European Journal of Operational Research 251 (2016) 739-750

Contents lists available at ScienceDirect UROPEAN JOURNAL OF
European Journal of Operational Research
journal homepage: www.elsevier.com/locate/ejor b [Ea

Discrete Optimization

Decomposition approaches for recoverable robust optimization

problems

@ CrossMark

J. M. van den Akker®* P. C. Bouman”!,]. A. Hoogeveen? D. D. Ténissen®'

a Department of Information and Computing Sciences Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
b Rotterdam School of Management Erasmus University, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
¢School of Industrial Engineering Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

ARTICLE INFO

ABSTRACT

Article history:

Received 16 October 2014
Accepted 1 December 2015
Available online 4 January 2016

Keywords:

Recoverable robustness
Column generation
Branch-and-price
Knapsack

Shortest path

Real-life planning problems are often complicated by the occurrence of disturbances, which imply that
the original plan cannot be followed anymore and some recovery action must be taken to cope with
the disturbance. In such a situation it is worthwhile to arm yourself against possible disturbances by
including recourse actions in your planning strategy. Well-known approaches to create plans that take
possible, common disturbances into account are robust optimization and stochastic programming. More
recently, another approach has been developed that combines the best of these two: recoverable robust-
ness. In this paper, we solve recoverable robust optimization problems by the technique of branch-and-
price. We consider two types of decomposition approaches: separate recovery and combined recovery.
We will show that with respect to the value of the LP-relaxation combined recovery dominates separate
recovery. We investigate our approach for two example problems: the size robust knapsack problem, in
which the knapsack size may get reduced, and the demand robust shortest path problem, in which the
sink is uncertain and the cost of edges may increase. For each problem, we present elaborate computa-
tional experiments. We think that our approach is very promising and can be generalized to many other

problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most optimization algorithms rely on the assumption that all
input data are deterministic and known in advance. However, in
many practical optimization problems, such as planning in pub-
lic transportation or health care, data may be subject to changes.
To deal with this uncertainty, different approaches have been de-
veloped. In case of robust optimization (see Ben-Tal, Ghaoui, and
Nemirovski (2009); Bertsimas and Sim (2004)) we choose the so-
lution with minimum cost that remains feasible for a given set
of disturbances in the parameters. In case of stochastic program-
ming (Birge & Louveaux, 1997), we take first stage decisions on basis
of the current information and, after the true value of the uncer-
tain data has been revealed, we take the second stage or recourse
decisions. The objective here is to minimize the cost of the first
stage decisions plus the expected cost of the recourse decisions.
The recourse decision variables may be restricted to a polyhedron

* Correspondig author. Tel.: +31 302533989.
E-mail addresses:].M.vandenAkker@uu.nl (J.M. van den Akker), PBouman@rsm.nl
(P.C. Bouman), J.A.Hoogeveen@uu.nl (J.A. Hoogeveen), D.D.Tonissen@tue.nl
(D.D. Tonissen).
1 The research was performed while this author was at Utrecht University.

http://dx.doi.org/10.1016/j.ejor.2015.12.008
0377-2217/© 2015 Elsevier B.V. All rights reserved.

through the so-called technology matrix (Birge & Louveaux, 1997).
Summarized, robust optimization wants the initial solution to be
completely immune for a predefined set of disturbances, while
stochastic programming includes a lot of options to postpone deci-
sions to a later stage or change decisions in a later stage.
Recently, the notion of recoverable robustness (Liebchen,
Liibbecke, Mohring, & Stiller, 2009) has been developed, which
combines robust optimization and second-stage recovery options.
Recoverable robust optimization computes solutions, which for a
given set of scenarios can be recovered to a feasible solution ac-
cording to a set of pre-described, fast, and simple recovery algo-
rithms. The main difference between recoverable robustness and
stochastic programming is the way in which recourse actions are
limited. The property of recoverable robustness that recourse ac-
tions must be achieved by applying a simple algorithm instead of
being bounded by a polyhedron makes this approach very suitable
for combinatorial problems. As an example, consider the planning
of buses and drivers in a large city. We may expect that during
rush hours buses may be delayed, and hence may be too late to
perform the next trip in their schedule. In case of robust optimiza-
tion, we can counter this only by making the time between two
consecutive trips larger than the maximum delay that we want to

http://dx.doi.org/10.1016/j.ejor.2015.12.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.008&domain=pdf
mailto:J.M.vandenAkker@uu.nl
mailto:PBouman@rsm.nl
mailto:J.A.Hoogeveen@uu.nl
mailto:D.D.Tonissen@tue.nl
http://dx.doi.org/10.1016/j.ejor.2015.12.008

740 J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

take into account. This may lead to a very conservative schedule.
In case of recoverable robustness, we are allowed to change, if nec-
essary, the bus schedule, but this is limited by the choice of the
recovery algorithm. For example, we may schedule a given num-
ber of stand-by drivers and buses, which can take over the trip of
a delayed driver/bus combination. Especially in the area of railway
optimization recoverable robust optimization methods have gained
a lot of attention (see e.g. Caprara, Galli, Kroon, Maroéti, and Toth
(2010); Cicerone et al. (2009)).

In this paper we present a Branch-and-Price approach for solv-
ing recoverable robust optimization problems. We present two
new types of solution approaches: Separate Recovery Decomposi-
tion (SRD) and Combined Recovery Decomposition (CRD). These ap-
proaches can be used to model many problems; we will test them
on the size robust knapsack problem and on the demand robust
shortest path problem.

This paper extends our conference paper (Bouman, van den
Akker, Hoogeveen, Demetrescu, & Halldorsson, 2011) by presenting
a general definition of our decomposition approaches, a proof that
the LP-relaxation of the CRD model dominates the LP-relaxation
of the SRD model, and a further study of the solution algorithm
for the demand robust shortest path problem. This study includes
different column generation strategies and elaborate computational
experiments.

To the best of our knowledge, Bouman et al. (2011) and this
paper are the first ones applying column generation to recover-
able robust optimization. Another decomposition approach, namely
Benders decomposition, is used by Cacchiani, Caprara, Galli, Kroon,
and Mardti (2008) to assess the Price of Recoverability for recover-
able robust rolling stock planning in railways.

The remainder of the paper is organized as follows. In Section 2,
we define the concept of recoverable robustness. In Section 3,
we present our two different decomposition approaches, and we
show the general result that the LP-relaxation of the CRD Model
is stronger than the LP-relaxation of the SRD model. In Section 4,
we consider the size robust knapsack problem. We investigate
the two decomposition approaches in a branch-and-price frame-
work and we present computational experiments in which we
compare different solution algorithms. Besides algorithms based
on Separate and Combined Recovery Decomposition, we test hill-
climbing, dynamic programming, and branch-and-bound. The ex-
periments indicate that Separate Recovery Decomposition performs
best. Section 5 is devoted to the demand robust shortest path
problem. Since Separate Recovery Decomposition does not seem to
be appropriate for this problem, we focus on Combined Recovery
Decomposition and consider the settings of the branch-and-price
algorithm in more detail. In our experiments we show that the col-
umn generation strategy has a significant influence on the compu-
tation time. Finally, Section 6 concludes the paper.

2. Recoverable robustness

In this section we formally define the concept of recoverable
robustness. We are given an optimization problem

P = min{f(x)|x € F},

where x € R" are the decision variables, f is the objective function,
and F is the set of feasible solutions.

Disturbances are modeled by a set of discrete scenarios S. We
use Fs to denote the set of feasible solutions for scenario s € S, and
we denote the decision variables for scenarios s by y°. The set of
algorithms that can be used for recovery are denoted by A, where
A(x,s) € A determines a feasible solution y* from a given initial so-
lution x in case of scenario s. In case of planning buses and drivers
a scenario corresponds to a set of bus trips that are delayed, and
the algorithms in A decide about the use of standby drivers.

