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Dipartimento di Ingegneria, Università degli Studi Roma Tre, Italy, nicosia@ing.uniroma3.it

Andrea Pacifici

Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma “Tor Vergata”,
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Abstract

In this paper we study the problem of allocating a scarce resource among several players (or
agents). A central decision maker wants to maximize the total utility of all agents. However,
such a solution may be unfair for one or more agents in the sense that it can be achieved through
a very unbalanced allocation of the resource. On the other hand fair/balanced allocations may
be far from optimal from a central point of view. So, in this paper we are interested in assessing
the quality of fair solutions, i.e. in measuring the system efficiency loss under a fair allocation
compared to the one that maximizes the sum of agents utilities. This indicator is usually
called the Price of Fairness and we study it under three different definitions of fairness, namely
maximin, Kalai-Smorodinski and proportional fairness.

Our results are of two different types. We first formalize a number of properties holding
for any general multi-agent problem without any special assumption on the agents utilities.
Then we introduce an allocation problem, where each agent can consume the resource in given
discrete quantities (items). In this case the maximization of the total utility is given by a Subset
Sum Problem. For the resulting Fair Subset Sum Problem, in the case of two agents, we provide
upper and lower bounds on the Price of Fairness as functions of an upper bound on the items
size.

Keywords: subset sum problem, fairness, multi-agent systems, bicriteria optimization.

1. Introduction

Fair allocation problems arise naturally in various real-world contexts and are the object
of study in several research areas such as mathematics, game theory and operations research.
These problems consist in sharing resources among several self-interested parties (players or
agents) so that each party receives his/her due share. At the same time the resources should
be utilized in an efficient way from a central point of view. A wide variety of fair allocation
problems have been addressed in the literature depending on the resources to be shared, the
fairness criteria, the preferences of the agents, and other aspects for evaluating the quality of
the allocation.

In this paper we focus on a specific discrete allocation problem, introduced briefly in [23],
that can be seen as a multi-agent subset sum problem: A common and bounded resource

ISome of the results presented in this manuscript have been introduced in [23] as a contribution in the
Proceedings of the 8th International Symposium on Algorithmic Game Theory (SAGT 2015) in Saarbrücken,
Germany, Sept. 28–30, 2015.
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(representing e.g., bandwidth, budget, space, etc.) is to be shared among a set of agents each
owning a number of indivisible items. The items require a certain amount of the resource,
called item weight and the problem consists in selecting, for each agent, a subset of items so
that the sum of all selected items weights is not larger than a given upper bound expressing
the resource capacity. We assume that the utility function of each agent consists of the sum of
weights over all selected items of that agent. In this context, maximizing the resource utilization
is equivalent to determining the solution of a classical, i.e. single agent, subset sum problem.
Since we are interested in solutions implementing some fairness criteria, we call the addressed
problem the Fair Subset Sum Problem (FSSP).

Throughout the paper, as usual with allocation problems, we consider for each agent a utility
function which assigns for any feasible solution a certain utility value to that agent. We assume
that the system utility (e.g. the overall resource utilization in an allocation problem) is given
by the sum of utilities over all agents. This assumption of additivity appears frequently in
quantitative decision analysis (cf. e.g. [27]). The solution is chosen by a central decision maker
while the agents play no active role in the process. The decision maker is confronted with
two objectives: On one hand, there is the maximization of the sum of utilities over all agents.
On the other hand, such a system optimum may well be highly unbalanced. For instance,
it could assign all resources to one agent only and this may have severe negative effects in
many application scenarios. Thus, it would be beneficial to reach a certain degree of agents
satisfaction by implementing some criterion of fairness.

Clearly, the maximum utility taken only over all fair solutions will in general deviate from
the system optimum and thus incurs a loss of utility for the overall system. In this paper
we want to analyze this loss of utility implied by a fair solution from a worst-case point of
view. This should give the decision maker a guideline or quantified argument about the cost of
fairness. A standard indicator for measuring this system efficiency loss is given by the relative
loss of utility of a fair solution compared to the system optimum in a worst-case sense, which
is called Price of Fairness (PoF).

The concept of fairness is not uniquely defined in the scientific literature since it strongly
depends on the specific problem setting and also on the agents perception of what a fair solution
is. In this paper we consider three types of fair solutions, namely proportional fair, maximin
and Kalai-Smorodinski solutions (definitions are given in Section 2). Moreover, we formalize
several properties of fair solutions—some of which have been already investigated in some
specific contexts—holding for any general multi-agent problem without any specific assumption
on the utility sets, contrarily from most of the scientific literature on allocation or multi-agent
problems. The most significant part of this work is devoted to completely characterizing PoF for
the Fair Subset Sum Problem with two agents for the three above mentioned fairness concepts.

1.1. Related literature

Caragiannis et al. [6] were the first to introduce the concept of PoF in the context of fair
allocation problems: In particular, they compare the value of total agents utility in a global
optimal solution with the maximum total utility obtained over all fair solutions (they make
use of several notions of fairness namely, proportionality, envy-freeness and equitability). In
[2], Bertsimas et al. focus on proportional fairness and maximin fairness and provide a tight
characterization of the Price of Fairness for a broad family of allocation problems with compact
and convex agents utility sets.

The Price of Fairness measures the inefficiency implied by fairness constraints, similarly to
the utility loss implied by selfish behavior of agents and quantified by the Price of Anarchy (see,
e.g. [24]). From a wider perspective, many authors have dealt with the problem of balancing
global efficiency and fairness in terms of defining appropriate models or designing suitable
objective functions or determining tradeoff solutions (see for instance [3, 5, 22]). A recent
survey on the operations research literature that considers the tradeoff between efficiency and
equity is [17].

The subset sum problem considered in this paper is related to the so-called knapsack sharing
problem in which different agents try to fit their own items in a common knapsack (see for
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instance [11, 15]). The problem consists in determining the solution that tries to balance the
profits among the agents by maximizing the objective of the agent with minimum profit. As
we will see, this problem is equivalent to determining a specific type of fair solution, known as
maximin solution in the literature. Another special knapsack problem has been addressed in
[22], where a bi-objective extension of the Linear Multiple Choice Knapsack (LMCK) Problem is
considered. The author wants to maximize the profit while minimizing the maximum difference
between the resource amounts allocated to any two agents.

Fairness concepts have been widely studied in the context of fair division problems, see
e.g. [4] for a general overview, and in many other application scenarios (mostly in telecommu-
nications systems [10, 19] and, more recently, in cloud computing [12, 25]). In particular, in
[25] the authors point out that resource allocation in computing systems is one of the hottest
topics of interest for both computer scientists and economists.

Fair division includes a great variety of different problems in which a set of goods has to
be divided among several agents each having its own preferences. The goods to be divided can
be (i) a single heterogeneous good as in the classical cake-cutting problem (see e.g. [4] and [1],
which considers price of fairness in the line of [6]), (ii) several divisible goods as in resource
allocation problems (see e.g. [25]), or (iii) several indivisible goods (see e.g. [20]). The fair
subset sum problem we address is strongly related to fair division. It can be seen either as a
single resource allocation problem in which the resource can be only allocated in predetermined
blocks/portions (the item weights) or as a special case of the indivisible goods problem in which,
due to an additional capacity constraint, only a selection of the goods can be allocated.

A different but related scenario is presented in [9], where a game is considered in which
several agents own different tasks each requiring certain resources. The agents compete for the
usage of the scarce resources and have to select the tasks to be allocated.

