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Abstract

The majority of quasi-analytic pricing methods for American options are ef-
ficient near maturity but are prone to larger errors when time-to-maturity
increases. We introduce a new methodology to increase the accuracy of al-
most any existing quasi-analytic approach in pricing long-maturity American
options. The new methodology, called the “extension-method”, relies on an
approximation of the optimal exercise price near the beginning of the con-
tract combined with existing pricing approaches so that the maturity range
for which small errors are attainable is extended. Our method retains the
quasi-analytic nature of the methods it improves. Generic quasi-analytic for-
mulae for the price of an American put as well as for its hedging parameter
are derived. Our scenarios-based numerical study indicates that our method
considerably improves both the pricing and the hedging performance of a
number of established approaches for a wide range of maturities. The supe-
riority of this approach is illustrated with real financial data by considering
S&P 100TM LEAPS R© options traded from January 2008 to May 2015.
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An Improved Method for Pricing and Hedging Long Dated

American Options

1. Introduction

The problem of pricing American options has been widely examined in

the last 40 years. The main challenge is due to the fact that the American

optionality requires the selection of the optimal exercise price (henceforth,

OEP) together with the valuation of the contingent claim. Several types

of approximation approaches have been proposed in the literature to solve

this problem. Within the broad class of approximation methods, in this

paper we focus on the quasi-analytic methods consisting of analytic formulae

that require at most a reasonably small number of numerical solutions of

integral equations. The first method in this subclass is described in Geske

and Johnson (1984), who used a portfolio of compound European options to

replicate the early exercise feature of American options. Bunch and Johnson

(1992) improved the efficiency of the Geske-Johnson method by optimally

locating the exercise points and showed that most of the time only two – and

in a few cases for deep-in-the-money options only three – early-exercise dates

including maturity are required. The quadratic approximation in Barone-

Adesi and Whaley (1987) gives an approximated solution of the Black-Scholes

partial differential equation in closed form. This method, extremely fast and

accurate for very short and very long maturities, has been refined by Ju and

Zhong (1999) including a second-order extension that improves accuracy for

middle-term maturities. Subsequently, Li (2010a) further refined the Ju-

Zhong method by a more careful use of the smooth pasting condition for

American options. Their method results in a more precise estimation of the

OEP. However, the approximations in Barone-Adesi and Whaley (1987), Ju

2

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



and Zhong (1999) and Li (2010a) have the limitation that the pricing error

cannot be controlled, that is, these methods are not convergent to the “true”

price because they cannot be made more precise by including additional

terms. Ju (1998) proposed a piecewise exponential function for the OEP.

An important step in the American option pricing literature was the result

of Kim (1990) and Carr et al. (1992), who derived an implicit-form integral

equation for the OEP. Hence, the pricing of American options can be reduced

to identifying the OEP efficiently. Ibáñez (2003) modified Kim’s method to

guarantee that the prices monotonically converge to the true prices when the

number of time steps increases. Kim et al. (2013), based on an idea from

Little et al. (2000), transformed the integral equation into a numerical func-

tional form with respect to the optimal exercise boundary, and subsequently

constructed an iterative method to calculate the boundary as a fixed point of

the functional. Recently, Broadie and Detemple (1996), Laprise et al. (2006)

and Chung et al. (2010) proposed tight quasi-analytic bounds for American

options. Additionally, Chockalingam and Muthuraman (2015) employed the

approximate moving boundaries method which iteratively finds an approxi-

mation of the OEP and Chockalingam and Feng (2015) extended on Ibáñez

and Paraskevopoulos (2011) to investigate the cost of a suboptimal OEP.

Almost all the methods may produce large pricing errors for long-maturity

options since the convergence to the “true” price depends on the decrease of

the size of the time-step (i.e. early exercise dates) or, equivalently, on the

increase in the number of iterations. However, an increase in the number

of iterations makes these methods rapidly inefficient. In Table 1 – see rows

‘Std’, which contain the results for the ‘standard’ versus rows ‘Ext’, the ‘ex-

tended’ version of the methods – the performance of several pricing methods

is reported with respect to the mean absolute percentage error, MAPE, for
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maturities ranging from less than six months to between four and a half and

five years. All the methods considered were selected because they perform

very well for short maturities as reported by several other studies.1

In this paper, we propose a quasi-analytic approach that aims to improve

the performance of existing methods in pricing and hedging long-maturity

options. The new approach, which we call the “extension method”, relies

on the fact that the OEP is independent of the current underlying asset

price. The state space is divided into the continuation and the exercise

regions, which are precisely separated by the OEP. In the following, in a novel

way each option’s time-to-maturity is divided into two components according

to the closeness to the maturity date. We use a constant approximation

function2 for the first part of the option life and existing pricing methods

(with their associated estimation for the OEPs) for the second part (see

Figure 1). The division of time to maturity and OEP profile is marked

by a time-point tx. The value of tx is determined by performing several

empirical trials and, although it is dependent on the quasi-method, our results

in Figure 2 suggest that tx/T is around 0.5, although for Ju and Zhong (1999)

tx/T = 0.3 and for Ibáñez (2003) tx/T = 0.35.

Under the proposed extension methodology, the option price is equal to

the sum of the expected discounted-payoff from the first part of the option

life and the expected discounted-payoff from the second part, conditioned

on not exercising the option in the first part. We derive formulae for the

American put price and also for the corresponding hedging parameters.3 We

1The comparison is done by using the studies reported in Table 1.
2The fact that the OEP becomes constant for long maturities helps to iterative methods

as well; since the boundary at time tn is a good starting point for the boundary at tn−1.
We thank an anonymous referee for making this point.

3The formulae are given in the on-line appendix.
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also prove the convergence of the American put option price obtained with

our proposed extension method to the perpetual put price when maturity

increases infinitely. An extensive scenario-based study is carried-out show-

ing that, when compared with established quasi-analytic methods, the new

method leads to sizeable improvements in pricing and hedging American op-

tions, especially for longer maturities where existing methods generally fail.

Then, we show that the extension method also improves the existing method-

ologies when applied to real data, LEAPS R© options on the S&P 100TM index

between 2 January 2008 and 29 May 2015.

The remainder of the paper is organized as follows. Section 2 describes the

modelling framework. The main theoretical results are discussed in Section 3

where the closed-form pricing and hedging formulae are derived. Section 4

is a numerical scenarios-based study of the pricing and hedging performance

of the extension method. Section 5 reports the pricing performance over the

S&P 100TM LEAPS R© options and Section 6 concludes.

2. Modelling framework

All modelling referring to American option pricing in this paper is done

assuming that, under the risk-neutral measure Q, the dynamics of the un-

derlying stock S is given by:

dSt = (r − δ)Stdt+ σStdWt, t ≥ t0 (1)

where r is the risk-free rate and δ is the annual dividend yield with continuous

compounding. For simplicity, the difference r− δ is denoted henceforth by b

and {Wt}t≥t0 refers to a Wiener process under the martingale measure Q.

Without any loss of generality, we only consider the case of American put

5

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



options.4 The OEP of the American put option with maturity T and strike

price K is a continuous function, see Jacka (1991), non-decreasing with re-

spect to time, with limiting value for t → T equal to min{K, rK/δ} when

dividends are paid at the rate δ, and bounded below by the optimal exercise

price of the perpetual put option, S∞f , where

S∞f =
β

β − 1
K, (2)

with β =
(
1
2
− b

σ2

)
−
√(

1
2
− b

σ2

)2
+ 2 r

σ2 . Ekstrom (2004) proved that the OEP

is convex and Xie et al. (2011) showed that the decay rate of the OEP to the

flat function in (2) is more than exponential in time-to-maturity. Hence, for

long maturities, the OEP is well approximated by a flat function.

The key to our approach is to divide the option life into two parts, one

closest to the beginning of the contract and one to maturity, and then use

existing pricing methods and their corresponding estimation approaches for

the OEP in the second part, while considering a flat approximation of the

OEP for the first part. The advantage is threefold: the estimation of the OEP

near maturity is precise, the existing methods are used where they have better

performance (comparative advantage), and very low computational effort is

required near the beginning of the contract. The extension method is based

on the property discussed in Geske and Johnson (1984) and Kim (1990) that,

under the Black-Scholes model, the optimal exercise price does not depend on

the spot price. Thus, it is possible to employ the OEP of a shorter maturity

option to build part of the optimal exercise price of an American option on

4All the formulae and propositions can be equivalently derived for American call op-
tions. Additionally, one can price and hedge call options by using the put-call symmetry
in McDonald and Schroder (1998).
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the same asset, with the same strike price but with longer maturity.

