

A penalized method for multivariate

concave least squares with application to

productivity analysis 1

Abolfazl Keshvari

Aalto University School of Business, Helsinki, Finland

abolfazl.keshvari@aalto.fi, tel: 00358503120915

To appear in the European Journal of Operational Research

Abstract

We propose a penalized method for the least squares estimator of a multivariate concave regression

function. This estimator is formulated as a quadratic programming (QP) problem with 𝑂(𝑛2)

constraints, where 𝑛 is the number of observations. Computing such an estimator is a very time-

consuming task, and the computational burden rises dramatically as the number of observations

increases. By introducing a quadratic penalty function, we reformulate the concave least squares

estimator as a QP with only non-negativity constraints. This reformulation can be adapted for

estimating variants of shape restricted least squares, i.e. the monotonic-concave/convex least squares.

The experimental results and an empirical study show that the reformulated problem and its dual are

solved significantly faster than the original problem. The Matlab and R codes for implementing the

penalized problems are provided in the paper.

Keywords: concave regression, convex regression, penalization method, production function.

1. Introduction

This paper is concerned with the shape restricted least squares problem, which is used to estimate a

concave or convex regression function. Such an estimator is used in different disciplines: such as

productivity analysis (Keshvari & Kuosmanen, 2013; Kuosmanen, 2012; H. Varian, 1984),

econometrics (Aït-Sahalia & Duarte, 2003; H. R. Varian, 1982), statistics (Birke & Dette, 2007;

Hanson & Pledger, 1976; Hildreth, 1954), and operations research (Badinelli, 1986; Zhou & Lange,

2013).

The estimated function is selected among all the possible functions satisfying the shape

assumption. The function is shown to be a piecewise linear function, and it is formulated as a

quadratic programming (QP) problem (Kuosmanen, 2008). The finite sample properties of the shape

restricted least squares estimator are known. For example, it is known that it satisfies the orthogonality

condition, and the mean of fitted values is equal to the mean of the responses. The properties and

characteristics are studied by several researchers (see for example Groeneboom, Jongbloed, &

1 © 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Wellner, 2001; Hanson & Pledger, 1976; Kuosmanen, 2008; Mammen, 1991; Meyer, 2003, 2006;

Nemirovskii, Polyak, & Tsybakov, 1985; Seijo & Sen, 2011).

Single variate problems are relatively easy to solve and several methods are proposed to compute

the estimator (Dykstra & Robertson, 1982; Dykstra, 1983; Hanson & Pledger, 1976; Hildreth, 1954).

However, dealing with a multivariate problem is difficult and it is very time consuming. The main

source of the computational burden is the number of constraints that is of order 𝑂(𝑛2) and rises very

quickly as the number of observations (𝑛) increases. To solve this problem, Holloway (1979)

proposed an iterative algorithm that approximates the regression function, and it is applied on small

size samples. Another approach is proposed by Fraser & Massam (1989) and Meyer (1999) that is a

mixed primal–dual algorithm to find a least squares regression estimate over the closed convex cone

defined by the constraints. Goldman and Ruud (1993) also propose a generalization to the algorithms

of Hildreth (1954) and Dykstra (1983). However, these algorithms are not practical for multi-input

problems.

The least squares concave or convex function is piecewise linear consisting of several linear

segments. In applications, only a relatively small percentage of the constraints of the related QP are

binding and as a result, the number of linear segments is smaller than the number of observations.

This result is recently used as the basis for two methods. One of the methods is to preprocess the

problem based on the Dantzig’s relaxations method (G. B. Dantzig, Fulkerson, & Johnson, 1959; G.

Dantzig, Fulkerson, & Johnson, 1954) and to iteratively eliminate some of the nonbinding constraints

(Lee, Johnson, Moreno-Centeno, & Kuosmanen, 2013). Based on the pairwise distance between

observations, in every iteration a subset of constraints is selected and then a QP is solve to get the

solution of the relaxed problem. The other method is to find acceptable partitions of the input space,

and to estimate the linear segments for the partitions (Hannah & Dunson, 2013), which may end up

with an approximation of the optimal solution. Both of these methods are iterative algorithms and it

is required to implement special codes for using them.

