.0 20.1 2.1
C2 4.50 7.00 7 7 0.0 0.0 8.8 2.4 3.74 7.00 7 7 0.0 0.0 23.7 2.0

Q50 C3 4.70 7.00 7 7 0.0 0.0 9.2 1.3 3.70 7.00 7 7 0.0 0.0 15.1 1.6
C4 4.74 7.00 7 7 0.0 0.0 9.2 1.5 3.60 7.00 7 7 0.0 0.0 14.7 1.6
C5 5.06 7.00 7 7 0.0 0.0 4.6 2.0 3.78 7.00 7 7 0.0 0.0 25.5 2.2

Table C.1.4: Branch-and-price results comparison for formulation MP (β = 1.0).
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C.2 Detailed results for the branch-and-price algorithm with for-

mulation MP c

D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP

C1 1.20 1.20 1.2 1.2 0.0 0.0 0.1 0.0 1.00 1.02 1.4 1.4 0.0 0.0 0.9 5.8
C2 1.52 1.58 2.4 2.4 0.0 0.0 0.7 3.3 1.40 1.47 2.6 2.6 0.0 0.0 2.1 32.4

Q5 C3 1.36 1.36 1.8 1.8 0.0 0.0 0.4 1.0 1.48 1.53 2.4 2.4 0.0 0.0 1.1 14.0
C4 1.72 1.75 2.4 2.4 0.0 0.0 0.5 2.1 1.44 1.52 2.6 2.6 0.0 0.0 1.0 33.5
C5 2.04 2.05 2.4 2.4 0.0 0.0 0.3 0.5 1.56 1.56 2.0 2.0 0.0 0.0 0.6 3.5

I10
C1 0.60 1.00 1.0 1.0 0.0 0.0 0.1 0.1 0.50 0.65 1.4 1.4 0.0 0.0 0.3 12.0
C2 0.76 1.46 2.0 2.0 0.0 0.0 0.6 1.3 0.70 1.47 2.6 2.6 0.0 0.0 1.1 31.8

Q10 C3 0.68 1.00 1.0 1.0 0.0 0.0 0.2 0.1 0.74 1.48 2.4 2.4 0.0 0.0 0.8 12.6
C4 0.86 1.46 2.0 2.0 0.0 0.0 0.2 1.1 0.72 1.48 2.6 2.6 0.0 0.0 3.2 22.5
C5 1.02 1.46 2.0 2.0 0.0 0.0 0.1 1.0 0.78 1.20 2.0 2.0 0.0 0.0 0.4 7.9

C1 4.28 4.28 4.6 4.6 0.0 0.0 17.7 22.0 3.36 3.36 3.6 3.6 0.0 0.0 19.9 112.3
C2 5.28 5.28 5.8 5.8 0.0 0.0 12.1 38.1 4.08 4.08 4.4 4.4 0.0 0.0 227.0 652.2

Q5 C3 5.12 5.12 5.6 5.6 0.0 0.0 20.4 79.0 4.24 4.24 4.4 4.4 0.0 0.0 116.3 50.4
C4 5.40 5.40 6.0 6.0 0.0 0.0 19.1 41.2 4.64 4.64 4.8 4.8 0.0 0.0 20.3 18.7
C5 5.48 5.48 6.0 6.0 0.0 0.0 16.7 157.3 4.28 4.28 4.6 4.6 0.0 0.0 76.6 156.1

C1 2.14 2.14 2.8 2.8 0.0 0.0 0.8 6.2 1.68 1.70 2.4 2.4 0.0 0.0 5.6 25.7
C2 2.64 2.64 3.4 3.4 0.0 0.0 1.5 8.5 2.04 2.04 3.0 3.0 0.0 0.0 11.5 43.5

I30 Q10 C3 2.56 2.57 3.0 3.0 0.0 0.0 0.8 4.7 2.12 2.12 2.8 2.8 0.0 0.0 7.4 35.6
C4 2.70 2.70 3.6 3.6 0.0 0.0 3.7 12.9 2.32 2.32 3.0 3.0 0.0 0.0 2.7 25.2
C5 2.74 2.75 3.0 3.0 0.0 0.0 0.9 1.1 2.14 2.16 3.0 3.0 0.0 0.0 4.7 42.8

C1 0.71 1.46 2.0 2.0 0.0 0.0 0.4 1.1 0.56 1.20 2.4 2.4 0.0 0.0 1.5 50.2
C2 0.88 1.46 2.0 2.0 0.0 0.0 0.1 1.2 0.68 1.48 3.0 3.0 0.0 0.0 1.3 82.9

Q30 C3 0.85 1.46 2.0 2.0 0.0 0.0 0.2 0.8 0.71 1.47 2.6 2.6 0.0 0.0 0.7 42.6
C4 0.90 1.46 2.0 2.0 0.0 0.0 0.2 0.9 0.77 1.48 3.0 3.0 0.0 0.0 0.5 39.6
C5 0.91 1.46 2.0 2.0 0.0 0.0 0.1 1.0 0.71 1.48 3.0 3.0 0.0 0.0 0.7 59.9

C1 8.48 8.48 8.8 8.8 0.0 0.0 1997.2 10.3 6.64 6.64 6.8 6.8 0.0 0.0 14.1 118.8
C2 9.00 9.00 9.4 9.4 0.0 0.0 1226.2 17.6 7.48 7.48 7.6 7.6 0.0 0.0 85.7 411.4

Q5 C3 9.40 9.40 9.8 9.8 0.0 0.0 180.6 9.1 7.40 7.40 7.6 7.6 2.6 2.7 3600.3 3600.0
C4 9.48 9.48 10.0 10.0 0.0 0.0 198.1 42.7 7.20 7.20 7.4 7.4 2.7 2.8 3600.4 3600.0
C5 10.12 10.12 10.4 10.4 0.0 0.0 67.2 29.5 7.56 7.56 7.6 7.6 0.0 0.0 997.8 2868.7

C1 4.24 4.24 5.0 5.0 0.0 0.0 16.2 152.1 3.32 3.32 3.6 3.6 0.0 0.0 18.8 72.8
C2 4.50 4.50 4.8 4.8 0.0 0.0 1.9 15.6 3.74 3.74 4.0 4.0 0.0 0.0 69.4 128.6

I50 Q10 C3 4.70 4.70 5.4 5.4 0.0 0.0 6.0 31.0 3.70 3.70 4.0 4.0 0.0 0.0 36.1 237.2
C4 4.74 4.74 5.6 5.6 0.0 0.0 11.5 100.0 3.60 3.60 4.0 4.0 0.0 0.0 21.6 311.7
C5 5.06 5.06 5.6 5.6 0.0 0.0 5.5 23.9 3.78 3.78 4.2 4.2 0.0 0.0 91.0 354.0

C1 0.85 1.46 2.0 2.0 0.0 0.0 0.2 1.4 0.66 1.48 3.0 3.0 0.0 0.0 1.4 62.2
C2 0.90 1.46 2.0 2.0 0.0 0.0 0.1 1.2 0.75 1.48 3.0 3.0 0.0 0.0 1.5 56.6

Q50 C3 0.94 1.46 2.0 2.0 0.0 0.0 0.2 1.1 0.74 1.48 3.0 3.0 0.0 0.0 2.0 53.2
C4 0.95 1.46 2.0 2.0 0.0 0.0 0.3 0.9 0.72 1.48 3.0 3.0 0.0 0.0 2.0 93.9
C5 1.01 1.46 2.0 2.0 0.0 0.0 0.2 1.0 0.76 1.48 3.0 3.0 0.0 0.0 2.0 42.3

Table C.2.1: Branch-and-price results comparison for formulation MP c (β = 0.2).
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D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP

C1 3.00 3.00 3.0 3.0 0.0 0.0 0.0 0.0 2.50 2.54 3.5 3.5 0.0 0.0 0.7 8.3
C2 3.80 3.94 6.0 6.0 0.0 0.0 0.5 3.8 3.50 3.67 6.5 6.5 0.0 0.0 3.7 157.8

Q5 C3 3.40 3.40 4.5 4.5 0.0 0.0 0.5 0.9 3.70 3.83 6.0 6.0 0.0 0.0 1.4 32.5
C4 4.30 4.39 6.0 6.0 0.0 0.0 0.3 2.4 3.60 3.80 6.5 6.5 0.0 0.0 3.4 99.0
C5 5.10 5.14 6.0 6.0 0.0 0.0 0.2 0.5 3.90 3.90 5.0 5.0 0.0 0.0 1.5 4.5

I10
C1 1.50 2.50 2.5 2.5 0.0 0.0 0.2 0.1 1.25 1.63 3.5 3.5 0.0 0.0 0.8 19.6
C2 1.90 3.64 5.0 5.0 0.0 0.0 0.2 4.0 1.75 3.67 6.5 6.5 0.0 0.0 2.3 267.6

Q10 C3 1.70 2.50 2.5 2.5 0.0 0.0 0.2 0.1 1.85 3.70 6.0 6.0 0.0 0.0 0.8 75.3
C4 2.15 3.64 5.0 5.0 0.0 0.0 0.3 2.3 1.80 3.70 6.5 6.5 0.0 0.0 1.5 226.6
C5 2.55 3.64 5.0 5.0 0.0 0.0 0.5 1.3 1.95 3.00 5.0 5.0 0.0 0.0 0.6 16.7