Figure 1 depicts the intuition behind our method. For a given set of

parameter values,5 the figure plots the OEPs for two American put options,

written on the same underlying asset, with maturities t1 and T , where t1 < T .

Assume that we are now at time t0 and consider the intermediary time point

tx = t0 + (T − t1).6 The two options have identical characteristics apart from

their different maturity dates, and because the OEP does not depend on

the prevailing spot price, the optimal exercise prices for the two options will

coincide whenever the options have the same time to maturity. For any time

t in the interval [tx, T ], the long-maturity option’s OEP will be the same as

the short-maturity option’s OEP, which is defined on [t0, t1]. The continuous

line represents the OEP of the option with maturity T and the dash-dot lines

represent the optimal exercise of the option with maturity t1. The left-most

dash-dot line is the “original” function and the other is its translation over

the continuous line to show they coincide on the interval [tx, T ].7

3. The extension method

The first step in our new method is to split the option life into two parts:

for the first part (i.e. the one closest to the beginning of the contract), we

approximate the OEP as a constant Λ, while the pricing method that we are

extending provides the OEP and the pricing formula for the part closest to

maturity. Consequently, the OEP S
(E)
f (·) of an American put option, with

5The parameter values used are σ = 20%, δ = 5%, r = 8% and K = 100.
6In Figure 1, we assume t0 = 0, t1 = 1 year, T = 2.5 years and tx = 1.5 years.
7The OEPs are calculated by the integral method in Kim (1990).
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maturity T , starting life at t0, is given by:

S
(E)
f (t) =

Λ for t ∈ [t0, tx)

Sf (t− (T − t1)) for t ∈ [tx, T ]
(3)

where tx ∈ [t0, T ] is the break-point (i.e. the time point separating the option

life in two parts, as explained above).8 Sf (·) is the optimal exercise price of

the shorter maturity option (written on the same underlying asset, with the

same strike price). As illustrated in Figure 1, we can think of the shorter

maturity option as either starting life at t0 and having maturity date t1, or

as starting life at tx and having maturity date T . In either case, at the onset,

the shorter maturity option has t1 − t0 = T − tx time (years) to maturity.

Sf (·) will be estimated via an existing quasi-analytic method in the literature

which we are extending to price the long-maturity option.

With the OEP given in (3), the price of the American put option is cal-

culated as the sum of the expected discounted payoff between t0 and tx,

assuming that the option is exercised as soon as the spot price hits Λ (see

formulae (A.3) and (A.4) in the appendix), and the expected discounted pay-

off from the short-maturity American option (between tx and T ) conditioned

on not hitting Λ between t0 and tx (see formula (A.3)). Proposition 3.1

derives the pricing formula of the extension method, where the following

notation will be used: Ptx(Stx , T,K) is the price of the option with time

to maturity T − tx (short-maturity option) at time tx when the underlying

8Selecting tx −→ t0, the option price obtained with our proposed extension method
converges to the price obtained via the method we are extending (i.e. what we call the
corresponding standard method) and when tx −→ T , the extension method price converges
to the price of the method in Bjerksund and Stensland (1993). Figure 2 plots for each of
the methods we extend on the mean absolute percentage error as a function of tx.
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asset price is Stx and the OEP is given by Sfx(·) – a function defined on

[tx, T ], which is the translation of the function Sf (·), the latter being de-

fined on [t0, t1] – and P
(E)
t0 (St0 , T,K|tx, Λ) is the price of the option with time

to maturity T − t0 (long-maturity option), at time t0, when the underly-

ing asset price is St0 and when the optimal exercise price is given by (3).

We also use the simplified notation ϕ(γ,H) to denote the expectation term

ϕPt0(St0 , tx|γ,H,Λ) = Et0
[
e−rtxSγtxI (Stx > H) I

(
inft∈[t0,tx) St > Λ

)]
, which is

given in Appendix A (see equation A.2), together with its derivation and

the expression for f0(·) – the probability density function of an arithmetic

Brownian motion with positive initial value zt0 , drift parameter b1 = b− 1
2
σ2,

volatility parameter σ and an absorbing barrier at 0.

Proposition 3.1. Assuming Black-Scholes dynamics, the price of an Amer-

ican put option with strike price K and maturity T at time t0, based on the

extension of the standard method with pricing function Ptx(Stx , T,K), is:

P
(E)
t0 (St0 , T,K|tx, Λ) = ert0

{
α(Λ)

[
Sβt0e

−rt0 − ϕ(β, Λ)
]
− ϕ(1, Λ) + ϕ(1, S

(E)
f (tx))

+ K
[
ϕ(0, Λ)− ϕ(0, S

(E)
f (tx))

]}
+

∫ +∞

B

g(z)dz, (4)

where B = ln
S
(E)
f (tx)

Λ
, α(Λ) = (K−Λ)Λ−β,β =

(
1
2
− b

σ2

)
−
√(

1
2
− b

σ2

)2
+ 2 r

σ2

and g(z) = e−r(tx−t0)Ptx(Λe
z, T,K)f0(z).

Proof. See Appendix A.

The proof of this proposition is similar to the proof for the pricing formula

in Bjerksund and Stensland (2002). Thus, when the OEP for the short-

maturity option is flat, the method described in Bjerksund and Stensland

(1993) applies and our pricing formula becomes the pricing formula in Bjerk-

sund and Stensland (2002). For this reason our method can be seen as a

9

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



generalization of Bjerksund and Stensland (2002) that combines any quasi-

analytic pricing formula for the short-maturity American put option and a

flat approximation of the OEP near the beginning of the contract.

Moreover, the following proposition shows that asymptotically our pricing

formula converges to the perpetual put option price.

Proposition 3.2. For any tx ∈ (t0, T ], any 0 < Λ < Sfx(tx) and any pricing

formula for the short-maturity option Ptx(Stx , T,K), when T → +∞, the

price

P
(E)
t0 (St0 , T,K|tx, Λ)

given in Proposition 3.1 converges to the price of a perpetual option written on

the same underlying asset, with the same strike price and which is exercised

as soon as the underlying asset price hits Λ.

The proof is given in Appendix B.

The calculation of the delta parameter is equally important in financial

markets. The following result provides an analytic formula for the calculation

of the delta parameter9 of an American put option by the extension method,

relying on the independence of the OEP from the current asset price.

Proposition 3.3. Under the same conditions as stated in Proposition 3.1,

the delta parameter is given by the following formula

∆t0 = ert0
{
α(Λ)

[
βSβ−1t0 e−rt0 − ϕ′(β, Λ)

]
− ϕ′(1, Λ) + ϕ′(1, S

(E)
f (tx))

+K
[
ϕ′(0, Λ)− ϕ′(0, S(E)

f (tx))
]}

+

∫ +∞

B

g′(z)dz, (5)

where g′(z) = e−r(tx−t0)Ptx(Λe
z, T,K)f ′0(z).

9In the on-line appendix, we provide formulae for the other hedging parameters.
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Proof. Here we use the simplified notation ϕ′(γ,H) to denote the partial

derivative ϕ′t0,St0 (St0 , tx|γ,H,Λ) =
∂ϕPt0

(St0 ,tx|γ,H,Λ)
∂St0

, and where f ′0(z) = ∂f0(z)
∂St0

.

The result is an application of the Leibniz’s derivation formula to function (4),

taking into account the results ∂B
∂St0

= 0, ∂Ptx (Λe
z ,T,K)

∂St0
= 0, ∂Λ

∂St0
= 0 that follow

from the independence of the OEP from the current asset price.

The pricing formula in Proposition 3.1 and the delta parameter in Propo-

sition 3.3 work under any specification for the pricing formula of the short-

maturity option. Choosing one or another pricing formula for this option

only changes the last addend of formulae (4) and (5) (i.e. the two integrals).