The recovery robust optimization problem is now defined as:
RRP4 = min{f(x) +g({S(*)|seS})|xecF, Ac A,
Viesy' = Ax,5)}.

Here, c’(y%) denotes the cost associated with the recovery vari-
ables y%, and g denotes the function to combine these cost into the
objective function. There are many possible choices for g. A few
examples are as follows:

1. g({c*(¥%) = 0. This models the situation where our only con-
cern is the feasibility of the recovered solutions.

2. g({cS(¥%) = maxsesc® (¥°), that is, it models the maximal cost
of the recovered solutions y*. This corresponds to minimiz-
ing the worst-case cost. If ¢’(y°) measures the deviation of
the solution y* from x, we minimize the maximum devia-
tion from the initial solution. Note that this deviation may
also be limited by the recovery algorithms.

3. g({cS (%) = D PsCS(¥°), where ps denotes the probability
that scenarios s occurs. This corresponds to minimizing the
expected value of the solution after recovery.

In the remainder of the paper we will consider applications that
use either a function of sum or max type for g({c*(y*).

Although earlier papers on recoverable robustness (e.g.
Liebchen et al. (2009)) consider the latter type of definition
of g as two-stage stochastic programming, we think that the
requirement of a pre-described easy recovery algorithm makes
this definition fit into the framework of recoverable robustness.

3. Decomposition approaches

We discuss two decomposition approaches for recovery robust
optimization problems. In both cases we reformulate the problem
such that we have to select one solution for the initial problem
and one for each scenario. The difference consists of the way we
deal with the scenarios.

3.1. Separate Recovery Decomposition

In Separate Recovery Decomposition, we select an initial solution
and separately we select a solution for each scenario. This means
that for each feasible initial solution k € F we have a decision vari-
able x;, signaling if this solution is selected; similarly for each fea-
sible solution for each scenario q € Fs we have a decision vari-
able y. In the formulation we enforce that we select exactly one
initial solution and one solution for each scenario. The recovery
constraints enforces that for each scenario the initial solution can
be transformed into a feasible solution by the given recovery algo-
rithm. We assume that the recovery constraint and the objective
function can be expressed linearly. We now obtain an Integer Lin-
ear Programming formulation which is formulated as follows (for
maximization objective):

maxy_ e+ Y > CYq
keF seS qek
subject to

Zxk:] (1)

keF

> yy=1forallses (2)
qeks
Aix+ Ay <bs forallseS (3)

X, €{0,1} forallkeF (4)

J.M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750 741

duals [

Initial
solution

Pricing Problem

Pool Pool s =1 Pool s = ||

Recovery solution duals
fors =1

duals Recovery solution
fors =S|

Pricig Problem Pricing Problem

Fig. 1. Column generation process Separate Recovery Decomposition.

Yy €{0,1} forallgek,seS (5)

Here y° denotes the vector of all entries y;. Constraints (1) and (2)
state that exactly one solution is selected in the initial phase and
for each scenario, respectively. Constraints (3) model the fact that
for each scenario s € S the solution y° should be obtained from
x by the given recovery algorithm. We want to solve this ILP for-
mulation using Branch-and-Price (Barnhart, Johnson, Nemhauser,
Savelsbergh, & Vance, 1998).

The column generation process is depicted in Fig. 1.

Since the variables x, model initial solutions, we have that for
these variables the pricing problem boils down to an optimization
problem over the set of initially feasible solutions F, i.e. a variant
of the initial problem. Similarly, for variables y; for scenario s the
pricing problem becomes an optimization problem over F;, i.e. a
variant of the original problem in case of scenario s.

3.2. Combined Recovery Decomposition

In Combined Recovery Decomposition, we select for each scenario
a combination of an initial solution together with the optimal re-
covery of a solution for that single scenario. This means that for
each scenario s € S we have for each combination of an initial so-
lution k € F and the corresponding solution q € Fs obtained by
the recovery algorithm a binary variable zf(q signaling if this com-
bination is selected. Obviously, the combinations selected for the
different scenarios must all correspond to the same initial solu-
tion. To model this we first assume that any initial solution k can
be described by the parameters a; (i=1,...,1), where a;, =1 if
the initial solution k possesses characteristic i, and a;, = 0 other-
wise. Next, we introduce binary variables v; (i=1,...,1) to indi-
cate whether the chosen initial solution possesses characteristic i.
This leads to the following Integer Linear Programming formula-
tion, where again we assume that we can express the functions f
and g in a linear way.

1
maxy Y Y
i=1

seS (k,q)eFxF

subject to
> z,=1 forallses (6)
(k.q)eF xF;
vi=y a(d_z,) forallief{l,....I}seS (7)
keF qek
z,€{0,1} forallkeF,qek q=A(k.s)seS. (8)

Recall that A(k, s) denotes the result of the recovery algorithm ap-
plied to solution k for scenario s. The binary character of the v
variables is guaranteed by the combination of Constraints (7) and
(8). Constraint (7) ensures that the same initial solution is selected
for each scenario; this initial solution can be constructed using the
binary variables v;.

for s =S| .

Initial + recovery
solution fors =1

Initial + recovery

dtials solution for s = |S|

duals

Fig. 2. Column generation process Combined Recovery Decomposition.

We also solve this ILP formulation by Branch-and-Price. The col-
umn generation process is depicted in Fig. 2. The Pricing Problem
now boils down to finding an optimal combination of an initial so-
lution and a recovery solution for a given scenario.

Our approach can be applied to different recoverable robust op-
timization problems. In the next two sections, we will demonstrate
the approach for two different problems. First, we will compare the
two models with respect to the strength of the LP-relaxation.

3.3. Comparing the formulations

Since we solve both formulations through Branch-and-Price, we
solve the LP-relaxation to find an upper bound. We will show
that the LP-relaxation of combined recovery decomposition gives
a stronger bound than the LP-relaxation of the separate recovery
decomposition. In the proof, we need the following lemma.

Lemma 1. For any feasible solution of the LP-relaxation of the CRD
formulation we have that

S S _
szq = =%
qeks

forall k € E

Proof. Let A denote the (I x |F|) matrix with entries a; (i =
1,...,;k=1,...,|F|). Then Constraints (7) can be expressed as
v=AZz, forall s € S, where £ = (zs,...,sz)T and v= (vy.....,)"
Using the linearity of A, we find that A(z1 —z%2) = 0 for any sy, s
€ S. Without loss of generality, we may assume that A has rank I,
since we can remove the redundant constraints otherwise. Hence,
we may conclude that 2! =22 = ... =ZI5l, O

Theorem 1. Let Z;RP and ZCEP be the solution value of the LP-
relaxation of the Separate and Combined Recovery Decomposition
model, respectively. Then

SRD RD
ZiP = 75,
i.e. the LP-relaxation of combined recovery decomposition is stronger.

Proof. Let (7,Z) be an optimal solution to the LP-relaxation of the
Combined Recovery Decomposition model. We will give a solution
(x,y) to the Separate Recovery Decomposition model, and show
that it is feasible and has the same objective value as (7,Z). We
define:

Xe=) %, forallkeF
qeky

V=Y 7%, forallseS qek
keF
Remark that in our definition of X, we could have used the val-
ues Ziq for any scenario, because of Lemma 1. We first check the
constraints.
We have that } ypXx = > ker Dger, Z}(q =1 because of Con-
straint (6). Hence, Constraint (1) holds. In the same way,

742 J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

D ek Vi = 2qek keF Zf{q =1 because of Constraint (6). Hence,
Constraint (2) holds for each s € S.

Next, we have to show that x; and y; satisfy the recovery con-
straints, which are defined as

Aix+Ayy° <bs forall seS.