C1 10.70 10.70 11.5 11.5 0.0 0.0 12.5 22.0 8.40 8.40 9.0 9.0 0.0 0.0 30.0 101.9
C2 13.20 13.20 14.5 14.5 0.0 0.0 16.5 38.1 10.20 10.20 11.0 11.0 0.0 0.0 357.2 629.2

Q5 C3 12.80 12.80 14.0 14.0 0.0 0.0 26.9 158.2 10.60 10.60 11.0 11.0 0.0 0.0 85.8 23.5
C4 13.50 13.50 15.0 15.0 0.0 0.0 22.2 41.2 11.60 11.60 12.0 12.0 0.0 0.0 7.3 27.9
C5 13.70 13.70 15.0 15.0 0.0 0.0 46.1 163.3 10.70 10.70 11.5 11.5 0.0 0.0 71.6 140.0

C1 5.35 5.35 7.0 7.0 0.0 0.0 1.2 10.1 4.20 4.25 6.0 6.0 0.0 0.0 8.2 54.6
C2 6.60 6.60 8.5 8.5 0.0 0.0 1.2 8.4 5.10 5.11 7.5 7.5 0.0 0.0 18.5 137.5

I30 Q10 C3 6.40 6.42 7.5 7.5 0.0 0.0 1.0 3.6 5.30 5.30 7.0 7.0 0.0 0.0 5.9 41.1
C4 6.75 6.75 9.0 9.0 0.0 0.0 4.1 31.5 5.80 5.80 7.5 7.5 0.0 0.0 2.3 28.0
C5 6.85 6.88 7.5 7.5 0.0 0.0 0.8 2.1 5.35 5.40 7.5 7.5 0.0 0.0 8.6 64.1

C1 1.78 3.64 5.0 5.0 0.0 0.0 0.5 4.2 1.40 3.00 6.0 6.0 0.0 0.0 1.5 414.7
C2 2.20 3.64 5.0 5.0 0.0 0.0 0.1 1.4 1.70 3.70 7.5 7.5 0.0 0.0 1.6 570.6

Q30 C3 2.13 3.64 5.0 5.0 0.0 0.0 0.2 1.7 1.77 3.67 6.5 6.5 0.0 0.0 1.1 107.6
C4 2.25 3.64 5.0 5.0 0.0 0.0 0.3 1.6 1.93 3.70 7.5 7.5 0.0 0.0 1.2 76.6
C5 2.28 3.64 5.0 5.0 0.0 0.0 0.2 1.1 1.78 3.70 7.5 7.5 0.0 0.0 1.8 271.9

C1 21.20 21.20 22.0 22.0 0.0 0.0 1602.7 10.3 16.60 16.60 17.0 17.0 0.0 0.0 41.9 170.9
C2 22.50 22.50 23.5 23.5 0.0 0.0 1612.7 17.6 18.70 18.70 19.0 19.0 0.0 1.6 137.1 3600.0

Q5 C3 23.50 23.50 24.5 24.5 0.0 0.0 227.2 9.1 18.50 18.50 19.0 19.0 2.6 2.7 3600.0 3601.0
C4 23.70 23.70 25.0 25.0 0.0 0.0 332.3 42.7 18.00 18.00 18.5 18.5 2.7 2.8 3600.5 3600.0
C5 25.30 25.30 26.0 26.0 0.0 0.0 156.4 29.5 18.90 18.90 19.0 19.0 0.0 0.0 414.9 911.6

C1 10.60 16.96 12.5 12.5 0.0 0.0 22.9 241.9 8.30 8.30 9.0 9.0 0.0 0.0 48.1 85.5
C2 11.25 11.25 12.0 12.0 0.0 0.0 3.2 15.2 9.35 9.35 10.0 10.0 0.0 0.0 115.5 144.7

I50 Q10 C3 11.75 11.75 13.5 13.5 0.0 0.0 14.1 31.0 9.25 9.25 10.0 10.0 0.0 0.0 45.6 197.2
C4 11.85 11.85 13.5 13.5 0.0 0.0 19.4 100.0 9.00 9.00 10.0 10.0 0.0 0.0 27.0 315.8
C5 12.65 12.65 14.0 14.0 0.0 0.0 6.9 31.1 9.45 9.45 10.5 10.5 0.0 0.0 96.1 523.7

C1 2.12 3.64 5.0 5.0 0.0 0.0 0.2 2.1 1.66 3.70 7.5 7.5 0.0 0.0 3.3 124.3
C2 2.25 3.64 5.0 5.0 0.0 0.0 0.4 2.0 1.87 3.70 7.5 7.5 0.0 0.0 3.9 120.4

Q50 C3 2.35 3.64 5.0 5.0 0.0 0.0 0.2 1.2 1.85 3.70 7.5 7.5 0.0 0.0 3.5 147.9
C4 2.37 3.64 5.0 5.0 0.0 0.0 0.1 1.7 1.80 3.70 7.5 7.5 0.0 0.0 3.9 219.9
C5 2.53 3.64 5.0 5.0 0.0 0.0 0.3 1.3 1.89 3.70 7.5 7.5 0.0 0.0 3.6 84.8

Table C.2.2: Branch-and-price results comparison for formulation MP c (β = 0.5).

98



D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP

C1 4.80 4.80 4.8 4.8 0.0 0.0 0.0 0.0 4.00 4.06 5.2 5.2 0.0 0.0 0.7 5.2
C2 6.08 6.31 8.4 8.4 0.0 0.0 0.9 8.3 5.60 5.88 9.0 9.0 0.0 0.0 3.7 90.2

Q5 C3 5.44 5.44 6.6 6.6 0.0 0.0 0.3 1.7 5.92 6.12 9.2 9.2 0.0 0.0 1.4 67.5
C4 6.88 7.02 9.0 9.0 0.0 0.0 1.8 4.5 5.76 6.09 9.4 9.4 0.0 0.0 3.4 114.9
C5 8.16 8.22 9.2 9.2 0.0 0.0 0.8 1.2 6.24 6.24 8.0 8.0 0.0 0.0 1.5 7.0

I10
C1 2.40 4.00 4.0 4.0 0.0 0.0 0.2 0.4 2.00 2.60 4.4 4.4 0.0 0.0 0.8 4.7
C2 3.04 5.83 7.6 7.6 0.0 0.0 0.6 17.1 2.80 5.87 9.0 9.0 0.0 0.0 2.3 266.9

Q10 C3 2.72 3.80 3.8 3.8 0.0 0.0 0.2 0.2 2.96 5.92 8.8 8.8 0.0 0.0 0.8 118.6
C4 3.44 5.83 7.8 7.8 0.0 0.0 0.6 9.6 2.88 5.92 9.4 9.4 0.0 0.0 1.5 377.7
C5 4.08 5.83 8.0 8.0 0.0 0.0 1.2 3.9 3.12 4.80 7.6 7.6 0.0 0.0 0.6 29.8

C1 17.12 17.12 18.4 18.4 0.0 0.0 371.2 28.2 13.44 13.44 14.4 14.4 0.0 0.0 30.0 1892.5
C2 21.12 21.12 22.8 22.8 0.0 0.0 136.4 78.1 16.32 16.32 17.0 17.0 0.0 0.0 357.2 1523.4

Q5 C3 20.48 20.48 21.6 21.6 0.0 0.0 14.1 88.4 16.96 16.96 17.6 17.6 0.0 0.0 85.8 2404.2
C4 21.60 21.60 23.2 23.2 0.0 0.0 82.1 32.5 18.56 18.56 19.2 19.2 0.0 0.0 7.3 415.6
C5 21.92 21.92 23.4 23.4 0.0 0.0 77.4 215.4 17.12 17.12 18.0 18.0 0.0 0.0 71.6 599.9

C1 8.56 8.56 11.2 11.2 0.0 0.0 4.9 30.7 6.72 6.80 9.2 9.2 0.0 0.0 8.2 248.7
C2 10.56 10.56 13.2 13.2 0.0 0.0 4.9 34.6 8.16 8.18 11.2 11.2 0.0 0.0 18.5 473.2

I30 Q10 C3 10.24 10.27 12.0 12.0 0.0 0.0 2.1 11.9 8.48 8.48 10.8 10.8 0.0 0.0 5.9 144.9
C4 10.80 10.80 13.6 13.6 0.0 0.0 8.6 94.8 9.28 9.28 11.2 11.2 0.0 0.0 2.3 34.4
C5 10.96 11.00 12.0 12.0 0.0 0.0 0.6 4.0 8.56 8.63 11.4 11.4 0.0 0.0 8.6 184.0

C1 2.85 5.83 8.0 8.0 0.0 0.0 0.3 16.5 2.24 4.80 8.8 8.8 0.0 0.0 1.5 1306.7
C2 3.52 5.83 8.0 8.0 0.0 0.0 0.2 3.3 2.72 5.92 11.2 11.2 0.0 0.0 1.6 2099.4

Q30 C3 3.41 5.83 8.0 8.0 0.0 0.0 0.1 5.3 2.83 5.87 10.2 10.2 0.0 0.0 1.1 371.5
C4 3.60 5.83 8.0 8.0 0.0 0.0 0.2 4.2 3.09 5.92 11.2 11.2 0.0 0.0 1.2 253.3
C5 3.65 5.83 8.0 8.0 0.0 0.0 0.4 4.1 2.85 5.92 11.2 11.2 0.0 0.0 1.8 1020.3