4. Scenarios-based study

The extension methodis applied to:10 the compound-option method in

Geske and Johnson (1984) with two and three exercise dates, the quadratic

method in Barone-Adesi and Whaley (1987), the integral method in Kim

(1990) with two and three exercise dates, many variants of the improved

integral-method in Ibáñez (2003), the improved quadratic method in Ju and

Zhong (1999), the static-replicating portfolio method in Chung and Shih

(2009) with two and three exercise dates, and the interpolation method in

Li (2010b). Comparing the performance of each standard method with its

extended version, we highlight how the performance improves considerably

when the extension method is employed. The focus will be on the improve-

ment in accuracy since the computational effort required by the extension

method is only slightly greater than the standard methods and, in most

cases, the additional computational time is negligible.11

10A brief description of the standard methods is provided in the on-line appendix.
11For the methods developed by Barone-Adesi and Whaley (1987), Kim (1990), Chung

and Shih (2009) and Ibáñez (2003) the integrals in (4) and (5) can be calculated analytically
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The numerical study will be carried out for a flat approximation Λ fixed

equal to Sfx(tx) in order to ensure the continuity of the OEP. However, for

the integral method and the compound-option method, because when few

steps are considered the value of Sfx(tx) can be quite unreliable, Λ is fixed

to be equal to the OEP at time tx calculated by the quadratic method in

Barone-Adesi and Whaley (1987). Moreover, without loss of generality, we

fix t0 = 0, we express tx as a percentage of time-to-maturity tx = ϑT and

consider 10 ratios ϑ ∈ {0.05 + 0.1j|j = 0, . . . , 9} to study the performance of

the extension method under different approximations of the OEP.

4.1. Pricing performance

The pricing-performance study is constructed from a total of 10,000 ran-

domly generated options scenarios. In particular, the parameters in (1) and

the options characteristics are drawn as in Broadie and Detemple (1996):

the volatility σ is distributed uniformly between 0.1 and 0.6; the initial asset

price St0 is fixed at 100; the strike price K is distributed uniformly between

70 and 130; the dividend rate δ is distributed uniformly between 0.0 and

0.1 with probability 0.8 and equal to 0.0 with probability 0.2, and the risk-

free interest rate is uniformly distributed between 0.0 and 0.1. Given the

importance of time-to-maturity to establish the usefulness of the extension

method, we divide the simulated scenarios into 10 sets with equal cardinality.

The sets are labeled A, . . . , J and divide the options scenarios according to

their time-to-maturity in ranges of 6 months. So, for example, set A con-

tains scenarios with maturity between 1 day and 6 months, set B scenarios

with maturities between 6 months and 1 year, and so on up to set J which

while the others require a numerical calculation of the integrals that is much faster than
the numerical solution of integral equations.

12
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contains scenarios with maturities between 4.5 years and 5 years.

We use the mean absolute percentage error (MAPE) to compare each

method with its “extended” version. The “exact” fair price (benchmark)

is the binomial tree price with 15,000 time-steps. As in Broadie and De-

temple (1996), options with benchmark prices less than 0.5 are discarded.

The models performance for different maturities is summarized in Table 1.

In the on-line appendix (Tables 5-7), we present the result classified per

moneyness.12 For each standard model considered, applying the extension

method increases its pricing performance. Table 1 shows that the extension

method has the advantage of levelling out the performance of quasi-analytic

methods across maturities, shrinking the range of MAPEs. The extension

method reduces to about half the MAPEs of the standard methods for all

options scenarios with maturities longer than six months. For some methods

(Barone-Adesi and Whaley (1987) and Chung and Shih (2009) with two and

three exercise-dates) the extension method achieves reductions in MAPE of

over 80%. The extension method also works efficiently for options with ma-

turities less than 6 months. An application of the modified Diebold-Mariano

test13 shows that in the majority of cases these reductions of MAPE are

statistically significant at the 99% confidence level.

Our results are in line with several related papers. AitSahlia and Carr

(1997) confirm that the Barone-Adesi-Whaley method outperforms for both

short and long maturities the compound-option method by Geske and John-

son (1984) but is outperformed by Kim’s method. Li (2010b) shows that

his method outperforms the Barone-Adesi-Whaley method for medium-long

12All results for the extended versions of the methods are in relation to the ratio tx/T
which has the lowest MAPE linked to it. Figure 2 plots the results for the other ratios.

13We thank an anonymous referee for suggesting the modified Diebold-Mariano test.

13

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



maturities but does not perform as well for short maturities. Additionally,

the improved quadratic method by Ju and Zhong (1999) and Ibáñez (2003)

are by far the best performing standard method among the ones we consider

in this paper. Although the pricing errors of the last two methods are already

small compared to the others, our extension method improves on them with

a MAPE reduction over the entire set of options scenarios to about a half.

Competitive results are also obtained via the standard Chung-Shih method.

This method, when combined with our extension method, returns the best

performance across maturities and moneyness.

The results of the modified Diebold-Mariano test show that for matu-

rities longer than one year the methods have significantly different MAPE,

the extended methods performing significantly different among each other

regarding option pricing.14 Figure 2 plots the MAPE (cumulative for the

scenarios in A-J) of each standard method against the one of the correspond-

ing extended method for different ratios tx/T . For any ratio tx/T below 0.7,

each extended version produces MAPEs that are sensibly smaller than the

standard version. Figure 2 also illustrates that for most of the methods in-

vestigated in this paper, the optimal ratio is about 0.5. Hence, if additional

information about the optimal ratio is missing, one can simply fix tx/T = 0.5

and still realize significant improvements relative to the standard methods.

4.2. Hedging performance

The numerical study on hedging performance is based on the implementation

of delta-hedging strategies and an analysis of the hedging errors. We analyze

a set of 15 option scenarios with strike price K = 100, maturity T (in years)

14In the on-line appendix, we also present the pricing performance under other error
measures and the results are aligned with those presented here.
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in the set {1, 2, 3, 4, 5}, written on underlying assets with volatility σ =

40% and dividend yield δ = 0.04. Three different initial spot price S0 are

considered in the set {90, 100, 110} are considered, with r = 5%. For each

µ we simulate 1,000 paths, and along each path we set-up the delta-hedging

strategy deriving from the selected method.

Table 2 presents the average quadratic hedging error over the 15 option

scenarios. The hedging error is defined as the difference in value between

the option pay-off at the exercise-date and the hedging portfolio.15 For this

exercise, we consider the fair price for each option to be the 15,000 time-step

binomial-tree price. The results indicate an improved hedging performance

when compared to the standard methodologies. This conclusion is robust to

changes in model parameters, choice of standard method which is extended,

and to option maturity. The average improvement of the extension method

over the standard methods (above 38% reduction of the average quadratic

hedging error) is economically and statistically significant. An application

of the modified Diebold-Mariano test shows that all the differences in terms

of average quadratic hedging error between each standard method and our

extended versions are significant at the 99% confidence level.

4.3. Model error comparison: performance of the extension method under a

stochastic volatility model with jumps

There is a vast literature highlighting that the Black-Scholes model has sev-

eral limitations in relation to the observed empirical characteristics of returns

in financial markets. In this section, we consider a more realistic data gener-

15For more details on the average quadratic hedging error measure see, among others,
Remillard et al. (2012).
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ation process,16 the stochastic volatility model of the Heston type combined

with the Merton jump-diffusion model as introduced by Bates (1996):

St = S0e
Xt , dXt =

(
α− 1

2
Yt

)
dt+

√
YtdW

1
t + dZt, X0 = 0 (6)

dYt = ε(η − Yt)dt+ θ
√
YtdW

2
t

for α ∈ <, ε ≥ 0, η ≥ 0 and17 θ ≥ 0. Above, W 1
t and W 2

t are standard Wiener

processes having constant correlation ρ and Z is a compound Poisson process

with intensity λ where the jumps J are Gaussian distributed with mean γ

and standard deviation δJ .

In order to evaluate the extension method, we consider the option sce-

narios in Chiarella et al. (2009), Toivanen (2010) and Ballestra and Sgarra

(2010). Test-1 and Test-2 (Table 1 and 2 in Ballestra and Sgarra (2010),

respectively) are made of five American call options each with K = 100,

T = 0.5 year, r = 0.03, δ = 0.05 and five underlying spot rates S0 =

{80, 90, 100, 110, 120}. The parameters of model (6) are given as: ε = 2,

η = 0.04, θ = 0.4, λ = 5, δJ = 0.1 and γ = − δ2J
2

. Furthermore, options

in Test-1 have ρ = 0.5 while in Test-2 have ρ = −0.5. Test-3 (Table 3 in

Ballestra and Sgarra (2010)) is made of five American call option scenarios

with K = 100, T = 0.5 year, r = 0.03, and δ = 0.05. The parameters of

model (6) are given as: ε = 2, η = 0.04, θ = 0.25, ρ = −0.5, λ = 0.2,

δJ = 0.4, and γ = −0.5. Test-4 (Table 4 in Ballestra and Sgarra (2010))

is made of five American put option scenarios with K = 100, T = 5 year,

16We thank an anonymous referee for suggesting to evaluate the performance of the
newly introduced extension method under model error and to use a more realistic data
generating process.