The paper is organized as follows. The next section provides the basic definitions, the formal
statements for the problems studied (Section 2.1) and a summary of our results (Section 2.2).
Some properties which hold for any general k-agent problem are given in Section 3, where the
special case of problems with a symmetric structure is also addressed. In Section 4 we consider
the fair subset sum problem with two agents in two different scenarios. In particular, in Section
4.1 we present the results concerning the case in which the two agents have two disjoint sets
of items, while in Section 4.2 the case in which the agents share a common set of items is
considered. Finally, in Section 5 some conclusions are drawn.

2. Notation and problem statement

Consider a general multi-agent problem P, e.g. some type of resource allocation problem, in
which we are given a set of k agents {1, 2, . . . , k} and let X be the set of all feasible solutions,
e.g. allocations. Each agent j has a utility function uj : X → R+. If two solutions x and y
yield the same utility for all agents, i.e. uj(x) = uj(y) for all j, then we are not interested in
distinguishing between them and we consider x and y as equivalent. Note that we do not make
any assumption on the set X nor on the functions uj .

We define the above problem to be symmetric and denote it by Psym, if for any solution
x ∈ X and for any permutation π of the k agents there always exists a solution y ∈ X such
that uj(x) = uπ(j)(y) for all j = 1, . . . , k. In other words, permuting among the agents the
utilities gained from a feasible solution in a symmetric problem always results again in a feasible
solution.

The global or social utility U(x) of a solution x ∈ X is the sum of the agents utilities given

by U(x) =
∑k
j=1 uj(x). The globally optimal solution x∗ is called system optimum, its value is

given by U∗ = U(x∗) = maxx∈X

{∑k
j=1 uj(x)

}
.

In addition to the system optimum solution we consider fair solutions, which focus on the
individual utilities obtained by each agent. In this paper, we use three different notions of
fairness formally defined below. Other notions of fairness, such as envy-freeness or equitability,
are not considered here.
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• Maximin fairness: Based on the principle of Rawlsian justice [26], a solution is sought
such that even the least happy agent gains as much as possible, i.e. the agent obtaining
the lowest utility, still receives the highest possible utility.

Formally, we are looking for a solution xMM maximizing f , such that uj(xMM ) ≥ f for
all j = 1, . . . , k. Equivalently, we are looking for a solution xMM ∈ X such that

xMM = arg max
x∈X

min
j=1,...,k

{uj(x)} . (1)

We only consider Pareto efficient solutions to avoid dominated solutions with the same
objective function value. Clearly, this does not guarantee the uniqueness of solutions.

• Kalai-Smorodinski fairness [16]: A drawback of maximin fairness is the fact that an agent
is guaranteed a certain level of utility, thus possibly incurring a significant loss to the
other agents, even though the agent would not be able to gain a substantial utility when
acting on its own. In the Kalai-Smorodinski fairness concept we modify the notion of
maximin fairness by maximizing the minimum relative to the best solution that an agent
could obtain.

Formally, let ûj = max{uj(y) | y ∈ X} be the maximum utility value each agent
j = 1, . . . , k can get over all feasible solutions. A Kalai-Smorodinski fair solution xKS
minimizes f , such that f ≥ ûj−uj(xKS)

ûj
for all j = 1, . . . , k. Equivalently, we are looking

for a solution xKS ∈ X such that

xKS = arg max
x∈X

min
j=1,...,k

{
uj(x)

ûj

}
. (2)

As before, we only consider Pareto efficient solutions. Clearly, if all agents can reach the
same utility, i.e. ûj = û1 for all j, then xKS = xMM .

• Proportional fairness [19]: A solution is proportional fair, if any other solution does not
give a total relative improvement for a subset of agents which is larger than the total
relative loss inflicted on the other agents. Note that a Pareto-dominated solution can
never be proportional fair.

Formally, we are looking for a solution xPF ∈ X with uj(xPF ) > 0 for all j, such that for
all feasible solutions y ∈ X

k∑
j=1

uj(y)− uj(xPF )

uj(xPF )
≤ 0 ⇐⇒

k∑
j=1

uj(y)

uj(xPF )
≤ k (3)

While for any instance of the problems considered in this paper maximin and Kalai-Smorodinski
fair solutions always exist, a proportional fair solution might not (see e.g. Example 13). On
the other hand, as we show in the sequel, proportional fair solutions are always unique, if they
exist. In contrast, it should be noted that for maximin fairness and also for Kalai-Smorodinski
fairness schemes, there may exist several different fair solutions. In the literature, these two
maximin concepts are sometimes extended to a lexicographic maximin principle (i.e. among all
maximin solutions, maximize the second lowest utility value, and so on) which still does not
guarantee uniqueness of solutions. However, this will not be a relevant issue for this paper. In
fact, our restriction to Pareto efficient solutions implies the lexicographic principle for k = 2
agents.

It is well known that in case of convex utility sets, the proportional fair solution is a Nash
solution, i.e. the solution maximizing the product of agents utilities (cf. [2]). Even for the
general utility sets treated in this paper it is shown in Theorem 2 that if a proportional fair
solution exists then it is the one that maximizes the product of utilities. Observe however that
the opposite is, in general, not true, since a proportional fair solution does not always exist.
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In order to measure the loss of total utility or overall welfare of a fair solution compared to
the system optimum, we study the Price of Fairness as defined in [2]: Given an instance I of
our general problem, let UI(x) be the value of a fair solution x and U∗I be the system optimum
value. The Price of Fairness, PoF, is defined as follows:

PoF = sup
I

U∗I − UI(x)

U∗I
(4)

Obviously, PoF ∈ [0, 1].
Whenever it is important to distinguish among the different fairness concepts, we denote

the fair solutions as xMM , xKS and xPF corresponding to maximin, Kalai-Smorodinski and
proportional fair solutions and their associated Price of Fairness as PoFMM , PoFKS and PoFPF .

2.1. The Fair Subset Sum Problem

In this paper, most of the results concern a specific resource allocation problem in which
k = 2 agents A and B compete for the usage of a common resource with a given unitary capacity
c = 1. Note that a different variant of a game-theoretic setting of SSP with two agents was
recently considered in [8]. Here, we consider two scenarios:

• Separate items. Each agent owns a set of n items having nonnegative weights a1, a2, . . . , an
for agent A and b1, b2, . . . , bn for agent B. Each agent can only use its own items.1

• Shared items. There is only one set of items with nonnegative weights w1, w2, . . . , wn.
Both agents can access these items.

In the remainder of the paper we will frequently identify an item by its weight ai, bi, or wi.
Every solution x of the problem consists of two (possibly empty) subsets of items xA and xB ,
one for each agent. In the separate items case, xA ⊆ {a1, a2, . . . , an} and xB ⊆ {b1, b2, . . . , bn},
while in the shared items case, xA, xB ⊆ {w1, w2, . . . , wn} and xA ∩ xB = ∅. For every solution
x = (xA, xB) we denote the total weight of xA (resp. xB) by a(x) (resp. b(x)). The utility of
a solution x for each agent is given simply by its total allocated weight, i.e. u1(x) = a(x) and
u2(x) = b(x). The maximum utility reachable for each agent will be denoted by û1 = â resp.

û2 = b̂. The crucial constraint for the allocation task consists of a capacity bound on the total
weight of items given to both agents. By scaling we can assume without loss of generality that
this bound is 1. Thus we have that every solution x ∈ X must fulfill:

U(x) = a(x) + b(x) ≤ 1 (5)

Obviously, the computation of the system optimum x∗ corresponds to the solution of a classical
subset sum problem (SSP) [18], where a subset of items from a given ground set is sought with
total weight as large as possible, but not exceeding the given capacity c = 1.

Fair Subset Sum Problem (FSSP): Given a set of items (shared or separate)
having nonnegative weights and a fairness criterion F , find a solution xF = (xA, xB)
such that (5) is satisfied and xF is fair.