C1 33.92 33.92 35.0 35.0 0.0 0.0 2620.8 6.2 26.56 26.56 27.2 27.2 0.0 2.4 41.9 3600.0
C2 36.00 36.00 37.2 37.2 1.2 0.0 3600.3 25.1 29.92 29.92 30.4 30.4 0.0 1.6 137.1 3600.0

Q5 C3 37.60 37.60 38.8 38.8 0.0 0.0 1276.9 53.3 29.60 29.60 29.6 29.6 2.6 0.0 3600.0 7.5
C4 37.92 37.92 39.2 39.2 0.0 0.0 1218.9 46.4 28.80 28.80 28.8 28.8 2.7 0.0 3600.5 5.2
C5 40.48 40.48 41.0 41.0 0.0 0.0 210.6 6.5 30.24 30.24 30.4 30.4 0.0 0.0 414.9 3097.4

C1 16.96 16.96 19.4 19.4 0.0 0.0 50.6 446.5 13.28 13.28 14.4 14.4 0.0 0.0 48.1 341.6
C2 18.00 18.00 19.2 19.2 0.0 0.0 10.4 77.4 14.96 14.96 16.0 16.0 0.0 0.0 115.5 726.2

I50 Q10 C3 18.80 18.80 20.6 20.6 0.0 0.0 11.3 27.0 14.80 14.80 16.0 16.0 0.0 0.0 45.6 982.4
C4 18.96 18.96 20.4 20.4 0.0 0.0 15.6 31.1 14.40 14.40 15.6 15.6 0.0 0.0 27.0 587.2
C5 20.24 20.24 22.4 22.4 0.0 0.0 17.7 72.3 15.12 15.12 16.4 16.4 0.0 0.0 96.1 993.4

C1 3.39 5.83 8.0 8.0 0.0 0.0 0.5 4.9 2.66 5.92 11.4 11.4 0.0 0.0 3.3 1228.8
C2 3.60 5.83 8.0 8.0 0.0 0.0 0.4 3.3 2.99 5.92 12.0 12.0 0.0 0.0 3.9 921.0

Q50 C3 3.76 5.83 8.0 8.0 0.0 0.0 0.3 3.0 2.96 5.92 11.6 11.6 0.0 0.0 3.5 587.2
C4 3.79 5.83 8.0 8.0 0.0 0.0 0.4 2.1 2.88 5.92 11.8 11.8 0.0 0.0 3.9 1273.5
C5 4.05 5.83 8.0 8.0 0.0 0.0 0.5 2.2 3.02 5.92 11.8 11.8 0.0 0.0 3.6 522.1

Table C.2.3: Branch-and-price results comparison for formulation MP c (β = 0.8).
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D-instances U-instances

Instance zLP UB Gap T ime zLP UB Gap T ime

ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP ASc MP

C1 6.00 6.00 6.0 6.0 0.0 0.0 0.1 0.0 5.00 5.00 5.0 5.0 0.0 0.0 1.0 0.3
C2 7.60 8.00 8.0 8.0 0.0 0.0 0.6 1.4 7.00 8.00 8.0 8.0 0.0 0.0 11.7 4.9

Q5 C3 6.80 6.80 8.0 8.0 0.0 0.0 0.5 1.1 7.40 7.61 9.0 9.0 0.0 0.0 11.8 19.7
C4 8.60 8.60 10.0 10.0 0.0 0.0 1.9 3.6 7.20 7.55 9.0 9.0 0.0 0.0 9.1 21.4
C5 10.20 11.00 11.0 11.0 0.0 0.0 0.9 0.0 7.80 8.00 8.0 8.0 0.0 0.0 0.5 0.5

I10
C1 3.00 4.00 4.0 4.0 0.0 0.0 0.3 0.1 2.50 3.00 3.0 3.0 0.0 0.0 0.3 0.2
C2 3.80 7.00 7.0 7.0 0.0 0.0 0.4 0.9 3.50 7.00 7.0 7.0 0.0 0.0 0.3 2.3

Q10 C3 3.40 4.00 4.0 4.0 0.0 0.0 0.1 0.1 3.70 7.00 7.0 7.0 0.0 0.0 0.8 2.0
C4 4.30 7.00 7.0 7.0 0.0 0.0 0.3 1.1 3.60 7.00 7.0 7.0 0.0 0.0 0.5 1.8
C5 5.10 7.00 7.0 7.0 0.0 0.0 0.2 0.2 3.90 6.00 6.0 6.0 0.0 0.0 0.4 0.8

C1 21.40 22.00 22.0 22.0 0.0 0.0 1.0 0.9 16.80 17.00 17.0 17.0 0.0 0.0 2.2 2.6
C2 26.40 27.00 27.0 27.0 0.0 0.0 0.7 1.0 20.40 21.00 21.0 21.0 0.0 0.0 3.9 2.8

Q5 C3 25.60 26.00 26.0 26.0 0.0 0.0 0.6 1.0 21.20 22.00 22.0 22.0 0.0 0.0 1.4 2.9
C4 27.00 27.00 27.0 27.0 0.0 0.0 1.3 1.1 23.20 24.00 24.0 24.0 0.0 0.0 1.0 2.6
C5 27.40 28.00 28.0 28.0 0.0 0.0 0.7 1.0 21.40 22.00 22.0 22.0 0.0 0.0 8.6 3.7

C1 10.70 10.70 12.0 12.0 0.0 0.0 2.5 12.2 8.40 9.00 9.0 9.0 0.0 0.0 3.8 4.4
C2 13.20 14.00 14.0 14.0 0.0 0.0 1.6 1.0 10.20 11.00 11.0 11.0 0.0 0.0 8.6 4.3

I30 Q10 C3 12.80 12.80 14.0 14.0 0.0 0.0 4.7 17.6 10.60 11.00 11.0 11.0 0.0 0.0 4.6 4.3
C4 13.50 13.50 15.0 15.0 0.0 0.0 4.5 19.2 11.60 12.00 12.0 12.0 0.0 0.0 20.3 3.1
C5 13.70 13.70 15.0 15.0 0.0 0.0 4.2 15.6 10.70 10.70 12.0 12.0 0.0 0.0 41.5 673.6

C1 3.57 7.00 7.0 7.0 0.0 0.0 0.3 1.6 2.80 6.00 6.0 6.0 0.0 0.0 1.8 3.0
C2 4.40 7.00 7.0 7.0 0.0 0.0 0.2 1.1 3.40 7.00 7.0 7.0 0.0 0.0 1.6 4.0

Q30 C3 4.27 7.00 7.0 7.0 0.0 0.0 0.2 0.9 3.53 7.00 7.0 7.0 0.0 0.0 0.4 2.7
C4 4.50 7.00 7.0 7.0 0.0 0.0 0.2 0.7 3.87 7.00 7.0 7.0 0.0 0.0 0.5 1.3
C5 4.57 7.00 7.0 7.0 0.0 0.0 0.3 0.6 3.57 7.00 7.0 7.0 0.0 0.0 2.5 3.0

C1 42.40 43.00 43.0 43.0 0.0 0.0 1.0 1.5 33.20 34.00 34.0 34.0 0.0 0.0 6.8 4.2
C2 45.00 45.00 45.0 45.0 0.0 0.0 1.2 1.0 37.40 38.00 38.0 38.0 0.0 0.0 3.5 5.9

Q5 C3 47.00 47.00 47.0 47.0 0.0 0.0 3.0 1.0 37.00 37.00 37.0 37.0 0.0 0.0 11.1 2.8
C4 47.40 48.00 48.0 48.0 0.0 0.0 1.8 1.3 36.00 36.00 36.0 36.0 0.0 0.0 15.7 3.2
C5 50.60 51.00 51.0 51.0 0.0 0.0 0.2 1.5 37.80 38.00 38.0 38.0 0.0 0.0 14.6 3.6

C1 21.20 22.00 22.0 22.0 0.0 0.0 1.0 1.0 16.60 17.00 17.0 17.0 0.0 0.0 28.6 3.6
C2 22.50 23.00 23.0 23.0 0.0 0.0 0.6 0.9 18.70 19.00 19.0 19.0 0.0 0.0 13.4 3.7

I50 Q10 C3 23.50 24.00 24.0 24.0 0.0 0.0 1.1 1.5 18.50 19.00 19.0 19.0 0.0 0.0 4.0 3.0
C4 23.70 24.00 24.0 24.0 0.0 0.0 1.1 1.1 18.00 18.00 18.0 18.0 0.0 0.0 17.8 2.7
C5 25.30 26.00 26.0 26.0 0.0 0.0 0.8 0.9 18.90 19.00 19.0 19.0 0.0 0.0 17.6 4.1

C1 4.24 7.00 7.0 7.0 0.0 0.0 0.2 1.1 3.32 7.00 7.0 7.0 0.0 0.0 2.0 2.4
C2 4.50 7.00 7.0 7.0 0.0 0.0 0.2 0.5 3.74 7.00 7.0 7.0 0.0 0.0 1.9 3.4

Q50 C3 4.70 7.00 7.0 7.0 0.0 0.0 0.3 0.5 3.70 7.00 7.0 7.0 0.0 0.0 1.1 2.0
C4 4.74 7.00 7.0 7.0 0.0 0.0 0.2 0.6 3.60 7.00 7.0 7.0 0.0 0.0 1.5 3.0
C5 5.06 7.00 7.0 7.0 0.0 0.0 0.3 0.5 3.78 7.00 7.0 7.0 0.0 0.0 2.0 1.6

