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a b s t r a c t

Real-life planning problems are often complicated by the occurrence of disturbances, which imply that

the original plan cannot be followed anymore and some recovery action must be taken to cope with

the disturbance. In such a situation it is worthwhile to arm yourself against possible disturbances by

including recourse actions in your planning strategy. Well-known approaches to create plans that take

possible, common disturbances into account are robust optimization and stochastic programming. More

recently, another approach has been developed that combines the best of these two: recoverable robust-

ness. In this paper, we solve recoverable robust optimization problems by the technique of branch-and-

price. We consider two types of decomposition approaches: separate recovery and combined recovery.

We will show that with respect to the value of the LP-relaxation combined recovery dominates separate

recovery. We investigate our approach for two example problems: the size robust knapsack problem, in

which the knapsack size may get reduced, and the demand robust shortest path problem, in which the

sink is uncertain and the cost of edges may increase. For each problem, we present elaborate computa-

tional experiments. We think that our approach is very promising and can be generalized to many other

problems.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Most optimization algorithms rely on the assumption that all

nput data are deterministic and known in advance. However, in

any practical optimization problems, such as planning in pub-

ic transportation or health care, data may be subject to changes.

o deal with this uncertainty, different approaches have been de-

eloped. In case of robust optimization (see Ben-Tal, Ghaoui, and

emirovski (2009); Bertsimas and Sim (2004)) we choose the so-

ution with minimum cost that remains feasible for a given set

f disturbances in the parameters. In case of stochastic program-

ing (Birge & Louveaux, 1997), we take first stage decisions on basis

f the current information and, after the true value of the uncer-

ain data has been revealed, we take the second stage or recourse

ecisions. The objective here is to minimize the cost of the first

tage decisions plus the expected cost of the recourse decisions.

he recourse decision variables may be restricted to a polyhedron
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hrough the so-called technology matrix (Birge & Louveaux, 1997).

ummarized, robust optimization wants the initial solution to be

ompletely immune for a predefined set of disturbances, while

tochastic programming includes a lot of options to postpone deci-

ions to a later stage or change decisions in a later stage.

Recently, the notion of recoverable robustness (Liebchen,

übbecke, Möhring, & Stiller, 2009) has been developed, which

ombines robust optimization and second-stage recovery options.

ecoverable robust optimization computes solutions, which for a

iven set of scenarios can be recovered to a feasible solution ac-

ording to a set of pre-described, fast, and simple recovery algo-

ithms. The main difference between recoverable robustness and

tochastic programming is the way in which recourse actions are

imited. The property of recoverable robustness that recourse ac-

ions must be achieved by applying a simple algorithm instead of

eing bounded by a polyhedron makes this approach very suitable

or combinatorial problems. As an example, consider the planning

f buses and drivers in a large city. We may expect that during

ush hours buses may be delayed, and hence may be too late to

erform the next trip in their schedule. In case of robust optimiza-

ion, we can counter this only by making the time between two

onsecutive trips larger than the maximum delay that we want to
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take into account. This may lead to a very conservative schedule.

In case of recoverable robustness, we are allowed to change, if nec-

essary, the bus schedule, but this is limited by the choice of the

recovery algorithm. For example, we may schedule a given num-

ber of stand-by drivers and buses, which can take over the trip of

a delayed driver/bus combination. Especially in the area of railway

optimization recoverable robust optimization methods have gained

a lot of attention (see e.g. Caprara, Galli, Kroon, Maróti, and Toth

(2010); Cicerone et al. (2009)).

In this paper we present a Branch-and-Price approach for solv-

ing recoverable robust optimization problems. We present two

new types of solution approaches: Separate Recovery Decomposi-

tion (SRD) and Combined Recovery Decomposition (CRD). These ap-

proaches can be used to model many problems; we will test them

on the size robust knapsack problem and on the demand robust

shortest path problem.

This paper extends our conference paper (Bouman, van den

Akker, Hoogeveen, Demetrescu, & Halldorsson, 2011) by presenting

a general definition of our decomposition approaches, a proof that

the LP-relaxation of the CRD model dominates the LP-relaxation

of the SRD model, and a further study of the solution algorithm

for the demand robust shortest path problem. This study includes

different column generation strategies and elaborate computational

experiments.

To the best of our knowledge, Bouman et al. (2011) and this

paper are the first ones applying column generation to recover-

able robust optimization. Another decomposition approach, namely

Benders decomposition, is used by Cacchiani, Caprara, Galli, Kroon,

and Maróti (2008) to assess the Price of Recoverability for recover-

able robust rolling stock planning in railways.

The remainder of the paper is organized as follows. In Section 2,

we define the concept of recoverable robustness. In Section 3,

we present our two different decomposition approaches, and we

show the general result that the LP-relaxation of the CRD Model

is stronger than the LP-relaxation of the SRD model. In Section 4,

we consider the size robust knapsack problem. We investigate

the two decomposition approaches in a branch-and-price frame-

work and we present computational experiments in which we

compare different solution algorithms. Besides algorithms based

on Separate and Combined Recovery Decomposition, we test hill-

climbing, dynamic programming, and branch-and-bound. The ex-

periments indicate that Separate Recovery Decomposition performs

best. Section 5 is devoted to the demand robust shortest path

problem. Since Separate Recovery Decomposition does not seem to

be appropriate for this problem, we focus on Combined Recovery

Decomposition and consider the settings of the branch-and-price

algorithm in more detail. In our experiments we show that the col-

umn generation strategy has a significant influence on the compu-

tation time. Finally, Section 6 concludes the paper.

2. Recoverable robustness

In this section we formally define the concept of recoverable

robustness. We are given an optimization problem

P = min{ f (x)|x ∈ F},
where x ∈ R

n are the decision variables, f is the objective function,

and F is the set of feasible solutions.

Disturbances are modeled by a set of discrete scenarios S. We

use Fs to denote the set of feasible solutions for scenario s ∈ S, and

we denote the decision variables for scenarios s by ys. The set of

algorithms that can be used for recovery are denoted by A, where

A(x, s) ∈ A determines a feasible solution ys from a given initial so-

lution x in case of scenario s. In case of planning buses and drivers

a scenario corresponds to a set of bus trips that are delayed, and

the algorithms in A decide about the use of standby drivers.
The recovery robust optimization problem is now defined as:

RPA = min{ f (x) + g({cs(ys)|s ∈ S})|x ∈ F, A ∈ A,

∀ s∈Sys = A(x, s)}.
Here, cs(ys) denotes the cost associated with the recovery vari-

bles ys, and g denotes the function to combine these cost into the

bjective function. There are many possible choices for g. A few

xamples are as follows:

1. g({cs(ys) = 0. This models the situation where our only con-

cern is the feasibility of the recovered solutions.