In this paper we are not addressing the problem of finding fair solutions, rather in characterizing
the Price of Fairness in different cases. From a computational point of view, the NP-hardness
of FSSP follows immediately from the complexity of SSP. However, it is easy to design pseu-
dopolynomial dynamic programming algorithms for computing all Pareto efficient solutions
and, therefore, the solutions for the three fairness criteria. A sketch of such a dynamic program
is given in Section 5.

1The number of items for each agent is irrelevant, however it is natural to assume that both have the same
number of items n.
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In Section 4, we provide several bounds on PoF for FSSP. As we will see, it is easy to provide
worst case instances with PoF = 1, corresponding to pathological instances in which items
weights are either very large (e.g. 1) or very small. Also in the area of packing problems, similar
pathological instances are often used to derive worst case results. To avoid such unrealistic
settings, for many bin-packing heuristics the worst-case ratios are also studied subject to an
upper bound on the size of the maximum item weight and expressing these ratios as a function
of this parameter, see e.g. [7, Sec. 2.2]. So, in Section 4, we explore the same direction and
study the Price of Fairness restricted to instances with an imposed upper bound α ≤ 1 on all
item weights.

2.2. Summary of Results

In Section 3, we provide some basic, yet very general results for proportional fair solutions
valid for any k-agent problem. In particular, we show that if there exists a proportional fair
solution, then such a solution is unique (recall that two solutions having the same utilities
values for each agent are considered equivalent) and maximizes the product of agents utilities.
Similar results were derived in different contexts, here we provide simple proofs holding in a
more general setting. (For the readers’ convenience these proofs are reported in the Appendix.)

Moreover, we present a general upper bound on the Price of Fairness for any proportional
fair solution, namely PoFPF ≤ k−1

k , and compare this bound to the results in [2]. Additionally,
for two agents it is possible to show that the global utility of a proportional fair solution (if
it exists) is always greater or equal than that of a maximin fair solution. This is not true
anymore as soon as the number of agents becomes three. We also show that when dealing with
Kalai-Smorodinski fair solutions, even when there are only two agents, no dominance relations
can be established with respect to other concepts of fairness.

When the problem is symmetric, we give a full characterization of proportional fair solutions
by showing that if such a fair solution exists then it also system optimal and all agents get the
same utility value.

Table 1: Summary of results for FSPP on PoFMM and PoFKS in the separate items sets case.

α Lower Bound on PoFMM and PoFKS Upper Bound on PoFMM and PoFKS
1 1 (Ex. 13) 1

[2/3, 1] 2− 1/α (Ex. 14) 2− 1/α (Thm. 16 and 18)
[1/2, 2/3] 1/2 (Ex. 15) 1/2 (Thm. 16 and 18)
(0, 1/2] 1

d 1
α e

(Ex. 15) α (Thm. 16 and 18)

The main body of this paper concerns the FSSP with two agents. The corresponding results
are summarized in three tables. Tables 1 and 2 concern the separate item case under the three
fairness schemes as treated in Section 4.1. We give lower and upper bounds on PoFMM , PoFPF ,
and PoFKS depending on an upper bound α on all item weights. Finally, Table 3 refers to the
separate items case, in which maximin and Kalai-Smorodinski fair solutions coincide and a
proportional fair solution is optimal, if it exists (see Section 4.2). The results reported in the
tables are also illustrated in Figure 1.

Table 2: Summary of results for FSPP on PoFPF in the separate items sets case.

α Lower Bound on PoFPF Upper Bound on PoFPF
[1/2, 1] 1/2 (Ex. 15) 1/2 (Thm. 3 or Cor. 17)
(0, 1/2] 1

d 1
α e

(Ex. 15) α (Lemma 12 or Cor. 17)
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Table 3: Summary of results for FSPP in the shared items case (here PoF = PoFMM = PoFKS and PoFPF (α) =
0, if xPF exists).

α Lower Bound on PoF Upper Bound on PoF
1 1 (Ex. 13) 1

[2/3, 1] 2α− 1 (Ex. 19) 2α− 1 (Thm. 21)
[1/3, 2/3] 1/3 (Ex. 20) 1/3 (Thm. 21)
(0, 1/3] 1

1+2d 1
2α e

(Ex. 20) α (Thm. 21)

3. General results

Hereafter, we present some simple, yet general results for different fair solution concepts.
Some of them may have been stated in different application contexts. (For instance in [21] a
detailed discussion on the properties of proportional fair solutions is presented.) However, to
the best of our knowledge, they have not been previously formalized for a general multi-agent
problem without any assumption on the utility sets. We start by showing that if there exists
a proportional fair solution, then it is unique, i.e. any two proportional fair solutions must
be equivalent. This result is known in different specific contexts (e.g. in telecommunications
systems [19] or in convex allocation problems [2]), in the Appendix we provide a simple but
general proof.

Theorem 1. If two proportional fair solutions xPF and yPF exist, then uj(xPF ) = uj(yPF )
for all j = 1, . . . , k.

The following theorem shows that a proportional fair solution is also a Nash solution, i.e. it is
a utility product maximizer (the proof can be found in the Appendix). A similar result is well-
known for convex utility sets but we are not aware of such a statement for general multi-agent
problems. It is clear that, in general, a Nash solution is not necessarily proportional fair, since
proportional fair solutions might not exist.

Theorem 2. If a proportional fair solution xPF exist, then it maximizes the product of agents
utilities, i.e.

k∏
j=1

uj(xPF ) ≥
k∏
j=1

uj(x) ∀x ∈ X.

The following result establishes an upper bound on PoF holding for any multi-agent problem.

Theorem 3. If a proportional fair solution xPF ∈ X exists, then PoFPF ≤ k−1
k .

Proof. Let us consider a proportional fair solution xPF ∈ X and let x∗ ∈ X be the system

optimum. By definition of proportional fair solution, see
∑k
j=1

uj(x
∗)

uj(xPF ) ≤ k. Since uj(·) ≥ 0,

this implies
uj(x

∗)
uj(xPF ) ≤ k for all j. Hence, U(x∗) =

∑k
j=1 uj(x

∗) ≤ k
∑k
j=1 uj(xPF ) = k U(xPF ).

Therefore,

PoFPF =
U(x∗)− U(xPF )

U(x∗)
≤ k − 1

k

which proves the theorem. �

It can be shown by the following example that the result of Theorem 3 is tight.

Example 4. Consider the natural extension of FSSP with separate items to k agents. Define
an instance where agent 1 has two items with weight 1 and 1/k while each of the other k − 1
agents only has an item of weight ε > 0. Clearly, there are only two Pareto efficient solutions:
The system optimum x1 = x∗ has u1(x∗) = 1 and uj(x

∗) = 0 for j = 2, . . . , k. The second
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Pareto efficient solution x2 gives u1(x2) = 1/k and uj(x2) = ε for j = 2, . . . , k. By plugging in
x1 and x2 in (3) it is easy to see that x2 is a proportional fair solution. Moreover, we have

PoFPF ≥
1− (1/k + (k − 1) ε)

1
→ k − 1

k
.

It should be observed that the bound of the above Theorem 3 is not implied by [2], where
the bound provided in their Theorem 2 for PoFPF in the case of unequal maximum achievable
utilities is:

PoFPF ≤
k − 1

k
+ F −G (6)

where F =
minj{ûj}∑

j ûj
and G = 2

√
k−1
k

minj{ûj}
maxj{ûj} . Clearly, depending on the ûj values, F −G can

be negative (e.g., Example 7) or positive (e.g., Example 13).

