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Abstract 

Benders Decomposition and an IP-based Heuristic for  

Selecting IMRT Treatment Beam Angles 

Sifeng Lin, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Jonathan F. Bard 

 

To optimize the beam angle and fluence map in Intensity Modulated Radiation 

Therapy (IMRT) planning, we apply Benders decomposition as well as develop a two-

stage integer programming-based heuristic.  Benders decomposition is first implemented 

in the traditional manner by iteratively solving the restricted master problem, and then 

identifying and adding the violated Benders cut.  We also implemented Benders 

decomposition using the “lazy constraint” feature included in CPLEX.  In contrast, our 

two-stage heuristic first seeks to find a good solution by iteratively eliminating the least 

used angles in the linear programming relaxation solution until the size of the formulation 

is manageable.  In the second stage of the heuristic, the solution is improved by applying 

local branching.  The various methods were tested on real patient data in order to 

investigate their effectiveness and runtime characteristics.  The results indicated that 

implementing Benders using the lazy constraint usually led to better feasible solutions 

than the traditional approach.  Moreover, the LP rounding heuristic was seen to generate 

high-quality solutions within a short amount of time, with further improvement obtained 

with the local branching search. 
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1. Introduction 

Intensity modulated radiation therapy (IMRT) has gained popularity among oncologists 

because of its demonstrated capability to deliver higher doses of radiation to tumors 

while doing a better job at sparing healthy tissue than other forms of radiation treatments.  

Lim et al. (2012) summarize the general treatment procedure as follows: the patient lies 

still on a special couch and is irradiated by photon beams generated by a linear 

accelerator (LINAC).  The movable arm of the LINAC, called a gantry, can rotate in a 

plan perpendicular to the couch to deliver radiation to the desired location of the body.  

For any given angle, the computer controlled multi-leaf collimator in the LINAC can 

adjust the radiation beams to match the shape of the tumor.  An open radiation field is 

fractionated into hundreds of subfields called beamlets. Each beamlet is assigned its own 

level of intensity, and the set of beamlets carried in each beam angle is referred to as a 

fluence map.  For more details about the procedure and equipment, see Lim et al. (2008). 

Before designing an IMRT plan, physicians use various scanning procedures to 

capture the geometry of the tumor area.  The area is classified into two types of volumes: 

planning target volume (PTV) and organs-at-risk (OARs).  The PTV represents the area 

of the cancer, and OARs are healthy organs or tissues of the body.  An IMRT plan 

should simultaneously deliver the desired amount of radiation to the tumor while limiting 

the amount to the healthy organs. 

PTV and the involved OARs are divided into three-dimensional treatment cubes 

called voxels (Lim et al. 2007).  The total dose that each voxel receives is defined by the 

weighted sum of the beamlet dose delivered to the voxel.  In IMRT plans, the regions of 

high dose and low dose are called hot spots and low spots, respectively.  For voxels in 

PTV, we want to control both the hot and cold spots to guarantee the desired treatment 

effect.  For voxels in OARs, we only control hot spots to spare the healthy organs.  Both 

hot and cold spot control can be modeled by enforcing hard constraints or penalizing 

deviations from the desired dose. 
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The purpose of this study is to explore solution techniques that can help planners 

optimize the angle selection and fluence intensity maps.  Various mixed-integer 

programming (MIP) formulations have been proposed to solve this problem (e.g., Lee et 

al. 2000, Lim et al. 2007, and Yarmand et al. 2013).  Because solving the MIPs with 

commercial software has proven difficult, if not impossible, researchers have proposed 

various heuristics.  Decomposition methods such as Benders decomposition and 

Lagrangian relaxation, which have been successfully applied to various MIP models, 

have not been applied to IMRT planning to the best of our knowledge.  In this study, we 

show that Benders decomposition may find better solutions than a standard MIP solver.  

In addition, we develop a two-stage heuristic that uses a standard MIP solver (i) to 

construct a good initial solution in the first stage and (ii) to implement local branching 

(Fischetti and Lodi 2003) in the second stage.  The first stage of the heuristic reduces the 

solution space of the original problem by iteratively eliminating unpromising angles 

identified in the linear programming solution until the remaining problem is easy to 

solve.  In the second stage, the solution is used as a starting point for local branching.  

Our results show that the LP rounding heuristic is fast and can generate good solutions, 

which may be further improved by local branching in the second stage. 

The rest of the report is organized as follows.  Section 2 summarizes the related 

literature.  Section 3 introduces the problem formulation and Section 4 discusses the 

Benders decomposition.  In Section 5, we develop an LP rounding heuristic and couple it 

with local branching to improve the solution.  Section 6 presents the computational 

results and Section 7 concludes the report.  
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2. Literature Review 

IMRT is a popular technique for irradiating tumors.  Its application and efficacy have 

been extensively discussed by the medical research community (e.g., Milano et al. 2006 

and Zelefsky et al. 2000).  The comparison of IMRT with another popular therapy, 

proton therapy, is also well studied (e.g., Chang et al. 2005 and Mock et al. 2004). 