Table C.2.4: Branch-and-price results comparison for formulation MP c (β = 1.0).
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Appendix D

Heuristic Algorithm Results

D.1 Detailed relative contribution of each heuristic phase

PS policy
AS policy

Instance
β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP

D_I10_Q5_C1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D_I10_Q5_C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.1 4.8 0.0 25.0 12.5 0.0
D_I10_Q5_C3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0
D_I10_Q5_C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0
D_I10_Q5_C5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I10
D_I10_Q10_C1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0
D_I10_Q10_C2 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 15.8 0.0 0.0 0.0 0.0 0.0
D_I10_Q10_C3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D_I10_Q10_C4 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 10.3 0.0 0.0 0.0 0.0 0.0
D_I10_Q10_C5 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0

D_I30_Q5_C1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 0.0 0.0 4.5 4.5 0.0
D_I30_Q5_C2 6.9 0.0 0.0 3.4 0.0 0.0 6.9 0.0 0.0 21.9 0.9 0.9 3.7 3.7 0.0
D_I30_Q5_C3 3.6 0.0 0.0 3.6 0.0 0.0 3.6 0.0 0.0 14.8 2.8 2.8 3.8 3.8 0.0
D_I30_Q5_C4 6.7 3.3 0.0 6.7 3.3 0.0 6.7 0.0 0.0 23.3 4.3 4.3 11.1 7.4 0.0
D_I30_Q5_C5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0

D_I30_Q10_C1 14.3 7.1 0.0 7.1 0.0 0.0 14.3 0.0 0.0 50.0 3.6 3.6 8.3 0.0 0.0
D_I30_Q10_C2 11.8 5.9 0.0 5.9 0.0 0.0 11.8 5.9 0.0 51.5 3.0 3.0 7.1 7.1 0.0

I30 D_I30_Q10_C3 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 16.7 0.0 0.0 0.0 0.0 0.0
D_I30_Q10_C4 5.6 0.0 0.0 5.6 0.0 0.0 5.6 0.0 0.0 60.3 0.0 0.0 13.3 0.0 0.0
D_I30_Q10_C5 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 10.0 5.0 5.0 0.0 0.0 0.0

D_I30_Q30_C1 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 52.5 0.0 0.0 0.0 0.0 0.0
D_I30_Q30_C2 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 65.0 0.0 0.0 0.0 0.0 0.0
D_I30_Q30_C3 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 45.0 0.0 0.0 0.0 0.0 0.0
D_I30_Q30_C4 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 37.5 25.0 0.0 0.0 0.0 0.0
D_I30_Q30_C5 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 42.5 35.0 0.0 0.0 0.0 0.0

D_I50_Q5_C1 2.3 2.3 0.0 2.3 2.3 0.0 2.3 2.3 0.0 2.3 0.6 0.6 0.0 0.0 0.0
D_I50_Q5_C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.5 0.0 2.2 2.2 0.0
D_I50_Q5_C3 2.0 0.0 0.0 2.0 0.0 0.0 2.0 0.0 0.0 8.2 0.5 0.0 4.3 4.3 0.0
D_I50_Q5_C4 8.0 4.0 0.0 4.0 0.0 0.0 8.0 0.0 0.0 13.3 0.0 0.0 4.2 4.2 0.0
D_I50_Q5_C5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

D_I50_Q10_C1 8.0 4.0 0.0 4.0 0.0 0.0 8.0 0.0 0.0 56.7 2.1 2.1 4.5 4.5 0.0
D_I50_Q10_C2 4.2 0.0 0.0 4.2 0.0 0.0 4.2 0.0 0.0 19.8 0.0 0.0 4.3 4.3 0.0

I50 D_I50_Q10_C3 3.7 0.0 0.0 3.7 0.0 0.0 3.7 0.0 0.0 46.6 3.9 3.9 8.3 8.3 0.0
D_I50_Q10_C4 7.1 3.6 0.0 3.6 0.0 0.0 11.1 7.4 0.0 53.9 0.0 0.0 8.3 8.3 0.0
D_I50_Q10_C5 7.1 3.6 0.0 3.6 0.0 0.0 7.1 3.6 0.0 19.6 4.5 4.5 3.8 3.8 0.0

U_I50_Q50_C1 10.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0 117.5 10.0 0.0 0.0 0.0 0.0
U_I50_Q50_C2 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 67.5 37.5 0.0 0.0 0.0 0.0
U_I50_Q50_C3 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 57.5 25.0 0.0 0.0 0.0 0.0
U_I50_Q50_C4 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 62.5 40.0 0.0 0.0 0.0 0.0
U_I50_Q50_C5 10.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 52.5 35.0 0.0 0.0 0.0 0.0

Table D.1.1: Relative contribution of each heuristic phase (D-instances).
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PS policy
AS policy

Instance
β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP HGG HGLS HGP

U_I10_Q5_C1 14.3 0.0 0.0 14.3 0.0 0.0 14.3 0.0 0.0 34.6 0.0 0.0 0.0 0.0 0.0
U_I10_Q5_C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 12.5 12.5 0.0
U_I10_Q5_C3 8.3 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 23.9 0.0 0.0 0.0 0.0 0.0
U_I10_Q5_C4 15.4 0.0 0.0 15.4 0.0 0.0 15.4 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0
U_I10_Q5_C5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.0

I10
U_I10_Q10_C1 14.3 0.0 0.0 14.3 0.0 0.0 14.3 0.0 0.0 40.9 0.0 0.0 0.0 0.0 0.0
U_I10_Q10_C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U_I10_Q10_C3 8.3 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0
U_I10_Q10_C4 15.4 0.0 0.0 15.4 0.0 0.0 15.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U_I10_Q10_C5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.2 0.0 0.0 0.0 0.0 0.0

U_I30_Q5_C1 11.1 5.6 0.0 5.6 5.6 0.0 11.1 5.6 0.0 27.8 2.8 2.8 5.9 5.9 0.0
U_I30_Q5_C2 9.1 0.0 0.0 9.1 0.0 0.0 9.1 0.0 0.0 68.2 4.7 4.7 4.8 4.8 0.0
U_I30_Q5_C3 9.1 4.5 0.0 9.1 4.5 0.0 9.1 9.1 0.0 23.9 2.3 2.3 4.5 0.0 0.0
U_I30_Q5_C4 4.2 0.0 0.0 8.3 0.0 0.0 8.3 4.2 0.0 24.0 0.0 0.0 0.0 0.0 0.0
U_I30_Q5_C5 4.3 4.3 0.0 13.0 4.3 0.0 4.3 4.3 0.0 50.0 5.6 5.6 4.5 4.5 0.0

U_I30_Q10_C1 16.7 8.3 0.0 8.3 8.3 0.0 16.7 8.3 0.0 41.3 15.2 0.0 22.2 0.0 0.0
U_I30_Q10_C2 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 75.0 7.1 0.0 9.1 9.1 0.0

I30 U_I30_Q10_C3 7.1 0.0 0.0 7.1 0.0 0.0 7.1 7.1 0.0 38.9 1.9 1.9 18.2 9.1 0.0
U_I30_Q10_C4 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 76.8 8.9 5.4 16.7 8.3 0.0
U_I30_Q10_C5 13.3 0.0 0.0 13.3 0.0 0.0 13.3 6.7 0.0 82.5 5.3 5.3 8.3 0.0 0.0

U_I30_Q30_C1 8.3 0.0 0.0 8.3 0.0 0.0 8.3 0.0 0.0 22.7 11.4 0.0 0.0 0.0 0.0
U_I30_Q30_C2 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 57.1 14.3 0.0 0.0 0.0 0.0
U_I30_Q30_C3 7.7 0.0 0.0 7.7 0.0 0.0 7.7 0.0 0.0 33.3 5.9 0.0 0.0 0.0 0.0
U_I30_Q30_C4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.6 10.7 5.4 0.0 0.0 0.0
U_I30_Q30_C5 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 30.4 8.9 5.4 0.0 0.0 0.0

U_I50_Q5_C1 5.9 0.0 0.0 11.8 0.0 0.0 5.9 5.9 0.0 36.8 0.0 0.0 2.9 2.9 0.0
U_I50_Q5_C2 7.9 2.6 0.0 7.9 2.6 0.0 7.9 5.3 0.0 27.0 3.3 3.3 0.0 0.0 0.0
U_I50_Q5_C3 10.8 5.4 2.7 5.3 2.6 0.0 10.5 5.3 0.0 34.5 2.7 0.0 2.7 2.7 0.0
U_I50_Q5_C4 5.6 5.6 2.8 8.1 2.7 0.0 8.1 2.7 0.0 29.9 2.8 0.0 5.6 5.6 0.0
U_I50_Q5_C5 7.9 2.6 0.0 7.9 2.6 0.0 7.9 7.9 0.0 41.4 3.3 0.0 2.6 2.6 0.0

U_I50_Q10_C1 16.7 5.6 0.0 11.1 11.1 0.0 16.7 11.1 0.0 81.9 5.6 0.0 11.8 5.9 0.0
U_I50_Q10_C2 10.0 5.0 0.0 15.0 10.0 0.0 10.0 10.0 0.0 153.8 5.0 5.0 10.5 5.3 0.0

