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Abstract

Gully pots or storm drains are located at the side of roads to provide drainage for surface water. We
consider gully pot maintenance as a risk-driven maintenance problem. We explore policies for preventative
and corrective maintenance actions, and build optimised routes for maintenance vehicles. Our solutions take
the risk impact of gully pot failure and its failure behaviour into account, in the presence of factors such as
location, season and current status. The aim is to determine a maintenance policy that can automatically
adjust its scheduling strategy in line with changes in the local environment, to minimize the surface flooding
risk due to clogged gully pots. We introduce a rolling planning strategy, solved by a hyperheuristic method.
Results show the behaviour and strength of the automated adjustment in a range of real-world scenarios.
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1. Introduction

A gully pot is the part of the storm drain that
prevents solids and sediment from flushing into sew-
ers, where they cause blockages in the underground
surface water collection infrastructure (Butler et al.
(1995)). Regular cleaning is required for gully
pots to function effectively (Karlsson and Viklan-
der (2008), Scott (2012)): typical strategies are to
clean all gully pots once or twice a year. If gully
pots are not cleaned regularly, partial or complete
blockages and accelerated deterioration of the gully
pots increases the likelihood of surface water flood-
ing. In extreme situations such as intensive rain-
fall, a clogged drainage system may cause serious
property loss (i.e. BBC (2011, 2012), Shieldsgazette
(2012), Leylandguardian (2015)).

In the UK, gully pot cleaning is undertaken by
local councils, each using its own strategy. Our
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research focuses on gully pot cleaning for Black-
pool, UK, with data from the local council and from
consultants, Gaist Solutions Ltd. Blackpool’s gully
pot maintenance system records 28,149 gullies in
an area of about 36.1 km?. Analysis of real-world
gully pot maintenance records shows that season
and weather play a critical role: leaf-fall causes
many gully pot blockages, whilst strong winds can
blow sand or dirt into gully pots causing partial
blockages. Historically, reporting of gully pot is-
sues by local residents varies across the seasons and
is the lowest in winter, when short daylight and cold
weather reduce footfall.

Blackpool local council has two gully cleaning ve-
hicles but only one cleaning team. On any day, the
team either takes out the normal cleaning machine,
which uses hydrodynamic pressure and a vacuum to
loosen and remove solids and liquids from a gully
pot (Karlsson and Viklander (2008)), or uses a spe-
cialist machine, equipped for fixing broken gully
pots. The cleaning team manager estimates that
the average time to clean a gully pot is about 5
minutes, whilst the specialist vehicle takes an aver-
age of 10 minutes to fix or replace a damaged gully
pot excluding travel time.

Each day there is a schedule of gully pots to visit,
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starting and ending at the depot. Either mainte-
nance vehicle departs the depot at 09:00 and re-
turns no later than 17:00. During servicing, some
gully pots are inaccessible, usually due to parked
vehicles. If the team encounters a broken gully pot
during normal cleaning, it is recorded and subse-
quently added to the schedule of the specialised ve-
hicle. Scheduling also needs to take account of resi-
dents’ reports of problematic gully pots: depending
on the local risk, these emerging events should be
scheduled 5 to 20 days from when they are recorded.

In constructing routes, we take account of both
preventative cleaning, and response to emerging
events. We would like to generate actual gully pot
maintenance schedules that are dynamically opti-
mised to take account of each gully’s up-to-date
status and its risk impact (which varies across the
city). We assume that the capacity of the clean-
ing vehicle is sufficient for normal daily work, and
the waste disposal process is beyond our scheduling
programme. Thus, no vehicle capacity constraint
is considered in this study. We propose a dynamic
short-period scheduling approach, with two compo-
nent tasks, as follows.

1. Decide which gully pots to serve in the near fu-
ture, according to the current environment and
most recent gully pot condition information.

2. Construct daily cleaning routes that minimise
the travelling cost, and maximise the number
of gullies cleaned every day.

This problem is similar to the well-known peri-
odic vehicle routing problem (PVRP) (Christofides
and Beasley (1984), Hemmelmayr et al. (2009),
Gulczynski et al. (2011), Baldacci et al. (2011), Vi-
dal et al. (2012)). Since only one vehicle works
each day, it could be specified as a periodic trav-
elling salesman problem (PTSP). However, there
are a number of distinguishable characteristics in
our gully pot cleaning problem. Firstly, during the
planning period, not all gully pots can be cleaned.
Secondly, there is no hard constraint of overall
cleaning frequency for each gully pot, so, rather
than a service pattern, we use a function to estimate
a failure rate for each gully pot and identify which
pots require servicing. Finally, our guiding princi-
ple is to minimize the urban surface water flooding
risk caused by clogged gully pots, whilst optimizing
the cost of daily cleaning routes.

In this paper, we propose an approach that main-
tains a set of distance optimized routes evolving

with the environmental changes over time. We ap-
ply a tabu-based hyperheuristic — binary exponen-
tial back off (BEBO) (Remde et al. (2009)) which
manages a set of route-adapting and scheduling lo-
cal search operators to improve the solution itera-
tively.

The remainder of the paper is organized as fol-
lows. Section 2 presents the literature survey rel-
evant to this study. Section 3 defines the model
and describes the solution approach in detail. A
comprehensive discussion and analysis of drainage
system maintenance strategies is given in Section
4. Finally, we present the conclusion and directions
for future research in Section 5.

2. Related works

2.1. Preventative maintenance and Corrective
maintenance

Maintenance is generally categorised into correc-
tive and preventative maintenance (Duffuaa et al.
(2001), Ahmad and Kamaruddin (2012)). Correc-
tive maintenance (CM) usually happens after fail-
ures occur. It includes actions such as repair and
replacement. Tsang (1995) notes that the conse-
quence of doing only corrective maintenance is a
high risk of machine downtime and property loss.
Preventative maintenance (PM) is an alternative
strategy that reduces these risks. In industry, pre-
ventative maintenance typically takes place at reg-
ular time intervals, based on experience.

Operational research on PM introduces decision
making, based on data analysis, with techniques
such as time-based (TBM) (e.g. Scarf and Cav-
alcante (2010), Wu et al. (2010)) and condition-
based maintenance (CBM) (e.g. Carnero Moya
(2004), Campos (2009)). TBM can be applied when
the failure rate is predictable, whilst CBM is em-
ployed where conditions are continuously monitored
by sensor or any appropriate indicators. A sim-
ilar approach, tracking real-time operation infor-
mation, is also applied in dynamic scheduling (e.g.
Cowling and Johansson (2002)). There is little re-
search combining PM and CM strategies: Kenne
and Nkeungoue (2008) introduce a PM/CM rate
control strategy, obtaining a near-optimal mainte-
nance policy for a manufacturing system.

Our gully pot maintenance problem involves geo-
graphically distributed points and a strictly-limited
service resource. Therefore, instead of finding an
optimal maintenance policy for each individual ob-
ject, the focus of this research is to produce an



optimal maintenance schedule covering all objects
within time and resource constraints.

2.2. Maintenance & on-site service problem mod-
elled as periodic vehicle routing problem

The periodic vehicle routing problem (PVRP)
model is widely used, and planning routes for main-
tenance and on-site service is one of its many ap-
plications.

Blakeley et al. (2003) use a multiple-objective
PVRP to model PM for real-world elevator and
escalator maintenance, which includes periodically
checking customers’ equipment and reacting to call-
outs. Travelling time, workload balancing, visiting
time window violation and overworking time are
considered in a weighted linear function. A two-
stage approach is used: 1) assign all tasks to each
technician, based on technician skill sets and the
geographical distribution of tasks; 2) solve periodic
travelling salesman problem (PTSP) for each tech-
nician over a 13-week period.

Jang et al. (2006) implement a very similar two
stage approach to solve a problem of routing lottery
sales representatives to visit lottery retail locations.
In their assignment stage, the k-means clustering
method is used.

Related work has also been analysed in remote
healthcare services. An et al. (2012) consider the
home healthcare problem, which needs to provide
periodical services to various patients.