An IMRT plan entails both the angle at which the dose is delivered and the 

intensity of the fluence map for the angles selected.  Accordingly, researchers and 

practitioners face two interrelated problems: the angle optimization problem and the 

fluence intensity optimization problem.  Since the 1970s, researchers have developed 

various methods to solve the latter.  Depending on the penalty function for the undesired 

dose delivered to voxels in PTV or OARs, the resulting model may be a linear or 

nonlinear (usually quadratic) mathematical program.  Ehrgott et al. (2008) present an 

extensive survey.  When the objective function is linear or can be linearized, the 

program can be solved with standard commercial software (Lim et al. 2007, Romeijn et 

al. 2003, Saka et al. 2011, Saka et al. 2014).  Otherwise, researchers have developed 

their own the problem-specific algorithms.  For example, Spirou and Chui (1998) 

developed a gradient inverse planning algorithm to determine the intensity-modulated 

beams.  

When the penalty function is linear, the angle selection and fluence intensity map 

optimization problems can be modeled as a MIP.  Lee et al. (2000) proposed a MIP 

formulation for generating LINAC radiosurgery treatment plans.  Yarmand et al. (2013) 

first solved a linear program to find an ideal, albeit infeasible, plan in which all candidate 

beams can be used.  They then developed a MIP to find the plan with the desired quality 

while minimizing the number of beams.  Lim et al. (2007) proposed an optimization 

framework to automatically design radiation treatment plans.  Their work includes (1) 

the determination of the beam’s eye view for each potential angle, (2) the generation of 

the corresponding dose matrices for each beam from each angle, (3) the development of 

three models to optimize the beam angles, beam weights, and wedge orientations, 

respectively, (4) techniques to solve the optimization models, and (5) techniques to 
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control the dose-volume histograms associated with the OARs.  Unable to solve the 

MIPs exactly, they investigated different ways to both reduce the model size and to 

obtain high quality feasible solutions.   

To reduce the number of potential beams, Yarmand et al. (2013) added 

neighborhood cuts to their MIP so that the selection contains at most one or a few of the 

beams in every set of adjacent beams.  Lim et al. (2008) developed an LP-based iterative 

beam angle elimination algorithm to obtain promising beam angles with optimized 

fluence maps.  Lim et al. (2014) examined the strengths and weaknesses of six 

optimization methods for selecting beam angles: branch and bound, simulated annealing 

(SA), genetic algorithms (GA), nested partitions (NP), branch and prune (BP), and local 

neighborhood search (LNS).  They concluded that it is more effective to apply hybrid 

methods that first find a good feasible solution using SA, GA, NP, or BP, and then use 

the resulting solution as a starting point for LNS to arrive at a local optimum.  



 5 

3. Problem Formulation 

Devising an IMRT plan involves selecting a subset of angles and designing the associated 

fluence map to apply the desired dose to the planning target volume without damaging 

the healthy organs.  Accordingly, we need to penalize both hot and cold spots for voxels 

in PTV and penalize the hot spots for voxels in OARs.  The following notation is used in 

the developments. 

Indices and sets 

A set of candidate beam angles; a  A 

O set of OARs; i  O  

T set of voxels in PTV; v  T 

Si set of voxels in organ i; i  O 

V set of all voxels; v  T 

Ba set of beamlets in angle a; b  Ba 

Parameters 

  maximum number of treatment angles in a treatment plan 

dvb dose contribution to voxel v from beamlet b 

Uv upper bound on the dose applied to voxel v T  

Lv lower bound on the dose applied to voxel v T  

θU hot spot control parameter on voxels in PTV 

θL cold spot control parameter on voxels in PTV 

 hot spot control parameter on voxels in OARs 

t
  penalty coefficient for hot spots in PTV 

t
  penalty coefficient for cold spots in PTV 

s  penalty coefficient for hot spots in OARs 

Mab maximum intensity of beam ab B  
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Decision variables 

a  1 if angle a is selected, 0 otherwise 

wab intensity of beamlet ab B for angle a 

Dv total dose applied to voxel v V  

With slight abuse of notation, we use DT to denote the vector of dose values for 

voxels in PTV, 
iSD for the vector of dose values applied to organ i, and D for the vector 

of dose values for all voxels. Now, given the total dose Dv applied to each voxel v V , 

Lim et al. (2007) use the following penalty function 

     
1

/ | |( ) i

i

ST T

t T U t L T s S i

i O

D e e D DD Sf e     
   

 



     , 

where || ||x  and ||x||
1
 respectively denote the infinity and 1-norm of vector x, (y)

+
 equals 

max{y,0}, and e
T
 and iS

e  are vectors of 1’s with dimensions |T| and |Si|, respectively.  