In this paper, a reformulation to the QP problem is proposed. In this method, the constraints, except

the signs of the variables, are eliminated and the objective function is penalized by the constraints’

violations. The final problem is a QP with only sign constraints, and it is solved in a reasonably

shorter time than the original problem. To this end, first we convert the original problem into a QP

with equality constraints, and categorize the constraints into 𝑛 blocks of equations. Then the errors

are estimated from the first block, and the objective is penalized by the sum of the quadratic values

of violations. The dual of the penalized problem is also developed. The dual problem is a separable

QP and it is solved significantly faster than the penalized and the original problems. Moreover, a

similar approach is used to develop the penalized problem and its dual for estimating variants of shape

restricted least squares functions, i.e. the (monotonic) convex and concave least squares.

Since the seminal work of Fiacco and McCormick (1968), the penalty method is well studied in

the literature of optimization (e.g. Di Pillo & Grippo, 1989; Hu & Ralph, 2004; Li, Yin, Jiang, &

Zhang, 2013). Penalty method is used to solve a wide range of regression problems. For example,

Ridge regression (Hoerl & Kennard, 1970) is a penalty method that regularizes coefficients to control

their variances. Lasso (Tibshirani, 1996) is a shrinkage and selection method that enhances the out-

of-sample interpretability of a regression problem. Moreover, various penalty methods are developed

to solve constrained optimization problems, such as in bilevel programming problems (Marcotte &

Zhu, 1996), options pricing (D’Halluin, Forsyth, & Labahn, 2004), and portfolio optimization

(Corazza, Fasano, & Gusso, 2013). To the best of our knowledge, this paper is the first application of

penalty method to solve shape restricted least squares.

To compare the efficiency of the penalized problem and its dual, a number of Monte Carlo

simulations is used. The results show the superiority of the penalized shape restricted least squares

and the dual problem over the conventional formulation in terms of the computational time. The

results show that solving the dual problem is the most efficient approach.

The rest of the paper is organized as follows. Section 2 contains the main results of the paper. It

starts with a review on the monotonic concave least squares problem. The steps to build the penalty

term, the penalized and the dual problems are explained in this section. The optimality of the

penalized problem is also discussed. Moreover, the penalization method for estimating a concave

function is developed. To simplify the algebraic calculations, this paper uses succinct matrix forms

of the problem. The summation form of the dual problem is also presented in this section. The results

of the numerical Monte Carlo simulations are presented in Section 3. An empirical application is

presented in Section 4, in which the penalized method is used to analyze the room rates of a sample

of hotels in Finland. The paper has three appendices. The first appendix presents the detailed

analytical computations to obtain the matrix form of the QP. This appendix also includes the steps to

compute the reformulated problem. The second appendix contains the proofs of the theorems.

Appendix 3 presents the Matlab and R codes for solving the penalized monotonic concave least

squares and the dual problem.

2. Penalized monotonic concave least squares

Our focus in this paper is on the concave least squares (CLS) problem under monotonicity assumption

(MCLS).2 One of the applications of this problem is to estimate a non-parametric production function

that is monotonic and concave (Andor & Hesse, 2014; Cheng, Bjørndal, & Bjørndal, 2014; Eskelinen

& Kuosmanen, 2013; Keshvari & Kuosmanen, 2013; Kuosmanen, 2011, 2012; Wang, Wang, Dang,

& Ge, 2014).

2.1 Monotonic concave least squares (MCLS)

MCLS is a least squares approach to construct a non-parametric multivariate regression model. In

this model, a function 𝑓: ℝ𝑚 → ℝ is estimated as 𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜀𝑖 (𝑖 = 1, … , 𝑛), where 𝑛 is the

number of observations, 𝑦𝑖 ∈ ℝ and 𝐱𝑖 ∈ ℝ𝑚 (𝑖 = 1, … , 𝑛) are response and explanatory variables,

respectively, and 𝜀𝑖 (𝑖 = 1, … , 𝑛) is a random variable with mean 0. Moreover, 𝑓 ∈ 𝔽, where 𝔽 is the

set of all monotonic concave functions. Hence the problem is:

 min
𝜀,𝑓

1

2
∑ 𝜀𝑖

2𝑛
𝑖=1

𝑠. 𝑡.

𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜀𝑖 , 𝑖 = 1, … , 𝑛 ,
𝑓 ∈ 𝔽.

2 MCLS function is also known as convex nonparametric least squares (CNLS).

The set 𝔽 is infinite-dimensional. However, it is shown that a piecewise linear function generates the

best fit (Hildreth, 1954; Kuosmanen, 2008), and it is estimated by the following problem

min
𝛆,𝛂,𝛃

1

2
∑ 𝜀𝑖

2𝑛
𝑖=1

 𝑠. 𝑡. (1)

𝑦𝑖 = 𝛼𝑖 + 𝐱𝑖𝛃𝑖
′ + 𝜀𝑖, 𝑖 = 1, … 𝑛,

𝛼𝑖 + 𝐱𝑖𝛃𝑖
′ ≤ 𝛼𝑗 + 𝐱𝑖𝛃𝑗

′ , 𝑖, 𝑗 = 1, … , 𝑛,

𝛃𝑖 ≥ 𝟎, 𝑖 = 1, … , 𝑛,

where 𝐱𝑖 and 𝛃𝑖 are the 𝑖-th rows of 𝐗 and 𝚩, respectively:

𝐗 = (𝑥𝑖𝑝)
𝑛×𝑚

= (

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

⋱
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑚

), 𝚩 = (𝛽𝑖𝑝)
𝑛×𝑚

= (

𝛽11 𝛽12 … 𝛽1𝑚

𝛽21 𝛽22 … 𝛽2𝑚

⋱
𝛽𝑛1 𝛽𝑛2 … 𝛽𝑛𝑚

),

In problem (1), the first constraint specifies a hyperplane for every observation, with intercept 𝛼𝑖

and slope variable 𝛃𝑖. The second and the third constraints enforces concavity and monotonicity,

respectively. Problem (1) is a basis to obtain variants of shape restricted least squares. For example,

a CLS function can be estimated by problem (1) when the non-negativity constraint is relaxed (see

sub-section 2.4). Figure 1 depicts examples of estimated CLS and MCLS functions.3

Figure 1. Examples of two-variate shape restricted least squares. Left panel: CLS estimator, right

panel: MCLS estimator.

2.2 Penalization method

There are 𝑂(𝑛2) constraints in problem (1), and to the best of our knowledge this is the main reason

that solving (1) is very time consuming (Hannah & Dunson, 2013; Lee et al., 2013). Our approach to

handle the large number of constraints is to eliminate all expect the non-negativities, and to penalize

the objective function with constraints’ violations. The penalty method consists of three steps: a)

using the equality constraints to eliminate the intercept variables (𝛼𝑖), b) transforming the remaining

constraints into equalities by adding slack variables, c) penalizing the objective function by the

3 For the sake of simplicity of the figure, we generated the data over a grid in the inputs space.

quadratic violations of the equality constraints. The reformulated problem is a penalized QP with only

non-negativity constraints and it is solved quicker than the original problem (see Section 3). This

problem is solved efficiently with off-the-shelf solvers (such as CPLEX and Mosek) and there is no

need to develop a customized solver.

 To start, consider that the intercept variables 𝛼𝑖 (𝑖 = 1, … , 𝑛) are eliminated by combining 𝛼𝑖 =

𝑦𝑖 − 𝐱𝑖𝛃𝑖
′ − 𝜀𝑖 and the second constraint. By adding the slack variables 𝐬𝑖 = (𝑠𝑖1, … , 𝑠𝑖𝑛)′, this

problem is written as:

min
𝛆,𝛃,𝐬

1

2
∑ 𝜀𝑖

2𝑛
𝑖=1

𝑠. 𝑡. (2)

𝑦𝑗 − 𝑦𝑖 = 𝜀𝑗 − 𝜀𝑖 + (𝐱𝑗 − 𝐱𝑖)𝛃𝑗
′ + 𝑠𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛,

𝑠𝑖𝑗 ≥ 0, 𝛃𝑖 ≥ 𝟎, 𝑖 = 1, … , 𝑛.