2. g({cs(ys) = maxs∈Scs(ys), that is, it models the maximal cost

of the recovered solutions ys. This corresponds to minimiz-

ing the worst-case cost. If cs(ys) measures the deviation of

the solution ys from x, we minimize the maximum devia-

tion from the initial solution. Note that this deviation may

also be limited by the recovery algorithms.

3. g({cs(ys) = ∑
s∈S pscs(ys), where ps denotes the probability

that scenarios s occurs. This corresponds to minimizing the

expected value of the solution after recovery.

In the remainder of the paper we will consider applications that

se either a function of sum or max type for g({cs(ys).

Although earlier papers on recoverable robustness (e.g.

iebchen et al. (2009)) consider the latter type of definition

f g as two-stage stochastic programming, we think that the

equirement of a pre-described easy recovery algorithm makes

his definition fit into the framework of recoverable robustness.

. Decomposition approaches

We discuss two decomposition approaches for recovery robust

ptimization problems. In both cases we reformulate the problem

uch that we have to select one solution for the initial problem

nd one for each scenario. The difference consists of the way we

eal with the scenarios.

.1. Separate Recovery Decomposition

In Separate Recovery Decomposition, we select an initial solution

nd separately we select a solution for each scenario. This means

hat for each feasible initial solution k ∈ F we have a decision vari-

ble xk signaling if this solution is selected; similarly for each fea-

ible solution for each scenario q ∈ Fs we have a decision vari-

ble ys
q. In the formulation we enforce that we select exactly one

nitial solution and one solution for each scenario. The recovery

onstraints enforces that for each scenario the initial solution can

e transformed into a feasible solution by the given recovery algo-

ithm. We assume that the recovery constraint and the objective

unction can be expressed linearly. We now obtain an Integer Lin-

ar Programming formulation which is formulated as follows (for

aximization objective):

ax
∑
k∈F

ckxk +
∑
s∈S

∑
q∈Fs

cs
qys

q

ubject to

k∈F

xk = 1 (1)

q∈Fs

ys
q = 1 for all s ∈ S (2)

1x + As
2ys ≤ bs for all s ∈ S (3)

∈ {0, 1} for all k ∈ F (4)
k
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Fig. 1. Column generation process Separate Recovery Decomposition.
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Fig. 2. Column generation process Combined Recovery Decomposition.
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q ∈ {0, 1} for all q ∈ Fs, s ∈ S (5)

ere ys denotes the vector of all entries ys
q. Constraints (1) and (2)

tate that exactly one solution is selected in the initial phase and

or each scenario, respectively. Constraints (3) model the fact that

or each scenario s ∈ S the solution ys should be obtained from

by the given recovery algorithm. We want to solve this ILP for-

ulation using Branch-and-Price (Barnhart, Johnson, Nemhauser,

avelsbergh, & Vance, 1998).

The column generation process is depicted in Fig. 1.

Since the variables xk model initial solutions, we have that for

hese variables the pricing problem boils down to an optimization

roblem over the set of initially feasible solutions F, i.e. a variant

f the initial problem. Similarly, for variables ys
q for scenario s the

ricing problem becomes an optimization problem over Fs, i.e. a

ariant of the original problem in case of scenario s.

.2. Combined Recovery Decomposition

In Combined Recovery Decomposition, we select for each scenario

combination of an initial solution together with the optimal re-

overy of a solution for that single scenario. This means that for

ach scenario s ∈ S we have for each combination of an initial so-

ution k ∈ F and the corresponding solution q ∈ Fs obtained by

he recovery algorithm a binary variable zs
kq

signaling if this com-

ination is selected. Obviously, the combinations selected for the

ifferent scenarios must all correspond to the same initial solu-

ion. To model this we first assume that any initial solution k can

e described by the parameters aik (i = 1, . . . , l), where aik = 1 if

he initial solution k possesses characteristic i, and aik = 0 other-

ise. Next, we introduce binary variables vi (i = 1, . . . , l) to indi-

ate whether the chosen initial solution possesses characteristic i.

his leads to the following Integer Linear Programming formula-

ion, where again we assume that we can express the functions f

nd g in a linear way.

ax

l∑
i=1

fivi +
∑
s∈S

∑
(k,q)∈F×Fs

cs
qzs

kq

ubject to∑
k,q)∈F×Fs

zs
kq = 1 for all s ∈ S (6)

i =
∑
k∈F

aik(
∑
q∈Fs

zs
kq) for all i ∈ {1, . . . , l}, s ∈ S (7)

s
kq ∈ {0, 1} for all k ∈ F, q ∈ Fs, q = A(k, s), s ∈ S. (8)

ecall that A(k, s) denotes the result of the recovery algorithm ap-

lied to solution k for scenario s. The binary character of the v
ariables is guaranteed by the combination of Constraints (7) and

8). Constraint (7) ensures that the same initial solution is selected

or each scenario; this initial solution can be constructed using the

inary variables v .
i
We also solve this ILP formulation by Branch-and-Price. The col-

mn generation process is depicted in Fig. 2. The Pricing Problem

ow boils down to finding an optimal combination of an initial so-

ution and a recovery solution for a given scenario.

Our approach can be applied to different recoverable robust op-

imization problems. In the next two sections, we will demonstrate

he approach for two different problems. First, we will compare the

wo models with respect to the strength of the LP-relaxation.

.3. Comparing the formulations

Since we solve both formulations through Branch-and-Price, we

olve the LP-relaxation to find an upper bound. We will show

hat the LP-relaxation of combined recovery decomposition gives

stronger bound than the LP-relaxation of the separate recovery

ecomposition. In the proof, we need the following lemma.

emma 1. For any feasible solution of the LP-relaxation of the CRD

ormulation we have that

q∈Fs

zs
kq ≡ zs

k = zk

or all k ∈ F.

roof. Let A denote the (l × |F|) matrix with entries aik(i =
, . . . , l; k = 1, . . . , |F |). Then Constraints (7) can be expressed as

= Azs, for all s ∈ S, where zs = (zs
1
, . . . , zs|F |)T and v = (v1, . . . , vl )

T .

sing the linearity of A, we find that A(zs1 − zs2 ) = 0 for any s1, s2

S. Without loss of generality, we may assume that A has rank l,

ince we can remove the redundant constraints otherwise. Hence,

e may conclude that z1 = z2 = . . . = z|S|. �

heorem 1. Let ZSRD
LP

and ZCRD
LP

be the solution value of the LP-

elaxation of the Separate and Combined Recovery Decomposition

odel, respectively. Then

SRD
LP ≥ ZCRD

LP ,

.e. the LP-relaxation of combined recovery decomposition is stronger.

roof. Let (ṽ, z̃) be an optimal solution to the LP-relaxation of the

ombined Recovery Decomposition model. We will give a solution

(x̄, ȳ) to the Separate Recovery Decomposition model, and show

hat it is feasible and has the same objective value as (ṽ, z̃). We

efine:

¯k =
∑
q∈F1

z̃1
kq for all k ∈ F

¯s
q =

∑
k∈F

z̃s
kq for all s ∈ S, q ∈ Fs

emark that in our definition of x̄k we could have used the val-

es z̃s
kq

for any scenario, because of Lemma 1. We first check the

onstraints.