Let s be any scenario; we will show that the constraint holds for

this scenario. We define e} as the unit vector of length |F| with a

1 on position k; similarly, we define e} as the unit vector of length
|Fs| with a 1 on position g. Since within a variable qu, we have

that solution q is obtained by applying the recovery algorithm to
initial solution k we must have that

Aje +Ase; <bs forall keF;qeF.

For each k € F and q € Fs we multiply these inequalities with 2iq

and add them up to obtain a convex combination of the recovery
constraints. This yields

Y X F (A +Avey] < DD 7 bs =bs.
keF qeks keF qeks

Since the recovery constraints are linear, this can be rewritten as

A1Z Zziq ez_"ASZZ szcq Ef)§bs.

keF | qeF qeFs | keF
Using Lemma 1, we have that
c _ N5 _ N\ .
X = szq - szq’

qek qek
and hence we can substitute X, and yg to obtain
v. X S S pS

ALY Riel +AY Y ey < bs.

keF qeF

Consequently A;X+ ASy <bs, implying that (%, y) satisfies Con-
straint (3). Clearly X, and yg are in [0, 1], which implies that the
solution is feasible. Now we consider the objective value.

Remark that ¢, = Zle fiay,. 1t follows that

Dokt D =0 0D B+ DD 6D F

keF seS qek keF qehy seS qek keF
I
=22 S| Xz | + 220D Gy
keF i=1 qeFR seS keF qek
I
= Do X |+ 2200 G
i=1 keF qeF seS keF qek

By Constraint (7), the above expression equals

!
LATHD DD g
i=1

seS keF qek

which is equal to the cost of (7,2). O
4. Size robust knapsack problem

We consider the following knapsack problem. We are given n
items, where item j (j=1,...,n) has revenue ¢; and weight g;.
Each item can be selected at most once. The knapsack size is b.
We define the size robust knapsack problem as the knapsack prob-
lem where the knapsack size b is subject to uncertainty. We denote
by bs < b the size of the knapsack in scenario s € S. We assume
that the knapsack will keep its original size with probability pg
and that scenario s will occur with probability ps. Our objective is
to maximize the expected revenue after recovery. We study the sit-
uation in which recovery has to be performed by removing items.

As soon as it becomes clear which scenario s appears, recovery is
performed by removing items in such a way that the remaining
items give a knapsack with maximal revenue and size at most bs.
This boils down to solving a knapsack problem where the item set
is the set of items selected in the initial solution and the knap-
sack size is bs. Hence, our set of recovery algorithms is given by
the dynamic programming algorithm for solving these knapsacks.
For ease of exposition, we consider the binary knapsack problem.
Our approach can directly be generalized to the integral knapsack
problem.

Recently, Biising, Koster, and Kutschka (2011a) have studied a
different version of our knapsack problem, where they focus on
uncertainty in the weights and in the items. They show A7P-
hardness of several variants of the problem and develop a polyhe-
dral approach to solve these problems. In a follow-up paper, Biising
et al. (2011b) present an integer linear programming formulation
of quadratic size and evaluates the gain of recovery. With respect
to approximation algorithms, Disser et al. (2014) consider policies
for packing a knapsack with unknown capacity and Goerigk et al.
(2014) consider the knapsack problem in which there is a limited
budget to decrease item weights.

In this section, we discuss our two decomposition approaches
for the size robust knapsack problem and present elaborate com-
putational experiments in which we compare our method with
other algorithms.

4.1. Separate Recovery Decomposition

We define K(b) as the set of feasible knapsack fillings with size
at most b. For k € K(b), we denote its revenue by C, = > ;. ¢;. In
the same way, we denote the revenue of q € K(bs) by G = > i, G-

We define decision variables:

{1 if knapsack k € K(b) is selected,
Xy =
0

otherwise.
and
. 1 if knapsack q € K(bs) is selected for scenario s,
.yq = .
0 otherwise.

The problem can now be formulated as follows:

maxpo Y G+ .ps Y. Gy

keK(b) seS qeK(bs)
subject to
3 =1 9)
keK (b)
> yi=1forallses (10)
qeK(bs)

D auxe— Y ay;=0 forallie{1,2,....n},seS (11)

keK(b) qeK(bs)
X, € {0,1} for all k € K(b) (12)
¥y € {0,1} for all g € K(bs),s €S, (13)

where the parameters a;, and afq are defined as follows:

1
Qi = 0

and

s 1
aGiq = 0

if item i is in knapsack k € K(b),

otherwise.

if item i is in knapsack q € K(bs),

otherwise.

J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750 743

In the above model Constraint (9) states that exactly one knap-
sack is selected for the original situation and Constraints (10) that
exactly one knapsack is selected for each scenario. Constraints (11)
ensures that recovery is done by removing items.

Recall that we solve this ILP formulation using Branch-and-
Price; thereto, we relax the integrality Constraints (12) and (13)
into x;, > 0 and y;, > 0, and solve this LP-relaxation by column gen-
eration.

The pricing problem

From the theory of linear programming it is well-known that
for a maximization problem increasing the value of a variable will
improve the current solution if and only if its reduced cost is pos-
itive. The pricing problem then boils down to maximizing the re-
duced cost.

Let A, us, and ;5 be the dual variables of Constraints (9)-(11),
respectively. Now the reduced cost c™d(x,) of x is given by

n
) =po Y G—A— Y ayTs

ick i=1 seS
n
=Y ag| poci —) s | — A
i=1 seS

Observe that A and p are free variables, and m;; < 0. The pric-
ing problem is to find a feasible knapsack for the original sce-
nario, where the revenue of item i, equals (poc; — Y 55 7;s). This is
just the original knapsack problem with modified objective coef-
ficients. Similarly the reduced cost c™d(y$) are given by c™d(y5) =
>y afq (psci + 7is) — us. Therefore, the pricing is exactly the knap-
sack problem with knapsack size bs and modified objective coeffi-
cients. Note that in the pricing problem an item may have a nega-
tive revenue. Clearly such items can be discarded.

To find an integral solution, we are going to apply Branch-and-
Price. We branch on items that are fractional in the current solu-
tion, i.e. items i for which Xy ¢ k) @iXy is fractional. This is easily
combined with column generation, since enforcing that an item is
taken in or omitted from the knapsack can easily be included in
the pricing problem. If all values X . p)ajX, are integral, then
a single initial knapsack is selected with value 1. Now consider a
basic solution to the LP for scenario s. It is easy to see that this so-
lution contains an optimal subset of the initial knapsack with total
weight at most by which is selected with value 1. Consequently, the
solution is integral.

4.2. Combined Recovery Decomposition

In contrast to the Separate Recovery Decomposition, we consider
fillings of the initial knapsack in combination with the optimal re-
covery for one scenario. Consequently, we introduce decision vari-
ables:

1 if the combination of initial solution k € K(b)

s and recovery solution q € K(bs) is selected

Zh = .
for scenario s,

0 otherwise.

Clearly, ziq is only defined if q is a subset of k. The ILP model
further contains the original variable x; signaling if item i is con-
tained in the initial knapsack. We can formulate the problem as
follows:

n
max po » CiXi+ »_ Ps > Cizig
i-1

seS (k.q)eK(b)xK(bs)

subject to

> z, =1 forallses (14)
(k.q)eK (b) xK (bs)

X — >

(k.q)eK (b)xK (bs)

aikziqzo forallie{1,2,....,n},seS (15)

x; €{0,1} forallie({1,2,...,n} (16)

Zig € {0,1} for all k e K(b),q € K(bs),s €S, (17)

Constraints (14) enforce that exactly one combination is se-
lected for each scenario; Constraints (15) ensure that the same ini-
tial knapsack filling is selected for all scenarios.