The algebraic calculations of the penalty term is simplified if the problem is presented in a succinct

matrix form. To this end, a vector of variables is defined as:

𝛙 = (𝛃1, 𝛃2, … , 𝛃𝑚, 𝐬1, 𝐬2, … , 𝐬n)′,

where the slopes and slacks are stacked together to form a vector of size 𝑚𝑛 + 𝑛2. Hereafter the

superscript 𝑝 denotes the 𝑝-th column of matrices. Auxiliary matrices 𝐄𝑖, 𝓧𝑖, and invertible 𝐀𝑖 are

defined in Appendix 1 in such a way that the second constraint of problem (2) is (𝐈 − 𝐄𝑖)𝐲 = 𝐀𝑖𝛆 +

𝓧𝑖𝛙 (𝑖 = 1, … , 𝑛), where 𝐈 is the identity matrix of order 𝑛. Thus 𝛆 is calculated by the following

equation for any 𝑖 = 1, … , 𝑛:

𝛆 = −𝐀𝑖
−1 𝓧𝑖𝛙 + 𝐀𝑖

−1(𝐈 − 𝐄𝑖)𝐲. (3)

Theorem 1 calculates the objective function by using 𝑖 = 1.

Theorem 1. 𝛆′𝛆 = 𝛙′𝓧1
′ 𝐀1

−1′𝐀1
−1𝓧1𝛙 − 2𝐲′ (𝐈 −

1

𝑛
𝟏) 𝐀1

−1𝓧1𝛙 + 𝐲′ (𝐈 −
1

𝑛
𝟏) 𝐲, where 𝟏 is a 𝑛 ×

𝑛 matrix of ones.

Proof. See Appendix 2.

In a similar approach, Theorem 2 calculates a penalty term as the sum of the quadratic violations of

the constraints of (2).

Theorem 2. ∑ ∑ ((𝑦𝑗 − 𝑦𝑖) − (𝜀𝑗 − 𝜀𝑖 + (𝐱𝑗 − 𝐱𝑖)𝛃𝑗
′ + 𝑠𝑖𝑗))

2
𝑛
𝑗=1

𝑛
𝑖=1 =

𝛙′(∑ (𝓧1 − 𝐀1𝐀𝑖
−1 𝓧𝑖)′(𝓧1 − 𝐀1𝐀𝑖

−1 𝓧𝑖)𝑛
𝑖=2)𝛙.

Proof. See Appendix 2.

Combining the results of theorems, penalized MCLS is defined as:

min
𝛙

1

2
𝛙′𝐇𝛙 + 𝐜𝛙

𝑠. 𝑡. (4)

𝛙 ≥ 𝟎,

where 𝐇 = 𝐐 + 𝑀2𝐕, 𝑀 is a large positive number, and there are

𝐐 = 𝓧1
′ 𝐀1

−1′𝐀1
−1𝓧1,

𝐕 = ∑ (𝓧1 − 𝐀1𝐀𝑖
−1 𝓧𝑖)′(𝓧1 − 𝐀1𝐀𝑖

−1 𝓧𝑖)
𝑛
𝑖=2 ,

𝐜 = −𝐲′ (𝐈 −
1

𝑛
𝟏) 𝐀1

−1𝓧1,

𝛾 = 𝐲′ (𝐈 −
1

𝑛
𝟏) 𝐲.

The objective of problem (4) is not the sum of squared errors (SSR) of the original problem. SSR

is computed by Theorem 1, or simply by the following equation:

∑ 𝜀𝑖̂
2𝑛

𝑖=1 = 𝛙∗′𝐐𝛙∗ + 2𝐜𝛙∗ + 𝛾, (5)

where 𝜀̂ is the error and 𝛙∗ is the optimal solution to (4).