The first and second terms in f(D) control the hot and cold spots for voxels in PTV by 

penalizing the maximum excess dose and maximum shortage of dose, respectively; the 

third term controls the hot spot for voxels in OARs by penalizing the dose that is more 

than  .  The full model is: 

Minimize   ( )f D  (1a) 

subject to   
aa A b B

v v b a bD d v V
 

    (1b) 

a

a A

 


  (1c) 

0 ,ab ab a aw M a A b B      (1d) 

vv vD U vL T     (1e) 

{0,1}a a A     (1f) 

The objective function (1a) minimizes the total penalty from the radiation doses 

applied to both PTV and the neighboring organs.  Equalities (1b) specify the total dose 

each voxel receives, which is the weighted sum of the individual doses.  Constraints (1c) 

limit the number of angles that can be used to the maximum specified.  Constraints (1d) 
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guarantee the non-negativity of the beamlet intensity and ensure that a beamlet can only 

carry a positive dose if the angle is selected.  Refer to Lim et al. (2007) for more detail 

on how to refine the value of Mab, the maximum intensity of beamlet b  Ba.  Finally, 

bounds are placed on the dose applied to PTV in (1e) and the angle selection variable, 

a , is defined to be binary in (1f).   

To solve the problem as an integer (linear) programming, we need to linearize the 

objective function.  Define  
1

iv

T

SDy e


  for each iv S ,  T

T Uz D e



  , 

and  T

L Tz e D




 .  Model (1) can then be reformulated as follows. 

Minimize    / | |
i

t t S

i O v S

vy Sz z     

 

    (2a) 

subject to    
v Uz D v T      (2b) 

L vDz v T      (2c) 

,
a

i

a A

v vb ab

b B

y v S i Od  
 

     (2d) 

vv vD U vL T     (2e) 

aa A b B

v vb abD d v T
 

    (2f) 

a

a A

 


  (2g) 

0 ,ab ab a aM a A b B       (2h) 

{0,1}a a A     (2i) 

0 ,iv v Oy S i      (2j) 

, 0z z     (2k) 

Because we minimize the objective function, (2a) is equivalent to (1a) when 

constraints (2b), (2c), and (2d) are enforced.  Note that we do not remove variables vD  
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for v T  since keeping them improves computational performance.  Although the 

number of variables increases slightly, the constraint matrix is sparser.   

We can reduce the number of variables and constraints in model (2) in the 

following ways.  

 In the third term in (2a), we only penalize the excess dose applied to the voxels in 

OAR, i.e., the dose beyond .  Thus, if some beamlet ab B  does not affect the 

voxels in PTV, i.e., dvb = 0 for all v T , we must have an optimal solution with 

0abw  .  Making wab > 0 only increases the penalty associated with the voxels in 

OAR. Therefore, we can exclude these variables from model (2). 

 For any two voxels 1 2,v v T , if 
1 2bv b vd d  for all ab B  and a A , we have 

1 2U Uv vD D    and 
1 2L v L vD D    .  Therefore, constraints 

1v UDz     

and 
2L vDz     are both redundant and can be removed.   

 If 0
a

vba aA b B bd M 
 

    for some ,iv S i O  , constraint 

a
v vb aa A B bb

y d w 
 

    is redundant.  Accordingly, we can exclude both the 

constraint and variable yv from the model.  
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4. Benders Decomposition 

Benders decomposition is an algorithm for solving MIPs that has been widely applied 

since 1960s. It is best suited for models of the form: min{cx + dy : Ax + By  b, x  ,n

   

y  p


}, where p is relatively small and when fixed, the constraints Ax  b  By divide 

into independent subsets in the x variables.  An integer master problem is set up that is 

equivalent to the original problem when all its constraints are included.  None of those 

constraints are known at the outset, though, so they are generated iteratively one or two at 

a time by solving the dual of the LP subproblems that result when y is fixed.  Each 

subproblem provides an optimality cut and perhaps a feasibility cut which are added to 

the restricted master problem. Convergence is finite but may require many iterations.  

Cordeau et al. (2001) applied Benders to simultaneously solve the aircraft routing and 

crew scheduling problems, while Binato et al. (2001) used it to solve power transmission 

network design problems.  Costa (2005) gives an extensive survey on applications to 

fixed-charge network design problems.  In this section, we apply Benders decomposition 

to model (2). 
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4.1 Benders reformulation 

For fixed values of a  for all a  A, and after a few substitutions, (2a) – (2k) reduces to 

an LP whose constraints are given below.  Their corresponding dual variables are 

defined on the right. 

a

vb U

a A B

ab

b

z v Td  

 

       
v
  

a

vb L

a A B

ab

b

z d v T 
 

       
v
   

,
a

v vb a i

a

b

A b B

v S iy Od  
 

      v   

aa A b B

vb ab v vd L T
 

      
v
   

a

v

a A b B

vb ab U v Td 
 

        
v
   

,ab ab a aM a A b B          
ab  

Model (3) is the corresponding dual formulation of the LP after fixing the angle selection 

vector . 

 ( Maximize  )
i a

U v L v v v v v v a ab

v T i O v a

ab

S A b B

h ML U            

    

          (3a) 

subject to       
t

v T

v  



  (3b) 

t

v T

v  



  (3c) 

0 / | | ,v S i iS i O v S        (3d) 

  0 ,
i

ab v v v vva vb v a

v T v Si O

d a A b Bd        

  

            (3f) 

, 0v v v T        (3g) 

0 ,ab aa A b B       (3h) 
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Let Q be the set of extreme points for the feasible region (3b) – (3h).  For any 

extreme point q ∊ Q, with , )( , , , ,v v v v v abq          , we define the linear function g(, 

q) as 

 )( ,
i a

U v L v v v v v v aab ab

v T i O v S a A b B

q L Ug M            

    

         . 