17The parameter θ is the diffusion coefficient of the Feller process followed by Y and if
θ < 2εη then the process Y stays always positive.
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r = 0.0319, and δ = 0. The parameters are ε = 6.21, η = 0.019, θ = 0.61,

ρ = −0.7, λ = 0.5, δJ = 0.2 and γ = − δ2J
2

.

The comparison in this section follows the model error comparison in

Psychoyios and Skiadopoulos (2006). For each of the 20 option scenarios, we

calculate the implied volatility.18 We then priced the 20 option scenarios by

using the seven standard methods as above and their extended version. The

“benchmark” prices are those in Chiarella et al. (2009), Toivanen (2010) and

Ballestra and Sgarra (2010) which were obtained by using finite difference

approximations and Monte Carlo simulations on an extremely fine mesh.

Table 3 shows the results. In most of the cases, the extension method

outperforms the standard methods. Exceptions are Li (2010b), Ju and Zhong

(1999) and Ibáñez and Paraskevopoulos (2011) with Richardson extrapola-

tion with ns = 22 where the standard method and the corresponding ex-

tended version have virtually the same performance.

5. Empirical study: the S&P 100TM LEAPS R© case

The new method is also relevant with real market data. In the following

we employ a methodology similar to that used in Linaras and Skiadopoulos

(2005) for the S&P 100TM index that has exchange-listed options of both

American and European exercise type.

5.1. Dataset

We consider both American (ticker OEX R©) and European (ticker XEO R©)

LEAPS R© options written on the S&P 100TM index traded between the 2

January 2008 and 29 May 2015, covering 1,826 days, spanned over the eight

18We used the binomial tree method with 15,000 steps to recover the volatility.
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years.19 We collected ask and bid prices, open interest, and volume together

with the contract specifications (strike, maturity date and exercise style).

Additionally, we used the Libor as a proxy of the risk-free rate. We collected

the last prices of the S&P 100TM index and the US dollar Libor for one week,

one month, three months, six months and one year. Since S&P 100TM index

is a dividend-paying asset, we proceed by estimating the dividend yield over

the life of each contract. As in Linaras and Skiadopoulos (2005), we imply

the dividend yield for each trading day and maturity from the at-the-money

put-call parity. Then, we imply from the market prices the volatility of

the underlying asset. We follow Brandt and Wu (2002), Panigirtzoglou and

Skiadopoulos (2004) and Linaras and Skiadopoulos (2005), employing out-

of-the-money and at-the-money XEO R© (European) option prices to build

the volatility surfaces.

We filtered the data by a methodology similar to the one outlined in

Linaras and Skiadopoulos (2005). From the XEO R© (European), we discarded

options with (1) zero volume and zero open interest, (2) a premium smaller

than $0.5 or (3) a negative yield since it corresponds to the existence of

arbitrage. We also discard options whose prices do not satisfy the static

bounds. Additionally, we retain only options with maturities greater than

250 trading days. Table 4 summarizes the statistics of the retained options.

5.2. Results

For comparison, we employ the six error measures in Brandt and Wu

(2002) and Linaras and Skiadopoulos (2005): the mean valuation error (MVE)

that measures the average difference between each model price and the OEX R©

mid-price; the root mean squared valuation error (RMSVE) that calculates

19We retrieved the data from the Chicago Board of Exchange Trade (CBOE).
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the square-root of the average squared difference between the model price

and the OEX R© mid price; the frequency in bid-ask (FIBA) that is the per-

centage of time the model price is included within the market bid-ask spread;

the mean outside error (MOE) that is the average error outside of the bid-ask

spread; the root mean squared outside error (RMSOE) that quantifies the

variability of the errors outside the bid-ask spread; and mean relative outside

error (MROE) that is the average outside error divided by the market price,

which corresponds to the MOE but in percentage terms. The error outside

the spread employed in MOE, RMSOE and MROE is defined as the model

price minus the bid quote (ask quote) if the model price is below (above) the

bid price (ask price) and it is fixed to zero for the cases when the model price

falls within the bid-ask spread.

We fix the ratios ϕ = tx/T to the values that correspond to the minimum

MAPE in Figure 2, for any of the considered methods. Table 5 summarizes

the comparison results for maturities of more than 500 trading days. In

the vast majority of cases, the extension method outperforms the standard

methods. These improvements are in the majority of cases also economi-

cally significant, well above the minimum tick in the S&P 100TM market

(0.10). An application of the modified Diebold-Mariano test shows that in

many cases the differences are statistically significant. Overall, the extension

method prices are closer to the benchmark OEX R© mid-price, more con-

densed around it and the fewer prices outside the bid-ask spread are more

symmetric and smaller in size. The analysis of the S&P 100TM LEAPS R©

indicates the superiority of the extended methods. Additionally, Table 5

shows that the advantages of the extension method increased during the

most recent period (2012-2015). In the on-line appendix, we provide addi-

tional results classified for time to maturities and moneyness. In Table 5,
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we also price the S&P 100TM LEAPS R© by using the standard binomial tree

in Cox et al. (1979) and the implied tree method in Derman et al. (1995).

While the former has a similar performance to that of the numerical methods

analysed, the latter is inferior to the other methods considered here.

6. Conclusion

Most quasi-analytic methods currently used for pricing and hedging Amer-

ican options perform well for short-maturity options but not so well for long-

maturity ones. We proposed here a technique that can improve the pricing

and hedging performance of any quasi-analytic method for long-maturity

options. Our scenarios-based study shows that, for each selected method, re-

markable improvements can be obtained for hedging and pricing at the cost

of negligible computational time.

We also evaluate the newly proposed methodology applied to the LEAPS R©

options on the S&P 100TM stock index traded from January 2008 to May

2015. The extension method outperforms existing methodologies using real

financial data, making this methodology preferable to existing ones.
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Appendices

A. Proof Proposition 3.1

Given the optimal exercise price in (3) for any 0 < Λ ≤ Sfx(tx), we define

t∗ = inf

{
inf

t∈[t0,∞)
{St ≤ S

(E)
f (t)}, T

}
= inf {t∗0(Λ), t∗x(Sfx(t)), T}

where t∗u(x) = inft∈[tu,∞){St ≤ x}. Consequently, the American put price is:

P
(E)
t0 (St0 , T,K|tx, Λ) = Et0

[
e−r(t

∗−t0)(K − St∗)+
]

= ert0Et0
[
e−rt

∗
(K − St∗)+

]
= ert0

{
Et0
[
e−rt

∗
(K − Λ)I (t0 ≤ t∗ < tx)

]
+ Et0

[
e−rt

∗
(K − Stx)I (t∗ = tx)

]}
+Et0

[
e−r(t

∗−t0)(K − S(E)
f (t∗))+I (tx < t∗ ≤ T )

]
(A.1)

where I (·) is the indicator function. The price of a perpetual put option

starting at time u is Eu
[
e−r(t

∗
u(x)−u)(K − x)

]
= α(x)Sβu where α(x) and β

are given in Proposition 3.1. We prove here the result for γ > 0, the case

when γ = 0 being trivial. A helpful result is the following expectation

ϕPt0(St0 , tx|γ,H,Λ) = Et0

[
e−rtxSγtxI (Stx > H) I

(
inf

t∈[t0,tx)
St > Λ

)]
= ΛγEt0

[
e−rtxeztxI (ztx > BH) I

(
inf

t∈[t0,tx)
zt > 0

)]
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= eλtxSγt0

[
N (dϕ,1(H))−

(
Λ

St0

)κ
N (dϕ,2(H))

]
(A.2)

where BH = γ ln H
Λ

, ztx = γ ln Stx
Λ

, N (·) is the standard normal cumu-

lative distribution function, dϕ,1(H) =
ln
St0
H

+(b+(γ− 1
2
)σ2)(tx−t0)

σ
√
tx−t0

, dϕ,2(H) =

ln Λ2

St0
H
+(b+(γ− 1

2
)σ2)(tx−t0)

σ
√
tx−t0

, λ = −r + γb + 1
2
γ(γ − 1)σ2 and κ = 2b

σ2 + (2γ − 1).