The solution to (4) converges to the optimal solution of (2) when 𝑀 increases to infinity. The

conventional algorithm for choosing a sufficiently large 𝑀 is to start by an initial value and iteratively

increasing it until the convergence is satisfactory. This result is shown in Theorem 3 below. In

applications, the magnitude of penalty should depend on the magnitude of the problem data. We may

use a large enough 𝑀 such that 𝛙∗′𝐕𝛙∗ be as close as possible to zero.

Theorem 3. The following properties hold:

a) Problem (4) has an optimal solution for any given 𝑀 ≥ 0,

b) Let 𝛙∗ and 𝛙∗(𝑀) be the optimal solutions to problems (2) and (4), respectively. Then

𝛙∗(𝑀) → 𝛙∗ as 𝑀 → ∞.

Proof. See Appendix 2.

As it is shown in Theorem 3, optimal solution to (4) is convergent to the optimal solution to (2),

and theoretically, a very large 𝑀 does not cause an issue in the convergence. However, a very large

value of M may cause numerical instability, which is mainly due to rounding errors. In practice, the

value of the penalty term in (4) tends to zero if a very big 𝑀 is used, and thus the solution to (4) is in

a tight neighborhood of feasible region of (2). The behavior of big 𝑀 and a rule for choosing a proper

𝑀 are explained in Appendix 2.

Penalized MCLS (4) is a non-negative unconstrained QP, which is solved by available QP solvers.

Matrices 𝐐, 𝐕, and vector 𝐜 are sparse and readily computable. A number of simplifications for the

calculations are discussed in Appendix 1.

2.3 Dual of penalized MCLS

The matrices in the dual of problem (4) are less dense, and this sensibly reduces the solution time. It

is straightforward to obtain the Lagrangian dual of penalized MCLS as follows (see Appendix 2):

min
1

2
𝐰′𝐰

𝑠. 𝑡. (6)
𝐅′𝐰 + 𝐜′ ≥ 𝟎,

where 𝐰 is a 𝑛2-vector of dual variables. There is 𝐇 = 𝐅′𝐅 and 𝐅 = (𝐀1
−1𝓧1 , 𝑀(𝓧2 − 𝐀2𝐀1

−1 𝓧1),

… , 𝑀(𝓧𝑛 − 𝐀𝑛𝐀1
−1 𝓧1)). The estimated error term is computed by 𝛆̂ = −𝐰∗ + (𝐈 −

1

𝑛
𝟏) 𝐲, where

𝐰∗ is the optimal solution to (6).

There are several advantages to use (6). This problem is separable and matrix 𝐅 is sparse, hence it

is expected to be solved faster than problem (4) (Vanderbei, 2001, sec. 23). The experimental results

in Section 3 show the superior performance of problem (6). Moreover, building problem (4) starts by

making 𝐅 and then computing 𝐅′𝐅 to form 𝐇. By avoiding this matrix multiplication, fewer

computations are needed and one source of numerical errors is removed. Another advantage is that

matrix 𝐅 is less dense than matrix 𝐇 and hence, the memory usage decreases.

Problem (6) can directly be used in Matlab and R in its current matrix form. However,

mathematical programming software, such as GAMS, AIMMS and AMPL, use the summation forms.

To be able to use such software we present the summation form of problem (6) below. The

performance of the solver does not depend on the programming language or the format of the

problem. In practice, the solution time of problem (6) and its summation form (problem 7) with the

same solver are the same.4 The error is estimated by 𝜀𝑖̂ = 𝑦𝑖 − 𝑦̅ −𝑤1𝑖 √2⁄ , where 𝑦̅ is the average of

response variables.

min
1

2
∑ 𝑤𝑖𝑗

2𝑛
𝑖,𝑗=1

𝑠. 𝑡. (7)