I50 U_I50_Q10_C3 15.0 5.0 0.0 15.0 5.0 0.0 15.0 5.0 0.0 85.0 3.8 3.8 0.0 0.0 0.0
U_I50_Q10_C4 15.0 10.0 0.0 10.0 0.0 0.0 15.0 15.0 0.0 141.0 2.6 2.6 16.7 11.1 0.0
U_I50_Q10_C5 9.5 4.8 0.0 4.8 0.0 0.0 9.5 9.5 0.0 85.4 4.9 0.0 5.3 5.3 0.0

U_I50_Q50_C1 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 50.9 1.8 1.8 0.0 0.0 0.0
U_I50_Q50_C2 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 120.0 11.7 5.0 0.0 0.0 0.0
U_I50_Q50_C3 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 60.3 8.6 0.0 0.0 0.0 0.0
U_I50_Q50_C4 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 96.6 20.3 0.0 0.0 0.0 0.0
U_I50_Q50_C5 6.7 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 88.1 13.6 5.1 0.0 0.0 0.0

Table D.1.2: Relative contribution of each heuristic phase (U-instances).
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D.2 Detailed results for the heuristic algorithm

PS
AS policy

Instance policy
β = 0.2 β = 0.5 β = 0.8 β = 1.0

z Time z e Time z e Time z e Time z e Time

D_I10_Q5_C1 6 2.6 6 0 2.3 6 0 2.0 6 0 1.7 6 0 2.0
D_I10_Q5_C2 12 1.4 12 0 3.3 12 0 3.6 10 2 2.6 8 17 2.3
D_I10_Q5_C3 9 2.5 9 0 2.2 9 0 2.2 8 1 2.3 8 3 1.6
D_I10_Q5_C4 12 1.4 12 0 4.0 12 0 4.1 11 1 3.6 10 47 2.4
D_I10_Q5_C5 12 1.8 12 0 3.2 12 0 3.0 11 2 2.4 11 2 2.4

I10
D_I10_Q10_C1 5 3.5 5 0 1.9 5 0 1.8 5 0 2.0 4 5 2.1
D_I10_Q10_C2 10 2.1 10 0 3.2 10 0 3.5 9 2 2.8 7 72 2.7
D_I10_Q10_C3 5 3.6 5 0 2.0 5 0 2.0 4 3 1.5 4 3 1.5
D_I10_Q10_C4 10 2.0 10 0 3.7 10 0 3.9 9 3 12.8 7 69 2.5
D_I10_Q10_C5 10 3.6 10 0 3.7 10 0 4.0 10 0 5.1 7 51 2.4

D_I30_Q5_C1 23 12.3 23 0 22.9 23 0 31.7 23 0 12.9 22 66 31.1
D_I30_Q5_C2 29 11.0 29 0 54.8 29 0 180.8 28 3 518.0 27 79 26.4
D_I30_Q5_C3 28 6.9 28 0 20.4 28 0 41.7 27 3 487.0 26 43 25.8
D_I30_Q5_C4 30 8.4 30 0 22.8 30 0 38.2 30 1 66.3 27 65 27.6
D_I30_Q5_C5 30 7.2 30 0 22.4 30 0 39.8 29 1 23.4 28 17 26.5

D_I30_Q10_C1 14 12.5 14 0 24.7 14 0 39.7 14 2 35.6 12 144 64.8
D_I30_Q10_C2 17 24.7 17 0 18.3 17 0 51.2 17 0 88.3 14 51 19.8

I30 D_I30_Q10_C3 15 11.4 15 0 19.3 15 0 33.9 15 0 16.1 14 66 23.1
D_I30_Q10_C4 18 17.2 18 0 22.5 18 0 38.7 17 0 51.1 15 56 20.5
D_I30_Q10_C5 15 12.7 15 0 18.9 15 0 37.6 15 3 27.3 15 20 22.5

D_I30_Q30_C1 10 16.6 10 0 27.6 10 0 29.7 10 0 29.8 7 207 56.8
D_I30_Q30_C2 10 16.5 10 0 19.0 10 0 29.5 10 0 41.1 7 126 21.6
D_I30_Q30_C3 10 9.8 10 0 21.0 10 0 29.3 10 0 30.7 7 234 21.6
D_I30_Q30_C4 10 11.4 10 0 26.2 10 0 29.7 10 0 43.4 7 177 21.2
D_I30_Q30_C5 10 14.3 10 0 27.7 10 0 27.2 10 0 37.4 7 255 20.9

D_I50_Q5_C1 44 17.6 44 0 12.2 44 0 47.3 44 0 40.3 43 95 41.0
D_I50_Q5_C2 47 17.9 47 0 13.8 47 0 18.4 46 2 41.7 45 135 50.8
D_I50_Q5_C3 49 52.8 49 0 31.5 49 0 57.5 48 2 69.6 47 117 50.8
D_I50_Q5_C4 50 24.0 50 0 56.6 50 0 95.9 49 0 77.9 48 104 39.1
D_I50_Q5_C5 52 39.1 52 0 27.3 52 0 46.9 51 1 61.3 51 2 43.9

D_I50_Q10_C1 25 57.1 25 0 47.1 25 0 65.6 24 3 20.3 22 138 37.1
D_I50_Q10_C2 24 72.5 24 0 64.7 24 0 64.3 24 0 68.2 23 123 43.6

I50 D_I50_Q10_C3 27 58.4 27 0 58.5 27 0 54.9 26 3 139.2 24 100 62.9
D_I50_Q10_C4 28 41.8 28 0 66.3 27 0 47.7 25 2 52.2 24 17 44.5
D_I50_Q10_C5 28 52.4 28 0 48.7 28 0 50.4 29 1 165.5 26 107 34.2

U_I50_Q50_C1 10 60.4 10 0 29.1 10 0 68.4 10 0 58.0 7 360 72.4
U_I50_Q50_C2 10 76.6 10 0 20.8 10 0 83.0 10 0 81.4 7 273 70.1
U_I50_Q50_C3 10 59.5 10 0 29.8 10 0 64.1 10 0 67.7 7 201 63.7
U_I50_Q50_C4 10 43.5 10 0 19.9 10 0 68.3 10 0 75.8 7 279 52.7
U_I50_Q50_C5 10 53.8 10 0 19.0 10 0 80.9 10 0 46.7 7 243 54.5

Table D.2.1: Heuristic results for the P-MSSP and A-MSSP (D-instances).
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PS
AS policy

Instance policy
β = 0.2 β = 0.5 β = 0.8 β = 1.0

z Time z e Time z e Time z e Time z e Time

U_I10_Q5_C1 7 1.6 7 0 3.0 7 0 3.4 6 2 1.9 5 15 1.7
U_I10_Q5_C2 13 1.6 13 0 3.6 13 0 3.6 11 1 2.6 8 52 2.2
U_I10_Q5_C3 12 2.5 12 0 3.3 12 0 3.5 11 2 4.2 9 28 2.2
U_I10_Q5_C4 13 1.6 13 0 3.4 13 0 3.9 11 3 3.1 9 25 2.2
U_I10_Q5_C5 10 1.9 10 0 2.8 10 0 3.2 10 0 3.0 8 19 2.1

I10
U_I10_Q10_C1 7 4.6 7 0 2.8 7 0 2.8 5 2 2.5 3 27 1.7
U_I10_Q10_C2 13 2.5 13 0 4.1 13 0 4.2 11 1 3.3 7 51 2.8
U_I10_Q10_C3 12 4.1 12 0 3.9 12 0 4.2 11 0 4.0 7 34 2.7
U_I10_Q10_C4 13 2.4 13 0 4.0 13 0 4.5 11 3 3.4 7 35 2.7
U_I10_Q10_C5 10 5.3 10 0 3.1 10 0 3.7 9 2 15.9 6 22 2.4

U_I30_Q5_C1 18 7.4 18 0 16.8 18 0 47.6 18 2 33.7 17 59 25.4
U_I30_Q5_C2 22 8.1 22 0 94.1 22 0 107.8 22 1 129.0 21 83 28.9
U_I30_Q5_C3 22 9.6 22 0 21.1 22 0 44.3 22 2 54.0 22 76 56.5
U_I30_Q5_C4 24 17.4 24 0 22.3 24 0 44.6 24 0 29.9 24 23 33.5
U_I30_Q5_C5 23 5.1 23 0 84.0 23 0 47.0 23 3 46.9 22 81 36.3

U_I30_Q10_C1 12 16.8 12 0 24.8 12 0 57.2 11 2 55.9 9 69 51.6
U_I30_Q10_C2 15 49.0 15 0 15.8 15 0 61.8 14 0 32.7 11 99 20.7

I30 U_I30_Q10_C3 14 22.4 14 0 21.2 14 0 37.0 13 3 29.2 11 65 23.1
U_I30_Q10_C4 15 75.4 15 0 19.5 15 0 124.7 14 3 22.5 12 67 27.5
U_I30_Q10_C5 15 48.8 15 0 19.8 15 0 51.9 15 0 29.4 12 84 26.1

U_I30_Q30_C1 12 17.5 12 0 36.1 12 0 96.6 11 0 76.4 6 173 28.6
U_I30_Q30_C2 15 22.7 15 0 17.0 15 0 43.7 14 0 31.0 7 157 37.0
U_I30_Q30_C3 13 24.1 13 0 31.0 13 0 54.3 12 3 45.5 7 167 65.4
U_I30_Q30_C4 15 17.1 15 0 17.0 15 0 48.9 14 3 27.8 7 145 54.8
U_I30_Q30_C5 15 52.8 15 0 16.2 15 0 40.2 14 3 33.2 7 129 59.1