The first expectation in equation (A.1) indicates the expected payoff from

exercising the option between t0 and tx and is

Et0
[
e−rt

∗
(K − Λ)I (t0 ≤ t∗ < tx)

]
= Et0

[
e−rt

∗
0(Λ)(K − Λ)I

(
inf

t∈[t0,tx)
St < Λ

)]
= α(Λ)Sβt0e

−rt0 − α(Λ)Et0

[
e−rtxSβtxI (Stx ≥ Λ) I

(
inf

t∈[t0,tx)
St > Λ

)]
= α(Λ)Sβt0e

−rt0 − α(Λ)ϕPt0(St0 , tx|β, Λ, Λ) (A.3)

The second expectation in equation (A.1) can be calculated as:

Et0

[
e−rt

∗
(K − Stx)I (t∗ = tx)

]
= Et0

[
e−rtx(K − Stx)I

(
Λ ≤ Stx ≤ S

(E)
f (tx)

)
I

(
inf

t∈[t0,tx)
St > Λ

)]
= Et0

[
e−rtx(K − Stx)

[
I (Stx ≥ Λ)− I

(
Stx ≥ S

(E)
f (tx)

)]
I

(
inf

t∈[t0,tx)
St > Λ

)]
= K

[
ϕPt0(St0 , tx|0, Λ, Λ)− ϕPt0(St0 , tx|0, S

(E)
f (tx), Λ)

]
−
[
ϕPt0(St0 , tx|1, Λ, Λ)− ϕPt0(St0 , tx|1, S

(E)
f (tx), Λ)

]
. (A.4)

The third expectation in equation (A.1) corresponds to the expected payoff from

exercise the option in the interval (tx, T ] and it is

Et0

[
e−rt

∗
(K − S(E)

f (t∗))+I (tx < t∗ ≤ T )
]

= (A.5)

= e−rtxEt0

[
Ptx(Λeztx , T,K)I (ztx > B) I

(
inf

t∈[t0,tx]
zt > 0

)]
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= e−rtx
∫ +∞

B
Ptx(Λez, T,K)f0(z)dz (A.6)

where

f0(z) =
n
(
z−zt0−b1(tx−t0)

σ
√
tx−t0

)
− e−

2b2zt0
σ2 n

(
z+zt0−b1(tx−t0)

σ
√
tx−t0

)
σ
√
tx − t0

.

By replacing the three expectations in equations (A.3), (A.4) and (A.6) within

equation (A.1), we get the pricing formula (4).

B. Proof Proposition 3.2

The proof consists in showing that limT→+∞ P
(E)
t0

(St0 , T,K|tx, Λ) = α(Λ)Sβt0 , for

any selection of tx ∈ (t0, T ] and Λ. For tx = t0 + ϑ(T − t0) with ϑ ∈ (0, 1],

we prove that this limit is independent of ϑ. We discuss separately the cases for

different values of γ. When γ = β, for positive risk-free rate r, γ = β =
(
1
2 −

b
σ2

)
−√(

1
2 −

b
σ2

)2
+ 2 r

σ2 < 1
2 −

b
σ2 and, since b + (γ − 1

2)σ2 < 0, limT→+∞ dϕ,1(H) =

limT→+∞ dϕ,2(H) = −∞ and limT→+∞ ϕ
P
t0(St0 , tx|β,Λ, Λ) = 0 for any ϑ. We note

that this result also holds when λ > 0. On the other hand, for γ = 0 or γ = 1,

λ = −r+γb+ 1
2γ(γ−1)σ ≤ 0 and limT→+∞ dϕ,1(H) = limT→+∞ dϕ,2(H) = v, with

v independent from H. Therefore, the limit limT→+∞ ϕ
P
t0(St0 , tx|γ,H,Λ) is finite

for any positive and finite H and, since it does not depend on the selection of H, for

any finite H1 and H2, limT→+∞
[
ϕPt0(St0 , tx|γ,H1, Λ)− ϕPt0(St0 , tx|γ,H2, Λ)

]
= 0

limT→+∞
∫ +∞
B g(z)dz = limT→+∞

∫ +∞
B e−r(tx−t0)Ptx(Λez, T,K)f0(z)dz = 0 since

limT→+∞ f0(z) = 0, limT→+∞ e
−r(tx−t0) = limT→+∞ e

−rϑ(T−t0) = 0, and 0 ≤

Ptx(Λez, T,K) ≤ K following the non-arbitrage condition. Since the quantities

α(Λ) and β are time invariant the result follows.
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Table 1: Scenarios-based pricing performances of quasi-analytic standard methods and our extended versions: Mean Absolute
Percentage Error.

Maturities
A B C D E F G H I J

Geske and Johnson (1984) - 2 time steps
Std. 0.389% 0.871% 1.343% 1.893% 2.084% 2.622 % 3.131% 3.587% 3.984% 4.350%
Ext. 0.244%∗∗ 0.433%∗∗ 0.552%∗∗ 0.653%∗∗ 0.682%∗∗ 0.751%∗∗ 0.816%∗∗ 0.823%∗∗ 0.845%∗∗ 0.843%∗∗

Geske and Johnson (1984) - 3 time steps
Std. 0.276% 0.608% 0.930% 1.295% 1.417% 1.788% 2.112% 2.376% 2.648% 2.902%
Ext. 0.195%∗∗ 0.328%∗∗ 0.436%∗∗ 0.511%∗∗ 0.523%∗∗ 0.573%∗∗ 0.617%∗∗ 0.623%∗∗ 0.650%∗∗ 0.668%∗∗

Barone-Adesi and Whaley (1987)
Std. 0.155% 0.395% 0.632% 0.900% 1.202% 1.429% 1.696% 1.945% 2.252% 2.380%
Ext. 0.119% 0.140% 0.192%∗ 0.237%∗∗ 0.239%∗∗ 0.268%∗∗ 0.288%∗∗ 0.298%∗∗ 0.337%∗∗ 0.337%∗∗

Li (2010b)
Std. 0.169% 0.293% 0.515% 0.669% 0.879% 1.053% 1.288% 1.532% 1.821% 1.965%
Ext. 0.087% 0.131%∗∗ 0.205%∗∗ 0.247%∗∗ 0.256%∗ 0.320%∗∗ 0.359%∗∗ 0.393%∗∗ 0.395%∗∗ 0.41%∗∗

Kim (1990) - 2 time steps
Std. 0.248% 0.404% 0.578% 0.713% 0.794% 0.899% 0.988% 1.182% 1.291% 1.488%
Ext. 0.180%∗∗ 0.271%∗∗ 0.348%∗∗ 0.404%∗∗ 0.450%∗∗ 0.476%∗∗ 0.500%∗∗ 0.503%∗∗ 0.535%∗∗ 0.534%∗∗

Kim (1990) - 3 time steps
Std. 0.125% 0.198% 0.275% 0.346% 0.358% 0.445% 0.518% 0.649% 0.678% 0.862%
Ext. 0.128%∗ 0.129%∗ 0.158%∗∗ 0.177%∗∗ 0.189%∗∗ 0.203%∗∗ 0.217%∗∗ 0.229%∗∗ 0.249%∗∗ 0.256%∗∗

Chung and Shih (2009) - 2 time steps
Std. 0.102% 0.146% 0.155% 0.189% 0.182% 0.281% 0.400% 0.566% 0.688% 0.867%
Ext. 0.063%∗∗ 0.084% 0.079%∗ 0.069%∗ 0.058%∗∗ 0.051%∗∗ 0.057%∗∗ 0.069%∗∗ 0.069%∗∗ 0.069%∗∗

Chung and Shih (2009) - 3 time steps
Std. 0.067% 0.086% 0.091% 0.115% 0.112% 0.173% 0.243% 0.341% 0.412% 0.517%
Ext. 0.040% 0.049% 0.046%∗∗ 0.040%∗ 0.035%∗∗ 0.036%∗∗ 0.038%∗∗ 0.044%∗∗ 0.056%∗∗ 0.062%∗∗

Ju and Zhong (1999)
Std. 0.051% 0.108% 0.141% 0.167% 0.180% 0.205% 0.234% 0.260% 0.290% 0.305%
Ext. 0.044% 0.076% 0.096%∗ 0.105%∗∗ 0.105%∗ 0.106%∗∗ 0.112%∗∗ 0.108%∗∗ 0.108%∗∗ 0.108%∗∗

Ibanez (2003) - 4 time steps
Std. 0.262% 0.609% 0.702% 0.880% 0.974% 1.141% 1.254% 1.357% 1.382% 1.561%
Ext. 0.211% 0.322%∗∗ 0.443%∗∗ 0.558%∗∗ 0.610%∗∗ 0.700%∗∗ 0.782%∗∗ 0.832%∗∗ 0.910%∗∗ 0.960%∗∗