∑ (𝑥1𝑝 − 𝑥𝑖𝑝) ∑ 𝑤𝑖𝑗𝑗≥2𝑖≥2 ≥ 0, 𝑝 = 1, … , 𝑚,

√2

𝑛
(𝑥1𝑝 − 𝑥𝑖𝑝)(∑ 𝑤1𝑗𝑗 − 𝑛𝑤1𝑖) − 𝑀 ∑ (𝑥1𝑝 − 𝑥𝑗𝑝)𝑤𝑗𝑖𝑗≥2 + 2(𝑦𝑖 − 𝑦̅)(𝑥1𝑝 − 𝑥𝑖𝑝) ≥

0, 𝑝 = 1, … , 𝑚, 𝑖 = 2, … , 𝑛,
√2

𝑛
∑ 𝑤1𝑖𝑖 + 𝑀 ∑ 𝑤𝑖1𝑖≥2 ≥ 0,

−
√2

𝑛
(∑ 𝑤1𝑗𝑗 + 𝑛𝑤1𝑖) + 𝑀 ∑ 𝑤𝑗𝑖𝑗≥2 − 2(𝑦𝑖 − 𝑦̅) ≥ 0, 𝑖 = 2, … , 𝑛,

∑ 𝑤𝑖𝑗𝑗≥2 ≥ 0, 𝑖 = 2, … , 𝑛,

𝑤𝑖𝑗 ≤ 0, 𝑖, 𝑗 = 2, … , 𝑛, 𝑖 ≠ 𝑗,

𝑤𝑖1 ≤ 0, 𝑖 = 2, … , 𝑛.

In order to increase the speed of the problem, the relaxation method proposed by Lee et al. (2013)

can be combined with the reformulated problem proposed in this paper. Using this method5, the

second constraint of problem (1) is relaxed for some pairs of (𝑖, 𝑗). Let 𝐼 be the set of pairs (𝑖, 𝑗) of

the seconds constraint of problem (1), which is determined in an iteration of the method of Lee et al.

(2013). Let 𝐾𝐼 = {𝑘: 𝑘 > 𝑛𝑚 and 𝑘 ≠ (𝑛𝑚 + (𝑖 − 1)𝑛 + 𝑗) and (𝑖, 𝑗) ∈ 𝐼} as a subset of

{1, … , 𝑛𝑚 + 𝑛2}. The QP of Lee et al. (2013) can be replaced by problem (4) when 𝜓𝑘 = 0, 𝑘 ∈ 𝐾𝐼.

Similarly, problem (6) can be used by removing row 𝑘 ∈ 𝐾𝐼 of 𝐅′𝐰 + 𝐜′ ≥ 𝟎.

2.4 Variants of shape restricted least squares

A concave function is estimated by problem (1) if slope variables are free of sign, i.e. by removing

𝜷𝑖 ≥ 0 (𝑖 = 1, … , 𝑛). Furthermore, if the direction of inequalities is reversed, this problem estimates

4 The generation times of the problems may differ, and they are depended to the programming language.
5 Method of Lee et al. (2013) is implemented in Ray, Kumbhakar, & Dua (2015).

a convex least squares function. The reformulated problem (problem 4) and its dual (problem 6) can

be easily adapted to solve different variants of the shape restricted least squares.

In this sub-section, problems (4) and (6) are adapted for estimating a CLS function. The difference

between CLS and MCLS is that the regression hyperplanes of CLS, which are defined by the first

constraint of problem (1), are free of sign. This is shown by 𝛙𝑖 ≥ 𝟎 (𝑖 > 𝑚𝑛) in penalized CLS

problem as follows:

min
1

2
𝛙′𝐇𝛙 + 𝐜𝛙

𝑠. 𝑡.

𝛙𝑖 ≥ 0, 𝑗 > 𝑚𝑛,

where 𝐇 and 𝐜 are the same as in problem (4). The dual of penalized CLS is also developed similarly:

min
1

2
𝐰′𝐰

𝑠. 𝑡. (8)
𝐅′𝐰 + 𝐜′ = 𝛍,
𝛍𝑗 ≥ 0, 𝑗 > 𝑚𝑛.

Adapting problems (4) and (6) to solve a convex problem is straightforward and it is done by

reversing the signs of the slack variables of problem (1).

3. Experimental results

In this section, an experiment is designed to analyze the computational performance of (1), (4), and

(6). The aim is to benchmark the penalization method (problems 4 and 6) against the original problem.