U_I50_Q5_C1 34 51.8 34 0 201.4 34 0 70.0 34 0 10.7 34 103 74.9
U_I50_Q5_C2 38 75.8 38 0 70.0 38 0 71.6 39 1 8.4 38 41 44.0
U_I50_Q5_C3 38 52.8 38 0 84.4 38 0 121.0 37 0 8.5 37 156 51.1
U_I50_Q5_C4 37 24.0 37 0 104.1 37 0 89.6 36 0 6.9 36 78 40.5
U_I50_Q5_C5 38 39.1 38 0 83.1 38 0 61.7 38 0 12.7 38 151 47.4

U_I50_Q10_C1 18 57.6 18 0 45.9 18 0 54.0 18 0 168.7 17 63 72.1
U_I50_Q10_C2 20 95.3 20 0 86.5 20 0 58.4 21 0 184.2 19 123 57.3

I50 U_I50_Q10_C3 20 70.4 20 0 86.7 20 0 108.7 20 3 135.1 19 72 67.5
U_I50_Q10_C4 20 58.5 20 0 47.0 20 0 55.3 20 0 154.4 18 139 42.4
U_I50_Q10_C5 21 96.4 21 0 75.6 21 0 51.9 20 2 118.4 19 93 71.4

U_I50_Q50_C1 15 61.9 15 0 39.7 15 0 162.8 14 2 138.1 7 159 101.3
U_I50_Q50_C2 15 64.3 15 0 41.4 15 0 100.8 15 3 155.8 7 252 71.1
U_I50_Q50_C3 15 47.4 15 0 42.7 15 0 230.4 14 2 293.5 7 234 136.5
U_I50_Q50_C4 15 40.1 15 0 42.2 15 0 349.8 14 3 190.0 7 212 196.0
U_I50_Q50_C5 15 67.6 15 0 42.1 15 0 253.1 15 2 318.5 7 197 147.6

Table D.2.2: Heuristic results for the P-MSSP and A-MSSP (U-instances).
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D.3 Heuristic algorithm comparison for the P-MSSP

Sparse formulations Dense formulations

Instance PS PSc PD PDc

HGap HTime HGap HTime HGap HTime HGap HTime

D_I10_Q5_C1 0.0 2.1 0.0 2.5 0.0 2.5 0.0 2.5
D_I10_Q5_C2 0.0 0.4 0.0 1.1 0.0 1.2 0.0 1.3
D_I10_Q5_C3 0.0 1.4 0.0 2.3 0.0 2.4 0.0 2.4
D_I10_Q5_C4 0.0 0.6 0.0 1.2 0.0 1.4 0.0 1.3
D_I10_Q5_C5 0.0 1.1 0.0 1.5 0.0 1.8 0.0 1.7

I10
D_I10_Q10_C1 0.0 3.3 0.0 3.4 0.0 3.2 0.0 3.4
D_I10_Q10_C2 0.0 2.0 0.0 1.8 0.0 2.0 0.0 1.8
D_I10_Q10_C3 0.0 3.3 0.0 3.5 0.0 3.3 0.0 3.5
D_I10_Q10_C4 0.0 1.9 0.0 1.9 0.0 1.8 0.0 1.9
D_I10_Q10_C5 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.5

D_I30_Q5_C1 0.0 -804.9 0.0 3.7 0.0 10.2 0.0 11.2
D_I30_Q5_C2 0.0 -1539.4 0.0 2.4 0.0 9.2 0.0 10.1
D_I30_Q5_C3 0.0 -1165.0 0.0 -1.3 0.0 5.6 0.0 5.9
D_I30_Q5_C4 0.0 -2219.5 0.0 -5.2 0.0 1.2 0.0 5.8
D_I30_Q5_C5 0.0 -2063.6 0.0 -9.9 0.0 3.9 0.0 5.6

D_I30_Q10_C1 0.0 8.0 0.0 11.9 0.0 12.2 0.0 12.2
D_I30_Q10_C2 0.0 -11.0 0.0 24.1 0.0 24.4 0.0 24.6

I30 D_I30_Q10_C3 0.0 5.6 0.0 11.2 0.0 11.3 0.0 11.4
D_I30_Q10_C4 0.0 -30.0 0.0 16.1 0.0 16.8 0.0 17.1
D_I30_Q10_C5 0.0 10.1 0.0 12.5 0.0 12.6 0.0 12.6

D_I30_Q30_C1 0.0 16.3 0.0 16.4 0.0 16.4 0.0 16.3
D_I30_Q30_C2 0.0 16.3 0.0 16.3 0.0 16.3 0.0 16.3
D_I30_Q30_C3 0.0 9.7 0.0 9.7 0.0 9.7 0.0 9.8
D_I30_Q30_C4 0.0 11.3 0.0 11.3 0.0 11.3 0.0 11.4
D_I30_Q30_C5 0.0 14.3 0.0 14.3 0.0 14.2 0.0 14.3

D_I50_Q5_C1 -2.3 -3584.1 0.0 -339.1 0.0 -906.1 0.0 -26.4
D_I50_Q5_C2 0.0 -3584.4 0.0 -306.2 0.0 -834.6 0.0 2.8
D_I50_Q5_C3 0.0 -3549.3 0.0 -83.6 0.0 40.4 0.0 49.1
D_I50_Q5_C4 0.0 -3577.9 0.0 -72.8 0.0 -0.1 0.0 15.3
D_I50_Q5_C5 0.0 -3562.7 0.0 -1.1 0.0 15.8 0.0 35.6

D_I50_Q10_C1 0.0 -1547.4 0.0 49.1 0.0 52.0 0.0 55.4
D_I50_Q10_C2 0.0 -361.1 0.0 70.2 0.0 72.0 0.0 72.4

I50 D_I50_Q10_C3 0.0 -989.6 0.0 54.8 0.0 56.5 0.0 58.0
D_I50_Q10_C4 0.0 -3559.1 0.0 33.9 0.0 39.5 0.0 40.6
D_I50_Q10_C5 0.0 -180.1 0.0 50.0 0.0 51.9 0.0 52.2

D_I50_Q50_C1 0.0 60.3 0.0 60.3 0.0 60.2 0.0 60.3
D_I50_Q50_C2 0.0 76.5 0.0 76.5 0.0 76.4 0.0 76.5
D_I50_Q50_C3 0.0 59.3 0.0 59.2 0.0 59.3 0.0 59.2
D_I50_Q50_C4 0.0 43.4 0.0 43.4 0.0 43.3 0.0 43.5
D_I50_Q50_C5 0.0 53.6 0.0 53.7 0.0 53.6 0.0 53.7

Table D.3.1: Heuristic comparison for the P-MSSP formulations (D-instances).
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Sparse formulations Dense formulations

Instance PS PSc PD PDc

HGap HTime HGap HTime HGap HTime HGap HTime

U_I10_Q5_C1 0.0 1.0 0.0 1.0 0.0 1.3 0.0 1.4
U_I10_Q5_C2 0.0 0.9 0.0 0.6 0.0 1.5 0.0 1.5
U_I10_Q5_C3 0.0 2.0 0.0 2.0 0.0 2.4 0.0 2.3
U_I10_Q5_C4 0.0 1.1 0.0 0.7 0.0 1.5 0.0 1.4
U_I10_Q5_C5 0.0 1.5 0.0 1.6 0.0 1.8 0.0 1.9

I10
U_I10_Q10_C1 0.0 4.4 0.0 4.5 0.0 4.4 0.0 4.4
U_I10_Q10_C2 0.0 2.4 0.0 2.4 0.0 2.4 0.0 2.4
U_I10_Q10_C3 0.0 3.8 0.0 3.8 0.0 3.9 0.0 3.8
U_I10_Q10_C4 0.0 2.3 0.0 2.3 0.0 2.3 0.0 2.3
U_I10_Q10_C5 0.0 5.1 0.0 5.1 0.0 5.3 0.0 5.2

U_I30_Q5_C1 0.0 -103.6 0.0 -7.3 0.0 6.0 0.0 6.7
U_I30_Q5_C2 0.0 -847.5 0.0 -89.4 0.0 2.6 0.0 3.4
U_I30_Q5_C3 0.0 -112.4 0.0 -30.5 0.0 7.9 0.0 5.9
U_I30_Q5_C4 0.0 -111.0 0.0 11.6 0.0 16.9 0.0 17.3
U_I30_Q5_C5 0.0 -399.8 0.0 -41.6 0.0 2.6 0.0 3.7

U_I30_Q10_C1 0.0 10.8 0.0 13.5 0.0 16.7 0.0 16.7
U_I30_Q10_C2 0.0 30.9 0.0 47.7 0.0 48.7 0.0 48.8

I30 U_I30_Q10_C3 0.0 11.0 0.0 21.1 0.0 22.2 0.0 22.1
U_I30_Q10_C4 0.0 64.6 0.0 74.2 0.0 75.1 0.0 75.1
U_I30_Q10_C5 0.0 38.7 0.0 46.8 0.0 48.5 0.0 48.3