Maya et al. (2012) help an education institution
to provide periodical services for disabled children.
This problem is considered as a multiple depot
PVRP as each teaching assistant starts and ends
their journey from home.

Alegre et al. (2007) analyse a real-world periodic
pick-up of raw materials problem and modelled it as
PVRP. The notable characteristic of this research is
the very long planning horizon (90 days) compared
to other literature.

Tang et al. (2007) model a geographically dis-
tributed equipment maintenance scheduling prob-
lem as a multiple tour maximum collection problem
with time dependent rewards. The rewards are de-
cided based on manufacturer maintenance interval
suggestions. The approach has similarity to PVRP,
in that a schedule is produced for a given period
(e.g. a week or a month). On the other hand,
some significant differences include: not all equip-
ment requires a visit within a planning horizon; the
objective is not to minimize the travelling cost but

to maximize the reward from completing tasks (i.e
fixing or checking a machine).

Garcfa et al. (2013) consider a perishable prod-
ucts supply problem for a bakery company. Weekly
delivery routes from the depot to distributors are
generated. This problem introduces a certain flex-
ibility in the delivery date. The authors introduce
a bi-objective model that minimizes the total trav-
elled distance and the total stock over the plan-
ning horizon simultaneously. Two meta-heuristic
approaches such as linked VNS and NSGA-II (Deb
et al. (2002)) are applied to produce good approx-
imations of the Pareto front for this bi-objective
problem.

2.8. Solutions of PVRP

To solve PVRP-related problems, two main pro-
cesses are commonly considered. The first approach
(e.g. Alegre et al. (2007)) assigns customers to days
according to their service pattern and then solves a
VRP for each day. This solution transforms PVRP
to a multiple depot VRP (MDVRP). The second
approach (e.g. Tang et al. (2007)) is to simplify
a PVRP to PTSP by assigning customers to each
vehicle/salesman. Routes are then built up and
scheduled to days. This second approach is usu-
ally used when the service fleet is heterogeneous,
or when strong ties exist between specific service
personnel and customers.

Baldacci et al. (2011) propose a successful exact
algorithm for solving the PVRP. To our knowledge,
this paper presents the largest PVRP solved by an
exact algorithm, at 199 customers.

Meta-heuristics, which are capable of solving
large scale real-world problems, are the most com-
mon PVRP solvers in literature. Chao et al. (1995)
present a two-stage record-to-record algorithm that
constructs solutions using several local moves ap-
plied one after another. Cordeau et al. (1997) were
the first to use a tabu search heuristic for PVRP.
During the search, infeasible solutions are allowed
and controlled using an adaptive penalty function.
Alegre et al. (2007) apply a scatter search frame-
work (Laguna and Marti (2012)) to solve PVRP.
The algorithm is based on a problem of assign-
ing calendars to customers in a periodic vehicle
loading problem (Delgado et al. (2005)). Another
strong meta-heuristic framework for PVRP, vari-
able neighbourhood search (VNS), is proposed by
Hemmelmayr et al. (2009). Pirkwieser and Raidl
(2010) add a coarsening and refinement process to
VNS, called multilevel VNS for PVRP.



More recently, hybrid meta-heuristics present
very competitive results in terms of both solu-
tion quality and computational time. Gulczyn-
ski et al. (2011) describe an integer programming-
based heuristic (IPH): in this approach, the reas-
signment and daily routing processes are repeat-
edly applied until little or no improvement is found
in the current iteration, when a restart initial so-
lution is generated. Gulczynski et al. (2011) re-
port that IPH out-performs the algorithms pro-
posed by Chao et al. (1995), Cordeau et al. (1997),
Alegre et al. (2007), Hemmelmayr et al. (2009).
Vidal et al. (2012) propose a hybrid genetic al-
gorithm that combines local search and sophisti-
cated population management strategies to guide
the search, an approach shown to perform bet-
ter than all the above algorithms. Cordeau and
Maischberger (2012) combine tabu search and it-
erated local search to give a competitive, broad
exploration of the search space. Rahimi-Vahed
et al. (2012) propose a modular heuristic algorithm
(MHA) that introduces a reference set to guide ex-
ploration and exploitation during the search for so-
lutions minimising the number of vehicle used. In
addition, this paper also presents a self-learning
mechanism that leads the search to assign better
customer visit patterns as the solution evolves.

3. Solution

3.1. Modelling

Here, we clarify our gully pot maintenance prob-
lem with its natural features using a mathematical
model. A geographically-distributed system has N
points that need maintenance over a long period
D (e.g. 3 to 5 years). Each point i is associated
with a risk impact r;, which measures the value
of this point to its surrounding environment (i.e.
critical properties). The failure probability of each
point changes over time, and can be estimated by a
function P;(d), which measures the probability that
gully 7 is in a failure state on day d. A subset of
points, M € N, is scheduled in the next short main-
tenance period W (e.g. a week or 2 weeks). Other
input parameters include the following:

® T 4.0 the maximum travelling time allowed
for each route;

e d;;: distance, in terms of travelling time, from
gully 7 to j: we use actual road distance be-
tween points;

e t;: service time at point q.

The objective is to select a judicious subset of
points from N and assign them to days of the fol-
lowing short period, in order to minimize the risk
in this period:

N
> riP(d) (1)

deW i=1

This problem is subject to two constraints: (1) for
any route, the total travelling time plus the total
servicing time does not exceed T},4, for that route;
(2) each route must start and end at the depot.

3.2. Problem preparation

3.2.1. Estimating the risk impact per gully pot

A potential hazard (i.e. surface water flooding)
could be exacerbated by both geographic factors
(i.e. elevation, soil type) and social-related factors,
which are usually influenced by economic, demo-
graphic and building types (Cutter et al. (2003)).
A higher risk impact here implies that if a particular
gully pot is blocked and floods happen, it results in
relatively larger economic and social losses. In other
words, we prefer to clean the gully pots with larger
impact more frequently to keep them working prop-
erly. Co-operating with Blackpool local council, we
firstly decide a list of social concerns with aware-
ness of their economic and population influence, as
shown in table 1. Then, each gully pot is evaluated
by its location and the related social concerns.

Based on the existing data from Blackpool coun-
cil, social concerns are classified in to three groups:
1) residential property; 2) commercial and indus-
trial areas including local and district centres, busi-
ness zones, and employment sites; 3) public ser-
vices including schools, hospitals, doctors and pub-
lic transport routes. In table 1, the estimated value
of each item in group 1 is the average residential
house price in Blackpool UK GOV (2015). Group
2 takes account of the footfall and critical building
prices for each item. The estimated value of items
in group 3 is based on average daily operation costs.

Flooding impact analysis involves large uncer-
tainties. Research has shown historic flooding from
different perspectives (Changnon (1999), Thieken
et al. (2008), Brouwer and Van Ek (2004), Merz
et al. (2004)). We do not expect a precise assess-
ment of impact. Instead, we aim to find values that
are able to guide gully pot maintenance actions in



Table 1: Social factor evaluation

. Estimated Value loss Risk
Group | Social Concerns . .

value from flooding | impact

1 Residential £113,000 3% £34

2 Local center £1,130,000 5% £580

District center £1,695,000 5% £870

Business area £565,000 5% £290

Employment sites £226,000 5% £116

3 School £5,168 4% £71

Large hospital £917,808 4% £377

Doctors £9,178 4% £73

Bus route £220 100% £37

decision making. Here, we mainly focus on direct
economic losses using a damage function which re-
lates to property type and water level. Thieken
et al. (2008) propose the impact from a range of
flood water levels on different building types. After
consulting Blackpool Council and Gaist Solutions
Ltd., we decide to focus on the impact of floodwa-
ter levels of less than 21 cm. This gives value-loss
figures (Table 1, third column) of 5%, 3% and 4%
for commercial, residential and public service areas,
respectively. For public transport we focus on bus
routes, estimating the cost of closing a road section
due to surface water flooding.

By analysing Blackpool historic flooding fre-
quency (Blackpool (2009)), the probability of flood-
ing events is used to map the flooding value loss to
the daily risk impact per gully pot according to its
location (last column of Table 1). We assume that
gullies in the same section of a street evenly share
the responsibility for the risk impact evaluated in
that area. Figure 1 illustrates the geographic dis-
tribution of gully pot risk impact in Blackpool.