Ibanez (2003) - Richardson extrapolation with ns = 4
Std. 0.236% 0.549% 0.629% 0.787% 0.870% 1.015% 1.113% 1.203% 1.219% 1.377%
Ext. 0.050% 0.076%∗∗ 0.101%∗∗ 0.119%∗∗ 0.127%∗∗ 0.138%∗∗ 0.148%∗∗ 0.151%∗∗ 0.158%∗∗ 0.167%∗∗

Ibanez (2003) - Richardson extrapolation with ns = 8
Std. 0.126% 0.290% 0.325% 0.402% 0.440% 0.505% 0.550% 0.587% 0.584% 0.652%
Ext. 0.048% 0.081%∗∗ 0.110%∗∗ 0.130%∗∗ 0.140%∗∗ 0.155%∗∗ 0.169%∗∗ 0.176%∗∗ 0.188%∗∗ 0.199%∗∗

Ibanez (2003) - Richardson extrapolation with ns = 22
Std. 0.053% 0.111% 0.122% 0.150% 0.163% 0.185% 0.203% 0.216% 0.212% 0.233%
Ext. 0.033% 0.047% 0.061%∗∗ 0.074%∗∗ 0.081%∗∗ 0.089%∗∗ 0.097%∗∗ 0.100%∗∗ 0.108%∗∗ 0.115%∗∗

Note: This table presents the Mean Absolute Percentage Error (MAPE) for the best seven quasi-analytic methods
(indicated as ‘Std’ for standard) previously reported, see Figures 3 and 4 in Broadie and Detemple (1996, p. 1227),
Tables 2a-2e and 3a-3e in AitSahlia and Carr (1997, pp. 76-85) (the results are for options on a non-dividend paying
asset for short maturities and on a dividend-paying asset for long maturities), Exhibits 3 and 5 in Ju and Zhong (1999),
Tables 3, 4 and 5 in Li (2010b, pp. 91-93), Figures 4. and 5. in Kallast and Kivinukk (2003, pp. 373-374) and Tables 4
and 5 in Kim et al. (2013, p. 7). are compared with our extended versions (indicated as ‘Ext’), i.e. when the extension
method in Proposition 3.1 is applied to them. Ten ranges of maturity (in years) are considered: (0; 0.5] (A), (0.5; 1] (B),
(1; 1.5] (C ), (1.5; 2] (D), (2; 2.5] (E ), (2.5; 3] (F ), (3; 3.5] (G), (3.5; 4] (H ), (4; 4.5] (I ), (4.5; 5] (J ). The results are based
on the scenarios in Section 4. - The entries for the extension method are calculated for the ratio tx/T corresponding to
the minimum of the solid lines in Figure 2. The symbols ∗ and ∗∗ indicate the results of the modified Diebold-Mariano
test and they show that the values in the pair (Std,Ext) are significantly different at the 95% confidence level, and 99%
confidence level, respectively. The benchmark prices are obtained by the binomial tree model with 15000 steps.
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Table 2: Scenarios-based hedging performances for different maturities

In-the-money options At-the-money options Out-the-money options
1 (year) 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Geske and Johnson (1984) - 2 time steps
Std. 1.013 1.169 1.207 1.246 1.187 0.943 1.084 1.135 1.211 1.215 0.900 1.004 1.098 1.197 1.233
Ext. 0.676∗∗ 0.748∗∗ 0.820∗∗ 0.963∗∗ 1.074∗∗ 0.629∗∗ 0.685∗∗ 0.791∗∗ 0.954∗∗ 1.079∗∗ 0.603∗∗ 0.636∗∗ 0.756∗∗ 0.930∗∗ 1.057∗∗

Geske and Johnson (1984) - 3 time steps
Std. 1.007 1.182 1.209 1.266 1.256 0.939 1.086 1.156 1.252 1.285 0.914 1.020 1.109 1.222 1.280
Ext. 0.676∗∗ 0.747∗∗ 0.819∗∗ 0.962∗∗ 1.073∗∗ 0.629∗∗ 0.684∗∗ 0.790∗∗ 0.952∗∗ 1.077∗∗ 0.603∗∗ 0.635∗∗ 0.755∗∗ 0.928∗∗ 1.055∗∗

Barone-Adesi and Whaley (1987)
Std. 0.995 1.155 1.239 1.350 1.456 0.977 1.101 1.211 1.351 1.450 0.938 1.065 1.197 1.361 1.437
Ext. 0.632∗∗ 0.652∗∗ 0.701∗∗ 0.846∗∗ 0.976∗∗ 0.586∗∗ 0.584∗∗ 0.672∗∗ 0.837∗∗ 0.964∗∗ 0.575∗∗ 0.563∗∗ 0.651∗∗ 0.827∗∗ 0.942∗∗

Li (2010b)
Std. 0.997 1.147 1.237 1.346 1.444 0.976 1.101 1.212 1.348 1.442 0.939 1.046 1.193 1.346 1.426
Ext. 0.634∗∗ 0.654∗∗ 0.704∗∗ 0.848∗∗ 0.971∗∗ 0.586∗∗ 0.591∗∗ 0.673∗∗ 0.838∗∗ 0.964∗∗ 0.575∗∗ 0.564∗∗ 0.650∗∗ 0.827∗∗ 0.943∗∗

Kim (1990) - 2 time steps
Std. 1.000 1.169 1.177 1.220 1.194 0.941 1.079 1.128 1.209 1.225 0.908 1.003 1.080 1.184 1.226
Ext. 0.632∗∗ 0.653∗∗ 0.705∗∗ 0.853∗∗ 0.985∗∗ 0.586∗∗ 0.585∗∗ 0.675∗∗ 0.843∗∗ 0.971∗∗ 0.575∗∗ 0.565∗∗ 0.655∗∗ 0.832∗∗ 0.949∗∗

Kim (1990) - 3 time steps
Std. 0.998 1.166 1.185 1.245 1.265 0.956 1.057 1.140 1.243 1.288 0.931 1.023 1.110 1.224 1.284
Ext. 0.623∗∗ 0.596∗∗ 0.617∗∗ 0.731∗∗ 0.841∗∗ 0.592∗∗ 0.548∗∗ 0.580∗∗ 0.718∗∗ 0.821∗∗ 0.575∗∗ 0.517∗∗ 0.568∗∗ 0.718∗∗ 0.798∗∗

Chung and Shih (2009) - 2 time steps
Std. 1.009 1.156 1.245 1.379 1.497 0.990 1.099 1.254 1.392 1.493 0.940 1.073 1.220 1.397 1.467
Ext. 0.622∗∗ 0.638∗∗ 0.707∗∗ 0.849∗∗ 0.989∗∗ 0.593∗∗ 0.584∗∗ 0.662∗∗ 0.835∗∗ 0.969∗∗ 0.575∗∗ 0.556∗∗ 0.650∗∗ 0.832∗∗ 0.943∗∗

Chung and Shih (2009) - 3 time steps
Std. 1.012 1.161 1.246 1.369 1.490 0.988 1.098 1.243 1.384 1.484 0.940 1.062 1.210 1.395 1.462
Ext. 0.623∗∗ 0.640∗∗ 0.707∗∗ 0.849∗∗ 0.988∗∗ 0.593∗∗ 0.586∗∗ 0.663∗∗ 0.834∗∗ 0.969∗∗ 0.576∗∗ 0.558∗∗ 0.651∗∗ 0.832∗∗ 0.944∗∗

Ju and Zhong (1999)
Std. 0.996 1.157 1.242 1.359 1.460 0.977 1.102 1.214 1.354 1.454 0.939 1.066 1.199 1.362 1.438
Ext. 0.623∗∗ 0.596∗∗ 0.617∗∗ 0.730∗∗ 0.839∗∗ 0.592∗∗ 0.548∗∗ 0.579∗∗ 0.717∗∗ 0.820∗∗ 0.575∗∗ 0.517∗∗ 0.568∗∗ 0.717∗∗ 0.797∗∗

Ibanez (2003) - 8 time steps
Std. 1.014 1.195 1.260 1.350 1.421 0.968 1.105 1.208 1.329 1.422 0.953 1.051 1.192 1.331 1.423
Ext. 0.630∗∗ 0.603∗∗ 0.613∗∗ 0.729∗∗ 0.837∗∗ 0.590∗∗ 0.546∗∗ 0.582∗∗ 0.719∗∗ 0.824∗∗ 0.569∗∗ 0.521∗∗ 0.569∗∗ 0.715∗∗ 0.804∗∗