We have that
∑

k∈F x̄k = ∑
k∈F

∑
q∈F1

z̃1
kq

= 1 because of Con-

traint (6). Hence, Constraint (1) holds. In the same way,
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∑
q∈Fs

ȳs
q = ∑

q∈Fs

∑
k∈F z̃s

kq
= 1 because of Constraint (6). Hence,

Constraint (2) holds for each s ∈ S.

Next, we have to show that x̄k and ȳs
q satisfy the recovery con-

straints, which are defined as

A1x + As
2ys ≤ bs for all s ∈ S.

Let s be any scenario; we will show that the constraint holds for

this scenario. We define ex
k

as the unit vector of length |F| with a

1 on position k; similarly, we define es
q as the unit vector of length

|Fs| with a 1 on position q. Since within a variable z̃s
kq

, we have

that solution q is obtained by applying the recovery algorithm to

initial solution k we must have that

A1ex
k + As

2es
q ≤ bs for all k ∈ F ; q ∈ Fs.

For each k ∈ F and q ∈ Fs we multiply these inequalities with z̃s
kq

and add them up to obtain a convex combination of the recovery

constraints. This yields∑
k∈F

∑
q∈Fs

z̃s
kq

[
A1ex

k + As
2es

q

]
≤

∑
k∈F

∑
q∈Fs

z̃s
kqbs = bs.

Since the recovery constraints are linear, this can be rewritten as

A1

∑
k∈F

[∑
q∈Fs

z̃s
kq

]
ex

k + As
2

∑
q∈Fs

[∑
k∈F

z̃s
kq

]
es

q ≤ bs.

Using Lemma 1, we have that

x̄k =
∑
q∈F1

z̃1
kq =

∑
q∈Fs

z̃s
kq;

and hence we can substitute x̄k and ȳs
q to obtain

A1

∑
k∈F

x̄kex
k + As

2

∑
q∈Fs

ȳs
qes

q ≤ bs.

Consequently A1x̄ + As
2
ȳ ≤ bs, implying that (x̄, ȳ) satisfies Con-

straint (3). Clearly x̄k and ȳs
q are in [0, 1], which implies that the

solution is feasible. Now we consider the objective value.

Remark that ck = ∑l
i=1 fiaik. It follows that∑

k∈F

ckx̄k +
∑
s∈S

∑
q∈Fs

cs
qȳs

q =
∑
k∈F

ck

∑
q∈F1

z̃1
kq +

∑
s∈S

∑
q∈Fs

cs
q

∑
k∈F

z̃s
kq

=
∑
k∈F

l∑
i=1

fiaik

(∑
q∈F1

z̃1
kq

)
+

∑
s∈S

∑
k∈F

∑
q∈Fs

cs
qz̃s

kq

=
l∑

i=1

fi

∑
k∈F

aik

(∑
q∈F1

z̃1
kq

)
+

∑
s∈S

∑
k∈F

∑
q∈Fs

cs
qz̃s

kq.

By Constraint (7), the above expression equals

l∑
i=1

fiṽi +
∑
s∈S

∑
k∈F

∑
q∈Fs

cs
qz̃s

kq,

which is equal to the cost of (ṽ, z̃). �

4. Size robust knapsack problem

We consider the following knapsack problem. We are given n

items, where item j ( j = 1, . . . , n) has revenue cj and weight aj.

Each item can be selected at most once. The knapsack size is b.

We define the size robust knapsack problem as the knapsack prob-

lem where the knapsack size b is subject to uncertainty. We denote

by bs < b the size of the knapsack in scenario s ∈ S. We assume

that the knapsack will keep its original size with probability p0

and that scenario s will occur with probability ps. Our objective is

to maximize the expected revenue after recovery. We study the sit-

uation in which recovery has to be performed by removing items.
s soon as it becomes clear which scenario s appears, recovery is

erformed by removing items in such a way that the remaining

tems give a knapsack with maximal revenue and size at most bs.

his boils down to solving a knapsack problem where the item set

s the set of items selected in the initial solution and the knap-

ack size is bs. Hence, our set of recovery algorithms is given by

he dynamic programming algorithm for solving these knapsacks.

or ease of exposition, we consider the binary knapsack problem.

ur approach can directly be generalized to the integral knapsack

roblem.

Recently, Büsing, Koster, and Kutschka (2011a) have studied a

ifferent version of our knapsack problem, where they focus on

ncertainty in the weights and in the items. They show NP-

ardness of several variants of the problem and develop a polyhe-

ral approach to solve these problems. In a follow-up paper, Büsing

t al. (2011b) present an integer linear programming formulation

f quadratic size and evaluates the gain of recovery. With respect

o approximation algorithms, Disser et al. (2014) consider policies

or packing a knapsack with unknown capacity and Goerigk et al.

2014) consider the knapsack problem in which there is a limited

udget to decrease item weights.

In this section, we discuss our two decomposition approaches

or the size robust knapsack problem and present elaborate com-

utational experiments in which we compare our method with

ther algorithms.

.1. Separate Recovery Decomposition

We define K(b) as the set of feasible knapsack fillings with size

t most b. For k ∈ K(b), we denote its revenue by Ck = ∑
i∈k ci. In

he same way, we denote the revenue of q ∈ K(bs) by Cs
q = ∑

i∈q ci.

We define decision variables:

k =
{

1 if knapsack k ∈ K(b) is selected,

0 otherwise.

nd

s
q =

{
1 if knapsack q ∈ K(bs) is selected for scenario s,

0 otherwise.

The problem can now be formulated as follows:

ax p0

∑
k∈K(b)

Ckxk +
∑
s∈S

ps

∑
q∈K(bs)

Cs
qys

q

ubject to∑
∈K(b)

xk = 1 (9)

∑
∈K(bs)

ys
q = 1 for all s ∈ S (10)

∑
∈K(b)

aikxk −
∑

q∈K(bs)

as
iqys

q ≥ 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (11)

k ∈ {0, 1} for all k ∈ K(b) (12)

s
q ∈ {0, 1} for all q ∈ K(bs), s ∈ S, (13)

here the parameters aik and as
iq

are defined as follows:

ik =
{

1 if item i is in knapsack k ∈ K(b),

0 otherwise.

nd

s
iq =

{
1 if item i is in knapsack q ∈ K(bs),

0 otherwise.
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In the above model Constraint (9) states that exactly one knap-

ack is selected for the original situation and Constraints (10) that

xactly one knapsack is selected for each scenario. Constraints (11)

nsures that recovery is done by removing items.

Recall that we solve this ILP formulation using Branch-and-

rice; thereto, we relax the integrality Constraints (12) and (13)

nto xk ≥ 0 and ys
k

≥ 0, and solve this LP-relaxation by column gen-

ration.