3.2.2. Estimating the process of a gully pot blocking

Ahmad and Kamaruddin (2012) suggest that
time-based maintenance is the normal strategy in
situations where equipment has a fixed lifespan
or predictable failure behaviour. After analysis
of historic gully pot records, we model the gully
pot blocking process using the Weibull distribution
model (Weibull (1951), Ebeling (2004)), from re-
liability theory. The parameters of this form of
Weibull distribution are the shape parameter k,
and the scale parameter A\. In our study, we de-
fine £k = 6, which captures a realistically increas-
ing blocking rate over time. The scale parameter
A, capturing lifetime behaviour, is affected by lo-

Risk impact
estimated in pounds
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* 20
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+ 120
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Figure 1: Gully pot risk impact in Blackpool

cation and seasonal factors, according to a simple
linear function:

10 ... if gully pot recorded as broken
\ = Ecalting . a calling event
maz(90, £ — > png*sf) ... normal state

Ecailing represents the expected number of days
from a report on a gully pot to its servicing. F is
the expected number of days that it would take a
normal gully pot to become blocked since its last
service. Here, £ = 10.3 years. F is a set of factors



that may affect gully pot lifetime, such as street
type, number of trees nearby, and blown sand effect:
ny represents the effect level from a specific factor
f € F to a gully pot; sy adjusts the effect from fac-
tor f according to seasonal information. For exam-
ple, if a gully pot is on a street with five deciduous
trees nearby, then n; = 5 with sy = 93,1,389,433
in spring, summer, autumn and winter respectively.
If a gully pot location is not affected by factor f,
we simply assign ny = 0. All values are based on
our statistical analysis of the Blackpool data. Fig.
2 illustrates two examples of gully pot lifetime esti-
mation taking account of the surrounding environ-
ment.
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Figure 2: Probability of being blocked since last maintenance
action

3.2.3. Reducing the problem size

Blackpool local council would prefer to use an
informed maintenance plan at the level of individ-
ual gully pots. In recent years, GPS techniques
and GIS systems are able to support more precise
action tracking and decision making. Our mainte-
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Figure 3: Reduce problem size

nance scheduling problem (28,149 gullies; 36.1 km?)
is significantly larger than existing PVRP case stud-
ies. Building geographically tight clusters is the
most common step used to reduce a problem (e.g.
Cordeau et al. (1997), Blakeley et al. (2003), Tang
et al. (2007)).

In order to reduce the problem size whilst re-
taining enough information to build feasible clean-
ing routes and track gully pot condition, we group
gully pots located on the same section of street. As
shown in Fig. 3(a), we assume that these gully pots
share the same environmental factors. Gully pots
in the same group are always scheduled together
for preventative maintenance. The service time of
a group includes both cleaning time for the gully
pots and travelling time inside this section of a road.
This representation also maintains traffic distance:
for instance, the distance between group point 1 to
group point 6, in Fig. 3(b), is the road distance
measured from the red node of road 1 to the green
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Figure 4: Solution representation and data structure for stor-
ing candidate routes

node of road 6, in Fig. 3(a). Furthermore, individ-
ual gully pot states (i.e. normal, calling, broken)
are still recorded, because unexpected damage or
blockage events may happen to any of them: this
allows corrective actions to be accurately planned.
A gully-pot-cluster is labelled as in normal state
only if all the gully pots included are in normal
state. The risk of a gully-pot-cluster is the sum of
all included gully pots’ risk at any given time.

By applying this grouping strategy, we reduce the
preventative maintenance problem size from 28,149
to 9,277 points. For corrective actions, routes are
built on problematic gully pots, which only com-
pose a small size vehicle routing problem.

3.8. Solution representation

An interesting feature of our problem is that
our objective function is designed for a short-term
scheduling problem, but the overall aim is to anal-
yse the scheduling impact for long-term risk man-
agement. Due to the changing environment and
unexpected emerging situations, we cannot assume
any repeated schedules between periods. To solve

the long-term scheduling problem, a rolling hori-
zon approach is devised, in which the short-term
problem is solved repeatedly, given updates to en-
vironment and gully pot status.

Fig. 4 shows a data structure used to store the
solution. A w days schedule contains selected w IDs
of candidate routes. Each route in the candidate set
is optimized on distance. A route is composed of an
ID, route information and the actual tour. Route
information includes up to date gully pot condition
which helps to produce schedules:

1. route length;

2. number of gully pots;

3. current route risk, which is the sum of the risk
impact for each gully pot multiplied by that
pot’s current failure rate;

4. tabu tenure [ in days, which is used to stop the
revisiting of the same preventative route in the
near future.

3.4. Candidate routes set management

The candidate route set (Fig. 4) consists of an
initial fixed routes set, a re-optimized routes set and
a reactive routes set. Once the initial fixed routes
set is built, these tours will not be changed dur-
ing execution; it stores initial solutions for preven-
tative maintenance (see Section 3.4.1). Routes in
the re-optimized routes set are repeatedly updated
during optimisation, as a result of environmental
changes that cause gully pot status changes (see
Section 3.5). The size of the re-optimized routes set
is fixed at m routes. When the set is full and new
routes are generated, the oldest route is replaced.
Routes in the reactive routes set are built from a
set of emerging events and they are all discarded
when a schedule solution is executed (see Section
3.4.2).

8.4.1. The initial fized routes set

Routes optimization is very CPU intensive, espe-
cially for such large problems. Constructing routes
repeatedly in a rolling planning schema is not ef-
ficient. Here, we start by finding a group of opti-
mized candidate routes that can be scheduled di-
rectly or adjusted based on updated information
before the use of the route in future days. At this
stage, we treat the problem as a VRP without con-
sidering any risk impact or lifetime information.
The objective is to minimize the total travelling
distance, with constraints including: 1) all points
in the system should be visited exactly once; 2) all



routes should start and end at the deport; 3) no
route travelling time should exceed T} 4.

The vehicle routing solver starts from an ini-
tial wvehicle routing solution, constructed using
the Clarke-Wright (CW) Savings heuristic (Clarke
and Wright (1964)). After an initial solution is
constructed, the improvement phase uses variable
neighbourhood search (Mladenovié and Hansen
(1997), Hansen et al. (2010)) embedded with i-
relocate and i-cross-exchange shaking operators
(see Fig.5) and a local search phase. A similar pro-
cess is used by Hemmelmayr et al. (2009) in their
daily VRP solving stage. Here, i-relocate and i-
cross-exchange represent that a maximum ¢ num-
ber of points in a route are changed in one move.
In total, 12 neighbourhoods are implemented. The
order of neighbourhoods is i-relocate (i = 1; 2; 3;
4; 5; 6) and then i-cross-exchange (i = 1; 2; 3; 4; 5;
6).

routel V routel
4././’\.\.7 route2

(a) 3-cross exchange

route2

routel —.—.— routel

_/./’\.\.7 route2

(b) 3-relocate

————o—

route2

Figure 5: Inter-routes local moves

In order to enhance the solution quality, a local
search strategy is used after a solution is obtained
through “shaking”. The single route operator, 3-
opt (Lin (1965)) is adopted in an iterative first im-
provement procedure. Only the two modified routes
have to be re-optimized.

After finding the optimized VRP solution, we still
can not guarantee that every route maximizes the
use of the daily time limitation 7,,,. Therefore, for
each route in the candidate set S, we try to insert
the closest points which are not already included
using least cost insertion, until no more points can
be inserted without breaking the 7},,4, limitation.

3.4.2. The reactive routes set

Before scheduling routes into days, we create can-
didate routes in the reactive routes set, based on
emerging events information. During the last w
days, a normal callings and b broken reports are
received. Calling reports that have not been ad-
dressed and a new calling reports make up the set
Veanis- In the same way, we also get a set Viroken-
When a call is received, we register the cluster 1D
(see Section 3.2.3) so that the schedule can inspect
gully pots around the reportedly problematic ones;
however, when broken pots are discovered through
preventative maintenance or inspection, we register
them individually.