Again, we are going to solve the LP-relaxation by column gener-
ation. We include the variables x; in the restricted master LP and,
hence pricing is only performed for the variables z; . We denote
the dual variables of Constraints (14) and (15) by ps and o, re-
spectively. The reduced cost of zf(q is now equal to:

n n
c*(z,) = Y @,PsCi+ Y ay0is — Ps.
i=1 i=1

We solve the pricing problem for each scenario separately. We
have to find an initial and recovery solution. This can be solved
by dynamic programming. The main observation is that there are
three types of items: items included in both the initial and recov-
ery knapsack, items selected for the initial knapsack, but removed
by the recovery, and non-selected items. We define state variables
D(i, wg, wg) as the best value for a combination of an initial and re-
covery knapsack for scenario s, such that the initial knapsack is a
subset of {1,2...,i}, the recovery knapsack is a subset of the ini-
tial knapsack, and the initial and recovery knapsack have weight
wq and ws, respectively. The recurrence relation is as follows:

D(i,0,0) =0 Vi
D(0, wg, wg) = —oo for wg, ws > 0
D(@i — 1, wgp, wg)
D(i,wg, ws) = max { D(i — 1, wg — a;, Ws) + 0js

D(i—1,wg — G;, Ws — ;) + 0js + PsCi

4.3. Computational results

We performed extensive computational experiments with the
knapsack problem. The algorithms were implemented in the Java
Programming language and the Linear Programs were solved us-
ing ILOG CPLEX 11.0. All experiments were run on a PC with an
Intel®Core™Duo 6400 @ 2.13 GHz processor with 1 GB of RAM.
Our experiments were performed in three phases. Since we want
to focus on difficult instances, in the first phase we tested 12 dif-
ferent instance types to find out which types are the most dif-
ficult. We ran two algorithms: the separate recovery branch-and-
price and a hill climbing algorithm. Our instance types are based
on the instance types by Pisinger (2005), where we have to add
the knapsack weight bs and the probability ps for each of the sce-
narios. In the second phase, we tested five different algorithms on
relatively small instances with up to 25 items and up to 8 scenar-
ios. In the third phase we tested the best two algorithms from the
second phase on larger instances with 50 or 100 items and up to
20 scenarios. In this section, we will present the most important
observations from the second and third phase. For further details
we refer to Bouman (2011).

744 J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

Table 1
Second phase results.
Algorithm Failed Avg f(ms) Max f(ms) Avg & Min £ Avg nodes Max nodes
Separate Recovery 128 107 2563 - - 3.27 122
Combined Recovery 1407 417 2969 - - 112 17
Branch and Bound 190 m 2906 - - 1281 33321
DP 2840 347 2984 - - - -
Hill climbing na. 17.3 422 0.99 0.85 - -
In the second phase we tested the following 5 instance classes Table 2 N
with R = 30: Third phase results for Separate Recovery decomposition.
. . . Items Scenarios Failed Avgms Max ms Avg nodes Max nodes
o The almost strongly correlated instances: pick a; uniformly ' & &
from [1, R] and ¢; uniformly from [a;+R/10—R/500,a; + 50 2 2 686 56312 1.56 68
R/10 + R/500]. 50 3 12 2724 53454 1.7 25
o The inverse strongly correlated instances: pick ¢; uniformly 50 4 46 3799 58688 26 35
from [1, R] and a; from [¢; + R/10] 50 10 125 3295 53483 229 35
L S i / . 50 20 144 1473 38766 1.4 17
o The circle(d) instances: pick g; uniformly from [1, R] and ¢; = 100 2 114 1695 47531 1.05 5
d,/4R2 — (a; — 2R)2, where d is set to % 100 3 173 703 24781 1.16 1
Th n ncorrel instances. Cri items with @’ 100 4 176 964 46172 2.03 59
e The span(v, m) unco ea.lt.ed stances. Create v items wit a; 100 10 3 169 34547 139 o
and c} from [1, R] and divide a;. and c} by m + 1. The knapsack 100 20 210 103 2703 113 13

instance is then generated by repeatedly choosing one of the v
combinations (a&, cg) and a random value p; from [1, m]: the
created item gets a; = ,u,-aj. and ¢; = Mic}.

o The subset sum instances, where a; = ¢; drawn from [1, R].

We considered instances with 5, 10, 15 and 25 items and with
2, 4, 6 and 8 scenarios (except for the instances with 5 items, for
which we only considered 2 and 4 scenarios). For each combina-
tion we generated 100 item sets (20 from each instance class). For
each item set we generated 3 sets of scenarios, with large, mid-
dle, and small values of bs relative to b, where large, middle, and
small mean that the values bs are drawn uniformly from [%b, b],
[3b. §b]. and [1b, 1b], respectively. This means that we considered
4200 ((2 +3 x 4) x 100 x 3) instances in total.

We report results on the following algorithms:

e Separate Recovery Decomposition with Branch-and-Price,
where we branch on the fractional item with largest “ ratio

@
and first evaluate the node which includes the item. '

o Combined Recovery Decomposition with Branch-and-Price,
where we branch in the same way as in Separate Recovery De-
composition.

e Branch-and-Bound where we branch on the fractional item
with smallest Z—’ ratio and first evaluate the node which in-

cludes the item. In every node, the optimal recovery for the
current set of items is computed using dynamic programming
for the regular knapsack problem. When a node adds a new
item, the DP-table of the parent node is extended with only
this item in order to keep the computation efficient. The up-
per bounds are computed by solving the LP-relaxation, which
is solved by including the items in order of (% ratio in the ini-

tial solution and in each scenario.

o Dynamic programming. Our DP resembles the DP for the pric-
ing problem in case of Combined Recovery Decomposition.
We use state variables D(i, wo, wy, ..., Ws), where w; (j=
1,...,|S|]) corresponds to scenario j. The recurrence relation
gets exponential size now, since, if item k is included in the
initial solution, we must compute for each possible subset of S
the value of including or omitting this item. Hence, the running
time becomes 0(n21).

Hill Climbing. We apply neighborhood search on the initial
knapsack only and compute for each initial knapsack the opti-
mal recovery by Dynamic Programming. Hill climbing performs
100 restarts.

For the branching algorithms we tested different branching
strategies. All our algorithms branch on whether an item should
be included in the initial knapsack. The different branching strate-
gies select which item should be branched on first and whether
the item should first be included or excluded. The first item is a
combination of best/worst according to weight/ratio/profit. In total
this yields 12 branching strategies. In the Branch-and-Price algo-
rithms the difference in performance turned out to be minor and
we report on the strategy that performed best in Separate Recov-
ery Decomposition. However, in the Branch-and-Bound algorithm
some difference could be observed and we report on the strategy
that shows the best performance for this algorithm.

The results of the second phase are given in Table 1. For each
instance and each algorithm, we allowed at most 3000 millisec-
onds of computation time. For each algorithm, we report on the
number of instances (out of 4200) that could not be solved within
3000 milliseconds, and the average and maximum computation
time over the successful instances. For Hill Climbing we compute
for each instance the performance ratio, which is equal to the
value of the obtained solution c¢ divided by the value of the opti-
mum solution c*; in the table we report the average and worst per-
formance ratio. For the branching algorithms we further report the
average and maximum number of evaluated nodes. For Hill Climb-
ing ‘Failed’ is not applicable.

The results indicate that for this problem Separate Recovery De-
composition outperforms Combined Recovery Decomposition. DP
is inferior to Branch-and-Bound and Hill Climbing. The fact that
Branch-and-Bound requires more nodes than the Separate and
Combined Recovery Branch-and-Price indicated that the decompo-
sition models have a stronger LP-relaxation than the standard ILP
based on variables for each item and scenario.