Note: - This table presents the average quadratic hedging error for seven quasi-analytic methods (indicated as ‘Std’ for standard) and our extended
versions (indicated as ‘Ext’). The results are based on three sets of 1,000 simulated paths of the underlying asset prices. The parameters are
r = 0.05, δ = 0.04, K = 100, σ = 0.4 and S0 = {90, 100, 110}. The analysis is based on monthly hedging rolling frequency. The results
are presented for five different time-to-maturities from one to five years. The symbols ∗ and ∗∗ indicate the results of the modified Diebold-
Mariano test and they show that the values in the pair (Std,Ext) are significantly different at the 95% confidence level, and 99% confidence level,
respectively. The benchmark prices are obtained by the binomial tree model with 15000 steps.
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Table 3: Pricing performances of quasi/analytic standard methods and our extended version: Stochastic volatility with jumps model

Scenarios

Test-1 Test-2 Test-3 Test-4

S0 80 90 100 110 120 80 90 100 110 120 80 90 100 110 120 80 90 100 110 120

Exact 1.4843 3.7145 7.7027 13.6722 21.3653 1.2359 3.3532 7.5970 13.8830 21.7186 0.3285 2.1094 6.7116 13.7493 22.1433 21.3053 15.6365 11.5887 8.6680 6.5464 MAPE RMSE

Geske and Johnson (1984) Std. 1.4737 3.6832 7.6341 13.5544 21.1654 1.2265 3.3247 7.5297 13.7658 21.5286 0.3255 2.0885 6.6475 13.6300 21.9616 20.0000 14.2843 10.7048 8.0413 6.0808 0.0249% 0.0377%
2 time steps Ext. 1.4776 3.6976 7.6652 13.5869 21.1246 1.2297 3.3381 7.5609 13.7990 21.5021 0.3262 2.0982 6.6777 13.6627 21.9480 20.9597 15.3773 11.3671 8.4745 6.3789 0.0097%** 0.0116%*

Geske and Johnson (1984) Std. 1.4758 3.6913 7.6532 13.5917 21.2430 1.2282 3.3322 7.5487 13.8026 21.6002 0.3258 2.0939 6.6659 13.6670 22.0279 20.0000 14.7945 11.0090 8.2335 6.2112 0.018% 0.0273%
3 time steps Ext. 1.4785 3.7004 7.6740 13.6212 21.2439 1.2305 3.3406 7.5695 13.8326 21.6090 0.3264 2.1000 6.6860 13.6968 22.0436 21.0849 15.4321 11.3919 8.4879 6.3888 0.0075%** 0.0097%*

Barone-Adesi and Std. 1.4952 3.7255 7.7025 13.6467 21.3042 1.2458 3.3650 7.5977 13.8585 21.6603 0.3349 2.1207 6.7124 13.7224 22.0882 21.2311 15.6558 11.7004 8.8394 6.7479 0.0063% 0.0101%
Whaley (1987) Ext. 1.4871 3.7140 7.6919 13.6471 21.3063 1.2384 3.3539 7.5873 13.8581 21.6650 0.3304 2.1114 6.7030 13.7225 22.0943 21.2304 15.6337 11.6221 8.7243 6.6164 0.0026%* 0.0036%*

Li (2010b) Std. 1.4905 3.7204 7.6971 13.6415 21.2995 1.2411 3.3598 7.5923 13.8532 21.6555 0.3304 2.1152 6.7069 13.7171 22.0835 21.0936 15.4723 11.5011 8.6370 6.5487 0.0035% 0.0045%
Ext. 1.4861 3.7135 7.6902 13.6440 21.3172 1.2373 3.3532 7.5855 13.8550 21.6723 0.3291 2.1102 6.7009 13.7194 22.0986 21.1144 15.5233 11.5143 8.6218 6.5202 0.0027%* 0.0036%*

Kim (1990) Std. 1.4747 3.6904 7.6629 13.6249 21.2769 1.2272 3.3313 7.5585 13.8351 21.6376 0.3256 2.0931 6.6768 13.7000 22.0675 20.4384 15.5202 11.6354 8.7054 6.5383 0.0069% 0.0105%
2 time steps Ext. 1.4777 3.6996 7.6744 13.6285 21.2915 1.2298 3.3400 7.5699 13.8392 21.6482 0.3260 2.0998 6.6870 13.7038 22.0753 21.1868 15.5333 11.4951 8.5870 6.4769 0.005% 0.0055%

Kim (1990) Std. 1.4778 3.7000 7.6800 13.6549 21.3536 1.2299 3.3404 7.5755 13.8647 21.7066 0.3263 2.1000 6.6929 13.7299 22.1298 21.2386 15.9015 11.8050 8.7874 6.5930 0.0051% 0.0073%
3 time steps Ext. 1.4801 3.7062 7.6893 13.6526 21.3139 1.2319 3.3463 7.5847 13.8635 21.6731 0.3267 2.1044 6.7011 13.7280 22.1026 21.2334 15.6297 11.5995 8.6798 6.5525 0.0021%* 0.0023%*

Chung and Shih (2009) Std. 1.4788 3.7016 7.6812 13.6516 21.3562 1.2308 3.3419 7.5767 13.8618 21.7064 0.3266 2.1012 6.6934 13.7267 22.1281 21.4926 15.7831 11.6701 8.7043 6.5557 0.0035% 0.0043%
2 time steps Ext. 1.4804 3.7068 7.6914 13.6624 21.3512 1.2321 3.3468 7.5868 13.8731 21.7056 0.3268 2.1046 6.7028 13.7377 22.1311 21.3080 15.6484 11.5965 8.6696 6.5419 0.0014%** 0.0018%*

Chung and Shih (2009) Std. 1.4806 3.7067 7.6912 13.6635 21.3618 1.2323 3.3467 7.5866 13.8740 21.7138 0.3271 2.1046 6.7027 13.7387 22.1373 21.4361 15.7298 11.6369 8.6881 6.5502 0.0021% 0.0027%
3 time steps Ext. 1.4818 3.7101 7.6964 13.6671 21.3522 1.2333 3.3499 7.5917 13.8779 21.7075 0.3272 2.1070 6.7075 13.7424 22.1337 21.3010 15.6434 11.5937 8.6689 6.5430 0.0009%** 0.0012%*

Ju and Zhon (1999) Std. 1.4844 3.7096 7.6874 13.6502 21.3444 1.2360 3.3497 7.5827 13.8607 21.6957 0.3294 2.1079 6.6991 13.7255 22.1183 21.2772 15.5967 11.5563 8.6523 6.5470 0.0014% 0.0016%
Ext. 1.4834 3.7093 7.6904 13.6569 21.3481 1.2349 3.3494 7.5857 13.8674 21.7010 0.3287 2.1074 6.7019 13.7322 22.1251 21.2761 15.6090 11.5651 8.6535 6.5415 0.0012%* 0.0012%*

Ibanez (2003) Std. 1.4781 3.6989 7.6715 13.6246 21.3005 1.2302 3.3394 7.5669 13.8353 21.6541 0.3264 2.0991 6.6835 13.6999 22.0789 20.7927 15.3657 11.3638 8.4737 6.3830 0.0084% 0.0115%
Richardson ext. ns = 4 Ext. 1.4827 3.7108 7.6959 13.6650 21.3478 1.2342 3.3506 7.5912 13.8758 21.7039 0.3278 2.1076 6.7068 13.7403 22.1308 21.2385 15.5900 11.5456 8.6281 6.5101 0.0017%** 0.0022%*

Ibanez (2003) Std. 1.4808 3.7060 7.6859 13.6479 21.3311 1.2325 3.3460 7.5813 13.8587 21.6845 0.3272 2.1041 6.6973 13.7232 22.1094 21.1185 15.5042 11.4667 8.5632 6.4583 0.0043% 0.0058%
Richardson ext. ns = 8 Ext. 1.4827 3.7107 7.6951 13.6624 21.3479 1.2342 3.3505 7.5904 13.8732 21.7023 0.3278 2.1076 6.7061 13.7377 22.1279 21.2483 15.5848 11.5384 8.6224 6.5063 0.0018%** 0.0024%*

Ibanez (2003) Std. 1.4830 3.7112 7.6960 13.6636 21.3522 1.2344 3.3510 7.5913 13.8745 21.7057 0.3279 2.1079 6.7069 13.7390 22.1307 21.2550 15.5851 11.5411 8.6265 6.5105 0.0016% 0.0022%
Richardson ext. ns = 22 Ext. 1.4835 3.7125 7.6984 13.6673 21.3550 1.2349 3.3522 7.5937 13.8782 21.7092 0.3280 2.1089 6.7092 13.7427 22.1347 21.2704 15.6079 11.5606 8.6423 6.5233 0.001%* 0.0014%*