The pricing problem

From the theory of linear programming it is well-known that

or a maximization problem increasing the value of a variable will

mprove the current solution if and only if its reduced cost is pos-

tive. The pricing problem then boils down to maximizing the re-

uced cost.

Let λ, μs, and π is be the dual variables of Constraints (9)–(11),

espectively. Now the reduced cost cred(xk) of xk is given by

red(xk) = p0

∑
i∈k

ci − λ −
n∑

i=1

∑
s∈S

aikπis

=
n∑

i=1

aik

(
p0ci −

∑
s∈S

πis

)
− λ.

bserve that λ and μ are free variables, and π is ≤ 0. The pric-

ng problem is to find a feasible knapsack for the original sce-

ario, where the revenue of item i, equals (p0ci − ∑
s∈S πis). This is

ust the original knapsack problem with modified objective coef-

cients. Similarly the reduced cost cred(ys
q) are given by cred(ys

q) =
n
i=1 as

iq
(psci + πis) − μs. Therefore, the pricing is exactly the knap-

ack problem with knapsack size bs and modified objective coeffi-

ients. Note that in the pricing problem an item may have a nega-

ive revenue. Clearly such items can be discarded.

To find an integral solution, we are going to apply Branch-and-

rice. We branch on items that are fractional in the current solu-

ion, i.e. items i for which �k ∈ K(b)aikxk is fractional. This is easily

ombined with column generation, since enforcing that an item is

aken in or omitted from the knapsack can easily be included in

he pricing problem. If all values �k ∈ K(b)aikxk are integral, then

single initial knapsack is selected with value 1. Now consider a

asic solution to the LP for scenario s. It is easy to see that this so-

ution contains an optimal subset of the initial knapsack with total

eight at most bs which is selected with value 1. Consequently, the

olution is integral.

.2. Combined Recovery Decomposition

In contrast to the Separate Recovery Decomposition, we consider

llings of the initial knapsack in combination with the optimal re-

overy for one scenario. Consequently, we introduce decision vari-

bles:

s
kq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if the combination of initial solution k ∈ K(b)

and recovery solution q ∈ K(bs) is selected

for scenario s,

0 otherwise.

Clearly, zs
kq

is only defined if q is a subset of k. The ILP model

urther contains the original variable xi signaling if item i is con-

ained in the initial knapsack. We can formulate the problem as

ollows:

ax p0

n∑
i=1

cixi +
∑
s∈S

ps

∑
(k,q)∈K(b)×K(bs)

Cs
qzs

kq
ubject to∑
k,q)∈K(b)×K(bs)

zs
kq = 1 for all s ∈ S (14)

i −
∑

(k,q)∈K(b)×K(bs)

aikzs
kq = 0 for all i ∈ {1, 2, . . . , n}, s ∈ S (15)

i ∈ {0, 1} for all i ∈ {1, 2, . . . , n} (16)

s
kq ∈ {0, 1} for all k ∈ K(b), q ∈ K(bs), s ∈ S, (17)

Constraints (14) enforce that exactly one combination is se-

ected for each scenario; Constraints (15) ensure that the same ini-

ial knapsack filling is selected for all scenarios.

Again, we are going to solve the LP-relaxation by column gener-

tion. We include the variables xi in the restricted master LP and,

ence pricing is only performed for the variables zs
kq

. We denote

he dual variables of Constraints (14) and (15) by ρs and σ is, re-

pectively. The reduced cost of zs
kq

is now equal to:

red(zs
kq) =

n∑
i=1

as
iq psci +

n∑
i=1

aikσis − ρs.

e solve the pricing problem for each scenario separately. We

ave to find an initial and recovery solution. This can be solved

y dynamic programming. The main observation is that there are

hree types of items: items included in both the initial and recov-

ry knapsack, items selected for the initial knapsack, but removed

y the recovery, and non-selected items. We define state variables

(i, w0, ws) as the best value for a combination of an initial and re-

overy knapsack for scenario s, such that the initial knapsack is a

ubset of {1, 2 . . . , i}, the recovery knapsack is a subset of the ini-

ial knapsack, and the initial and recovery knapsack have weight

0 and ws, respectively. The recurrence relation is as follows:

D(i, 0, 0) = 0 ∀i

(0, w0, ws) = −∞ for w0, ws > 0

D(i, w0, ws) = max

⎧⎨
⎩

D(i − 1, w0, ws)

D(i − 1, w0 − ai, ws) + σis

D(i − 1, w0 − ai, ws − ai) + σis + psci

.3. Computational results

We performed extensive computational experiments with the

napsack problem. The algorithms were implemented in the Java

rogramming language and the Linear Programs were solved us-

ng ILOG CPLEX 11.0. All experiments were run on a PC with an

ntel®CoreTMDuo 6400 @ 2.13 GHz processor with 1 GB of RAM.

ur experiments were performed in three phases. Since we want

o focus on difficult instances, in the first phase we tested 12 dif-

erent instance types to find out which types are the most dif-

cult. We ran two algorithms: the separate recovery branch-and-

rice and a hill climbing algorithm. Our instance types are based

n the instance types by Pisinger (2005), where we have to add

he knapsack weight bs and the probability ps for each of the sce-

arios. In the second phase, we tested five different algorithms on

elatively small instances with up to 25 items and up to 8 scenar-

os. In the third phase we tested the best two algorithms from the

econd phase on larger instances with 50 or 100 items and up to

0 scenarios. In this section, we will present the most important

bservations from the second and third phase. For further details

e refer to Bouman (2011).
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Table 1

Second phase results.

Algorithm Failed Avg t(ms) Max t(ms) Avg c
c∗ Min c

c∗ Avg nodes Max nodes

Separate Recovery 128 107 2563 – – 3.27 122

Combined Recovery 1407 417 2969 – – 1.12 17

Branch and Bound 190 111 2906 – – 1281 33321

DP 2840 347 2984 – – – –

Hill climbing n.a. 17.3 422 0.99 0.85 – –

Table 2

Third phase results for Separate Recovery decomposition.

Items Scenarios Failed Avg ms Max ms Avg nodes Max nodes

50 2 2 686 56312 1.56 68

50 3 12 2724 53454 1.7 25

50 4 46 3799 58688 2.6 35

50 10 125 3295 53483 2.29 35

50 20 144 1473 38766 1.4 17

100 2 114 1695 47531 1.05 5

100 3 173 703 24781 1.16 11

100 4 176 964 46172 2.03 59

100 10 213 469 34547 1.39 25

100 20 210 103 2703 1.13 13
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In the second phase we tested the following 5 instance classes

with R = 30:

• The almost strongly correlated instances: pick ai uniformly

from [1, R] and ci uniformly from [ai + R/10 − R/500, ai +
R/10 + R/500].

• The inverse strongly correlated instances: pick ci uniformly

from [1, R] and ai from [ci + R/10].
• The circle(d) instances: pick ai uniformly from [1, R] and ci =

d
√

4R2 − (ai − 2R)2, where d is set to 2
3 .