In the third phase we experimented with larger instances for
the two best algorithms. We present results for instances with 50
and 100 items and 2, 3, 4, 10, or 20 scenarios. Again, for each com-
bination of number of items, number of scenarios, we generated
100 item sets (20 from each instance class) with 3 scenario sets
each. This results in 300 instances per combination of number of
items and number of scenarios, where the maximum computation
time per instance per algorithm is 4 minutes. The results are de-
picted in Tables 2 and 3.

The results suggest that the computation time of Separate
Recovery Decomposition scales very well with the number of

J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750 745

Table 3
Third phase results for hill climbing.
Items Scenarios ~Avgms Maxms Avg £ Min &
50 2 104 969 0.98 0.68
50 3 173 1204 0.98 0.84
50 4 180 1203 0.98 0.83
50 10 268 1407 1 0.94
50 20 309 1515 1 0.84
100 2 887 19656 0.98 0.66
100 3 1257 25578 1 0.86
100 4 1783 32625 1 0.8
100 10 3546 34703 1 0.8
100 20 4546 37312 1 0.94

scenarios. As may be expected, Hill Climbing shows a significant
increase in the computation time when the number of scenarios is
increased. Moreover, the small number of nodes indicates that Sep-
arate Recovery Decomposition is well-suited for instances with a
larger number of scenarios. On average the quality of the solutions
from Hill Climbing is very high. However, a worst performance ra-
tio of about 0.66 shows that there is no guarantee of quality. Hill
Climbing succeeded to complete the algorithm with 100 restarts
for all instances.

5. The demand robust shortest path problem

The demand robust shortest path problem is an extension
of the shortest path problem that has been introduced by
Dhamdhere, Goyal, Ravi, and Singh (2005). We are given a graph
(V, E) with cost c. on the edges e € E, and a source node Vsoyrce € V.
The question is to find the cheapest path from source to the sink,
but the exact location of the sink is subject to uncertainty. More-
over, the cost of the edges may change over time. More formally,
there are multiple scenarios s € S that each define a sink v; | and
a factor f > 1 by which the cost of the edges are scaled. To work
with the same problem as Dhamdhere et al. (2005), we choose as
objective to minimize the cost of the worst case scenario. It is not
difficult to see that this problem is AP-hard, as it generalises the
Steiner Tree Problem. When we pick each f high enough, the op-
timal solution is to buy a minimum cost tree that connects the
source and all sinks during the first phase.

In contrast to Biising (2012), we can buy any set of edges in
the initial planning phase. In the recovery phase, we have to ex-
tend the initial set such that it contains a path from the source to
the sink %, . while paying increased cost for the additional edges.
Remark that, when the sink gets revealed, the recovery problem
can be solved as a shortest path problem, where the edges already
bought get zero cost. Hence, the recovery algorithm is a shortest
path algorithm.

Observe that the recovery problem has the constraint that the
union of the edges selected during recovery and the initially se-
lected edges contains a path from source vsource to sink v;mk. It
is quite involved to express this constraint using linear inequali-
ties, and hence to apply Separate Recovery Decomposition. How-
ever, the constraint fits very well into Combined Recovery Decom-
position.

Our Combined Recovery Decomposition model contains the
variable x. signaling if edge e ¢ E is selected initially. Moreover,
for each scenario, it contains variables indicating which edges are
selected initially and which edges are selected during the recov-
ery:

1 if the combination of initial edge set k C E
Ziq =
0 otherwise.

and recovery edge set q C E is selected for scenario s,

Observe that ziq is only defined if k and q are feasible, i.e., their
intersection is empty and their union contains a path from vseurce
to v5, . Finally, it contains zmax defined as the maximal recovery
cost.

We can formulate the problem as follows:

min Z CeXe + Zmax

ecE

subject to
Y. z,=1forallses (18)

(k,q)CExE
Xe— Y GgZ, =0 forallecEsesS (19)

(k.q)SExE
Zmax — Zf‘ce Z g2, = 0 forallses (20)

eck (k,q)CExE

X € {0,1} foralleecE (21)
z, € 0,1} forallkcE qCE seSs, (22)

where the binary parameters a,, signal whether edge e is in edge
set k and the binary parameters a3, signal whether edge e is in
edge set g for scenario s.

Constraints (18) ensure that exactly one combination of initial
and recovery edges is selected for each scenario; Constraints (19)
enforce that the same set of initial edges is selected for each sce-
nario. Finally, Constraints (20) make sure that zma,x represents the
cost of the worst case scenario.

5.1. Solving the LP by column generation

We first relax the integrality Constraints (21) and (22) into x, >
0 and ziq > 0, and solve this LP-relaxation. To deal with the huge
number of variables we are going to solve the problem by column
generation.

The pricing problem Since we have a minimization problem, the
pricing problem boils down to minimizing the reduced cost. Let
As, Pes, and s be the dual variables of the Constraints (18)-(20)
respectively. The reduced cost of ziq is now equal to:

C*UZy) = —As+) Pestler + Y s fceay.

ecE ecE

We solve the pricing problem for each scenario separately. For a
given scenario s, the pricing problem boils down to minimizing
c‘ed(ziq) over all feasible ag and aj,. This means that we have
to select a subset of edges that contains a path from vsoyrce to
V%, This subset consists of edges which have been bought initially
and edges which are attained during recovery. The first type corre-
sponds to a, =1 and has cost pes and the second type to af, = 1
and has cost msfce. The pricing problem is close to a shortest path
problem, but we have two binary decision variables for each edge.
However, we can apply the following preprocessing steps:

1. First, we select all edges with negative cost. From LP the-
ory it follows that all dual variables 7rs are nonnegative, and
hence, all recovery edges have nonnegative cost. So we only
select initial phase edges with negative cost pes. From now
on, the cost of these edges is considered to be 0.

2. The other edges can either be selected in the initial phase
or in the recovery phase. To minimize the reduced cost, we
have to choose the cheapest option. This means that we can
set the cost of an edge equal to min(pes, TsfSce).

746 J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

The pricing problem now boils down to a shortest path problem
with nonnegative cost on the edges and hence can be solved by
Dijkstra (1959) algorithm. We implemented the algorithm by a min
heap with running time O(|E|log (|V])).

Since we solve the pricing problem for each scenario separately,
the following questions arise: ‘For which scenarios do we actually
solve the pricing problem?’ and ‘Which columns do we actually
add to the restricted LP?’. We investigate the following strategies:

o Interleaved: goes through the pricing problems of the different
scenarios one by one. As soon as a variable with negative re-
duced cost is identified, the corresponding column is added and
the master problem gets resolved. After that, it goes to the next
scenario. When the pricing problem has a solution with non-
negative reduced cost for every scenario the column generation
process is stopped.

Best: solves the pricing problem for all scenarios, but only a
column zf(q with overall minimal reduced cost is added to the
master problem. The master problem is solved again and this
repeats itself until the minimal reduced cost is nonnegative.
All: solves the pricing problem for all scenarios and adds a col-
umn for all scenarios for which a variable z; . with negative re-
duced cost was found; after adding all those columns it resolves
the master problem.

Within the first few experiments it became very clear that the
LP problem is very degenerate. Certainly for larger graphs with a
lot of scenarios this tends to slow down the computation enor-
mously. Observe that every solution needs at least |S| columns. To
get a complete solution, because of Constraint (19), we need a col-
lection of columns such that for each edge e the total amount by
which it is selected in the initial solution Y- ¢)cpxr AekZ}, 1S the
same for every scenario s. This has the consequence that, although
it is included in the basis, a promising new column often does not
influence the primal solution. To deal with this problem, we use
the following method: When a column is added, we always guar-
antee that it can be selected for the solution by generating for ev-
ery scenario the best column with the same initial edges. Those
columns are generated by fixing the set of initial edges and find-
ing the best recovery edges by running Dijkstra’s algorithm for all
other |S| — 1 scenarios.