The VRP solver described in Section 3.4.1 is used
for both V415 and Vi,oren to create candidate route
sets Scaiis and Sproken, respectively. Each route in
Scalls 1S treated as an opportunity to clean more
normal-state gully pots on the journey, as the same
vehicle is used for the task. So, for each route in
Sealls, We try to insert the closest cluster-points that
are in a normal state, and whose time since last ser-
vice is longer than 30 days. We use least cost inser-
tion, until no more points can be inserted without
breaking the schedule duration constraint based on

max-

At this point, we have a candidate routes set (in-
cluding preventative routes, routes that mostly con-
tain reported gullies and routes that only contain
broken gullies) optimized in distance:

Sall = Sfixed U Scalls U Sbroken

3.5. Produce schedule

To produce a maintenance schedule in continuous
time, Fig. 6 illustrates an overview of system infor-
mation flow and Algorithm 3.1 describes a rolling
horizon optimiser that automatically selects appro-
priate maintenance actions (either preventative or
corrective) for the upcoming period.

3.5.1. Initialization

The initial schedule simply chooses the w num-
ber of routes with tabu tenure [, equals zero,
from all candidate routes, S,;;, with highest risk,

> ies ribi(today).

3.5.2. Improve the schedule using BEBO heuristic
The improvement stage is developed on a tabu

search based hyperheuristic method — binary expo-
nential back off (BEBO), proposed by Remde et al.
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Figure 6: Overview of system operation

Algorithm 3.1 Rolling horizon optimiser — algorithm sketch

Define:
Stizea is the initial fixed route set containing distance optimized routes.

Sreopt 1 a set of distance optimized routes that are updated during the search according to the recent

gully pots risk information; initially Syeopt = 0

ls is a tabu tenure of route s in days, to stop revisiting of this route in near future (Section 3.3).
ug is a flag parameter to prevent cyclic testing of route s when using the scheduling-related LLHs

(i.e. LLH3,LLH, in Section 3.5.2)
Rolling horizon repeat every w days:

1. Generate S.qis and Sproken based on emerging events. Vs € Scais U Sproken,ls = 0

Cup L

Get the candidate routes set Sq;i = Stized U Sreopt U Scaiis U Sbroken- VS € Sau, us = false
Generate w days schedule solution z that minimizes the objective function 1 (Sect. 3.5.1 — 3.5.3).
Update routes s € Sfizeqd U Sreopt risk information based on condition changing of gullies;

If any route s € Sfizea U Sreopt is scheduled in z, I, = 30(days), otherwise I, =, — w

(2009). BEBO has the fundamental structure of hy-
perheuristic search strategy — a trial set of low level
heuristics (LLHs) and systematic rules that control
the usage of each LLH. BEBO uses dynamically
adapted tabu tenures (Glover and Laguna (2013))
during the search process, especially useful when
large neighbourhoods are involved. If a LLH per-
forms poorly in a recent search, it is disabled for a
number of iterations. If the LLH performs poorly
continuously, the number of forbidden iterations in-
creases. The detailed searching framework is shown
in Algorithm 3.2 (Remde et al. (2012)).

Originally, hyperheuristics were designed for the
purpose of automatically choosing the right low
level search strategy/strategies at each decision

point (Cowling et al. (2001)). There is good evi-
dence that hyperheuristics can be successfully ap-
plied to various combinatorial problems, such as
timetabling (Burke et al. (2010a), Bai et al. (2012))
and vehicle routing (Garrido and Riff (2010), Misir
(2011), Walker et al. (2012)). Summaries of state
of the art hyperheuristic techniques can be found in
survey papers by Ozcan et al. (2008), Chakhlevitch
and Cowling (2008), Burke et al. (2010b, 2013).
Apart from the hyperheuristic framework, a
well-designed set of LLHs is crucial to successfully
applying a hyperheuristic. In our implementa-
tion, the LLHs are designed at two levels: 1)
route-related moves that modify routes by chang-
ing segments or points in or between routes; 2)



schedule-related moves that assign an optimized
route to a day. The value of a solution is measured
by the objective function in Equation 1, above.

¥ Route related moves:

The following route related moves are only
applied to preventative routes and routes that
contain mostly reported calls. Fixing broken
gully pots is carried out by a different vehicle.
These reactive routes s € Sproren are constructed
as described in Section 3.4.2 and no more route
structure optimization is processed.

LLH,. i-cross exchange. For any two scheduled
routes 71 and 79, apply i-cross exchange. If any re-
sulting route visits one point more than once, the
points adjacent to longer edges are removed. Moves
are examined for each pair of routes in a nested
loop, the first yielding an improvement being im-
plemented. (1 < i < 5).

LLH,. i-worst point insertion (5 < ¢ < 20). This
LLH improves the next w days’ scheduled routes by
finding the 4 highest risk points not appearing in the
current schedule solution z. These 7 points are then
inserted into the w days schedule using a cheapest
insertion heuristic with a relaxed time limit. If any
target route in w now exceeds the T}, limitation,
we repeatedly remove the best-condition point from
that route until it becomes feasible.

The two LLHs above keep a copy of the original
routes and generate new routes through operations.
New routes are stored in the re-optimized routes
set Sreopt- Though these modified routes may not
generate improvements for the current iteration or
the current short planning horizon, they normally
contain relatively high risk cluster-points in recent
time. Hence, they are still likely to be picked up
using schedule related moves later or contribute to
the near-future plan.

¥ Schedule related moves:

LLHj;. n-replace schedule (1 < n < w). Replace
the last n days’ schedule with n other routes from
the candidate set Sy, that are not included in the
current solution, and whose tabu tenures [; equals
zero and has not been tested during the search
(us = false). We sort the candidate set Sy to
check the higher risk routes first as these moves are
more likely to produce improvements. Algorithm
3.3 presents the pseudo code of LLHj5.

Algorithm 3.2 Bebo hyperheuristic

Define:

x is the current solution;

LLH; is a low level heuristic;

A(z, LLH;) returns the new value of the ob-
jective function 1 from applying LLH; to current
solution x;

tabu; is the tabu tenure of LLH;

backof fmin = 5 is the minimum backoff value

backof f; is the backoff value of LLH,;, where
backof f; > backof fmin
for all 7 do

set backof f; = backof frin
tabu; = 0 # in our implementation, we allow
all LLHs to try at least once at the beginning
end for
while Ji that tabu; = 0 do
bestvalue = x.value
for all LLH; do
if tabu; = 0 then
if A(x,LLH;) < z.value then
backof f; = backof fmin
if A(x, LLH;) < bestvalue then
bestvalue = A(x, LLH;)
besti =1
end if
else
backof f; = backof f; x 2
choose tabu; randomly from
{0,1,...,backof f;}
end if
else
tabu; = tabu; — 1
end if
end for
if bestvalue < z.value then
x < apply(x, LLHpest:)
end if
end while




Algorithm 3.3 n-replace heuristic

Sau is a list of candidates routes sorted by risk
in descending order
for each day i in the last n days’ schedule do
for each route s in Sy;; where ugs = false &&
ls=0&& s ¢ x do
z' = replace the route scheduled in day %
with s;
if 2’.value < z.value then
z=uxa
Us = true
break
end if
end for
end for
return x

LLH,4. n-replace schedule random (1 < n < w-—1).
Same as LLHjs, except that we choose the n day’s
schedule to replace randomly, instead of the last n
day’s schedule.

LLH;5. switch two days’ schedule (see Algorithm
3.4). First improvement scheme is applied.

Algorithm 3.4 switch heuristic
for : = 0;i < z.length;i =i+ 1 do
for j =i+ 1;j < z.length;j =75+ 1do
x' = switch the ith and jth days’ schedule;
if 2’.value < x.value then
return =’
end if
end for
end for
return x

LLHg. Pop up (Algorithm 3.5). Pop up ith day’s
schedule to a target position j. For example, one
neighbour of solution 1,2,3,4 can be 1,4,2,3 by pop-
ping up 4 to the second position. In Algorithm 3.5,
entry=w and stop=1 are used in following experi-
ments.