U_I30_Q30_C1 0.0 17.2 0.0 17.2 0.0 17.0 0.0 17.2
U_I30_Q30_C2 0.0 22.5 0.0 22.6 0.0 22.3 0.0 22.5
U_I30_Q30_C3 0.0 23.9 0.0 23.9 0.0 23.7 0.0 24.0
U_I30_Q30_C4 0.0 16.9 0.0 16.8 0.0 16.9 0.0 16.8
U_I30_Q30_C5 0.0 52.5 0.0 52.7 0.0 52.6 0.0 52.7

U_I50_Q5_C1 0.0 -70.6 0.0 26.5 0.0 49.4 0.0 51.1
U_I50_Q5_C2 0.0 -775.5 0.0 51.2 0.0 73.9 0.0 74.6
U_I50_Q5_C3 0.0 -3547.3 0.0 -3548.0 2.6 -17.9 2.6 37.8
U_I50_Q5_C4 0.0 -3576.0 0.0 -3576.2 2.7 -5.7 2.7 -371.9
U_I50_Q5_C5 -2.6 -3562.9 0.0 -68.9 0.0 19.7 0.0 35.4

U_I50_Q10_C1 0.0 -101.5 0.0 43.6 0.0 56.9 0.0 56.8
U_I50_Q10_C2 0.0 -474.4 0.0 73.3 0.0 92.1 0.0 93.9

I50 U_I50_Q10_C3 0.0 -155.8 0.0 50.1 0.0 69.5 0.0 69.5
U_I50_Q10_C4 0.0 -269.6 0.0 40.2 0.0 55.1 0.0 57.2
U_I50_Q10_C5 0.0 -434.3 0.0 36.6 0.0 92.1 0.0 94.7

U_I50_Q50_C1 0.0 61.5 0.0 61.6 0.0 61.5 0.0 61.7
U_I50_Q50_C2 0.0 64.0 0.0 64.2 0.0 63.8 0.0 64.2
U_I50_Q50_C3 0.0 47.0 0.0 47.1 0.0 47.0 0.0 47.3
U_I50_Q50_C4 0.0 39.6 0.0 39.9 0.0 39.8 0.0 39.9
U_I50_Q50_C5 0.0 67.1 0.0 67.5 0.0 67.1 0.0 67.5

Table D.3.2: Heuristic comparison for the P-MSSP formulations (U-instances).
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D.4 Heuristic algorithm comparison for the A-MSSP

AS ASc

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0 β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime

D_I10_Q5_C1 0.0 2.1 0.0 0.9 0.0 0.8 0.0 0.9 0.0 2.2 0.0 1.0 0.0 1.0 0.0 1.0
D_I10_Q5_C2 0.0 2.4 0.0 0.5 0.0 -0.4 0.0 -0.2 0.0 2.6 0.0 0.9 0.0 0.7 0.0 0.8
D_I10_Q5_C3 0.0 1.2 0.0 0.3 0.0 -0.6 0.0 -1.0 0.0 1.9 0.0 0.8 0.0 0.9 0.0 0.7
D_I10_Q5_C4 0.0 3.0 0.0 0.6 0.0 -0.3 0.0 -0.5 0.0 3.4 0.0 0.9 0.0 0.5 0.0 0.2
D_I10_Q5_C5 0.0 2.6 0.0 0.7 0.0 0.3 0.0 0.7 0.0 2.9 0.0 0.9 0.0 0.7 0.0 0.6

I10
D_I10_Q10_C1 0.0 1.6 0.0 1.4 0.0 1.3 0.0 1.5 0.0 1.8 0.0 1.6 0.0 1.8 0.0 1.9
D_I10_Q10_C2 0.0 2.9 0.0 3.0 0.0 0.9 0.0 0.6 0.0 2.6 0.0 3.3 0.0 2.2 0.0 2.3
D_I10_Q10_C3 0.0 1.7 0.0 1.6 0.0 1.0 0.0 1.2 0.0 1.8 0.0 1.7 0.0 1.2 0.0 1.4
D_I10_Q10_C4 0.0 3.3 0.0 3.4 0.0 11.3 0.0 2.0 0.0 3.5 0.0 3.6 0.0 12.2 0.0 2.2
D_I10_Q10_C5 0.0 3.5 0.0 3.6 0.0 3.1 0.0 1.9 0.0 3.6 0.0 3.5 0.0 3.9 0.0 2.2

D_I30_Q5_C1 0.0 -1535.8 0.0 -1644.5 0.0 -3587.9 0.0 -117.3 0.0 5.3 0.0 19.2 0.0 -358.3 0.0 30.2
D_I30_Q5_C2 0.0 -3546.9 0.0 -3420.7 0.9 -3084.4 0.0 11.6 0.0 42.7 0.0 164.3 0.9 381.6 0.0 25.8
D_I30_Q5_C3 0.0 -2359.7 0.0 -3560.8 2.8 -3115.6 0.0 -194.5 0.0 -0.0 0.0 14.9 2.8 472.9 0.0 25.2
D_I30_Q5_C4 -3.2 -3578.6 0.0 -3564.7 4.3 -3540.3 0.0 -67.0 0.0 3.7 0.0 15.9 4.3 -15.8 0.0 26.4
D_I30_Q5_C5 0.0 -1897.7 0.0 -3562.7 0.0 -3581.2 0.0 19.7 0.0 5.7 0.0 -6.2 0.0 -54.0 0.0 25.8

D_I30_Q10_C1 0.0 12.2 0.0 9.0 3.6 -542.5 0.0 -1603.9 0.0 23.9 0.0 38.5 3.6 30.7 0.0 62.3
D_I30_Q10_C2 0.0 -47.4 0.0 -224.1 3.0 -1536.3 0.0 -335.8 0.0 16.8 0.0 50.0 3.0 83.3 0.0 18.2

I30 D_I30_Q10_C3 0.0 -6.3 0.0 -49.5 0.0 -476.7 0.0 -3582.2 0.0 18.6 0.0 32.9 0.0 14.0 0.0 18.3
D_I30_Q10_C4 0.0 -153.7 0.0 -699.2 0.0 -3552.1 0.0 -3579.6 0.0 18.8 0.0 34.6 0.0 42.5 0.0 16.0
D_I30_Q10_C5 0.0 11.5 0.0 4.9 5.0 -343.0 0.0 -3579.7 0.0 18.0 0.0 36.8 5.0 26.7 0.0 18.3

D_I30_Q30_C1 0.0 26.4 0.0 26.7 0.0 20.4 0.0 51.1 0.0 27.1 0.0 29.2 0.0 29.5 0.0 56.5
D_I30_Q30_C2 0.0 18.2 0.0 28.0 0.0 31.0 0.0 17.9 0.0 18.9 0.0 29.4 0.0 40.9 0.0 21.4
D_I30_Q30_C3 0.0 20.3 0.0 26.5 0.0 23.5 0.0 16.7 0.0 20.8 0.0 29.1 0.0 30.6 0.0 21.4
D_I30_Q30_C4 0.0 25.3 0.0 28.2 0.0 36.0 0.0 18.0 0.0 26.0 0.0 29.4 0.0 43.3 0.0 21.0
D_I30_Q30_C5 0.0 26.8 0.0 24.9 0.0 29.1 0.0 14.7 0.0 27.6 0.0 27.0 0.0 37.1 0.0 20.6

D_I50_Q5_C1 -2.2 -3589.5 -2.2 -3553.2 0.6 -3560.8 0.0 -56.7 0.0 -1985.0 0.0 -1555.3 0.6 -2580.4 0.0 40.1
D_I50_Q5_C2 0.0 -3588.5 0.0 -3585.8 -0.5 -3559.5 0.0 -602.6 0.0 -1212.5 0.0 -1594.3 0.0 -3558.6 0.0 49.6
D_I50_Q5_C3 0.0 -3570.7 0.0 -3546.2 -0.5 -3533.1 0.0 -43.0 0.0 -149.0 0.0 -169.7 0.0 -1207.3 0.0 47.9
D_I50_Q5_C4 0.0 -3543.7 0.0 -3507.9 0.0 -3526.2 0.0 -74.1 0.0 -141.5 0.0 -236.4 0.0 -1140.9 0.0 37.2
D_I50_Q5_C5 0.0 -3575.0 0.0 -3556.1 0.0 -3539.7 0.0 -72.1 0.0 -40.0 0.0 -109.5 0.0 -149.3 0.0 43.7

D_I50_Q10_C1 0.0 -3553.9 0.0 -3536.1 2.1 -3580.9 0.0 -14.0 0.0 30.9 0.0 42.6 2.1 -30.3 0.0 36.0
D_I50_Q10_C2 0.0 -2416.9 0.0 -1838.7 0.0 -3534.9 0.0 -3.4 0.0 62.9 0.0 61.1 0.0 57.8 0.0 43.0

I50 D_I50_Q10_C3 0.0 -409.1 0.0 -3545.2 3.9 -3464.7 0.0 -158.2 0.0 52.5 0.0 40.8 3.9 127.9 0.0 61.9
D_I50_Q10_C4 0.0 -3535.3 0.0 -3555.2 0.0 -3550.5 0.0 -224.8 0.0 54.8 0.0 28.4 0.0 36.6 0.0 43.4
D_I50_Q10_C5 0.0 -2828.6 0.0 -3551.6 4.5 -3436.8 0.0 -98.8 0.0 43.2 0.0 43.6 4.5 147.8 0.0 33.4