Since g(, q) is the objective function of model (3), we can then denote model (3) as 

g()= Max{g(, q): q ∊ Q}. 

Lemma 1: Let q
1
 and q

2
 be two solutions to model (3) and assume that all their 

components are the same except ab.  Let 1

ab   and 2

ab  be the corresponding 

components of q
1
 and q

2
, respectively.  If 1 2

ab ab  , then constraint g(, q
2
) ≤ W 

dominates g(, q
1
) ≤ W. 

Proof: Since 1 2

ab ab  , we have g(, q
1
) ≤ g(, q

2
), which proves the result.    ■ 

Lemma 1 indicates that we would like to have a value of ab that is as small as 

possible to get a stronger Benders cut.  When a > 0, optimality of (3) ensures that the 

corresponding constraints (3f) are binding for all b ∊ Ba (otherwise, we can decrease the 

objective function and maintain feasibility by decreasing ab), which means that we 

cannot decrease ab without affecting the feasibility of the solution.  When a = 0, the 

optimal solution may have  
i

ab v v v v vb vv T O vva i S
d d        

  
        .  In 

this case, we can state the value of ab as follows:  

 max{0, }
i

ab v v v v vb vv T i v Svb O
dd        

  
        

Benders optimality cuts can be slightly strengthened when a lower bound for the 

original problem is known.  Given any extreme point q ∊ Q, where 

, )( , , , ,v v v v v abq          , let 
a

abb abBac M 


  and 

( )
i

U v L v v v v v vv T i O v S
b L U         

  
        for all a A .  The 

corresponding Benders feasibility cut is 
a a aA

W c b


  .  If W1 is a lower bound on 
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the optimal objective function 
*W , i.e., 

1

*W W , then we can replace coefficient ac  

with 1

1min{ , }a ac c b W  . 

Let   denote the set of angle combinations that give an unbounded objective 

function value in model (3), i.e., )(h   for all   .  We can add the feasibility 

constraint 1a aa A
  


   to prevent solution   from being selected.  The original 

problem can be reformulated as: 

Minimize   W (4a) 

subject to  ( , )g q W q Q      (4b) 

1a a

a A

   


     (4c) 

a

Aa

 


  (4d) 

{0,1}a a A      (4e) 

4.2 Implementation of Benders decomposition 

We start the algorithm with a restricted master problem and add constraints on the fly 

when they are indicated.  The initial restricted master problem is as follows and has an 

initial solution W = –∞. 

Minimize   W 

subject to   
a

Aa

 


  (5) 

{0,1}a a A      

Adding a Benders cut to (5) has traditionally meant restarting the IP solver from 

scratch, which is computationally expensive.  To improve performance, it is 

advantageous to start with a set of promising Benders cuts in the restricted master 

problem.  McDaniel and Devine (1977) introduced the idea of relaxing the integrality 

requirements in the master problem and generating cuts from the fractional solution.  

Since these cuts are also defined by feasible solutions of model (3), they are valid for 
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model (4).  Thus, we adopt a two-phase Benders decomposition: in the first phase, we 

relax the integrality constraint on the a variables in model (5) and apply Benders 

decomposition until its objective function is within 5% of the LP relaxation value of 

model (2); in the second phase, we start with the Benders cuts found in the first phase and 

continue in the traditional manner.  Figure 1 describes the procedure of implementing 

the Benders decomposition in this traditional way.  Step 1 of the procedure initializes the 

set Q
*
 and 


Step 2 corresponds to the first phrase, and Steps 3 and 4 correspond to the 

second phrase. 

Rubin (2011) proposed a more efficient approach to implementing Benders 

decomposition.  Instead of starting branch and bound from scratch after each cut is 

added, the modern approach adds the cuts as “lazy” constraints in the MIP solver (e.g., 

CPLEX).  Lazy constraints are a set of inequalities specified by the user that are required 

to define the feasible region of the model but are not part of the model when the solver is 

initiated.  Instead, they are only checked when an integer feasible solution is identified, 

and any of those constraints that turn out to be violated are then included in the model 

currently being solved.  Note that branch and bound is not restarted when violated lazy 

constraints are added.  More discussion can be found in CPLEX (2011).   

Essentially, the presence of lazy constraints requires a modification of the 

incumbent update procedure in branch and bound.  At each node of the traditional search 

tree, an LP subproblem (note, this is not the Benders LP subproblem) is solved and one or 

more heuristics are typically applied to convert the fractional solution to a feasible 

(integer) solution.  If a better feasible solution results, then the incumbent, i.e., the best 

feasible solution found so far, is updated.  With lazy constraints, the solver must make 

sure that any candidate feasible solution satisfies all the lazy constraints before updating 

the incumbent.  If there are no violations then the incumbent is updated.  Otherwise, the 

solver adds the violated lazy constraints to the model being solved and does not update 

the incumbent.  This logic ensures that branch and bound finds the optimal solution to 

the original model while only enforcing lazy constraints when violations are detected. 
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Procedure_traditional_Benders_decomposition  

Step 1: Set of extreme points Q
*
 =   

       Set of infeasible angle profiles 

 =   

Step 2: Solve the LP relaxation of model (3) and denote the optimal objective 

function value as W
LP

 

       Do 

Solve W
*
 = min{W: *( , ) ,g q W q Q    , (4d), 1,0  a a A    } and 

denote the optimal solution as *  

  Solve model (3) to get *( )h   and the corresponding solution q
*
. 