In summary, if we need to produce a w = 7
days schedule, in total 36 LLHs will be called. The
LLHs set contains both route structure adaptation
and schedule modification according to risk estima-
tion. Our preliminary experiments show that all
the LLHs contribute to the final solution quality.
Among them, L L H makes the most improvements.
Also, LLH> helps the solver continuously add new
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Algorithm 3.5 Pop up (entry, stop)

Define: entry: the route to pop up
stop: the target day;
for ¢ = entry;i > stop;1 =1 —1 do
for j=i—1;5 > stop;j=7—1do
z' = pop up ith day’s schedule to jth day;
if 2’.value < z.value then
return x’
end if
end for
end for
return x

elements to the candidate routes set. Our LLHs
do not allow any individual route to visit one point
more than once. However there is no rule to elim-
inate a solution that contains a cluster-point more
than once during the period w: our experiments
suggest that such a sub-optimal solution is easy
for the algorithm to improve using LLH>, LLH3,
LLH,, which is thus rarely seen in practice. If a re-
sulting solution suggests to visit a point more than
once within w days, the heuristic is opportunisti-
cally visiting a recently cleaned gully that lies close
to the current route.

3.5.8. Improve current solution by partial rebuild-
ing
Given a current solution x returned from the
BEBO improvement stage, we reinitialize x by
partly destroying and rebuilding z. Then the
BEBO improvement and reinitialization repeats for
a given CPU time. The global best solution is re-
membered.

Destroy: For a w days schedule solution, we
randomly remove y days of the schedule, where y <
w/2;

Rebuild:  Here, we build y new routes that

can replace the y removed schedules. First, from
the optimized routes information stored in the fixed
memory, we know the average number of points 7
included in a route. We then select nyorse nUM-
ber of points with the highest risk under current
environment and n,.qndom random points that have
not been visited in the w — y unchanged scheduled
routes, where N, andom = Mworst = T * y/2. Next,
the entire process in Section 3.4.1 is applied to the
selected points, resulting in z distance-optimized
routes, which are stored in the the re-optimized
routes set Speopt- Finally, y out of the z routes are



randomly assigned to replace the removed sched-
ules.

4. Experiment

In this section, we summarise the background of
our problem and simulation. Then, we determine
the rolling planning horizon by experimenting with
its effect on risk management under different envi-
ronmental conditions. Finally, we consider how dif-
ferent maintenance policies affect the surface water
flooding risk due to blocked gully pots in the long
term. All simulations were implemented in C# and
executed on a cluster composed of 8 Windows com-
puters with 8 cores, Intel Xeon E3-1230 CPU and
16GB RAM.

4.1. Data & Parameters

4.1.1. Simulation settings

Gully pot information comprises location, sur-
rounding properties, nearby trees and historical
maintenance actions from Blackpool local council,
a client of Gaist Solutions Ltd.

1. Total number of gully pots in the system:
28,149.

2. Broken events: according to the records, on av-
erage about 1.8% of gully pots are broken every
year. In our simulation, this is represented by
each gully pot becoming broken randomly with
probability 0.00005 per day.

3. Accessibility: on average, the records show
that about 8.3% of gully pots are not serviced
during maintenance each year. In a normal
cleaning day, the maintenance team is able to
visit about 80 gully pots. In the simulation,
we assume that the probability of a gully pot
being inaccessible during preventative mainte-
nance is 0.068. For corrective actions, includ-
ing servicing both calls and broken gully pots,
we assume the team always has access to the
gully pot.

4. Blocking probability: a gully pot lifetime is es-
timated by a Weibull distribution described in
Section 3.2.2. Every day, each gully pot has a
probability of becoming blocked according to
its failure rate function h;(d) = %:gi(d),

where R;(d) = 1 — F;(d) is the reliability func-

tion.
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5. Seasonal factors F': the Blackpool data only al-
lows us to include trees and leaf-fall in our sim-
ulation. Seasonal factors related to the num-
ber of trees nearby highly affect the lifetime of
gully pots, and on average, each gully pot is
affected by 0.4 trees in Blackpool.

6. Calls: about 1700 calls are received every year
by the Blackpool gully maintenance team, and
most of the calls concern blocked or dam-
aged gully pots. Over 50% of all calls oc-
cur during the autumn, as shown in Figure
7. Our statistical analysis determined that,
to match the resident calling behaviour in our
simulation, the probability of receiving a call
if a gully pot is already broken or blocked
is peanis(i) = {0.0033,0.005,0.0056,0.002} for
spring through winter, respectively. If a gully
pot is not broken, there is still a small chance
that a call is received, related to its cur-
rent condition. The simulation probability is
Dealis(1) = P;(d) * v, where v = 10.62 has been
measured experimentally to adjust the calling
probability to match the real data.

7. Other issues: as well as broken gullies reported
by residents, damage is also found during pre-
ventative maintenance. In this case, the simu-
lation registers the broken gully and schedules
it on a later day.

These parameters have been discussed with Gaist
Solutions Ltd. and agreed to be a realistic repre-
sentation of gully-pot behaviour in Blackpool.

aull.

spring

4.0%
3.0%
2.0%
1.0%

0.0%

summer autumn winter

H Calls Blockage record

Figure 7: Percentage of calling evens and blockages recorded
in different seasons, for the gully-pot system in Blackpool

4.1.2. Search parameters setting
The BEBO heuristic described in Section 3.5.2
is parameter-free, since all LLHs are given and it
always chooses the best LLH for each decision point.
The termination criterion of the entire search
process composed by BEBO and reinitialisation is



controlled by a pre-set CPU time. Many heuris-
tic search strategies find good solutions in the very
early stages, but to find more improvements be-
comes harder and harder. To avoid either too early
termination or unnecessary CPU consumption, we
test the effects of limited computation time for var-
ious sizes of planning horizon, w. According to
our experiments, about 0.002, 15, 68, 319 and 1189
minutes are required respectively for planning hori-
zons w = {1,5,7,10,14} to achieve results that are
within 2% of the best found solutions in preliminary
experiments run over 48 hours of CPU times (see
Figure 8). These CPU time limitations are used in
the subsequent experiments.
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Figure 8: Effects of limiting computation time for different
planning horizons

In the long term rolling planning process, we
save the newest generated routes in a re-optimized
routes set Syeop: Of size m. Large values of m re-
sult in a more diverse set of routes, which may lead
to a better solution. However, if m is too large,
the increased CPU time (for schedule-related LLHs
(Section 3.5.2) to find their local optima) does not
yield better solutions in the time available. The
route diversity due to larger m contains too many
old updates during the search, which increases the
searching complexity. If m is too small, route-
related moves repeatedly generate the same or very
similar routes. For our case, m = 25% of the ini-
tial fixed routes set size (see Figure 4) is found to
give the best balance between these two effects in
preliminary experiments.

4.2. Impact of planing horizon w on risk manage-
ment in different environments

Gully pot lifetimes are affected by seasonal fac-
tors. In addition, peoples’ reporting behaviour is
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different at different times of year. A short planning
horizon may result in many reactive actions, and re-
quire more frequent information updates, whereas
a longer planning horizon is better at balancing
preventative and corrective maintenance. However,
when w is too large, it leads to a plan based on
insufficiently up-to-date information.

This section explores the impact of the planning
horizon w on the maintenance performance in four
seasons with the gully-pot system in either stable
or recovering states. As shown in Table 2, a stable
state assumes that the entire system is well main-
tained and the number of days since last mainte-
nance action of each gully is uniformly distributed
across 1.5 years. The recovering state assumes that
the system has had bad maintenance and the num-
ber of days since the last maintenance action for
each gully is uniformly distributed within 3 years.
For each scenario, w = {1,5,7,10} is tested.

Figure 9 shows the average daily surface water
flooding risk caused by clogged gullies in Blackpool
by using different planning horizons under different
scenarios. We can be relatively sure that there is
a genuine difference in risk, when both the mean
values and the 95% confidence intervals differ. In
the stable scenarios (Fig. 9(a)), w =5 and w =7
perform better than other settings during spring
and summer. Over autumn and winter, when the
number of blocked gully pots and calls significantly
increases, w = 1 produces the best schedules, as it
updates system and environment information most
frequently. w = 10 performs badly in all seasons,
due to lack of up-to-date information.