• The span(v, m) uncorrelated instances. Create v items with a′
j

and c′
j

from [1, R] and divide a′
j

and c′
j

by m + 1. The knapsack

instance is then generated by repeatedly choosing one of the v
combinations (a′

j
, c′

j
) and a random value μi from [1, m]: the

created item gets ai = μia
′
j

and ci = μic
′
j
.

• The subset sum instances, where ai = ci drawn from [1, R].

We considered instances with 5, 10, 15 and 25 items and with

2, 4, 6 and 8 scenarios (except for the instances with 5 items, for

which we only considered 2 and 4 scenarios). For each combina-

tion we generated 100 item sets (20 from each instance class). For

each item set we generated 3 sets of scenarios, with large, mid-

dle, and small values of bs relative to b, where large, middle, and

small mean that the values bs are drawn uniformly from [ 1
2 b, b],

[ 3
8 b, 6

8 b], and [ 1
4 b, 1

2 b], respectively. This means that we considered

4200 ((2 + 3 × 4) × 100 × 3) instances in total.

We report results on the following algorithms:

• Separate Recovery Decomposition with Branch-and-Price,

where we branch on the fractional item with largest
c j

a j
ratio

and first evaluate the node which includes the item.
• Combined Recovery Decomposition with Branch-and-Price,

where we branch in the same way as in Separate Recovery De-

composition.
• Branch-and-Bound where we branch on the fractional item

with smallest
c j

a j
ratio and first evaluate the node which in-

cludes the item. In every node, the optimal recovery for the

current set of items is computed using dynamic programming

for the regular knapsack problem. When a node adds a new

item, the DP-table of the parent node is extended with only

this item in order to keep the computation efficient. The up-

per bounds are computed by solving the LP-relaxation, which

is solved by including the items in order of
c j

a j
ratio in the ini-

tial solution and in each scenario.
• Dynamic programming. Our DP resembles the DP for the pric-

ing problem in case of Combined Recovery Decomposition.

We use state variables D(i, w0, w1, . . . , w|S|), where w j ( j =
1, . . . , |S|) corresponds to scenario j. The recurrence relation

gets exponential size now, since, if item k is included in the

initial solution, we must compute for each possible subset of S

the value of including or omitting this item. Hence, the running

time becomes O(n2|S|).
• Hill Climbing. We apply neighborhood search on the initial

knapsack only and compute for each initial knapsack the opti-

mal recovery by Dynamic Programming. Hill climbing performs
100 restarts. R
For the branching algorithms we tested different branching

trategies. All our algorithms branch on whether an item should

e included in the initial knapsack. The different branching strate-

ies select which item should be branched on first and whether

he item should first be included or excluded. The first item is a

ombination of best/worst according to weight/ratio/profit. In total

his yields 12 branching strategies. In the Branch-and-Price algo-

ithms the difference in performance turned out to be minor and

e report on the strategy that performed best in Separate Recov-

ry Decomposition. However, in the Branch-and-Bound algorithm

ome difference could be observed and we report on the strategy

hat shows the best performance for this algorithm.

The results of the second phase are given in Table 1. For each

nstance and each algorithm, we allowed at most 3000 millisec-

nds of computation time. For each algorithm, we report on the

umber of instances (out of 4200) that could not be solved within

000 milliseconds, and the average and maximum computation

ime over the successful instances. For Hill Climbing we compute

or each instance the performance ratio, which is equal to the

alue of the obtained solution c divided by the value of the opti-

um solution c∗; in the table we report the average and worst per-

ormance ratio. For the branching algorithms we further report the

verage and maximum number of evaluated nodes. For Hill Climb-

ng ‘Failed’ is not applicable.

The results indicate that for this problem Separate Recovery De-

omposition outperforms Combined Recovery Decomposition. DP

s inferior to Branch-and-Bound and Hill Climbing. The fact that

ranch-and-Bound requires more nodes than the Separate and

ombined Recovery Branch-and-Price indicated that the decompo-

ition models have a stronger LP-relaxation than the standard ILP

ased on variables for each item and scenario.

In the third phase we experimented with larger instances for

he two best algorithms. We present results for instances with 50

nd 100 items and 2, 3, 4, 10, or 20 scenarios. Again, for each com-

ination of number of items, number of scenarios, we generated

00 item sets (20 from each instance class) with 3 scenario sets

ach. This results in 300 instances per combination of number of

tems and number of scenarios, where the maximum computation

ime per instance per algorithm is 4 minutes. The results are de-

icted in Tables 2 and 3.

The results suggest that the computation time of Separate

ecovery Decomposition scales very well with the number of
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Table 3

Third phase results for hill climbing.

Items Scenarios Avg ms Max ms Avg c
c∗ Min c

c∗

50 2 104 969 0.98 0.68

50 3 173 1204 0.98 0.84

50 4 180 1203 0.98 0.83

50 10 268 1407 1 0.94

50 20 309 1515 1 0.84

100 2 887 19656 0.98 0.66

100 3 1257 25578 1 0.86

100 4 1783 32625 1 0.8

100 10 3546 34703 1 0.8

100 20 4546 37312 1 0.94
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cenarios. As may be expected, Hill Climbing shows a significant

ncrease in the computation time when the number of scenarios is

ncreased. Moreover, the small number of nodes indicates that Sep-

rate Recovery Decomposition is well-suited for instances with a

arger number of scenarios. On average the quality of the solutions

rom Hill Climbing is very high. However, a worst performance ra-

io of about 0.66 shows that there is no guarantee of quality. Hill

limbing succeeded to complete the algorithm with 100 restarts

or all instances.

. The demand robust shortest path problem

The demand robust shortest path problem is an extension

f the shortest path problem that has been introduced by

hamdhere, Goyal, Ravi, and Singh (2005). We are given a graph

V, E) with cost ce on the edges e ∈ E, and a source node vsource ∈ V .

he question is to find the cheapest path from source to the sink,

ut the exact location of the sink is subject to uncertainty. More-

ver, the cost of the edges may change over time. More formally,

here are multiple scenarios s ∈ S that each define a sink vs
sink

and

factor fs > 1 by which the cost of the edges are scaled. To work

ith the same problem as Dhamdhere et al. (2005), we choose as

bjective to minimize the cost of the worst case scenario. It is not

ifficult to see that this problem is NP-hard, as it generalises the

teiner Tree Problem. When we pick each fs high enough, the op-

imal solution is to buy a minimum cost tree that connects the

ource and all sinks during the first phase.

In contrast to Büsing (2012), we can buy any set of edges in

he initial planning phase. In the recovery phase, we have to ex-

end the initial set such that it contains a path from the source to

he sink vs
sink

, while paying increased cost for the additional edges.

emark that, when the sink gets revealed, the recovery problem

an be solved as a shortest path problem, where the edges already

ought get zero cost. Hence, the recovery algorithm is a shortest

ath algorithm.