3.1. Comparison between fair solution utilities

Hereafter, we show that in case of two agents (k = 2), the global value of a proportional
fair solution—if it exists—is not smaller than that of a minimax fair solution.

Theorem 5. In the case of k = 2 agents, if a proportional fair solution xPF exists, then
U(xPF ) ≥ U(xMM ).

Proof. Assume by contradiction that there exists an instance with u1(xPF ) + u2(xPF ) <
u1(xMM ) + u2(xMM ). Without loss of generality we assume u1(xPF ) ≥ u2(xPF ). By the
definition of maximin fair solution, we know that u2(xMM ) > u2(xPF ). (If u2(xMM ) = u2(xPF )
then xPF would be Pareto dominated by xMM ). From Pareto efficiency of xPF it follows that
u1(xMM ) < u1(xPF ). Let u1(xMM ) := u1(xPF ) − δ and u2(xMM ) := u2(xPF ) + ε for some
values δ, ε > 0.

From the definition of proportional fairness we have:

u1(xPF )− δ
u1(xPF )

+
u2(xPF ) + ε

u2(xPF )
≤ 2⇐⇒ ε

u2(xPF )
≤ δ

u1(xPF )
⇐⇒ ε · u1(xPF ) ≤ δ · u2(xPF )

Since u1(xPF ) ≥ u2(xPF ) this implies ε ≤ δ. But then we have u1(xMM ) + u2(xMM ) =
u1(xPF )− δ+ u2(xPF ) + ε ≤ u1(xPF ) + u2(xPF ) in contradiction to the above assumption. �

Theorem 5 immediately yields the following statement for the Price of Fairness.

Corollary 6. In the case of k = 2 agents, if a proportional fair solution xPF exists, then
PoFPF ≤ PoFMM .

As soon as the number of agents increases, already for k = 3, this property does not hold
anymore, in general. This is shown by the following example.

Example 7. Consider an instance of an extension of FSSP to three agents and separate
items. Let A, B, and C be the three agents each owning two items denoted as a1, a2, b1, b2,
c1, and c2. Their weights are reported in the following table.

item a1 a2 b1 b2 c1 c2
weight 1

5 + 2ε 1
5 + ε 1

2 + 5ε 1
2 + ε 1

4 + 7ε 1
4 + 11ε

It is easy to see that, for some small ε values, e.g. ε = 0.003, the solution consisting of items
a2, b2 and c2 is a proportional fair solution xPF and has global value U(xPF ) = 0.95 + 13ε,
while the solution with items a1, b1 and c1 is a maximin fair solution xMM and has global value
U(xMM ) = 0.95 + 14ε.

8



The dominance relation of Theorem 5 does not extend to Kalai-Smorodinski solutions. In
particular, we show through two examples that Kalai-Smorodinski solutions can have a social
value larger or smaller than those of the other two types of fair solutions. The setting of the
examples follows the FSSP described in Section 2 in the case in which there are only two agents
and separate item sets. Example 8 provides an instance where U(xPF ) = U(xMM ) > U(xKS),
while in Example 9 an instance with U(xPF ) = U(xMM ) < U(xKS) is reported.

Example 8. Consider an instance of FSSP with separate items and weights as in the following
table, where 0 < ε′ < ε are small values.

item a1 a2 a3 a4 b1 b2 b3 b4
weight 1 1

4 + ε′ 1
4

1
4 1− 3ε 1

4
1
4

1
4 − ε

In this case, it is possible to enumerate all six Pareto efficient solutions, whose utilities are
reported below:

Solution x x1 x2 x3 x4 x5 x6
a(x) 1 3

4 + ε′ 1
2 + ε′ 1

2
1
4 + ε′ 0

b(x) 0 1
4 − ε

1
2 − ε

1
2

3
4 − ε 1− 3ε

It is easy to see that â = 1, b̂ = 1 − 3ε, and, with some simple algebra, to verify that xPF =
xMM = x4, while xKS = x3. Hence, in this example U(xPF ) = U(xMM ) > U(xKS).

Example 9. Consider an instance of FSSP with separate items and weights as in the following
table with ε > 0.

item a1 a2 a3 b1 b2 b3
weight 1 3

4
1
2 + ε 1

4 − ε
1
4 − 2ε 0

In this case also, it is possible to enumerate all three Pareto efficient solutions, whose utilities
are reported below:

Solution x x1 x2 x3
a(x) 1 3

4
1
2 + ε

b(x) 0 1
4 − ε

1
2 − 3ε

Clearly, â = 1 and b̂ = 1
2 − 3ε, while for 0 < ε < 1

10 we have that xPF = xMM = x3 and
xKS = x2. So, in this example U(xPF ) = U(xMM ) < U(xKS).

3.2. Symmetric multi-agent problem

Consider now a general symmetric multi-agent problem Psym. Recall that, in this case, all
agents are “interchangeable” in the sense that for any solution x ∈ X and for any permutation
π of the k agents there always exists a solution y ∈ X such that, uj(x) = uπ(j)(y) for all
j = 1, . . . , k. This concept of symmetry applies for a large number of allocation problems and
has been often studied in the literature (see, e.g. [13]). Also, in game theory, a symmetric game
is a game where the payoffs for playing a particular strategy depend only on the other strategies
employed, not on who is playing them.

The following simple result presents a necessary condition for the existence of a proportional
fair solution in the symmetric case.

Theorem 10. If a proportional fair solution xPF of problem Psym exists, then all the agents
have the same utility values, i.e. uj(xPF ) = 1

kU(xPF ) for all j = 1, . . . , k.

Proof. Let xPF be a proportional fair solution and assume by contradiction that there is
(at least) one pair of agents, say 1 and 2, having different utilities, i.e., u1(xPF ) 6= u2(xPF ).
By definition of Psym, there exists a feasible “permuted” solution y with u1(y) = u2(xPF ),
u2(y) = u1(xPF ), and unchanged utilities uj(y) = uj(xPF ) for all the other agents j = 3, . . . , k.

Since xPF is a proportional fair solution and y is a feasible solution, from (3) we have that:

u1(y)

u1(xPF )
+

u2(y)

u2(xPF )
+

k∑
j=3

uj(y)

uj(xPF )
≤ k

9



which yields u2(xPF )
u1(xPF ) + u1(xPF )

u2(xPF ) ≤ 2. But this is a contradiction since, for any positive r 6= 1,

r + 1
r > 2. Thus, in a proportional fair solution, no pair of agents can have different utility

values and the thesis follows. �

Note that the condition in Theorem 10 is necessary but not sufficient for a solution to be propor-
tional fair, see for instance Example 19. However, it follows immediately that if a proportional
fair solutions of problem Psym exists, then it must also be optimal.

Corollary 11. If a proportional fair solution xPF of problem Psym exists, then it is system
optimal, i.e. U(xPF ) = U(x∗) and PoFPF (α) = 0, for any α ∈ (0, 1].

Proof. From Theorem 10 we know that if a proportional fair solution exists, then uj(xPF ) =
1
kU(xPF ). Plugging in this identity into the definition of proportional fairness (3) we get:

k ≥
k∑
j=1

uj(x
∗)

uj(xPF )
=

k∑
j=1

uj(x
∗)

1
kU(xPF )

⇐⇒ U(xPF ) =

k∑
j=1

uj(x
∗) = U(x∗)

which proves the thesis. �

So far, we presented some general results holding for any general multi-agent problem. In the
next section we address a specific allocation problem with k = 2 agents.