  Put *   *  { * } 

       While  W
*
 < 0.95 W

LP
 

Step 3: Solve the restricted master problem  

W
*
 = min{W : *( , ) ,   g q W q Q    , 

*1,   a aa A
   


    , (4d), 

(4e)} 

If problem is infeasible, then 

 terminate, the original problem is infeasible. 

Else 

 Let the solution be *  

 Go to Step 4. 

Step 4: Solve model (3) to get *( )h   and the corresponding solution q
*
. 

If *( )h   

 Put *   *  { * } 

 Go to Step 3. 

Else if * *)(h W   

 The optimal angle profile is *  and terminate. 

Else 

 Put Q
*
  Q

*
  { q

*
} 

 Go to Step 3. 

Figure 1. Traditional Benders decomposition 

We also adopt the two-phase approach in our implementation of the modern 

Benders decomposition.  The same first phase (Step 2 in Figure 1) as in the traditional 

approach is used to find a set of promising Benders cuts.  In the second phase, we start 

the MIP solver with this set of cuts and treat all other constraints (4b) and (4c) as lazy 



 15 

constraints; however, because the number of these constraints is too large to be enforced 

explicitly as lazy constraints, a separation procedure is necessary to identify violations.  

Figure 2 depicts the flowchart for updating the incumbent.  Given any candidate solution 

̂  and its objective function value Ŵ  in the restricted master problem, model (3) with 

ˆ   is solved.  If the resulting problem is unbounded, the feasibility cut 

corresponding to ̂  is added to the current restricted master problem.  If the resulting 

solution is bounded and ˆ ˆ( )W h , the incumbent is updated as in traditional branch and 

bound.  Otherwise, the indicated optimality cut is added to the current restricted master 

problem. 

 

Figure 2. Logic for updating the incumbent solution in modern Benders decomposition 

After solving the restricted master problem in modern Benders decomposition, the 

optimal solution satisfies all constraints (4b) and (4c), while only a subset of them 

typically needs to be included in (4).  The modern approach makes better use of the 

existing information in the current search tree (Rubin 2011) because it exploits all the 

information gathered in previous runs rather than discarding it. A single search tree is 

used.  When the modern approach identifies a violated Benders cut and applies it as a 

lazy constraint to the restricted master problem, a state-of-the-art solver like CPLEX 

should be able to resume the enumerations without reinitializing the search. 
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Another point to make is that the modern approach can generate many more 

Benders cuts than the traditional approach.  The former generates a Benders cut 

whenever a candidate solution is found in the restricted master problem, while the latter 

only generates a Benders cut when the optimal solution of the restricted master problem 

is found.  Nevertheless, adding Benders cuts that are derived from a non-optimal 

solution could be a double-edge sword: additional cuts increase the size of the restricted 

master problem and thus increase its difficulty, but they can also help to improve its 

lower bound (Rei 2009).  
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5. Heuristics 

In this section, we present a two-stage optimization-based heuristic to solve model (1).  

In the first stage, a feasible solution is found by LP rounding.  In the second stage, this 

solution is used as a starting point for local branching, which is designed to find 

improved solutions in the neighborhood of the incumbent. 

5.1. LP rounding heuristic 

The angle selection problem is difficult since there is an exponential number of angle 

combinations from which to choose. Several researchers have proposed heuristics aimed 

at eliminating unpromising choices.  Lim et al. (2008), for example, developed an 

iterative scheme that removes angles based on scores derived from the LP solution of the 

original problem.  Here, we discuss a heuristic that iteratively eliminates unpromising 

angles in the LP solution until the remaining problem is manageable as an IP.  

Specifically, we solve the LP relaxation and eliminate angles that are least used in the 

solution in each iteration.  The process terminates when a given number of angles, 

denoted by U*, are removed.  At that point, the reduced IP is solved with only the 

remaining set of angles.  Figure 3 describes the procedure. 

Procedure_LP_rounding_heuristic 

Input:  U
*
 = maximum number of angles to eliminate 

Step 1:  A
*
 =   

            While |A
*
| < U

*
 

Solve the LP relaxation of model (2) with 0a   for 
*a A  and 

denote the solution by * . 

           Let ** arg :min }{a a a Aa    

           Put A
*
  A

*
  {a

*
} 

Step 2:  Solve the reduced IP with 0a   for all 
*a A  

Figure 3. LP rounding heuristic 

5.2. Local branching 

To improve the quality of a given feasible solution, Fischetti and Lodi (2003) proposed 

the idea of local branching, which sets up an outer search tree that may be partially or 
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fully explored depending on the time available for the computations and the desired 

accuracy of the solution.  They use a generic MIP solver as a black-box tool to explore 

the neighborhood of a given solution in hopes of finding better solutions.  In this section, 

we describe the local branching heuristic we implemented to improve the solutions found 

by the rounding heuristic. 