Observe that the recovery problem has the constraint that the

nion of the edges selected during recovery and the initially se-

ected edges contains a path from source vsource to sink vs
sink

. It

s quite involved to express this constraint using linear inequali-

ies, and hence to apply Separate Recovery Decomposition. How-

ver, the constraint fits very well into Combined Recovery Decom-

osition.

Our Combined Recovery Decomposition model contains the

ariable xe signaling if edge e ∈ E is selected initially. Moreover,

or each scenario, it contains variables indicating which edges are

elected initially and which edges are selected during the recov-

ry:

s
kq =

⎧⎨
⎩

1 if the combination of initial edge set k ⊆ E

and recovery edge set q ⊆ E is selected for scenario

0 otherwise.
Observe that zs
kq

is only defined if k and q are feasible, i.e., their

ntersection is empty and their union contains a path from vsource

o vs
sink

. Finally, it contains zmax defined as the maximal recovery

ost.

We can formulate the problem as follows:

in
∑
e∈E

cexe + zmax

ubject to∑
k,q)⊆E×E

zs
kq = 1 for all s ∈ S (18)

e −
∑

(k,q)⊆E×E

aekzs
kq = 0 for all e ∈ E, s ∈ S (19)

max −
∑
e∈E

f sce

∑
(k,q)⊆E×E

as
eqzs

kq ≥ 0 for all s ∈ S (20)

e ∈ {0, 1} for all e ∈ E (21)

s
kq ∈ {0, 1} for all k ⊆ E, q ⊆ E, s ∈ S, (22)

here the binary parameters aek signal whether edge e is in edge

et k and the binary parameters as
eq signal whether edge e is in

dge set q for scenario s.

Constraints (18) ensure that exactly one combination of initial

nd recovery edges is selected for each scenario; Constraints (19)

nforce that the same set of initial edges is selected for each sce-

ario. Finally, Constraints (20) make sure that zmax represents the

ost of the worst case scenario.

.1. Solving the LP by column generation

We first relax the integrality Constraints (21) and (22) into xe ≥
and zs

kq
≥ 0, and solve this LP-relaxation. To deal with the huge

umber of variables we are going to solve the problem by column

eneration.

The pricing problem Since we have a minimization problem, the

ricing problem boils down to minimizing the reduced cost. Let

s, ρes, and π s be the dual variables of the Constraints (18)–(20)

espectively. The reduced cost of zs
kq

is now equal to:

red(zs
kq) = −λs +

∑
e∈E

ρesaek +
∑
e∈E

πs f sceas
eq.

e solve the pricing problem for each scenario separately. For a

iven scenario s, the pricing problem boils down to minimizing
red(zs

kq
) over all feasible aek and as

eq. This means that we have

o select a subset of edges that contains a path from vsource to
s
sink

. This subset consists of edges which have been bought initially

nd edges which are attained during recovery. The first type corre-

ponds to aek = 1 and has cost ρes and the second type to as
eq = 1

nd has cost π sfsce. The pricing problem is close to a shortest path

roblem, but we have two binary decision variables for each edge.

owever, we can apply the following preprocessing steps:

1. First, we select all edges with negative cost. From LP the-

ory it follows that all dual variables π s are nonnegative, and

hence, all recovery edges have nonnegative cost. So we only

select initial phase edges with negative cost ρes. From now

on, the cost of these edges is considered to be 0.

2. The other edges can either be selected in the initial phase

or in the recovery phase. To minimize the reduced cost, we

have to choose the cheapest option. This means that we can

set the cost of an edge equal to min (ρes, π sfsce).
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The pricing problem now boils down to a shortest path problem

with nonnegative cost on the edges and hence can be solved by

Dijkstra (1959) algorithm. We implemented the algorithm by a min

heap with running time O(|E|log (|V|)).

Since we solve the pricing problem for each scenario separately,

the following questions arise: ‘For which scenarios do we actually

solve the pricing problem?’ and ‘Which columns do we actually

add to the restricted LP?’. We investigate the following strategies:

• Interleaved: goes through the pricing problems of the different

scenarios one by one. As soon as a variable with negative re-

duced cost is identified, the corresponding column is added and

the master problem gets resolved. After that, it goes to the next

scenario. When the pricing problem has a solution with non-

negative reduced cost for every scenario the column generation

process is stopped.
• Best: solves the pricing problem for all scenarios, but only a

column zs
kq

with overall minimal reduced cost is added to the

master problem. The master problem is solved again and this

repeats itself until the minimal reduced cost is nonnegative.
• All: solves the pricing problem for all scenarios and adds a col-

umn for all scenarios for which a variable zs
kq

with negative re-

duced cost was found; after adding all those columns it resolves

the master problem.

Within the first few experiments it became very clear that the

LP problem is very degenerate. Certainly for larger graphs with a

lot of scenarios this tends to slow down the computation enor-

mously. Observe that every solution needs at least |S| columns. To

get a complete solution, because of Constraint (19), we need a col-

lection of columns such that for each edge e the total amount by

which it is selected in the initial solution
∑

(k,q)⊆E×E aekzs
kq

is the

same for every scenario s. This has the consequence that, although

it is included in the basis, a promising new column often does not

influence the primal solution. To deal with this problem, we use

the following method: When a column is added, we always guar-

antee that it can be selected for the solution by generating for ev-

ery scenario the best column with the same initial edges. Those

columns are generated by fixing the set of initial edges and find-

ing the best recovery edges by running Dijkstra’s algorithm for all

other |S| − 1 scenarios.

As a starting solution we take the column in which all edges

are taken in the initial solution. Other strategies were tested but

the differences were small and instance dependent.

Moreover, we have investigated column deletion, i.e. deletion

of columns with too positive reduced cost. However, this does

not seem to work well in combination with including additional

columns.

5.2. Solving the ILP

If the solution of the LP-relaxation is integral, our problem is

solved to optimality. Otherwise, we proceed by Branch-and-Price

(Barnhart et al., 1998), i.e. Branch-and-Bound, where we generate

additional columns in the nodes of the search tree.

In a Branch-and-Price algorithm the branching strategy has to

be designed in such a way that we are still able to solve the pricing

problem in each node of the tree. In our algorithm we branch on

the variables xe. In a node with xe = 1 we only generate columns

where edge e is bought in the initial phase. This implies that in

the first preprocessing step of the pricing we buy edge e at cost

ρes and then set its cost to 0. In a node with xe = 0 we are not

allowed to buy edge e in the initial phase. Therefore, we have to

define the cost of the edge as π sfsce instead of min (ρesπ sfsce).

Concerning the choice of the edge for branching, besides con-

sidering the edges in order of their index, we implemented branch-

ing on the most doubtful edge. This means that the we branch on
he edge for which |xe − 1
2 | is minimal. This strongly speeds up the

omputation.