In the recovery scenarios (Fig. 9(b)), the overall
risk is about 2 to 3 times greater than when the sys-
tem is in the corresponding stable state. In particu-
lar, if there is a lack of maintenance in autumn, this
may lead to serious consequences. Again, w = 1 al-
ways produces the best schedules in the recovery
state. This is because there is a significant number
of emerging situations every day. Updating the sys-
tem and environment information every day brings
considerable advantages. In the recovery scenario,
it is difficult to identify a single best value among
w = {5,7,10}; it is hard to balance the preventative
and reactive actions by adjusting planning horizons
in relatively dynamic situations.

Table 3 presents scheduling performance in terms
of corrective actions. As we described in Section
3, our solution does not impose hard constraints
on the time taken to respond to residents’ calls.
Instead, the hyperheuristics automatically choose



Table 2: Environment settings

State Definition Year's since last
maintenance
Based on the real-world situation, running simulation
of maintenance actions for a long period until the
Stable overall system risk becomes stable; used as the 0to 1.5
initial state for all stable scenarios
Start with very poor gully-pot conditions,
Recovery and entire system in a high risk state 0to3
maintenance actions that minimize the entire sys-
tem’s risk. On average, in a stable state all tested
planning horizons react to emerging events in less
than 7 days. In the recovery state, w = 1 gives
the fastest reaction to these emerging problem gully
pots. However, even with w = 1 there are big chal-
lenges in the autumn period, when the average de-
lay between identification and correction of a prob-
% = oot lematic gully pot is 34 days.
= horzonio
7 4.3. Effect of maintenance policies on risk in con-
Z 3 tinuous ttme
: Our essential aim is to reduce the surface water
i flooding risk for the entire city in continuous time.
% ] In the previous section, we seek the best-performing
. spring summer autumn winter rolling planning horizon. w = 1 requires the short-
(a) Stable est computation time and produces the best sched-
ule when the system is under pressure, but collect-
ing the system and environment information every
= Egaggﬁ% ] day is not feasible in real-world team management.
O horizon=10

Risk

'y

winter

il | T
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(b) Recovering

Figure 9: Impact from planing horizon to maintenance per-
formance in different environments. Error bars show 95%
confidence interval on each mean.
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When the gully-pot system is in its stable state,
w = 7 shows the best ability to cope with seasonal
changes. After consultation with Gaist Solutions
Ltd, w = 7 is applied in the long period mainte-
nance policy testing, since this balances team man-
agement requirements and scheduling performance.

In order to test the impact of how we manage pre-
ventative and corrective maintenance, we designed
six policies that combine preventative and correc-
tive actions with different rules. In these experi-
ments, all scheduled routes are optimized on dis-
tance.

e Policy0: Pure reactive policy. Every week, we
produce a w = 7 days schedule for reported
problematic gully pots only, according to up-
to-date information. Priority is given to the
emerging events with highest risk. After fin-
ishing these planned tasks, we take a rest until
the plan for the next week is produced.



Table 3: The effect of planning horizon on corrective maintenance performance. Emergings per day: the average number of

identified problematic gully pots.

Stable
Spring Summer Autumn Winter

Average Emergings | Average Emergings | Average Emergings | Average Emergings

response per day response per day response per day response per day
1 1.56 0.53 1.68 0.64 2.55 5.18 3.00 2.54
5 3.82 0.67 3.97 0.33 3.88 4.85 4.24 2.37
7 4.58 0.57 4.28 0.51 4.36 4.87 4.97 2.51
10 5.98 0.63 6.23 0.43 4.58 4.80 3.71 2.32

Recover

1 14.74 25.02 14.22 24.27 34.41 65.22 16.59 28.29
5 18.26 24.73 18.82 23.22 36.80 64.52 25.04 29.33
7 20.07 23.41 22.46 23.01 36.40 65.06 22.15 28.38
10 17.63 23.26 19.86 23.07 36.12 63.44 19.32 27.69

e Policy01l: Pure reactive policy. Every day, we
produce a w = 7 days schedule for reported
problematic gully pots only, according to up-
to-date information. Only the first day sched-
ule is executed, then we replan for the following
week.

Policyl: Pure reactive policy 0 in autumn, pre-
dictive schedule (see Section 3) with planning
horizon w = 7 in other seasons.

Policy2: Predictive schedule, introduced in
Section 3, for all seasons.

Policy3: Fixed manual schedule. All preventa-
tive routes are generated at the beginning of a
year, giving the routes stored in fixed memory,
see Fig. 4. These routes are arranged in de-
scending order of risk measured at the initial
time. Every week, we use the first two days to
deal with emerging events and use the remain-
ing 5 days to deploy preventative actions, in or-
der. During corrective time, we give priority to
routes with the highest risk, >, 7 P;(today).

e Policy4: Dynamic manual schedule. Similar
to policy 3, but priority is given to corrective
maintenance. We firstly serve all known prob-
lematic gully pots. If there are still some days
left in this week, we carry out the pre-ordered
preventative maintenance routes. This policy
is widely used in real-world gully pot mainte-
nance programines.

We evaluate the performance of each policy from
three aspects: overall risk management, agility to
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emerging events, and running cost. These six poli-
cies are firstly tested in a stable state and then we
test their recovery speeds in a variety of bad ini-
tial situations. The daily risk is evaluated from the
actual blocked and broken gully pots with their as-
sociated risk impact.

4.8.1. Performance in the stable state

We run each policy on the Blackpool gully-pot
system over four years, with corresponding seasonal
settings and residents’ reporting behaviour. Five
random runs are carried out for each policy. We
evaluate the average daily risk based on these ex-
periments.

Risk
L L 1 L L L 1 I}
poooonm

o

o
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Figure 10: Policy performance in stable state. Error bars
show one standard deviation of daily risks for each season.

Risk management. Figure 10 shows the average
daily risk when applying the different maintenance
policies in a stable state. Pure reactive policy 0
produces the highest risk all the time, and is about



three times worse than any preventative and correc-
tive combined policy. Even if we reschedule every
day (policy 01), pure reactive maintenance still pre-
forms significantly worse than other policies. The
performance of pure reactive policies in autumn is
not significantly worse than their performance in
other seasons. However, their data shows very big
deviations in autumn, which suggests large fluctu-
ations happen. In the daily performance tracking,
we find serious risk increases at the beginning of au-
tumn, due to the lack of maintenance in other sea-
sons and environmental factors. Also, in autumn,
residents’ reporting behaviour helps to prompt a
large number of reactive actions.

From policy 1 to 4, the predictive scheduling
strategy (policy 2) achieves the best overall per-
formance. It is significantly better than manual
scheduling in summer, autumn and winter. In
spring, there is not much difference in applying any
of the preventative plus corrective policies. To track
the daily risk change over time, we apply these four
policies in exactly the same environment simulation
for four years. As illustrated in Figure 11, policy 4
is used as a base line and the other three policies
are compared against it. When applying policy 4
in a stable state, the estimated cost due to surface
flooding risk is £18,082 on average per day. By just
rearranging the preventative and corrective tasks,
policy 3 achieves an average risk decrease of about
12% per day, but always giving priority to emerg-
ing events may lead to poor working efficiency. The
best result is for policy 2, which produces schedules
that out perform the base line (policy 4) in 91%
of days over 4 years; on average, policy 2 decreases
risk by about 17% per day.

Agility. Table 4 presents the average number of
days to respond to calls. All policies except policy 3
are able to react to emerging calls in less than 5 days
on average. Policy 3 uses a very straightforward
scheduling rule, which may be good for team man-
agement, but shows serious latency for emerging re-
quests. When only applying reactive actions (policy
0 and 01), on average about 3 times more residents’
calls are received per day. This also exposes one
reason for the poor performance of these policies
in risk management (Fig. 10): lack of preventative
maintenance leads to more corrective maintenance.