Lemma 2: If  ≤ |A|, there exists an optimal solution to model (1) with exactly  angles 

chosen. 

Proof: Assume there is an optimal solution *
 with n <  angles.  We can always find 

another solution with n angles in solution *
 and an additional  – n angles whose 

beamlets do not carry any intensity.   ■ 

As indicated in the proof of Lemma 2, any solution that uses n angles, with n < , 

can possibly be improved by incorporating  – n additional angles and so may not be a 

local optimum.  Our computational experience confirms that local optima always contain 

 angles.  Now, Fischetti and Lodi define the k-OPT neighborhood of   as the set of 

feasible angles that satisfy the additional local branching constraint 

 ( , ) )(1 a a

a A

k   


    (6) 

Intuitively, constraint (6) permits at most k of the angles selected in   to be replaced by 

angles not in the solution. 

Local branching can be used as a heuristic or as an exact method. Given the 

incumbent solution  , we introduce an outer search tree that is constructed by enforcing 

( , ) k    on the left branch and ( , ) 1k    on the right branch as in depth-first 

search. This procedure represents a high level partition of the solution space. Denote the 

set of left branch constraints as L and the set of right branch constraints as R.  We start 

the procedure with R  , L  , and a feasible solution  .  At each iteration, we 

seek to find better solutions in the neighborhood of the incumbent *  by solving model 

(2) with the existing sets L and R, and the local branching constraint *( , ) k   .  To 

control the time spent on each subproblem, we impose a limit of  hours on each.   
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Three situations may arise when solving a node: (i) if a better solution is found 

within time , then the incumbent is updated and used as the new starting point to search 

for better solutions; (ii) if the subproblem is solved to optimally within time  but no 

better solution is found, then we expand the local branching neighborhood by putting k 

 k + 1 and continue; and (iii) if the subproblem is not solved to optimality within time  

and no better solution is found, then we terminate the procedure and return the best 

solution found so far.  In the latter case, the solution space of the current subproblem is 

too large to be fully explored within time .  Larger values of k in the local branching 

constraint *( , ) k    correspond to larger neighborhoods and result in more difficult 

instances.  When the value of k is too large, the subproblem approaches the original 

problem and becomes difficult to solve optimally.  In our case, we terminate the 

computations when the value of k reaches the threshold kmax.  The procedure is outlined 

in Figure 4. 
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Procedure_Local_branching 

Input:     Initial feasible solution 0  

         Time limit to solve each subproblem  

         Minimum neighborhood parameter kmin 

         Maximum neighborhood parameter kmax 

Output:  Improved feasible solution *  

Step 0:   Iteration count m = 1 

        Set of right branch constraints R =   

        Set of left branch constraints L =   

        * 0    

Step 1:   k = kmin 

Step 2:   Solve model (2) with additional sets of constraints R and L and 

constraint 1( , )n k    , and set time limit to ; denote the resulting 

solution, if any, as 1n   

Step 3:   If * 1( ) ( )nv v   , then  //better solution is found 

  Update * 1n    

  Add constraint 1( , ) 1n k      to L 

  Put m  m + 1 

  Go to step 1. 

Else if the problem is solved to optimality, then   

//expand the neighborhood for better solutions 

  Put k  k + 1 

  If k <  kmax, then 

       Go to Step 2 

  Else 

       Terminate the procedure and return solution * . 

       Else // problem is not solved to optimality 

       Terminate the procedure and return * . 

Figure 4. Local branching logic  
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6. Computational Results 

Four data sets associated with prostate tumors were used to test the effectiveness of our 

algorithms.  The details are summarized in Table 1.  Instances PX-12 and PX-36, with 

X = 1, 2, 3, correspond to the same clinical case, but with a different number of candidate 

angles.  Instances P1-36 and P2-36 both use 36 beam angles.  Instance P2-36 has many 

more voxels for PTV than instance P1-36, although the number of voxels for OARs is 

slightly smaller.  Instance P3-36 has the largest number of voxels for PTV but the 

smallest number of voxels for OARs.  For instance P3-36, all other OARs except the 

bladder are removed for convenience.  

Table 1. Data set summary 

Measure 
Instance 

P1-12 P1-36 P2-12 P2-36 P3-12 P3-36 

# of candidate angles 12 36 12 36 12 36 

# of voxels for PTV 1,000 1,000 4,005 4,005 5,245 5,245 

# of voxels for bladder (OAR) 10,603 10,603 7,850 7,850 0 0 

# of voxels for rectum (OAR) 5,848 5,848 5,719 5,719 1,936 1,936 

# of positive dvb  1.27E7 1.95E7 1.10E7 3.31E7 2.88E6 8.72E6 

 

The number of positive dvb in Table 1 is roughly proportional to the density of the 

constraint matrix in model (1), and is thus a good indicator of problem instance difficulty.  