Note: This table presents the prices of the 20 option scenarios in Ballestra and Sgarra (2010) (Tables 1-4), under a stochastic volatility with jumps model for seven quasi-analytic methods (indicated as ‘Std’ for standard) and our extended
versions (indicated as ‘Ext’) . The options scenarios are summarized in Section 4.3. The symbols ∗ and ∗∗ indicate the results of the modified Diebold-Mariano test for the MAPE and RMSE measures only and they show that the values in the
pair (Std,Ext) are significantly different at the 95% confidence level, and 99% confidence level, respectively. The “benchmark” prices are those in Chiarella et al. (2009), Toivanen (2010) and Ballestra and Sgarra (2010) which were obtained by
using finite difference approximations and Monte Carlo simulations on an extremely fine mesh.
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Table 4: Summary statistics for the OEX R©(American) LEAPS R© on S&P 100TM

From January 2008 to December 2011 From January 2012 to May 2015

Medium Maturities Long Maturities Medium Maturities Long Maturities

Call Put Call Put Call Put Call Put

Retained options 8,140 10,618 5,252 6,148 15,355 7,477 10,327 4,677
Average bid/ask spread -7.258 -4.587 -7.410 -5.215 -3.324 -3.172 -3.587 -3.359

Average % bid/ask spread -0.064 -0.248 -0.087 -0.209 -0.152 -0.135 -0.093 -0.116
Average mean price 148.811 35.859 98.265 43.605 79.600 38.584 84.447 41.942

Average time-to-maturity (years) 1.514 1.526 2.496 2.471 1.517 1.503 2.429 2.458

Subtotal (% of options) 11.97% 15.62% 7.72% 9.04% 22.58% 11.00% 15.19% 6.88%

Table 5: Empirical pricing performances on S&P 100TM LEAPS R©

From January 2008 to December 2011 From January 2012 to May 2015

MRE RMSVE FIBA (%) MOE RMSOE MROE MRE RMSVE FIBA (%) MOE RMSOE MROE

Geske and Johnson (1984) - 2 time steps
Std. -0.743 3.410 70.6% -1.402 4.813 -0.025 -0.551 1.988 93.6% -1.154 5.627 -0.022
Ext. -0.274∗∗ 3.167∗ 77.6%∗∗ -0.689∗∗ 4.541∗∗ -0.013∗∗ 0.017∗∗ 1.940∗ 92.1%∗∗ -0.109∗∗ 5.579∗∗ -0.010∗∗

Geske and Johnson (1984) - 3 time steps
Std. -0.431 3.230 74.9% -0.958 4.612 -0.018 -0.180 1.861 93.3% -0.465 5.534 -0.015
Ext. -0.212∗∗ 3.161∗∗ 78.3%∗∗ -0.577∗∗ 4.531∗∗ -0.011∗ 0.082∗∗ 1.969∗ 91.8%∗∗ 0.011∗∗ 5.595∗ -0.009∗∗

Barone-Adesi and Whaley (1987)
Std. 0.573 3.128 84.2% 0.768 4.459 0.017 0.678 2.261 88.0% 1.091 5.772 0.006
Ext. 0.143∗∗ 3.107∗∗ 82.7%∗∗ 0.006∗∗ 4.453 0.001∗∗ 0.408∗∗ 2.102∗ 89.8%∗∗ 0.601∗∗ 5.671∗ -0.002∗∗

Li (2010b)
Std. 0.478 3.119 85.1% 0.593 4.447 0.011 0.563 2.169 89.1% 0.891 5.711 0.003
Ext. 0.082∗∗ 3.125∗∗ 82.1%∗∗ -0.093∗∗ 4.475∗ -0.002∗∗ 0.324∗∗ 2.058∗ 90.4%∗∗ 0.453∗∗ 5.643∗∗ -0.003

Kim (1990) - 2 time steps
Std. -0.375 3.314 76.2% -0.821 4.686 -0.016 0.139 2.050 90.5% 0.127 5.636 -0.008
Ext. -0.107∗∗ 3.102∗∗ 80.2%∗∗ -0.446∗∗ 4.459∗ -0.010∗ 0.236∗∗ 1.995∗ 90.8%∗ 0.292∗∗ 5.607∗ -0.007

Kim (1990) - 3 time steps
Std. 0.015 3.100 82.4% -0.246 4.441 -0.008 0.486 2.193 88.9% 0.727 5.728 -0.002
Ext. 0.060∗ 3.074∗ 83.2%∗∗ -0.170∗∗ 4.415∗∗ -0.006 0.419∗ 2.106∗∗ 89.5%∗∗ 0.617∗∗ 5.674∗ -0.003

Chung and Shih (2009) - 2 time steps
Std. 0.189 3.054 85.8% 0.048 4.378 -0.005 0.500 2.168 89.0% 0.753 5.714 -0.002
Ext. 0.136 3.075 84.2% -0.039 4.410 -0.004 0.460 2.138 89.4% 0.689∗ 5.693 -0.002

Chung and Shih (2009) - 3 time steps
Std. 0.216 3.059 85.9% 0.098 4.383 -0.004 0.531 2.188 88.9% 0.809 5.726 -0.001
Ext. 0.146∗∗ 3.077∗ 84.1%∗∗ -0.018∗∗ 4.412∗∗ -0.004 0.473∗∗ 2.148∗∗ 89.4%∗∗ 0.713∗∗ 5.699∗ -0.002

Ju and Zhong (1999)
Std. 0.159 3.062 85.3% 0.008 4.394 -0.002 0.444 2.087 89.7% 0.671 5.663 -0.002
Ext. 0.117∗∗ 3.080∗ 83.9%∗∗ -0.069 4.417∗∗ -0.004 0.434 2.11 89.6% 0.646∗ 5.675 -0.002

Ibanez (2003) - Richardson extrapolation with ns = 22
Std. 0.103 3.071 84.5% -0.065 4.404 -0.004 0.451 2.160 89.0% 0.666 5.709 -0.003
Ext. 0.067∗∗ 2.930 84.0%∗∗ -0.123 4.287 -0.005 0.449 2.157 89.3% 0.665∗∗ 5.707∗ -0.003

Derman et.al. (1995)
50 steps -2.401 9.286 31.7% -2.343 10.607 -0.097 -12.772 23.527 22.4% -14.075 26.245 -0.360
100 steps -1.948 9.387 31.8% -1.763 10.683 -0.080 -10.900 22.659 23.2% -12.006 25.335 -0.304

Cox, Ross and Rubinstein (1979)
2000 steps 0.231 3.066 85.6% 0.130 4.392 -0.002 0.552 2.197 88.9% 0.852 5.731 -0.001

Note: The six error measures in Linaras and Skiadopoulos (2005), MRE, RMSVE, FIBA (%), MOE, RMSOE and MROE, are calculated
for all seven quasi-analytic methods (labelled ’Std.’ for standard) and our extended versions (indicated as ’Ext.’), using the S&P 100TM

LEAPS R© prices between January 2012 and May 2015, for maturities above 500 trading days. The symbols ∗ and ∗∗ indicate the results of
the modified Diebold-Mariano test and they show that the values in the pair (Std,Ext) are significantly different at the 95% confidence level,
and 99% confidence level, respectively. The benchmark prices are obtained by the binomial tree model with 15000 steps. The implied tree
method by Derman et al. (1995) with 50 and 100 time steps and the Cox et al. (1979) with 2000 time steps are also reported.
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Figure 1: Example of extension method mechanism
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Note: The optimal exercise prices of two American put options are considered
in the figure. The two options are written on the same underlying asset with
σ = 20%, δ = 5%, r = 8% and K = 100. One option has maturity t1 = 1 year
and the other T = 2.5 years. The continuous line represents the optimal exercise
price of the option with maturity T and the dash-dot lines represent the optimal
exercise of the option with maturity t1. In particular, the left-most dash-dot line
is the ‘original’ function and the other is its translation over the continuous line
to show they coincide in the interval [tx, T ] where tx = t0 + (T − t1) = 1.5 years
represents the size of the translation. The OEPs are calculated by the integral
method in Kim (1990).
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Figure 2: Scenarios-based pricing performance of quasi-analytic standard methods and our extended versions:
Mean Average Percentage Error as a function of the ratio tx/T
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Note: This figure shows the ranges of ratios tx/T for which the extended version (solid lines) outperforms the
standard version (dash-dot lines) for each method. The results are shown for all maturities (≤ 5 years).
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