4. Price of Fairness for the fair subset sum problem with two agents

In this section we focus on the Fair Subset Sum Problem (FSSP) for two agents and we
provide several bounds on the Price of Fairness. As we discussed in Section 2.1, to give a more
comprehensive analysis, we introduce an upper bound α ≤ 1 on the largest item weight, i.e.
ai, bi, wi ≤ α for all items i and analyze PoF as a function of α. Formally, we extend the
definition of PoF from (4) by taking the upper bound α into account: Let Iα denote the set
of all instances of our FSSP where all items weights are not larger than α. Given I ∈ Iα let
UI(x) = a(x) + b(x) for a solution x and U∗I be the system optimum value for instance I. Then
we can define the Price of Fairness depending on α as follows:

PoF(α) = sup
I∈Iα

U∗I − UI(x)

U∗I
(7)

Obviously, PoF = PoF(1). It is also clear from the above definition that PoF(α) is monotonically
increasing in α, i.e. if α > α′, then PoF(α) ≥ PoF(α′). Moreover, note that the value PoF(α)
may be actually attained for an instance I ∈ Iα′ with α′ < α. Figure 1 illustrates the functions
PoFMM (α) and PoFKS(α) for the separate items sets and shared items set cases.

The first bound on the Price of Fairness for FSSP with k agents and an upper bound α on
the maximum item weight, is given in the following lemma. We show in the next sections that
for certain α values this bound can be improved.

Lemma 12. The Price of Fairness for any Pareto efficient solution of the FSSP with k agents
and an upper bound α ∈ (0, 1] on the maximum item weight is not larger than α, i.e. PoF(α) ≤
α.

Proof. We can observe that if a Pareto efficient solution x 6= x∗ (where x∗ is a system optimum)
is such that U(x) ≤ 1 − α then any item not included in x (with weight at most α) could be
added to x which thus cannot be a Pareto efficient solution. Hence, it must be U(x) > 1 − α
and thus, recalling that U∗ ≤ 1, PoF(α) ≤ U∗−(1−α)

U∗ ≤ 1−(1−α)
1 ≤ α, and the thesis follows. �

Hereafter, we discuss in detail the two scenarios introduced in Section 2.1: The separate items
case is analyzed in Section 4.1, while the shared items one is addressed in Section 4.2.
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4.1. Separate item sets

Here we assume that each agent owns a separate set of items denoted by a1, a2, . . . for agent
A and b1, b2, . . . for agent B. To avoid trivial cases we also assume that ai ≤ 1 and bi ≤ 1 and∑
i ai +

∑
i bi > 1, i.e. in every feasible solution at least one item has to remain unselected. We

start with a very simple example showing that in general the Price of Fairness can reach 1.

Example 13. Consider an instance of the two agent FSSP with n = 2 and items weights
reported in the following table.

item a1 a2 b1 b2
weight 1 ε ε ε

It is easy to see that there are only two nondominated solutions, x1 and x2, with a(x1) = 1,
b(x1) = 0 and a(x2) = ε, b(x2) = 2ε. Clearly, x1 = x∗ is the global optimum and U∗ =
â = a∗ = 1, while x2 is a maximin fair solution and also a Kalai-Smorodinski solution, i.e.
x2 = xMM = xKS, where b(x2) = b̂ = 2ε. So, a worst possible lower bound is given by

PoFMM = PoFKS ≥
1− 3ε

1
→ 1.

Note that in the above example, for small ε values there exist no proportionally fair solutions.
Hereafter, we introduce an upper bound α < 1 on the maximum item weight. At first we

give two examples providing lower bounds on PoF(α).

Example 14. Consider the case α ∈ [2/3, 1) and let the items weights of an instance of FSSP
with two agents be reported in the following table.

item a1 a2 b1 b2
weight α 2ε 1− α+ ε ε2

There are two nondominated solutions, namely x1 with a(x1) = α + 2ε and b(x1) = ε2 (which
is the system optimum) and x2 with a(x2) = 2ε and b(x2) = 1− α+ ε+ ε2.

It can be easily checked that x2 is a maximin fair solution and also a Kalai-Smorodinski
solution (i.e. x2 = xMM = xKS), while no proportionally fair solution exists for this instance.
This yields

min{PoFMM (α),PoFKS(α)} ≥ α+ 2ε+ ε2 − (1− α+ 3ε+ ε2)

α+ 2ε+ ε2
→ 2α− 1

α
= 2− 1

α
.

Note that for α→ 1 the bound and the instance of Example 14 tend to those of Example 13.

The following example covers the case α ∈ (0, 2/3].

Example 15. Let agent A own r items of weight 1/r and B own r items of weight ε. In this
case there are only two Pareto efficient solutions, namely x1 = x∗ which is the system optimum
with values a∗ = 1 and b∗ = 0, and x2 with values a(x2) = r−1

r and b(x2) = rε. It is easy to
show that x2 is a fair solution in all three settings, i.e. x2 = xMM = xKS = xPF . For ε → 0
we get:

min{PoFMM (1/r),PoFKS(1/r),PoFPF (1/r)} ≥
1− r−1

r

1
=

1

r
.

Hence, we can state that for every α with 1
h ≤ α <

1
h−1 , h ≥ 2 and integer,

min{PoFMM (α),PoFKS(α),PoFPF (α)} ≥ 1

h
=

1

d 1αe
.
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From the bound of Example 15 when r = 2, we get PoFMM (α) ≥ 1/2 for α ≥ 1/2. Note that
for α = 2/3 this matches the lower bound of Example 14.

In the following theorem we show that the bounds of Examples 14 and 15 for the maximin
fairness concept are worst possible when α ≥ 1/2, i.e. PoFMM (α) cannot be larger than the
lower bounds provided by those examples. In Figure 1(a) the function PoFMM (α), or the
corresponding upper and lower bounds when α ≤ 1/2, are plotted for the separate items sets
case.

Theorem 16. FSSP with separate item sets and an upper bound α on the maximum item
weight has the following Price of Fairness for maximin fair solutions:

PoFMM (α) = 2− 1/α for 2/3 ≤ α ≤ 1 (8)

PoFMM (α) = 1/2 for 1/2 ≤ α < 2/3 (9)

1

d 1αe
≤ PoFMM (α) ≤ α for α < 1/2 (10)

Proof. The case α < 1/2 follows from Lemma 12, thus proving (10) with the lower bound given
by Example 15.

We now consider the case α ≥ 1/2 and prove upper bounds (8) and (9). The corresponding
matching lower bounds were given in Example 14 and 15 (take r = 2). We assume without
loss of generality that a1 = α. If the fair solution xMM includes an item with weight α, we
have U(xMM ) ≥ 1/2 and thus PoFMM (α) ≤ 1/2. Hence, we assume that x∗ includes a1 since
otherwise neither xMM nor x∗ would include the largest item and we could remove it from
consideration2. Now we consider two cases:

• Case b(xMM ) ≤ 1−α : In this case, it is feasible to include a1 in xMM and thus U(xMM ) ≥
1/2 and PoFMM (α) ≤ 1/2.

• Case b(xMM ) > 1 − α : Let a(x∗) = a1 + δ for some residual weight δ ≥ 0. We can
assume that b(xMM ) < α, since otherwise we would have again U(xMM ) ≥ α ≥ 1/2 thus
implying the thesis. This means that there is enough capacity for A to pack at least δ
also in the fair solution, i.e. a(xMM ) ≥ δ. Now we can distinguish two bounds on the fair
solution.

Assume first that
U(xMM ) ≥ δ + 1− α. (11)

Since a(x∗) ≥ 1/2, it must be b(x∗) ≤ a(x∗) and thus b(xMM ) ≥ b(x∗), but also a(xMM ) ≥
b(x∗).