As a starting solution we take the column in which all edges
are taken in the initial solution. Other strategies were tested but
the differences were small and instance dependent.

Moreover, we have investigated column deletion, i.e. deletion
of columns with too positive reduced cost. However, this does
not seem to work well in combination with including additional
columns.

5.2. Solving the ILP

If the solution of the LP-relaxation is integral, our problem is
solved to optimality. Otherwise, we proceed by Branch-and-Price
(Barnhart et al., 1998), i.e. Branch-and-Bound, where we generate
additional columns in the nodes of the search tree.

In a Branch-and-Price algorithm the branching strategy has to
be designed in such a way that we are still able to solve the pricing
problem in each node of the tree. In our algorithm we branch on
the variables x.. In a node with x. =1 we only generate columns
where edge e is bought in the initial phase. This implies that in
the first preprocessing step of the pricing we buy edge e at cost
pes and then set its cost to 0. In a node with x. =0 we are not
allowed to buy edge e in the initial phase. Therefore, we have to
define the cost of the edge as msfce instead of min(pessfice).

Concerning the choice of the edge for branching, besides con-
sidering the edges in order of their index, we implemented branch-
ing on the most doubtful edge. This means that the we branch on

the edge for which |x, — %| is minimal. This strongly speeds up the
computation.

Moreover, we investigated different node selection strategies.
We considered best bound branching, i.e. branching on the node
with the minimal lower bound, breadth first search, depth first
search and also best depth first, which from the deepest nodes
in the tree selects the one with the best lower bound. In our ex-
periments best depth first did not improve depth first search very
much. Although depth first search sometimes slightly improved
best bound search, it showed a less stable behavior. The same is
true for breadth first search. Therefore we chose to use best bound
branching in our algorithm.

To compute an upper bound three rounding heuristics were
tested. The first heuristic was to select for the initial phase only
edges with x, =1 in the LP-solution. In the second heuristic, all
edges with x, > % were selected in the initial solution. As a third
alternative we applied a randomized strategy: each edge was se-
lected in the initial solution with a probability equal to the value
of x. in the optimal solution of the LP-relaxation. In all three
cases, for each scenario the best recovery solution was deter-
mined by Dijkstra’s algorithm. There did not seem to be much
difference in performance between the heuristics and we applied
the second one since we thought it to be the most intuitive
one.

5.3. Computational results

We have implemented our column generation and branch-and-
price algorithms in Java and used ILOG CPLEX 12.4 as linear pro-
gramming solver. We ran experiments on an Intel®Core™Duo 2.66
GHz processor with 4 GB of RAM.

Again, our experiments were performed in three phases. We
first investigated all column generation strategies, to determine the
best one. Secondly, we performed a sensitivity analysis. Finally, we
ran our algorithm on some larger instances.

We first present results for linear programming to illustrate the
effect of the different column addition strategies from Section 5.1.
The strategies InterA, BestA, and AllA denote extensions of the
strategies Inter, Best and All, in which, when we add a column,
we also add for each scenario the best column with the same ini-
tial edges. In Table 4 we give results for 4 different randomly gen-
erated relatively small instances, where G, . has a graph with n
nodes and e edges. The recovery factor f for these instances is fixed
at 2.0 and every non source node is a possible sink and thus a sce-
nario. For each instance, we give the number of iterations (it), the
number of added columns (col), and the computation time in mil-
liseconds (t).

Our results reveal that the strategies with additional columns
strongly speed up the computation. In most of our cases the num-
ber of columns is also reduced, but as may be expected, the re-
duction is not that strong. In some cases (Gy7, 3; Inter and All) the
number of columns increased.

We also solved the ILP for these instances, where we applied all
combinations of strategies in the root and in the tree. The strate-
gies without additional columns resulted in large running times.

The improvement from the additional columns is explained by
the fact that these columns enable the solver to actually use every
generated ‘interesting’ column in a solution. This is especially
important for the combined recovery decomposition model, where
each column is a combination of an initial solution and a recovery
solution for one scenario. In this model, a feasible solution requires
a set of columns that constitute the same initial solution for each
scenario. So the additional columns prevent a known problem
in column generation: a very good column is generated but can
not be used because other columns to complete the solution are
lacking.

J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750 747
Table 4
Results for linear programming.
Gy,s Gig, 13 Gi7, 23 Gz, 31
Method it col t it col t it col t it col t
Inter 32 40 10 613 639 1014 3701 3740 25941 7132 7179 134213
Best 22 30 10 545 571 1038 2835 2874 19278 6065 6112 136585
All 17 39 8 114 699 554 577 3632 8069 1101 7453 54145
InterA 5 21 6 33 443 55 64 1048 393 537 8624 13132
BestA 6 24 4 24 326 39 73 1192 583 257 4144 7503
AlIA 8 21 3 40 443 55 81 1048 407 652 8624 16649
Table 5
Results for branch-and price with random instances.
InterA BestA BestANoSort AllIA
ed it nd t it nd t it nd t it nd t
1 37 1 20 30 1 19 36 2 24 49 1 20
14 153 5 135 104 6 129 143 10 158 195 5 139
17 385 1 791 209 10 510 358 19 689 472 1 824
20 715 17 2842 414 19 1510 1042 77 2417 888 17 2951
23 2493 41 24669 1353 49 10208 2782 119 14832 3016 41 26606
26 10121 157 174213 4520 154 64500 18514 1238 119645 11921 157 193029
29 20630 325 488442 9641 256 184075 21837 638 297424 23939 272 571894
Therefore, we do not feel it necessary to perform more exper- 10° . . .
iments without additional columns. Moreover, it did not pay off 3
to use a different strategy in the root than in the remainder of 80 :
the tree. Consequently, from now on we only consider strategies 10°} j®g 0
with additional columns that use the same strategy for the com- 0.
plete tree. i . . °
Recall that we branch on the most doubtful edge with |x, — %| é 104} o “. P il
minimal and select the node with the best lower bound. We first g
report results for a set Gsgg of 500 random instances. They are b g8
based on graphs with 10 to 29 edges, where for each number of é 10l i
edges we vary the number of nodes. For every number of edges 8
a total of 25 graphs are generated. All graphs are connected, the s
cost of the edges is drawn uniformly randomly from the interval 102l &
[0; 100], every non-source is a possible sink, and f has a random ey
value in the interval [1; 10]. o0 Besth
The average solution times for those instances are 53.6, 21.2, & =l N
66.7 and 34.8 seconds for InterA, BestA, and AllA and BestANoSort, 1011o 15 20 5 30

where in the latter strategy we branch on the edges in order of
their numbering instead of on the most doubtful edge. The BestA
method performs significantly better than the other methods ac-
cording the Wilcoxon signed-rank test (done with R version 3.1.1,
with p=3.823e13 as the highest p). Table 5 shows results for a
subset of the set of random instances Gsgo. For each number of
edges and each strategy, we report on the average total number of
iterations of column generation (it), the average number of nodes
in the branch-and-bound tree (nodes), and the average computa-
tion time in milliseconds (t).

In Fig. 3 we plot on a logarithmic scale the computation time
for each number of edges.

These results suggest that especially for larger graphs BestA
outperforms the other column addition strategies. Even when
BestA is combined with the inferior branching strategy of branch-
ing on edges in lexicographical order, this is faster than the other
column addition strategies.