Working efficiency analysis. To discover how the
predictive schedule strategy (policy 2) out performs
other policies, we focus on time usage and work effi-
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Table 4: Agility analysis of different maintenance policies

Average | Emergings

response per day
Policy 0 4.88 11.14
Policy 01 2.24 10.88
Policy 1 3.93 4.31
Policy 2 4.34 3.30
Policy 3 20.82 2.83
Policy 4 4.67 3.19

ciency. Figure 12 illustrates the percentage of time
spent in different types of activity. First, we can see
that the reactive policy 0 shows high dependence on
resident reports, resulting in working time of only
about 45% percent during spring, summer and win-
ter. Policy 3 follows a very straightforward rule, to
do maintenance throughout the year. The fixed rule
lacks the ability to adapt to seasonal changes. As
Figure 10 shows, policy 3 has the largest fluctua-
tions in all seasons compared to other preventative
and corrective combined policies.

The time usage distributions of policy 2 and the
manual schedule policy 4 show very similar patterns
in Figure 12. Table 5 compares the daily working
efficiency of policy 2 and 4. On average, policy
2 manages to service 10 more gully pots every day
within the same working time constraints. One rea-
son is because policy 2 treats the resident calls and
normal preventative maintenance together, so more
efficient routes can be found and emerging block-
ages can be solved at the same time. Comparing to
the fixed preventative routes managed by policy 4,
policy 2 always attempts to insert more high risk
gully pots into the current scheduled routes (Sec-
tion 3.5.2 LLH?2), which results in automatically
rescheduling of any missed gullies from previous
preventative maintenance. Figure 13 illustrates fur-
ther evidence that policy 2 produces better sched-
ules. Comparing Figure 1 (the gully pot risk impact
map of Blackpool) and Figure 13 (the service fre-
quency map under policies 2 & 4), we find policy
2 successfully targets the geographical areas which
have been evaluated as highest risk. In contrast,
policy 4 schedules the service times more evenly,
which results in too many visits to low criticality
areas.

Cost. using Blackpool’s current operational costs
(Table 6), we can estimate the annual cost of each
maintenance policy. This allows us to explore the
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Figure 11: Daily risk change over 4 years in a stable state using 4 types of preventative plus corrective maintenance policy.

Table 5: Average number of gully pots serviced per day by
policy 2 and 4

Spring Summer Autumn Wintery
81.90  82.09 83.41 81.42
71.03 7145 74.60 72.28

Policy?2
Policy4

cost of extra effort required for preventative main-
tenance.

Table 6: Operation costs of gully-pot maintenance

Cost Unit
Travelling £0.28 per km
Vehicle maintenance | £20,000 | per year
Human resource £56,000 | per year
Preventative £3.25 per gully
Calls response £19.00 per gully
Broken £225.00 | per gully

The cost estimates for the different policies is
shown in Figure 14. All of the preventative and
corrective combined policies show expenditure of
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£280,000 to £300,000 annually. This means that,
compared to the pure reactive policy 0, an extra
10% of expenditure could reduce potential risk by
as much as a factor of 3, over time (Figure 10).

Comparing the predictive policy 2 to the current
manual policy 4, about £8,000 more would need to
be spent each year, due to the additional preven-
tative work. However, these extra preventative ac-
tions would result in about £3,000 of risk reduction
every day, or over £1 million per year.

Due to data limitations, our current simulation
of gully pot breakage behaviour uses a fixed proba-
bility, giving roughly 500 broken gully pots a year,
generated at random times. This simplistic break-
age regime, which is the same under each policy, re-
sults in all policies presenting similar effort to tackle
broken gully pots. In practice, policies with regu-
lar preventative maintenance would slow deterio-
ration, and might decrease the chance of breakage.
We would expect a more realistic model of breakage
probability to reduce the apparent cost of policies
1 to 4 to less than the cost of policies 0 and 01.
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Figure 12: How different policies use their time to do maintenance

In conclusion, preventative maintenance could
significantly ameliorate the surface water flooding
risk caused by blocked gully pots at reasonable ad-
ditional cost; these costs are more than justified by
service quality improvement.

4.8.2. Performance in recovery state

Here, we test the robustness of each policy by
starting from a very bad initial condition. We ex-
plore how long it takes for each maintenance pol-
icy to take the system from a poor initial state to
a stable state. The average risk of applying each
policy in a stable state (Section 4.3.1) is used as
the policy’s base line. As presented in Table 7, four
scenarios are tested. We use two parameters, “since
last maintenance action §” and “percentage of bro-
ken gully pots” to control the system’s initial state.
For each scenario settings, we report the average of
10 runs of a two-year simulation.

Recovery speed. From Figure 15, we can see that
the initial situation in scenario 2 is very close to
the stable state of reactive policy 0. Comparing sce-
nario 1 to scenario 2, the overall shortage of preven-
tative maintenance is more difficult to recover from
than a small amount of very broken gully pots in
the system. On average, policies 1 to 4 need about
7 months to restore the system to its stable state in
scenario 2 (see Fig. 15(b)), whilst they need about
19 months to recover from initial situation in sce-
nario 1 (see Fig. 15(a)). Comparing policies 1 to 4
in scenario 1 and 3, we can see that policies 1 and
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2 perform better than both of the manual policies
3 and 4 in terms of percentage risk increase. The
robustness of both manual policies is considerably
worse than that of policies 1 and 2, especially dur-
ing the autumn period in the first year. Comparing
the performance of policies 3 and 4, the fixed sched-
ule strategy (policy 3) is a lot worse than the more
flexible strategy (policy 4).

Activity changes during recovery stage. To recover
from different situations, policies 1 to 4 utilize their
time in different ways. Figure 16 presents the time
usage of each policy during the first year of the
recovery stage. Policy 3 has fixed amount of pre-
ventative time, about 71%, through all scenarios.
However, it still adjusts the remaining 29% of cor-
rective action time to face different types of emerg-
ing events (including calls and broken gully pots).
Comparing policies 3 and 4 in scenario 1, 3 and 4,
the relatively more flexible policy 4 almost stops its
preventative actions except in winter. This flexi-
bility helps policy 4 to recover the system faster in
the early stage and results in less total damage dur-
ing the recovery stage. Interestingly, both policies
3 and 4 take similar amounts of total time to re-
cover the entire system in all scenarios: the rate of
recovery for policy 4 slows over time. The predic-
tive policy 2 balances its preventative and correc-
tive time, and is between policies 3 and 4. The bal-
anced strategy results in a steady recovery process;
even though it only does corrective work during au-
tumn period (like policy 1) and has some resting

Empty time
Preventive
maintenance

W Reaction -

M Corrective -



Service frequency

Vi u.r“-‘%z?
TETTR ..iq;‘,fﬁ Sy T
LT
‘/)‘y:t‘

o

(a) Policy 2

%,
FU AR
PN

Figure 13: Geographic distribution of service frequency in 4 years simulation

Table 7: Initial conditions for different recovery scenarios. Two parameters, “since last maintenance action” and “percentage
of broken gully pots” set the system’s initial state: for all gully pots, the days since their last service are evenly distributed in
6 years. We randomly assign x percent of gully pots to be in the broken state

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Since last maintenance 6 3 years 1.5 years 3 years 4 years
Initial broken gully pots 0.7% 2% 2% 3%

£0.35 - £18.00

- £16.00

Millions
Millions

- £14.00

- £12.00

- £10.00

- £8.00

Cost Risk

- £6.00

- £4.00

- £2.00

Policy4

- £0.00

Policy0  Policy01  Policyl  Policy2  Policy3

e Traveling et Salary ey Vehicle maintenance

Preventative —— Calls mm— Broken

= === Risk

Figure 14: Annual operation cost and surface water flooding
risk caused by clogged gully pots for the different policies
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days, the overall performance is not affected.

4.4. What-if questions

All the experiments introduced in the previous
sections are based on the real-world scenarios. In
this section, we test three hypotheses, which un-
cover potential weaknesses of our scheduling ap-
proach, and suggest future investment directions
to improve maintenance performance. Experiments
use policy 2 plus the current manual approach, pol-
icy 4.