As shown in constraint (1b), the total dose Dv delivered to each voxel v is the weighted 

sum of dvb, with beamlet intensity ab as the weight.  Thus, if the number of positive dvb 

is reduced, the number of possible Dv values is also reduced.  Accordingly, the number 

of positive dvb can affect the feasible region of the dose value applied to each voxel. 

All algorithms were implemented in JAVA and run under Ubuntu Linux on a Dell 

Poweredge T610 workstation with two 6-core hyperthreading 3.33-GHz Xeon processors 

and 24 GB of memory.  CPLEX 12.4 was used as the MIP solver.  In the computations, 

we followed the convention in Lim et al. (2007) and used the following parameter values 

for instances P1 and P2: θU = 1.05, θL = 0.97, Lv = 0.94 and Uv = 1.15 for all v P , and 
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 = 0.3.  Since P3 instances have large PTV, we used the following parameter values to 

better control cold and hot spots: θU = 1.05, θL = 0.97, Lv = 0.96 and Uv = 1.15. 

As an initial test, instances P1-12, P2-12, and P3-12, which have |A| = 12, were 

solved, first with CPLEX alone, and then with traditional Benders decomposition and 

modern Benders decomposition.  All methods converged within 30 minutes giving 

optimal objective function values.  The solution times presented in Table 2 demonstrate 

that a 12-angle problem can be solved quickly with standard commercial software.  Both 

Benders decompositions, although not as efficient as CPLEX for instances P1-12 and P2-

12, can still get optimal solutions within a reasonable amount of time. 

Table 2. Solution time for 12-angle problems 

Instance 

Objective 

value 

Time(min) 

CPLEX 

Traditional 

Benders Modern Benders 

P1-12 0.0306 3 7 8 

P2-12 0.0121 20 22 28 

P3-12 0.1148 23 14 10 

 

For instances with more angles, CPLEX, Benders decomposition and the two 

stage heuristic were applied to find feasible solutions, although the former did not always 

converge.  Also, because local branching subproblems with k ≥ 4 are too difficult to 

solve to optimality, we used parameter values kmin = 1, kmax = 3 in the implementation.  

The subproblem time limit  was set to 2 hours to control the total local branching time.  

Since 12-angle problems are usually well-solved, we used U
*
 = 24  in the LP-based 

heuristic.  

Table 3 compares the solution times and solution quality of the different methods 

and Table 4 summarizes the characteristics of the MIP formulations.  One key 

observation from the computations is that problem instances become more difficult as the 

number of voxels in PTV grows.  For problems with small PTV (e.g., instance P1-36), 

CPLEX can solve model (1) directly; for problems with large PTV, CPLEX has a hard 

time closing the optimality gap (e.g., instance P3-36) although the results are only a few 
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percentage points from the best solution found.  In contrast, the number of voxels in 

OARs does not have a noticeable impact. 

Table 3. Comparison of different solution methods  

Instance 
Method 

 
CPLEX 

Modern 

Benders 

Traditional 

Benders 

LP-rounding 

heuristic 

Two-stage 

heuristic 

P1-36 

Time (min) 300 300 300 5 173 

Obj. val. 0.03036 0.03036 0.03046 0.03048 0.03036 

% of best 
a 

100.00% 100.00% 100.33% 100.40% 100.00% 

P2-36 

Time (min) 300 300 300 51 284 

Obj. val. 0.01183 0.01167 0.01170 0.01158 0.01158 

% of best 
a 

102.16% 100.78% 101.04% 100.00% 100.00% 

P3-36 

Time (min) 300 300 300 71 280 

Obj. val. 0.12151 0. 11679 0.11830 0.11411 0.11411 

% of best 
a 

106.49% 102.35% 103.67% 100.00% 100.00% 
a
 % of best = current obj. val. / best obj. val. among all methods × 100% 

Table 4. Dimensions of MIP formulation for instances P1-36, P2-36 and P3-36 

Name P1-36 P2-36 P3-36 

Optimality gap
 a 

2.84% 14.59% 74.41% 

# of variables 20,364 25,098 9,891 

# of constraints 22,327 33,071 20,344 

LP relaxation time (sec) 115 1126 228 
a
 Optimality gap = the mixed integer programming gap when CPLEX terminates 

 

Another implication of the result is that the magnitude of dvb plays an important 

role in determining the problem difficulty.  As we can see, P3-36, which has only 1000 

more voxels in PTV than P2-36, has a much larger optimality gap (74.41%) than P2-36 

(14.59%), indicating that P3-36 is much more difficult to solve.  This is probably due to 

the relative magnitude of dvb.  Because the doses per beamlet are much smaller in P3-36 

than in P2-36, the bound provided by the LP relaxation for P3-36 is weaker, leading to a 

larger optimality gap.  Although reducing dvb for a subset of v and b can make the LP 

relaxation easier to solve, it also leads to a weaker relaxation.  In summary, the results 

suggest that the number of voxels in PTV and the magnitude of dvb are key indicators of 

problem difficulty. 



 24 

Table 3 also indicates that modern Benders decomposition can find better feasible 

solutions than traditional Benders decomposition. Moreover, depending on the instance, 

the solution is either the same or better than the solution obtained with CPLEX.  Note 

that neither Benders algorithms required feasibility cuts.   