D_I50_Q50_C1 0.0 27.8 0.0 64.9 0.0 44.2 0.0 59.6 0.0 28.9 0.0 68.2 0.0 57.6 0.0 72.2
D_I50_Q50_C2 0.0 19.4 0.0 80.4 0.0 64.8 0.0 61.4 0.0 20.6 0.0 82.7 0.0 81.0 0.0 70.0
D_I50_Q50_C3 0.0 28.5 0.0 61.5 0.0 46.8 0.0 54.5 0.0 29.6 0.0 63.9 0.0 67.4 0.0 63.4
D_I50_Q50_C4 0.0 17.9 0.0 65.6 0.0 61.2 0.0 43.5 0.0 19.6 0.0 68.2 0.0 75.4 0.0 52.5
D_I50_Q50_C5 0.0 17.1 0.0 78.9 0.0 29.1 0.0 49.9 0.0 18.9 0.0 80.7 0.0 46.2 0.0 54.2

Table D.4.1: Summary heuristic comparison for the A-MSSP formulations (D-instances).
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AS ASc

Instance β = 0.2 β = 0.5 β = 0.8 β = 1.0 β = 0.2 β = 0.5 β = 0.8 β = 1.0

HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime HGap HTime

U_I10_Q5_C1 0.0 1.7 0.0 0.2 0.0 -0.8 0.0 0.8 0.0 2.1 0.0 0.8 0.0 0.1 0.0 0.4
U_I10_Q5_C2 0.0 2.0 0.0 -0.2 0.0 -0.8 0.0 -0.8 0.0 1.5 0.0 -0.0 0.0 -0.8 0.0 -0.8
U_I10_Q5_C3 0.0 1.9 0.0 0.5 0.0 -0.9 0.0 -0.7 0.0 2.2 0.0 0.6 0.0 -0.7 0.0 -0.8
U_I10_Q5_C4 0.0 2.2 0.0 -0.4 0.0 -0.9 0.0 -0.7 0.0 2.4 0.0 0.1 0.0 -0.8 0.0 -0.8
U_I10_Q5_C5 0.0 2.0 0.0 0.4 0.0 -0.6 0.0 -0.0 0.0 2.2 0.0 0.5 0.0 -0.0 0.0 0.8

I10
U_I10_Q10_C1 0.0 2.2 0.0 1.7 0.0 -0.1 0.0 1.5 0.0 2.4 0.0 2.1 0.0 1.9 0.0 1.4
U_I10_Q10_C2 0.0 3.5 0.0 1.6 0.0 -6.1 0.0 1.5 0.0 3.0 0.0 1.9 0.0 -1.6 0.0 2.5
U_I10_Q10_C3 0.0 3.3 0.0 2.9 0.0 -0.3 0.0 1.6 0.0 3.2 0.0 3.4 0.0 2.1 0.0 1.9
U_I10_Q10_C4 0.0 3.0 0.0 2.8 0.0 -4.7 0.0 1.8 0.0 0.8 0.0 3.0 0.0 -7.8 0.0 2.2
U_I10_Q10_C5 0.0 2.6 0.0 2.6 0.0 10.4 0.0 0.5 0.0 2.7 0.0 3.0 0.0 14.8 0.0 2.0

U_I30_Q5_C1 0.0 -209.1 0.0 -493.4 2.8 -3566.5 0.0 20.2 0.0 -3.1 0.0 17.6 2.8 -344.4 0.0 23.2
U_I30_Q5_C2 0.0 -1844.6 0.0 -1990.5 4.7 -3482.2 0.0 21.7 0.0 -132.9 0.0 -249.4 4.7 -592.0 0.0 25.1
U_I30_Q5_C3 0.0 -549.3 0.0 -889.2 2.3 -3549.2 0.0 31.8 0.0 -95.3 0.0 -41.5 2.3 -851.5 0.0 55.1
U_I30_Q5_C4 0.0 -385.6 0.0 -404.7 0.0 -3574.5 0.0 -79.9 0.0 2.0 0.0 37.2 0.0 -92.6 0.0 32.5
U_I30_Q5_C5 0.0 -167.1 0.0 -1476.5 5.6 -3554.1 0.0 25.3 0.0 7.4 0.0 -24.6 5.6 -350.1 0.0 27.7

U_I30_Q10_C1 0.0 -3.2 0.0 -22.6 0.0 -805.9 0.0 -69.1 0.0 19.1 0.0 48.9 0.0 31.1 0.0 47.8
U_I30_Q10_C2 0.0 -61.0 0.0 -264.5 0.0 -1250.5 0.0 -199.3 0.0 4.3 0.0 43.3 0.0 -5.1 0.0 12.1

I30 U_I30_Q10_C3 0.0 -16.1 0.0 -247.0 1.9 -1157.2 0.0 -501.5 0.0 13.7 0.0 31.1 1.9 3.4 0.0 18.4
U_I30_Q10_C4 0.0 -21.7 0.0 -274.2 5.4 -734.5 0.0 -230.1 0.0 16.8 0.0 122.4 5.4 14.6 0.0 7.2
U_I30_Q10_C5 0.0 -47.8 0.0 -162.9 5.3 -1234.3 0.0 -1673.9 0.0 15.1 0.0 43.3 5.3 -1.6 0.0 -15.4

U_I30_Q30_C1 0.0 32.1 0.0 42.1 0.0 -177.9 0.0 22.6 0.0 34.7 0.0 95.1 0.0 62.5 0.0 26.8
U_I30_Q30_C2 0.0 12.1 0.0 -59.0 0.0 -540.0 0.0 26.6 0.0 15.7 0.0 42.1 0.0 9.0 0.0 35.3
U_I30_Q30_C3 0.0 27.4 0.0 45.1 0.0 -504.2 0.0 60.2 0.0 30.4 0.0 53.2 0.0 28.9 0.0 65.1
U_I30_Q30_C4 0.0 13.5 0.0 36.8 5.4 -251.1 0.0 47.1 0.0 16.5 0.0 47.7 5.4 21.5 0.0 54.3
U_I30_Q30_C5 0.0 12.1 0.0 -35.2 5.4 -363.2 0.0 48.1 0.0 15.5 0.0 38.4 5.4 14.0 0.0 56.6

U_I50_Q5_C1 0.0 -461.2 0.0 -741.7 0.0 -3590.5 0.0 -95.7 0.0 187.3 0.0 28.1 0.0 -3590.3 0.0 68.1
U_I50_Q5_C2 0.0 -1602.0 0.0 -1492.8 3.3 -3591.8 0.0 -13.8 0.0 -15.7 0.0 -65.5 3.3 -3592.2 0.0 40.5
U_I50_Q5_C3 0.0 -3515.9 0.0 -3479.1 -2.6 -3598.6 0.0 -205.8 0.0 -3515.9 0.0 -3479.1 0.0 -622.5 0.0 40.0
U_I50_Q5_C4 0.0 -3496.0 0.0 -3511.4 -2.7 -3593.3 0.0 -62.5 0.0 -3496.3 0.0 -3510.9 0.0 -466.2 0.0 24.8
U_I50_Q5_C5 -2.6 -3520.6 0.0 -2463.8 -0.7 -3587.5 0.0 -79.0 0.0 -914.7 0.0 -353.2 0.0 -614.0 0.0 32.8

U_I50_Q10_C1 0.0 -562.8 0.0 -924.4 0.0 -2484.4 0.0 -927.7 0.0 27.1 0.0 5.9 0.0 117.0 0.0 43.5
U_I50_Q10_C2 0.0 -1362.1 0.0 -3502.9 5.0 -3416.1 0.0 -833.5 0.0 17.1 0.0 -57.1 5.0 -2.2 0.0 43.8

I50 U_I50_Q10_C3 0.0 -554.8 0.0 -1413.3 3.8 -3465.4 0.0 -204.0 0.0 50.6 0.0 63.1 3.8 -125.7 0.0 63.4
U_I50_Q10_C4 0.0 -1346.8 0.0 -2290.2 2.6 -3446.0 0.0 -694.3 0.0 25.4 0.0 28.3 2.6 17.7 0.0 24.5
U_I50_Q10_C5 0.0 -1251.7 0.0 -2559.1 -2.4 -3482.3 0.0 -327.6 0.0 -15.3 0.0 -44.2 0.0 -251.0 0.0 53.8

U_I50_Q50_C1 0.0 29.3 0.0 124.0 1.8 -913.0 0.0 81.1 0.0 38.4 0.0 159.5 1.8 124.4 0.0 99.2
U_I50_Q50_C2 0.0 31.2 0.0 45.3 5.0 -2312.0 0.0 47.4 0.0 39.9 0.0 96.9 5.0 143.5 0.0 69.2
U_I50_Q50_C3 0.0 33.4 0.0 63.1 0.0 -528.1 0.0 121.4 0.0 40.8 0.0 226.9 0.0 284.1 0.0 135.4
U_I50_Q50_C4 0.0 31.0 0.0 280.2 0.0 -1631.6 0.0 181.3 0.0 40.2 0.0 345.9 0.0 170.4 0.0 194.6
U_I50_Q50_C5 0.0 31.7 0.0 220.4 5.1 -862.7 0.0 122.1 0.0 40.1 0.0 249.5 5.1 309.6 0.0 145.6

Table D.4.2: Summary heuristic comparison for the A-MSSP formulations (U-instances).
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