We also did some sensitivity experiments on the influence of
the edge cost and the recovery factor f. To test the influence of the
costs of the edges we used Gy4, 13 and Gy 3; with fixed recovery
factor f =2. We created 500 random cost versions by generating
the edge costs uniformly randomly from the interval [0; 50]. For

Number of Edges

Fig. 3. Logarithmic time results of the methods.

the recovery factor f we generated similar instances only now we
fixed the cost and varied the recovery factor in the interval [1; 10].
Because the G737 graph with random recovery factor f was solved
relatively slowly, we only solved 25 instances. Because these exper-
iments are about sensitivity we report the quartile points, which
divide the data into four equal groups, instead of averages. We
looked at the iterations, nodes and time separately, and also re-
port the minimum and maximum. These results can be found in
Table 6. All instances are solved with the BestA method.

These results suggest that cost as well as recovery factor have a
large influence on the iterations, nodes and solution time of the in-
stance, this difference can be a factor of more than 100. This might
be explained by the fact that some combinations of cost and re-
covery factor result in alternative solutions with approximately the
same value, which have an impact on the size of the search tree.
We consider a small example with 3 nodes: one source s and two
possible sink t; and t, each occurring with probability % There are

748 J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

Table 6
Results for varying the cost (c) and the recovery factor (f) of the edges.
Gy 13 € Giz,31 € Gig 13 f Giz 3
it nd t it nd it nd t it nd t
Minimum 30 3 57 146 3 281 27 1 161 483 1 42651
First quartile 134 13 235 1044 38 6323 51 1 325 3183 39 100754
Median 185 29 325 1922 85 13289 74 1 416 6964 99 173167
Third quartile 235 49 445 3177 166 18687 116 9 606 9404 153 238108
Maximum 675 211 1475 9753 1567 51236 279 73 1112 51923 1221 520106
Table 7 10° - . . T
Effect of number of scenarios on average solution
time (ms) 5 @ -® 10 edges
i 10°¢ T 3|® @ 11 edges
Number of scenarios B @ ® 12 edges
R @ @ 13 edges
Edges 5 10 15 20 104} et e {|® © 14 edges
11 9 - - - + - : B W 15 edges
v gk W ‘W 16 edges
14 19 123 - - E . x5 mm 17 edges
23 102 1390 7103 - < 10°¢ g |m @ 18 edges
26 120 3495 19941 59429 = e et i
29 573 16296 107511 249716 2 107] 525621 cg02
cE> X% 22 edges
o % 23 edges
1 24 edges
107 4|+ + 25 edges
+-+ 26 edges
two edges (s, t1) and (s, tp) with the same initial cost Q. If f =2, . pe :gg:z
then it does not make a difference if you buy all edges, one edge, 10°F 3| 29 edges
or no edges in the initial phase.
The experiments from now on, were performed with a better 10"0 : 20 5 T %
computer with an Intel®Core™i5 3.40 GHz processor and 8 GB Number of Scenarios
of RAM. This computer is approximately twice as fast. Until now .)
. . Fig. 4. Time results per number of edges.
we considered instances were every non-source node could be the
sink, which are instances with a relatively large number of sce-
narios. Since the size of the ILP model is linear in the number of -
scenarios, we may expect that instances with fewer scenarios can ' ' '

\ @ @ 1 scenario
be so}ved faster. From Fhe set Gsop used before we generated 42747 > i {[e-e 2 scenarios
new instances by varying the number of scenarios. F 497 le e 3scenarios

i i : n-1 TR VD. S @ @ 4 scenarios
For each instance in the set Gsog, We generate mm{(;) 10} x %% lo @ 5 scenarios
instances with i scenarios, i.e., i possible sink nodes, where n is the 10%F T Il | o
number of nodes of the instance. Hence, for each instance, in total g & i 9.8 ® m lmm e scenarios
. _ . . = FOCKT P o e @ @ 9 scenarios
Y 7' min{(";"). 10} instances are generated. The maximum of 10 E o100t R é g R e e
N . . =} g:10 X] oy,
instances which can be generated per instance and number of sce- = ipom el I 475 i
. — = " (-]
narios is used to limit the total number of instances. If ("il) > 10, é 102} B e ° @ [xx 13 scenarios
. . . : o x 14 i
we randomly select 10 subsets of size i. For example, when an in-] - ° e : . 15 scanaiios
stance of the Gsgg set has 4 nodes, 7 new instances are generated. 10! :E ° ° o %0] e
Three instances, with 1 scenario are generated, three with 2 sce- E g © e o.e .0 8 O g O ® |4+ 18 scenarios
. 19 i
narios and one instances with 3 scenarios. Note that the instance 100l o0.q Jrt20 il
which has 3 scenarios is an exact copy from the Gso instance. ® R A M Kl
For each instance the nodes, edges and the cost of the edges are .
copied from the Gsqg instance. For each instance the correspond- 155 15 20 25 30
ing recovery values f from the Gsoy instance are used for the Number of Edges

scenarios.

These instances were solved with the BestA method. Solving all
42747 instances took 56.4 hours. In Table 7 we show the average
computation time in milliseconds for different numbers of edges
and different numbers of scenarios.

Moreover, in Figs. 4 and 5, we plot the computation time on a
logarithmic scale, per number of edges as a function of the num-
ber of scenarios and per number of scenarios as a function of the
number of edges, respectively. A larger version of the figures can
be found in the appendix.

Our results suggest that the number of edges has a strong im-
pact on the computation time, which indicates exponential behav-
ior. The impact of the number of scenarios, seems very strong in
the beginning but then somewhat flattens out in the logarithmic
scale. We conclude that both have a strong influence.

Fig. 5. Time results per number of scenarios.

Finally, we performed experiments for four larger instances,
which are generated to get an indication of the boundaries of
what can be solved. Because these instances take a long time to
solve, only four instances were generated. These graphs are gen-
erated in exactly the same way as the Gsoo graphs. Every non
source node is a possible sink, the graphs are connected, the cost
of the edges are uniformly random from the interval [0; 100], and
f has a random value in the interval [1; 10]. In Table 8 we show
the number of nodes and edges, the time needed to solve the LP,
the time needed to solve the ILP, the total solution time, and the
number of nodes in the branch-and-bound tree, together with the
node in which the best solution was found. For G4 we ran into

J:M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750 749

Table 8

Results for large instances.
Graph |V| |E| tip (min) typ (min) ¢ n Nsop
Gy 13 50 3.6 3.6 7.2 min 3 2
G, 25 50 19.3 2083 35h 1597 1332
Gs 15 60 27.2 167 32h 207 142
Gy 30 60 167 - - - -

memory problems while solving the ILP. These results indicate that
instances which have 25 nodes and 50 edges or more can take a
long time to solve and cannot always be solved with 8 GB of RAM
available.

6. Concluding remarks

We have presented a new approach, based on column gener-
ation, for solving recoverable robust optimization problems. The
key to this approach are two decomposition methods: Separate
Recovery Decomposition (SRD) and Combined Recovery Decompo-
sition (CRD). In the SRD approach, we work with separate solu-
tions for the initial problem and recovery solutions for the dif-
ferent scenarios; in the CRD approach, we work with combined
solutions for the initial problem and the recovery problem for a
single scenario. We have shown that the LP-relaxation of the CRD
model provides a stronger bound than the LP-relaxation of the SRD
model.

We have tested our approach on two problems. The first one
is the size robust knapsack problem, where the knapsack size
can decrease, and where we can recover by removing items. Our
computational experiments revealed that for this problem Sepa-
rate Recovery Decomposition outperformed Combined Recovery
Decomposition and that the SRD method scaled very well with
the number of scenarios. Moreover, SRD outperforms the standard
branch-and-bound and dynamic programming approach.

We further considered the demand robust shortest path prob-
lem. Here we need to buy the edges of a shortest path from a
known source to an unknown sink that will be revealed later. We
buy an initial set of edges, and when the sink gets revealed we
can recover by buying additional edges (at a higher cost). For this
problem the CRD approach seems to be very appropriate; the SRD
model is hard to implement. The computational experiments re-
vealed that it is crucial to add columns that correspond to the
same initial solution for all scenarios.