Table 5 compares the computational aspects of the two approaches.  The results 

indicate that the modern approach generates many more optimality cuts than the 

traditional approach.  That is, many more subproblems are solved to identify violated 

cuts, and thus many more feasible solutions are examined.  However, the lower bound 

associated with the modern approach, which is obtained by solving the restricted master 

problem, is not as strong as the bound from the traditional approach.  This implies that 

the Benders cuts generated in the modern approach are not as effective in improving the 

bounds.  Given that our focus is on finding good solutions rather than closing the 

optimality gap, the modern approach is the better choice since it generates better feasible 

solutions.  

Table 5. Comparison between traditional and modern Benders decomposition 

Instance 

First stage 

time (min) 

Modern Benders Traditional Benders 

Lower 

bound 

# of Benders 

cuts 

Lower 

bound 

# of Benders 

cuts 

P1-36 5 0.027851 11,824 0.028403 1,669 

P2-36 140 0.009792 1,170 0.010164 750 

P3-36 58 0.029561 6,791 0.036965 721 

 

Table 3 also shows that the heuristic solutions obtained from the LP rounding 

heuristic are either close to (for instance P1-36) or better than (for instances P2-36 and 

P3-36) the solutions given by CPLEX and both Benders decompositions.  Moreover, the 

solution times are only a small fraction of those of the latter methods.  The two-stage 

heuristic, using local branching provided the best results with shorter runtimes. 

Nevertheless, the computations still took much longer than desired, especially for P2-36.  

As the problem size grows, especially with respect to the number of voxels in PTV, 

runtimes become excess for CPLEX, Benders decomposition, and local branching.  
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When a good solution is needed quickly, the best approach is to use the LP rounding 

heuristic. 

A common way to graphically demonstrate the effectiveness of a treatment plan is 

by plotting the dose volume histogram (DVH) for PTV and each OAR.  The horizon axis 

of the DVH represents the dose value, and the vertical axis represents the fraction of 

volume.  The DVH contains one curve for PTV, and one for each of the OARs.  Each 

point on the curve specifies the percentage of volume (in the corresponding OAR or 

PTV) that receives a dose greater than a give value.  For example, point (0.3, 21.83%) on 

the curve for the bladder (OAR) in Figure 5(a) indicates that 21.83% percent of voxels in 

the bladder receives dose more than 0.3.  Figure 5 shows the DVH for solutions obtained 

by the LP rounding heuristic for instances P1-36, P2-36 and P3-36.  As we can see in 

Figure 5(a) for P1-36, the percentage of voxels in OARs, i.e., bladder and rectum, 

receiving more than  = 0.3 of the relative does is only 21.83 % and 4.85%, respectively.  

Also, the relative dose for all the voxels in PTV is between L = 0.97 and U = 1.05.  

Similarly, Figure 5(b) shows that only 5. 95% of the voxels in the bladder and 3.37% of 

the voxels in the rectum receive doses higher than  = 0.3 in the solution for instance P2-

36.  Also, the relative dose for all voxels in PTV is between θL = 0.97 and θU =1.05.  

Since the number of voxels in the bladder is 0, Figure 5(c) only shows the DVH of PTV 

and rectum for instance P3-36.  Figure 5(c) shows that 12.45% of the voxels in the 

rectum receive doses higher than  = 0.3.  All voxels in PTV receive doses between 0.96 

and 1.14, which is between the bounds Lv = 0.96 and Uv = 1.15, and 39.98% of them are 

between θL = 0.97 and θU =1.05.  This indicates that the majority of the radiation is 

delivered to PTV while largely sparing OARs. 
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(a). Instance P1-36 

 
(b). Instance P2-36 

 
 (c). Instance P3-36 

Figure 5. Dose volume histogram for LP-rounding heuristic solutions   

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

PTV Bladder Rectum

Relative dosage 

Fraction of volume 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

PTV Bladder Rectum

Relative dosage 

Fraction of volume 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

PTV Bladder

Relative dosage 

Fraction of volume 



 27 

7. Summary and Conclusions 

This study explored the use of Benders decomposition and optimization-based heuristics 

to solve the beam angle and fluence map problem for IMRT treatment planning.  The 

results showed that instances with 12 angles can all be solved quickly with any of the 

proposed methods. For the larger instances with 36 angles, Benders decomposition can 

generate good feasible solutions, at least with respect to CPLEX, but after 5 hours of 

computations large optimality gaps still remained.  Comparatively speaking, we also 

found that modern Benders decomposition, which generates more optimality cuts than the 

traditional approach, can produce slightly better solutions within the same amount of 

time.  The best results were obtained with the LP rounding heuristic in conjunction with 

local branching.  When runtimes are critical, the best compromise is to use the LP 

heuristic by itself.  For future researches, it is appealing to study how to strengthen the 

Benders feasibility cuts or identify better Benders cuts so as to improve the Benders 

lower bound.  Besides, it may be worthwhile to apply other local search heuristic to 

improve the solution generated by LP-rounding.  
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