Secondly, assume that
U(xMM ) ≥ b(x∗) + 1− α. (12)

If we combine (11) and (12) and define u := max{δ, b(x∗)} and v := min{δ, b(x∗)}, we
have the following:

PoFMM (α) ≤ α+ δ + b(x∗)− (u+ 1− α)

α+ δ + b(x∗)
=

2α− 1 + v

α+ δ + b(x∗)
. (13)

By elementary algebra it is easy to observe that showing that PoF(α) ≤ 2α−1
α is equivalent

to showing
(2α− 1)δ + (2α− 1)b(x∗) ≥ αv.

This last expression is true for α ≥ 2/3 by the definition of v.

2Note that this is not possible for xKS where the largest item might contribute to â.
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Finally, for the case 1/2 < α < 2/3 it can be easily shown that the desired upper bound of 1/2
is obtained from (13). �

Since PoFPF (α) ≤ min{1/2,PoFMM (α)} when a proportional fair solution exists (Theorem 3
and Corollary 6), we get the following result (see Example 15 for the tightness of 1/2).

Corollary 17. FSSP with separate item sets and an upper bound α on the maximum item
weight has the following Price of Fairness for proportional fair solutions:

PoFPF (α) = 1/2 for 1/2 ≤ α (14)

PoFPF (α) ≤ α for α < 1/2 (15)

We conclude this section by providing upper bounds on the Price of Fairness for Kalai-
Smorodinski fair solutions. Note that these worst case bounds have the same values as those for
maximin fair solutions, even though the proof is quite different. As for Theorem 16, Figure 1(a)
illustrates the function PoFKS(α) for the separate items sets case. Recall that it was established
by Examples 8 and 9 that in general the utilities reached for the two fairness concepts have no
dominance relations.

Theorem 18. FSSP with separate item sets and an upper bound α on the maximum item
weight has the following Price of Fairness for Kalai-Smorodinski fair solutions:

PoFKS(α) = 2− 1/α for 2/3 ≤ α ≤ 1 (16)

PoFKS(α) = 1/2 for 1/2 < α < 2/3 (17)

1

d 1αe
≤ PoFKS(α) ≤ α for α ≤ 1/2 (18)

Proof. The lower bounds of (16) and (17) were given in Example 14 and 15 (take r = 2). The
case α < 1/2 follows from Lemma 12, thus proving (18) with the lower bound again given by
Example 15.

When α > 1/2 it is useful to partition the items into small items with weight at most 1/2
and large items with weight greater than 1/2.

Let us now consider the case α ≥ 2/3 and prove the upper bound (16). By contradiction,
assume that PoFKS(α) > 2− 1/α, i.e.

a(xKS) + b(xKS) <
1− α
α

(a(x∗) + b(x∗)) ≤ 1

2
x∗ ≤ 1

2
. (19)

It follows that any remaining unpacked small item could be added to xKS . Thus, we conclude
that all small items are included in xKS . If neither A nor B own a large item, the bound of 1/2
would follow from Lemma 12. Furthermore, if x∗ does not contain a large item, then xKS = x∗,
since xKS contains all small items. Hence, we can assume w.l.o.g. that A owns a large item,
say a′, which is contained in a(x∗), and write a(x∗) = a′ + aS > 1

2 for some weight sum aS

comprising small items.
Due to (19) xKS does not contain a′, hence a′ + b(xKS) > 1 because otherwise a′ could

replace a(xKS). Therefore,
b(xks) > 1− a′ ≥ 1− α. (20)

By the definition of Kalai-Smorodinski fair solutions, it must be:

min

{
a(xKS)

â
,
b(xKS)

b̂

}
≥ min

{
a(x∗)

â
,
b(x∗)

b̂

}
. (21)

We can observe that

min

{
a(xKS)

â
,
b(xKS)

b̂

}
≤ a(xKS)

â
<

1/2

â
<
a(x∗)

â
.
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Therefore, in the right-hand side of (21) it must be a(x∗)
â > b(x∗)

b̂
. This means that to fulfill

(21) we also must have
a(xKS)

â
≥ b(x∗)

b̂
. (22)

If also B owns a large item, say b′, then b′ could replace b(xKS) because with assumption (19)
and (20) we have:

a(xKS) + b′ <

(
1− α
α

− b(xKS)

)
+ α <

1− α
α
− (1− α) + α =

1

α
+ 2α− 2 ≤ 1

The last inequality holds exactly for α ∈ [1/2, 1]. Therefore, B must own only small items,

which implies in turn that b(xKS) = b̂.
Considering the trivial bounds for the solutions the agents could obtain on their own, namely

â ≥ a(x∗) > 1/2 and b̂ = b(xKS) < 1−α
α ≤ 1/2, from (22), we get

a(xKS)

1/2
>
a(xKS)

â
≥ b(x∗)

b̂
>
b(x∗)

1/2
(23)

which implies a(xKS) > b(x∗).
By assumption (19) we have a(xKS) + b(xKS) < 1−α

α (a′ + aS + b(x∗)). Since aS < 1/2 we
know that aS together with b(xKS) would be a feasible solution. Thus, it must be a(xKS) ≥ aS .
Together with (20) this means that the above assumption also implies

a(xKS) + (1− a′) < 1− α
α

(a′ + a(xKS) + b(x∗))

which reduces to
α+ (2α− 1)a(xKS) < a′ + (1− α)b(x∗).

But this is clearly a contradiction since α ≥ a′, a(xKS) > b(x∗) and (2α − 1) ≥ (1 − α) for
α ≥ 2/3. Thus, bound (16) is proven.

Since (16) also means PoFKS(2/3) ≤ 1/2 and PoFKS(α) is monotonically increasing in α,
we immediately get the upper bound of 1/2 also for α < 2/3 as stated in (17). �

While the bounds of Theorem 16, Corollary 17 and Theorem 18 are tight for α ≥ 1/2, there
remains a gap for α < 1/2 with 1

d 1
α e
≤ PoF(α) ≤ α. The worst case for this interval arises

for α = 1
2 − ε where we have 1

3 ≤ PoF(α) < 1
2 . For smaller values of α with 1

h ≤ α < 1
h−1 ,

h ≥ 3 and integer, the ratio r(α) between upper and lower bound on PoFMM (α), PoFPF (α)
and PoFKS(α) (see below) can be bounded as follows:

r(α) ≤ α

d 1αe
≤

1
h−1

d 1he
≤ h

h− 1
(24)

This means that for smaller values of α the we get an almost tight description of PoF(α).

4.2. Shared item set

In this section we assume that the agents A and B share a joint set of items w1, w2, . . . , wn
with wi ≤ 1 and

∑n
i=1 wi > 1. Of course, each item can be assigned to at most one of the

agents.
As already observed, this scenario with a shared item set is closely related to Fair Division,

more precisely to the division of indivisible goods [4, 20]. However, differently from Fair Division,
we consider a capacity, i.e. a condition that not all given items should be partitioned between A
and B, but only a subset which can be freely chosen as long as its total weight does not exceed
the capacity.

Note that, unlike the separate items case, here once the subset S ⊂ {w1, w2, . . .} of items
is chosen, each bipartition (xA, xB) of S corresponds to a feasible solution of our problem. As
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a consequence, there can be exponentially many distinct solutions corresponding to the same
subset S and therefore returning the same global utility value U(S). In the sequel, when needed,
we specify which partition of a certain subset of items is considered as a solution.

Note also that the shared items case is a special case of the symmetric problem considered in
Section 3.2, so Theorem 10 and Corollary 11 hold and imply PoFPF = 0 whenever a proportional
fair solution exists. Moreover, concerning Kalai-Smorodinsky fairness, in the shared items case
we trivially have xKS = xMM since â = b̂. Therefore, in the following we refer only to maximin
fair solutions.