Moreover, we investigated different node selection strategies.

e considered best bound branching, i.e. branching on the node

ith the minimal lower bound, breadth first search, depth first

earch and also best depth first, which from the deepest nodes

n the tree selects the one with the best lower bound. In our ex-

eriments best depth first did not improve depth first search very

uch. Although depth first search sometimes slightly improved

est bound search, it showed a less stable behavior. The same is

rue for breadth first search. Therefore we chose to use best bound

ranching in our algorithm.

To compute an upper bound three rounding heuristics were

ested. The first heuristic was to select for the initial phase only

dges with xe = 1 in the LP-solution. In the second heuristic, all

dges with xe ≥ 1
2 were selected in the initial solution. As a third

lternative we applied a randomized strategy: each edge was se-

ected in the initial solution with a probability equal to the value

f xe in the optimal solution of the LP-relaxation. In all three

ases, for each scenario the best recovery solution was deter-

ined by Dijkstra’s algorithm. There did not seem to be much

ifference in performance between the heuristics and we applied

he second one since we thought it to be the most intuitive

ne.

.3. Computational results

We have implemented our column generation and branch-and-

rice algorithms in Java and used ILOG CPLEX 12.4 as linear pro-

ramming solver. We ran experiments on an Intel®CoreTMDuo 2.66

Hz processor with 4 GB of RAM.

Again, our experiments were performed in three phases. We

rst investigated all column generation strategies, to determine the

est one. Secondly, we performed a sensitivity analysis. Finally, we

an our algorithm on some larger instances.

We first present results for linear programming to illustrate the

ffect of the different column addition strategies from Section 5.1.

he strategies InterA, BestA, and AllA denote extensions of the

trategies Inter, Best and All, in which, when we add a column,

e also add for each scenario the best column with the same ini-

ial edges. In Table 4 we give results for 4 different randomly gen-

rated relatively small instances, where Gn, e has a graph with n

odes and e edges. The recovery factor f for these instances is fixed

t 2.0 and every non source node is a possible sink and thus a sce-

ario. For each instance, we give the number of iterations (it), the

umber of added columns (col), and the computation time in mil-

iseconds (t).

Our results reveal that the strategies with additional columns

trongly speed up the computation. In most of our cases the num-

er of columns is also reduced, but as may be expected, the re-

uction is not that strong. In some cases (G17, 31 Inter and All) the

umber of columns increased.

We also solved the ILP for these instances, where we applied all

ombinations of strategies in the root and in the tree. The strate-

ies without additional columns resulted in large running times.

The improvement from the additional columns is explained by

he fact that these columns enable the solver to actually use every

enerated ‘interesting’ column in a solution. This is especially

mportant for the combined recovery decomposition model, where

ach column is a combination of an initial solution and a recovery

olution for one scenario. In this model, a feasible solution requires

set of columns that constitute the same initial solution for each

cenario. So the additional columns prevent a known problem

n column generation: a very good column is generated but can

ot be used because other columns to complete the solution are

acking.
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Table 4

Results for linear programming.

G4, 5 G14, 13 G17, 23 G17, 31

Method it col t it col t it col t it col t

Inter 32 40 10 613 639 1014 3701 3740 25.941 7132 7179 134213

Best 22 30 10 545 571 1038 2835 2874 19.278 6065 6112 136585

All 17 39 8 114 699 554 577 3632 8069 1101 7453 54145

InterA 5 21 6 33 443 55 64 1048 393 537 8624 13132

BestA 6 24 4 24 326 39 73 1192 583 257 4144 7503

AllA 8 21 3 40 443 55 81 1048 407 652 8624 16649

Table 5

Results for branch-and price with random instances.

InterA BestA BestANoSort AllA

ed it nd t it nd t it nd t it nd t

11 37 1 20 30 1 19 36 2 24 49 1 20

14 153 5 135 104 6 129 143 10 158 195 5 139

17 385 11 791 209 10 510 358 19 689 472 11 824

20 715 17 2842 414 19 1510 1042 77 2417 888 17 2951

23 2493 41 24669 1353 49 10208 2782 119 14832 3016 41 26606

26 10121 157 174213 4520 154 64500 18514 1238 119645 11921 157 193029

29 20630 325 488442 9641 256 184075 21837 638 297424 23939 272 571894
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Fig. 3. Logarithmic time results of the methods.
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Therefore, we do not feel it necessary to perform more exper-

ments without additional columns. Moreover, it did not pay off

o use a different strategy in the root than in the remainder of

he tree. Consequently, from now on we only consider strategies

ith additional columns that use the same strategy for the com-

lete tree.

Recall that we branch on the most doubtful edge with |xe − 1
2 |

inimal and select the node with the best lower bound. We first

eport results for a set G500 of 500 random instances. They are

ased on graphs with 10 to 29 edges, where for each number of

dges we vary the number of nodes. For every number of edges

total of 25 graphs are generated. All graphs are connected, the

ost of the edges is drawn uniformly randomly from the interval

0; 100], every non-source is a possible sink, and f has a random

alue in the interval [1; 10].

The average solution times for those instances are 53.6, 21.2,

6.7 and 34.8 seconds for InterA, BestA, and AllA and BestANoSort,

here in the latter strategy we branch on the edges in order of

heir numbering instead of on the most doubtful edge. The BestA

ethod performs significantly better than the other methods ac-

ording the Wilcoxon signed-rank test (done with R version 3.1.1,

ith p = 3.823e−13 as the highest p). Table 5 shows results for a

ubset of the set of random instances G500. For each number of

dges and each strategy, we report on the average total number of

terations of column generation (it), the average number of nodes

n the branch-and-bound tree (nodes), and the average computa-

ion time in milliseconds (t).

In Fig. 3 we plot on a logarithmic scale the computation time

or each number of edges.

These results suggest that especially for larger graphs BestA

utperforms the other column addition strategies. Even when

estA is combined with the inferior branching strategy of branch-

ng on edges in lexicographical order, this is faster than the other

olumn addition strategies.

We also did some sensitivity experiments on the influence of

he edge cost and the recovery factor f. To test the influence of the

osts of the edges we used G14, 13 and G17, 31 with fixed recovery

actor f = 2. We created 500 random cost versions by generating

he edge costs uniformly randomly from the interval [0; 50]. For
he recovery factor f we generated similar instances only now we

xed the cost and varied the recovery factor in the interval [1; 10].

ecause the G17,31 graph with random recovery factor f was solved

elatively slowly, we only solved 25 instances. Because these exper-

ments are about sensitivity we report the quartile points, which

ivide the data into four equal groups, instead of averages. We

ooked at the iterations, nodes and time separately, and also re-

ort the minimum and maximum. These results can be found in

able 6. All instances are solved with the BestA method.