There are several directions for future research. An obvious
question is to find out what type of problems can be solved by
this kind of approach; we are currently investigating our frame-
work on scheduling problems. Next, it is important to formulate
conditions to determine beforehand which decomposition model
will work best for a certain problem. Recently, we have extended
the size robust knapsack problem to multiple knapsacks (Tonissen,
van den Akker, & Hoogeveen (2015)). For the single knapsack
problem the SRD model outperforms CRD, but this changes if the
number of knapsacks increases, and for four and more knapsacks
CRD outperforms SRD. Another important question concerns the
reduction of the running time; for example, in our experiments
we have seen that adding the right columns or improving the
primal heuristic can lead to a large improvement. Interesting
issues for further research are restrictions on the recovery so-
lution such as a limited budget for the cost of the recovery
solution.

Appendix A. Time results per amount of edges/scenarios on a
logarithmic scale

10° , : : ,
5 @ ® 10 edges
10° 1|® @ 11 edges
@ @ 12 edges
@ @ 13 edges
1041 1|@ @ 14 edges
= B 15 edges
g W W 16 edges
£ 5 B W 17 edges
= 107 7|® @ 18 edges
2 @ @ 19 edges
5 x--x 20 edges
3 102} || 21 edges
£ XX 22 edges
8 < 23 edges
24 edges
101 3 4|+ -+ 25 edges
++ 26 edges
+-+ 27 edges
ol % ||+ -+ 28 edges
10 29 edges
10-1 L L L L
0 5 10 15 20 25
Number of Scenarios
Fig. A.6. Time results per amount of edges on a logarithmic scale.
10° T . T
@ @ 1 scenario
5 @@ 2 scenarios
10} L e j|® @ 3 scenarios
s @ @ 4 scenarios
X @ @ 5 scenarios
104 L K J|m--m 6 scenarios
ol .. W--W 7 scenarios
g 5} L] BB 8 scenarios
S 3 é = -a B @ 9 scenarios
= 1071 = .- - 3|= @ 10 scenarios
S .. , :
= . x--x 11 scenarios
g - L ° XX 12 scenar!os
2 102| " o © @ ||>x 13 scenarios
£ [} ° ® % 14 scenarios
] o ® o8 ° 15 scenarios
5]
N P ® o o .0 ® ®. .00 ++ 16 scenarios
10§ o . o 7|+t 17 scenarios
@ i X
R e o o ® . g @) +:-+ 18 scenarios
E" .o ® hd i ® + 19 scenarios
o[i | 20 scenarios
10 L] o ® o o0 0. .0 b @ @ 21 scenarios
& @ 22 scenarios
10—1 L L L
10 15 20 25 30
Number of Edges
Fig. A.7. Time results per amount of scenarios on a logarithmic scale.
References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P,, & Vance, P. H.
(1998). Branch-and-price: column generation for solving huge integer programs.
Operations Research, 46, 316-329.

Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton
University Press.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52,
35-53.

Birge,]. R.,, & Louveaux, F. (1997). Introduction to stochastic programming. Springer
Series in Operations Research and Financial Engineering. Springer.

Bouman, P. C. (2011). A column generation framework for recoverable robustness. De-
partment of Information and Computing Sciences, Utrecht University Master’s
thesis.

Bouman, P. C,, van den Akker, J. M., & Hoogeveen,]. A. (2011). Recoverable robust-
ness by column generation. In C. Demetrescu, & M. M. Halldorsson (Eds.), Algo-
rithms ESA 2011, volume 6942 of Lecture Notes in Computer Science (pp. 215-226).
Berlin, Heidelberg: Springer.

Biising, C. (2012). Recoverable robust shortest path problems. Networks, 59, 181-189.

Biising, C., Koster, A. M. C. A., & Kutschka, M. (2011). Recoverable robust knapsacks:
the discrete scenario case. Optimization Letters, 5, 1-14.

Biising, C., Koster, A. M. C. A., & Kutschka, M. (2011). Recoverable robust knapsacks:
y-scenarios. In J. Pahl, T. Reiners, & S. VoR (Eds.), Network Optimization, vol-
ume 6701 of Lecture Notes in Computer Science (pp. 583-588). Berlin, Heidelberg:
Springer.

http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0001
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0002
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0003
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0004
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0005
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0006
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0007
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0007
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0008
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0009
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0009
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0009
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0009
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0009

750 J.M. van den Akker et al./European Journal of Operational Research 251 (2016) 739-750

Cacchiani, V., Caprara, A., Galli, L, Kroon, L. G., & Maréti, G. (2008). Recoverable
robustness for railway rolling stock planning. In Proceedings of ATMOS 2008 -
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems, Karlsruhe, Germany.

Caprara, A., Galli, L., Kroon, L. G., Maréti, G., & Toth, P. (2010). Robust train routing
and online re-scheduling. In ATMOS 2010 - 10th Workshop on Algorithmic Ap-
proaches for Transportation Modeling, Optimization, and Systems, Liverpool, United
Kingdom (pp. 24-33).

Cicerone, S., D'Angelo, G., Stefano, G. D., Frigioni, D., Navarra, A., Schachtebeck, M.,
& Schobel, A. (2009). Recoverable robustness in shunting and timetabling. Ro-
bust and Online Large-Scale Optimization: Models and Techniques for Transporta-
tion Systems, 28-60.

Dhamdhere, K., Goyal, V., Ravi, R., & Singh, M. (2005). How to pay, come what may:
Approximation algorithms for demand-robust covering problems. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS '05
(pp. 367-378). Washington, DC, USA: IEEE Computer Society.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1, 269-271.

Disser, Y., Klimm, M., Megow, N., & Stiller, S. (2014). Packing a knapsack of un-
known capacity. In E. W. Mayr, & N. Portier (Eds.), Proceedings of the 31st In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS 2014),
volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany (pp. 276-287).

Goerigk, M., Sabharwal, Y., Schobel, A., & Sen, S. (2014). Approximation algorithms
for the weight-reducible knapsack problem. In T. V. Gopal, M. Agrawal, A. Li, &
S. B. Cooper (Eds.), Proceedings of Theory and Applications of Models of Compu-
tation, volume 8402 of Lecture Notes in Computer Science (pp. 203-215). Springer
International Publishing.

Liebchen, C., Liibbecke, M. E., Mohring, R. H., & Stiller, S. (2009). The concept of
recoverable robustness, linear programming recovery, and railway applications.
Robust and Online Large-Scale Optimization: Models and Techniques for Transporta-
tion Systems, 1-27.

Pisinger, D. (2005). Where are the hard knapsack problems? Computers & Operations
Research, 32, 2271-2284.

Tonissen, D. D., van den Akker, J. M., & Hoogeveen,]. A. (2015). Column generation
strategies and decomposition approaches to the size robust multiple knapsack
problem. Technical Report UU-CS-2015-010. Department of Information and Com-
puting Sciences, Utrecht University.

http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0010
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0011
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0012
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0013
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0014
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0015
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0016
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0018
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0019
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0019
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0020
http://refhub.elsevier.com/S0377-2217(15)01117-0/sbref0020

	Decomposition approaches for recoverable robust optimization problems
	1 Introduction
	2 Recoverable robustness
	3 Decomposition approaches
	3.1 Separate Recovery Decomposition
	3.2 Combined Recovery Decomposition
	3.3 Comparing the formulations

	4 Size robust knapsack problem
	4.1 Separate Recovery Decomposition
	4.2 Combined Recovery Decomposition
	4.3 Computational results

	5 The demand robust shortest path problem
	5.1 Solving the LP by column generation
	5.2 Solving the ILP
	5.3 Computational results

	6 Concluding remarks
	Appendix A Time results per amount of edges/scenarios on a logarithmic scale
	 References