We first present some lower bounds on PoF through Examples 19 and 20 and then provide
the matching upper bounds in Theorem 21.

For the case with no bound on the weights (α = 1), we can use the item set of Example 13 as
a common ground set. It is easy to show that a maximin fair solution has a value U(xMM ) = 3ε
and hence that PoFMM → 1 when ε → 0. For α < 1 we give the following two examples to
derive lower bounds on PoFMM (α).

Example 19. Consider an instance of FSSP with shared items with α ∈ [2/3, 1). For a small
constant ε > 0 let the items weights be as follows.

item w1 w2 w3 w4

weight α 1− α+ ε 1− α ε

An optimal solution x∗ with U∗ = 1 consists of a(x∗) = α and b(x∗) = 1 − α. The only PO
solution x improving B’s utility cannot select w1 yielding a(x) = b(x) = 1− α+ ε. So,

PoFMM (α) ≥ 1− (2− 2α+ 2ε)

1
→ 2α− 1.

Example 20. Consider an instance of FSSP with shared items with 1
2h+1 ≤ α < 1

2h−1 for
some integer h ≥ 1 and the following items set.

item w1 = w2 = . . . = w2h+1 w2h+2 = w2h+3

weight 1/(2h+ 1) ε

Clearly, an optimal solution x∗ with U∗ = 1 consists of a(x∗) = (h + 1)/(2h + 1) and b(x∗) =
h/(2h + 1), while the maximin fair solution xMM is such that a(xMM ) = b(xMM ) = h/(2h +
1) + ε. This yields:

PoF(α) ≥ PoF

(
1

2h+ 1

)
≥

1− 2h
2h+1 − 2ε

1
→ 1

2h+ 1
(25)

Note that since α is an upper bound on the largest item weight of the instance, we may
express the lower bound on the Price of Fairness in terms of α. For any α ∈ [ 1

2h+1 ,
1

2h−1 ) the
lower bound is

PoF(α) ≥ PoF

(
1

2h+ 1

)
≥ 1

2h+ 1
≥ 1

2d 1
2αe+ 1

. (26)

Observe that for h = 1 Example 20 yields a lower bound of 1/3 which matches the lower bound
of Example 19 for α = 2/3.

The next theorem provides upper bounds on PoFMM (α) (that match the lower bounds of
Examples 19 and 20 for α ≥ 1/3) for the shared items sets case, as it is shown in Figure 1(b).

Theorem 21. FSSP with shared item set and an upper bound α on the maximum item weight
has the following Price of Fairness for maximin fair solutions:

PoFMM (α) = 2α− 1 for 2/3 < α ≤ 1 (27)

PoFMM (α) = 1/3 for 1/3 < α ≤ 2/3 (28)

1

2d 1
2αe+ 1

≤ PoFMM (α) ≤ α for 0 < α ≤ 1/3 (29)

15



Proof. The tight lower bounds for α ≥ 1/3 were shown by Examples 19 and 20 (for h = 1).
The latter example also provides the lower bound of (29).

The upper bound in (29) for α ≤ 1/3 follows immediately from Lemma 12.

For α ∈ (1/3, 1] we proceed as follows. Let U∗ > U(xMM ) for a fair solution xMM such
that a(xMM ) ≥ b(xMM ). By definition of MM and Pareto efficiency we must have

max{a(x∗), b(x∗)} > a(xMM ) ≥ b(xMM ) > min{a(x∗), b(x∗)}. (30)

Now we consider two cases depending on the weight w̄ ≤ α of the largest item contained in a
system optimal solution x∗.

• Case 1: w̄ ≥ 1/2. Among the different system optima consider the one where a(x∗) = w̄,
while b(x∗) corresponds to the weight of some other subset of items. Clearly, b(x∗) ≤
1−w̄ ≤ w̄ = a(x∗) and neither a(xMM ) nor b(xMM ) contains w̄. We have that a(xMM ) ≥
1 − w̄ since otherwise, i.e. if a(xMM ) < 1 − w̄ ≤ 1/2, we could add w̄ to a(xMM ) which
then exceeds a(x∗). Since also b(xMM ) > b(x∗) this would constitute a solution with
better total value than x∗. By a similar argument also b(xMM ) ≥ 1− w̄.

Hence, U(xMM ) ≥ 2− 2w̄ and we get the upper bound

PoFMM (α) ≤ w̄ + b(x∗)− (2− 2w̄)

w̄ + b(x∗)
=

3w̄ − 2 + b(x∗)

w̄ + b(x∗)

which is increasing in b(x∗) for all w̄ ≤ 1. Thus, by plugging in the largest possible b(x∗)
value, that is b(x∗) = 1− w̄, we obtain for w̄ ≤ α

PoFMM (α) ≤ 2w̄ − 1 ≤ 2α− 1. (31)

• Case 2: w̄ < 1/2. Among the different system optima consider the one built with an
LPT like procedure for P2||Cmax (see for instance [14]): The items in x∗ are sorted in
decreasing order and assigned iteratively to the agent with current lower total weight. Let
a(x∗) and b(x∗) indicate the values for the two agents in this solution. Clearly, in general,
it is not known which of the two values is larger.

If max{a(x∗), b(x∗)} = w̄ then following (30) any solution b(xMM ) with 1/2 >
max{a(x∗), b(x∗)} > b(xMM ) > min{a(x∗), b(x∗)} could be used to replace and improve
min{a(x∗), b(x∗)} in x∗. Hence, it must be max{a(x∗), b(x∗)} > w̄. This means that
according to the LPT logic, at least one additional item was added to the agent receiv-
ing w̄, which can happen only after the other agent weight has exceeded w̄. Therefore,
min{a(x∗), b(x∗)} ≥ w̄.

By LPT we also have |a(x∗)− b(x∗)| ≤ w̄. It follows with (30) that

max{a(x∗), b(x∗)} ≤ min{a(x∗), b(x∗)}+ w̄ ≤ 2 min{a(x∗), b(x∗)} < 2 b(xMM ).

Thus, we have

U∗ = max{a(x∗), b(x∗)}+ min{a(x∗), b(x∗)} < 3 b(xMM ) ≤ 3/2 z(xMM ).

It follows immediately that, for w̄ < 1/2, independently from α > w̄ ,

PoFMM (α) ≤ 1/3. (32)

While it is clear that for α < 1/2 only Case 2 is feasible, for an instance with α ≥ 1/2 either of
the two cases may occur. Hence, we can only state an upper bound as a maximum of the two:

PoFMM (α) ≤ max

{
2α− 1,

1

3

}
(33)
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which easily yields relations (27) and (28). �

For α < 1/3, where the bound of Theorem 21 is not tight, we can bound (as in the case of
separate item sets) the ratio r(α) between upper and lower bound in (25) on PoFMM (α) as
follows:

r(α) = α · (2h+ 1) <
2h+ 1

2h− 1
(34)

Again, this shows that for smaller values of α an almost tight description of PoFMM (α) is
derived. The largest gap arises for α = 1/3− ε where 1/5 ≤ PoFMM (α) < 1/3.

5. Conclusions

In this paper we introduced a general allocation function to assign utilities to a set of agents.
The focus of our attention is directed on fair allocations which give a reasonable amount of
utility to each agent. A number of fairly general results holding for any multi-agent problem
were derived for three different notions of fairness, namely maximin, Kalai-Smorodinsky and
proportional fairness. In particular, we showed that for a large and meaningful class of problems
proportional fair solutions are system optimal and equitable, that is each agent receives the same
utility as every other agent.