These results suggest that cost as well as recovery factor have a

arge influence on the iterations, nodes and solution time of the in-

tance, this difference can be a factor of more than 100. This might

e explained by the fact that some combinations of cost and re-

overy factor result in alternative solutions with approximately the

ame value, which have an impact on the size of the search tree.

e consider a small example with 3 nodes: one source s and two

ossible sink t1 and t2 each occurring with probability 1 . There are
2



748 J.M. van den Akker et al. / European Journal of Operational Research 251 (2016) 739–750

Table 6

Results for varying the cost (c) and the recovery factor (f) of the edges.

G14, 13 c G17, 31 c G14, 13 f G17, 31 f

it nd t it nd t it nd t it nd t

Minimum 30 3 57 146 3 281 27 1 161 483 1 42651

First quartile 134 13 235 1044 38 6323 51 1 325 3183 39 100754

Median 185 29 325 1922 85 13289 74 1 416 6964 99 173167

Third quartile 235 49 445 3177 166 18687 116 9 606 9404 153 238108

Maximum 675 211 1475 9753 1567 51236 279 73 1112 51923 1221 520106

Table 7

Effect of number of scenarios on average solution

time (ms).

Number of scenarios

Edges 5 10 15 20

11 9 – – –

14 19 123 – –

23 102 1390 7103 –

26 120 3495 19941 59429

29 573 16296 107511 249716

Fig. 4. Time results per number of edges.

Fig. 5. Time results per number of scenarios.
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two edges (s, t1) and (s, t2) with the same initial cost Q. If f = 2,

then it does not make a difference if you buy all edges, one edge,

or no edges in the initial phase.

The experiments from now on, were performed with a better

computer with an Intel®CoreTMi5 3.40 GHz processor and 8 GB

of RAM. This computer is approximately twice as fast. Until now

we considered instances were every non-source node could be the

sink, which are instances with a relatively large number of sce-

narios. Since the size of the ILP model is linear in the number of

scenarios, we may expect that instances with fewer scenarios can

be solved faster. From the set G500 used before we generated 42747

new instances by varying the number of scenarios.

For each instance in the set G500, we generate min{(n−1
i

)
, 10}

instances with i scenarios, i.e., i possible sink nodes, where n is the

number of nodes of the instance. Hence, for each instance, in total∑n−1
i=1 min{(n−1

i

)
, 10} instances are generated. The maximum of 10

instances which can be generated per instance and number of sce-

narios is used to limit the total number of instances. If
(

n−1
i

)
> 10,

we randomly select 10 subsets of size i. For example, when an in-

stance of the G500 set has 4 nodes, 7 new instances are generated.

Three instances, with 1 scenario are generated, three with 2 sce-

narios and one instances with 3 scenarios. Note that the instance

which has 3 scenarios is an exact copy from the G500 instance.

For each instance the nodes, edges and the cost of the edges are

copied from the G500 instance. For each instance the correspond-

ing recovery values fs from the G500 instance are used for the

scenarios.

These instances were solved with the BestA method. Solving all

42747 instances took 56.4 hours. In Table 7 we show the average

computation time in milliseconds for different numbers of edges

and different numbers of scenarios.

Moreover, in Figs. 4 and 5, we plot the computation time on a

logarithmic scale, per number of edges as a function of the num-

ber of scenarios and per number of scenarios as a function of the

number of edges, respectively. A larger version of the figures can

be found in the appendix.

Our results suggest that the number of edges has a strong im-

pact on the computation time, which indicates exponential behav-

ior. The impact of the number of scenarios, seems very strong in

the beginning but then somewhat flattens out in the logarithmic

scale. We conclude that both have a strong influence.
Finally, we performed experiments for four larger instances,

hich are generated to get an indication of the boundaries of

hat can be solved. Because these instances take a long time to

olve, only four instances were generated. These graphs are gen-

rated in exactly the same way as the G500 graphs. Every non

ource node is a possible sink, the graphs are connected, the cost

f the edges are uniformly random from the interval [0; 100], and

has a random value in the interval [1; 10]. In Table 8 we show

he number of nodes and edges, the time needed to solve the LP,

he time needed to solve the ILP, the total solution time, and the

umber of nodes in the branch-and-bound tree, together with the

ode in which the best solution was found. For G we ran into
4
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Table 8

Results for large instances.

Graph |V| |E| tLP (min) tILP (min) t n nsol

G1 13 50 3.6 3.6 7.2 min 3 2

G2 25 50 19.3 2083 35 h 1597 1332

G3 15 60 27.2 167 3.2 h 207 142

G4 30 60 167 – – – –
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emory problems while solving the ILP. These results indicate that

nstances which have 25 nodes and 50 edges or more can take a

ong time to solve and cannot always be solved with 8 GB of RAM

vailable.

. Concluding remarks

We have presented a new approach, based on column gener-

tion, for solving recoverable robust optimization problems. The

ey to this approach are two decomposition methods: Separate

ecovery Decomposition (SRD) and Combined Recovery Decompo-

ition (CRD). In the SRD approach, we work with separate solu-

ions for the initial problem and recovery solutions for the dif-

erent scenarios; in the CRD approach, we work with combined

olutions for the initial problem and the recovery problem for a

ingle scenario. We have shown that the LP-relaxation of the CRD

odel provides a stronger bound than the LP-relaxation of the SRD

odel.

We have tested our approach on two problems. The first one

s the size robust knapsack problem, where the knapsack size

an decrease, and where we can recover by removing items. Our

omputational experiments revealed that for this problem Sepa-

ate Recovery Decomposition outperformed Combined Recovery

ecomposition and that the SRD method scaled very well with

he number of scenarios. Moreover, SRD outperforms the standard

ranch-and-bound and dynamic programming approach.

We further considered the demand robust shortest path prob-

em. Here we need to buy the edges of a shortest path from a

nown source to an unknown sink that will be revealed later. We

uy an initial set of edges, and when the sink gets revealed we

an recover by buying additional edges (at a higher cost). For this

roblem the CRD approach seems to be very appropriate; the SRD

odel is hard to implement. The computational experiments re-

ealed that it is crucial to add columns that correspond to the

ame initial solution for all scenarios.

There are several directions for future research. An obvious

uestion is to find out what type of problems can be solved by

his kind of approach; we are currently investigating our frame-

ork on scheduling problems. Next, it is important to formulate

onditions to determine beforehand which decomposition model

ill work best for a certain problem. Recently, we have extended

he size robust knapsack problem to multiple knapsacks (Tönissen,

an den Akker, & Hoogeveen (2015)). For the single knapsack

roblem the SRD model outperforms CRD, but this changes if the

umber of knapsacks increases, and for four and more knapsacks

RD outperforms SRD. Another important question concerns the

eduction of the running time; for example, in our experiments

e have seen that adding the right columns or improving the

rimal heuristic can lead to a large improvement. Interesting

ssues for further research are restrictions on the recovery so-

ution such as a limited budget for the cost of the recovery

olution.
ppendix A. Time results per amount of edges/scenarios on a

ogarithmic scale

Fig. A.6. Time results per amount of edges on a logarithmic scale.

Fig. A.7. Time results per amount of scenarios on a logarithmic scale.
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