4.4.1. What if we do not have information on risk
impact?

Section 3.2.1 describes the method to collect and
estimate each gully pot’s risk impact, which esti-
mates the consequences of surface water flooding
due to clogged gully pots. However, not every local
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Figure 15: Recovery speed using different policies. The percentage of risk is calculated as (r — 7) /7 * 100%, where r represents
the daily surface flooding risk and 7 is the average daily risk of applying the corresponding policy in its stable state (see Section

4.3.1).

council records the information. Figure 17 com-
pares the performance of policies 2 and 4 with the
same policies operating when there is no risk im-
pact information, labelled policy 2* and policy 4*.
Policy 2* results in a much higher risk than policy
2 (Figure 13(a)); in fact, the lack of risk impact
data means that policy 2 becomes similar to policy
4: all gully pots are serviced evenly. For the same
reason, missing risk impact information (policy 4*)
has a minimal effect on performance compared to
policy 4.

4.4.2. What if all gullies are accessible — the impact
of parking issues?

In Section 4.1.1, the simulation has about 8.3% of
gully pots inaccessible, modelling the effect of park-
ing. This decreases the maintenance working effi-
ciency. Potential strategies can be proposed such
as banning parking when a maintenance visit is
scheduled, but this increases management complex-
ity and residents’ complaints. Here, we explore the
impact that inaccessible gully pots has, by compar-
ing results for policies 2 and 4 with results for sim-
ulations with zero inaccessible gully pots (policy2**
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and policy4**). From figure 17, for the current
manual schedule strategy (policy 4), there is about
a 13% risk decrease if all gully pots are accessible.
However, there is no difference between policy 2
and policy 2**. Policy 2 is more able to cope with
the current parking issues, because it flexibly re-
schedules preventative maintenance of inaccessible
gully pots.

4.4.8. What if we could do condition-based mainte-
nance (CBM)?

Improving low-cost sensor techniques make it po-
tentially feasible to continuously monitor gully-pot
condition. This would allow our schedule strate-
gies to be combined with CBM, discussed in Sec-
tion 2.1. Currently, we only find out that a gully
pot is blocked or broken if it is found during pre-
ventative maintenance or reported; because of this
incomplete system information, it is difficult to pro-
duce truly optimal schedules. To demonstrate the
importance of timely blockage or breakage informa-
tion, we simulate a scenario in which all problematic
gully pots are known immediately. From the results
in Figure 17, both of the policies achieve dramatic



Scenariol Scenario2 Scenario3 Scenario4
Empty Prt_event Calls  Broken | Empty Prt_event Calls  Broken | Empty Prt_event Calls  Broken | Empty Prt_event Calls  Broken
ive ive ive ive
Spring 0.00% 20.28% 73.06% 6.67% 0.00% 16.67% 68.89% 0.00% 3.33% 85.19% 11.48%
Policyl Summer 0.00% 21.20% 70.92% 7.88% 0.00% 14.13% 72.83% 0.00% 6.88%
Autumn 6.87% 0.00% 83.79% 9.34' 0.00% 42.31% 3.30% 0.00% 85.71% 0.00% 0.00%
Winter 0.00% 19.57% 11.68%| 0.00% 60.05% 26.09% 0.00% 17.39% 0.00% 60.14% 27.17%
Spring 0.00% 21.67% 71.67% 6.67%| 0.00% 10.56% 0.00% 17.78% 68.89% 0.00% 1.11%
Policy2 Summer 0.00% 18.75% 72.55% 8.70%| 0.00% 14.40% 0.00% 19.57% 67.39% 0.00% 3.99%
Autumn 0.00% 18.68% 73.90% 7.42%| 0.00% 43.13% 42.58% 0.00% 19.78% 70.33% 9.89%| 0.00% 12.09%
Winter 0.00% 57.34% 30.43% 12.23%| 0.00% 60.33% 24.73% 0.00% 53.26% 36.96% 9.78%| 0.00% 49.28% 36.59%
Spring 0.00% 24.44% 4.44%| 0.00% 13.06% 0.00% 18.89% 10.00%| 0.00% 23.70%
Policy3 Summer 0.00% 24.73% 3.53%| 0.00% 14.13% 0.00% 20.65% 7.61%| 0.00% 22.10%
Autumn 0.00% 25.27% 3.30%| 0.00% 19.23% 0.00% 24.18% 4.40%| 0.00% 23.44%
Winter 0.00% 23.91% 5.43%| 0.00% 22.28% 0.00% 23.91% 5.43%| 0.00% 19.57%
Spring 0.00% 3.89% 90.28% 5.83%| 0.00% 13.61% 0.00% 5.56% 82.22% 12.22%| 0.00% 0.00% 94.81%
Policya Summer 0.00% 0.00%92.39% 7.61%| 0.00% 16.03% 0.00% 0.00% 89.13% 10.87%| 0.00% 0.00% 87.32%
Autumn 0.00% 1.10% 91.48% 7.42%| 0.00% 34.34% 51.37% 0.00% 0.00% 91.21% 8.79%| 0.00% 0.00% 87.91% 12.09
winter | 0.00%61.96% 23.91%[14.13%| 0.00% 56.52% 29.08% 0.00% 58.70% 27.17%14.13% 0.00% 51.45% 35.51%

Figure 16: How different policies use their time in recovery from very bad initial conditions

risk decreases: policy 2*** and policy 4*** reduce
risk on average by about 95% and 91%, respectively.
Furthermore, we see that these optimal information
policies do not require more time to be spent on cor-
rective actions: rather, breakages are addressed in
a more timely manner. Figure 18 shows the very
similar time usage of policy 2*** and policy 4***
compared to policy 2 and policy 4 (see Fig. 12).
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Figure 17: The average risk of applying policy 2 and 4 in
stable state with 4 assumptions. Error bars show 95% con-
fidence intervals on each mean. Policy 2 and policy 4 are
running in the real-world scenario; policy2* and policy4* as-
sume we do not have risk impact information; policy2** and
policy4** assume there are no parking issues during preven-
tative maintenance; policy2*** and policy4™** assume we
can know any problematic gully pot immediately.

5. Conclusion

This paper has considered a real-world large-
scale geographically-distributed maintenance prob-
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Figure 18: Time usage of policy and policy4***

lem. It originates from the problem of gully-pot
maintenance in the city of Blackpool, UK. The gen-
eral aim is to reduce the overall surface water flood-
ing risk caused by clogged gully pots in continu-
ous time. The problem is modelled as a periodic
travelling salesman problem (PTSP) and we pro-
pose a short period rolling planning approach that
is able to automate adaptation to any environment
changes. Unlike the standard PTSP, the main ob-
jective in our model is to minimize the risk mea-
sured by risk impact and failure rate of gully pots
during a planning horizon. At the same time, all
scheduled routes should be minimized in distance.

Due to the dynamic and large-scale features of
our problem, we introduce a data structure (see
Figure 4) for dealing with different types of ac-
tions. In addition, our objective function is highly
sensitive to the gully pots’ changing failure rates.
We presented a hyperheuristic framework embed-




ded with a group of route and schedule-related low-
level moves. This structure allows dynamic balanc-
ing between route and schedule optimization.

By adjusting different types of actions in different
scenarios, our predictive scheduling strategy suc-
cessfully out-performs the current real-world gully-
pot maintenance approach, which is widely used in
the UK, in terms of overall risk management, agility
to react to emerging events, and robustness to poor
initial states.

This predictive strategy relies significantly on the
understanding of asset failure behaviour. Our esti-
mation are based on working with experts in the
field to provide the best (limited) data available.
We are also working with Gaist Ltd. on a new
surveying methodology which will further improve
data in the future, but such data will not be avail-
able for some time to come.

We also estimate the potential investment to im-
prove the maintenance performance. Results show
the major reason for the current maintenance’ poor
performance is the latency of gully pot status infor-
mation. Any technique that could accurately mon-
itor the system status might afford an average 91%
risk decreases every day, which would be worth an
estimated £16,000 per day in Blackpool alone.

In further work we will investigate other invest-
ment possibilities. It is worth noting that work that
Gaist Solution Ltd. has done to date on road main-
tenance decision support has resulted in investment
worth hundreds of millions of pounds across several
UK local councils.
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