In the main part of the paper we considered a bounded resource allocation problem which
can be seen as a two-agent version of the subset sum problem and thus is referred to as Fair
Subset Sum Problem (FSSP). We are interested in evaluating the loss of efficiency incurred
by a fair solution compared to a system optimal solution which maximizes the sum of agents
utilities. In particular, we presented several lower and upper bounds on the Price of Fairness
for different versions of the problem.

As discussed for the three notions of fairness considered in this paper, it is in general hard
to compute a fair solution, so it would be desirable to introduce a solution concept permitting
a polynomial time algorithm, or even a simple heuristic allocation rule, fulfilling some fairness
criterion and still guaranteeing an adequate level of efficiency (i.e. a certain upper bound on
the Price of Fairness).
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Figure 1: Price of Fairness functions PoFMM (α) and PoFKS(α) in the separate items sets case (cf. Theorems 16
and 18) and PoFMM (α) in the shared items set case (cf. Theorem 21). The corresponding lower and upper
bound values are plotted, when needed.
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Concerning FSSP, it is easy to show that it is binary NP-hard to recognize fair solutions
(for all three fairness concepts). In fact, if all item weights and the capacity c are integers, it is
possible to design dynamic programming algorithms running in pseudopolynomial time to find
all PO solutions in the separate and shared items cases. The algorithms are briefly sketched
hereafter. For separate items, we may define two dynamic arrays dA[w], dB [w], w = 0, 1, . . . , c,
with binary entries, where e.g. dA[w] = 1 indicates that a solution with weight w exists for
agent A. The entries can be easily computed by iteratively considering each item, say ai, and
setting dA[w + ai] = 1 if dA[w] = 1. Finally, we go through both arrays in opposite directions
and identify all Pareto efficient combinations of weights w, v with w + v ≤ c and dA[w] = 1
and dB [v] = 1. This takes O(nc) time. For shared items, a two-dimensional array is required,
where d[w, v] = 1 if a solution with weight w for A and v for B exists. It is updated for each
item wi by observing that each entry with d[w, v] = 1 implies that both d[w + wi, v] = 1 and
d[w, v+wi] = 1. Thus, all reachable solutions can be determined in O(nc2) time. More details,
e.g. about storing the set of items for each entry, can be found in [18, Sec. 2.3].

Finally, a natural generalization of the FSSP, with significant applications in several real-
world scenarios such as Project Management and Portfolio Optimization, would consider a
different utility function associated to profits, thus defining a multi-agent (fair) knapsack prob-
lem.

Acknowledgements

Gaia Nicosia and Andrea Pacifici have been partially supported by Italian MIUR projects
PRIN-COFIN n. 2012JXB3YF 004 and n. 2012C4E3KT 001.
Ulrich Pferschy was supported by the Austrian Science Fund (FWF): P 23829-N13.

References

[1] Aumann Y., Y. Dombb (2010). The efficiency of fair division with connected pieces, Pro-
ceedings of WINE 2010, Springer Lecture Notes in Computer Science, 6484, 26-37.

[2] Bertsimas D., V. Farias, N. Trichakis (2011). The price of fairness, Operations Research,
59 (1), 17–31.

[3] Bertsimas D., V. Farias, N. Trichakis (2012). On the efficiency-fairness trade-off, Manage-
ment Science, 58(12), 2234–2250.

[4] Brams S.J., A.D. Taylor (1996). Fair Division: From cake-cutting to dispute resolution,
Cambridge University Press.

[5] Butler, M., H.P. Williams (2002). Fairness versus efficiency in charging for the use of
common facilities, Journal of Operational Research Society, 53(12), 1324–1329.

[6] Caragiannis I., C. Kaklamanis, P. Kanellopoulos, M. Kyropoulou (2012). The efficiency of
fair division, Theory of Computing Systems, 50(4), 589–610, 2012. See also: Proceedings
of WINE 2009, Springer Lecture Notes in Computer Science, 5929, 475–482.

[7] Coffman Jr., E.G., M.R. Garey, D.S. Johnson (1997). Approximation algorithms for bin
packing: a survey, in: D. Hochbaum (Ed.), Approximation Algorithms for NP-hard Prob-
lems, PWS Publishing Co.

[8] Darmann A., G. Nicosia, U. Pferschy, J. Schauer (2014). The subset sum game, European
Journal of Operational Research, 233(3), 539–549.

[9] Drees M., S. Riechers, A. Skopalik (2014). Budget-restricted utility games with ordered
strategic decisions, Proceedings of SAGT 2014, Springer Lecture Notes in Computer Sci-
ence, 8768, 110–121.

18



[10] Fritzsche R., P. Rost, G.P. Fettweis (2015). Robust rate adaptation and proportional fair
scheduling with imperfect CSI, IEEE Transactions on Wireless Communications, 14(8),
4417 - 4427.

[11] Fujimoto M., T. Yamada (2006). An exact algorithm for the knapsack sharing problem
with common items, European Journal of Operational Research, 171(2), 693–707.

[12] Ghodsi A., M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica (2011).
Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, Proceedings of
the 8th USENIX Conference on Networked Systems Design and Implementation (NSDI),
24–37.

[13] Goel G., C. Karande, L. Wang (2010). Single-parameter combinatorial auctions with par-
tially public valuations, Proceeding of SAGT 2010, Springer Lecture Notes in Computer
Science, 6386, 234–245.

[14] Graham R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979), Optimization and
approximation in deterministic sequencing and scheduling: a survey, in: P.L. Hammer et
al. (Eds.), Annals of Discrete Mathematics, 5, 287–326, Elsevier.

[15] Hifi M., H. M’Hallab, S. Sadfi (2005). An exact algorithm for the knapsack sharing problem,
Computers and Operations Research, 32(5), 1311–1324.

[16] Kalai E., M. Smorodinsky (1975). Other solutions to Nash bargaining problem, Economet-
rica, 43, 513–518.
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6. Appendix

Theorem 1 If two proportional fair solutions xPF and yPF exist, then uj(xPF ) = uj(yPF ) for
all j = 1, . . . , k.

Proof. Let xPF and yPF be two proportional fair solutions. By definition of proportional

fairness and using equation (3) for both xPF and yPF , we obtain
∑k
j=1

uj(yPF )
uj(xPF ) ≤ k and∑k

j=1
uj(xPF )
uj(yPF ) ≤ k. Let φj =

uj(xPF )
uj(yPF ) for j = 1, . . . k, clearly φj ≥ 0. Then the two above

inequalities can be rewritten as:
∑k
j=1

1
φj
≤ k and

∑k
j=1 φj ≤ k. By summing up these last

two inequalities we get that
∑k
j=1( 1

φj
+ φj) ≤ 2k. Moreover, 1

φj
+ φj ≥ 2 for any φj . Hence,

the only possible way to satisfy
∑k
j=1( 1

φj
+ φj) ≤ 2k is 1

φj
+ φj = 2, which implies φj = 1, for

all j = 1, . . . , k. �

Theorem 2 If a proportional fair solution xPF exist, then it maximizes the product of agents
utilities, i.e.

k∏
j=1

uj(xPF ) ≥
k∏
j=1

uj(x) ∀x ∈ X.

Proof. Let xPF be the proportional fair solution and y ∈ X any feasible solution. Let φj =
uj(y)

uj(xPF ) . By (3), recalling that the geometric mean is not larger than the arithmetic mean, we

have  k∏
j=1

φj

 1
k

≤ 1

k

k∑
j=1

φj ≤ 1.

As a consequence
∏k
j=1 uj(y) ≤

∏k
j=1 uj(xPF ) and the thesis follows. �
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