The problems are solved on a laptop computer running Windows with an Intel Core i5 CPU 2.6 GHz

and 8 gigabytes of RAM. The methods are implemented in Matlab, and Mosek 7 solves the QP

problems. The measure of performance in this experiment is the average mean squared error (AMSE):

𝐴𝑀𝑆𝐸𝜔 =
1

𝑇
∑ √

𝑆𝑆𝑅𝑡
𝜔

𝑛
𝑇
𝑡=1 , 𝑆𝑆𝑅𝑡

𝜔 = ∑ (𝑦𝑖 − 𝑦𝑖
𝜔)2𝑁

𝑖=1 ,

where 𝑇 is the number of simulations, 𝑛 is the number of observations, and 𝜔 ∈

{MCLS, PMCLS, dual of PMCLS} where

MCLS: Problem (1), the original formulation of monotonic concave least squares,

PMCLS: Penalized MCLS, problem (4),

Dual of PMCLS: Dual of penalized MCLS, problem (6).

A measure for the goodness of fit of (1) is the coefficient of determination, 𝑅2, which is one minus

the ratio of SSR to the total sum of squares: 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 , where 𝑦̅ is the mean value of 𝑦.

Let 𝑅4
2 be the coefficient of determination that is computed from the optimal solution to problem (4),

and 𝜌 = 1 − (𝛙∗′𝐇𝛙∗ + 2𝐜𝛙∗ + 𝛾) 𝑆𝑆𝑇⁄ . In case of no violation, there is 𝑅2 = 𝑅4
2 = 𝜌. Since

problem (2) allows for violations, 𝑅4
2 is an upper bound for 𝑅2 (𝑅2 ≤ 𝑅4

2). In case there are some

violations, 𝑅4
2 = 𝜌 + 𝑀2𝑅𝑎𝑢𝑔

2 where 𝑅𝑎𝑢𝑔
2 = 𝛙∗′𝐕𝛙∗ 𝑆𝑆𝑇⁄ . If 𝑅𝑎𝑢𝑔

2 → 0 then 𝜌 → 𝑅2. 𝑅𝑎𝑢𝑔
2 is the

amount by which 𝑅2 is augmented when some violations exist. It is unit free (like 𝑅2) and it is used

to measure the accuracy of (4) and (6). It is computed even if the solution to problem (1) is not

calculated. 𝑅𝑎𝑢𝑔
2 is desired to be close to zero.

Similar to Lee et al. (2012), data is generated from the function 𝑦 = Π𝑟=1
𝑚 𝑥𝑟

0.5/𝑚
+ 𝜀, where inputs

are drawn from a uniform distribution in the interval [10,100]. The error term is generated from a

normal distribution with mean zero and standard deviation of 10. There are totally 98 scenarios, with

different number of observations from 50 to 700, and different number of inputs from 2 to 8. Each

scenario is simulated 20 times to compute the average solution time. Figure 1 compares the solution

times for solving the problems with four inputs using three formulations presented in this paper.

Figure 2. Comparison of solution times for the scenario with four inputs. MCLS cannot be solved

for problems with more than 150 observations via (1).

As Figure 2 depicts, a problem with 4 inputs and more than 100 observations cannot be solved via

(1), while it is solved in a relatively short time via (4) and (6). For example, a problem with 700

observations is solved in around four minutes via (4) and in around eleven minutes via (6). The

solution times are presented in Table 1. Both (4) and (6) solve larger problems in a manageable time.

As we expected from the discussion in sub-section 2.4, the dual problem is solved significantly faster.

Table 1. The solution times in seconds for dual of PMCLS (D. PMCLS), PMCLS and MCLS. The

standard deviations are in parenthesis. Maximum running time of solver is one hour.

Inputs 2 3 4 5 6 7 8

Obs.

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

50 0.1 0.3 9.1 0.2 0.5 9.2 0.5 0.7 9.4 0.5 0.8 10.5 0.6 0.9 11.0 0.6 1.2 13.2 0.6 1.3 15.0

(0) (0.1) (1.6) (0.1) (0.3) (1.6) (0.2) (0.4) (0.6) (0.3) (0.4) (2.6) (0.2) (0.4) (3.5) (0.3) (0.4) (2.9) (0.2) (0.2) (2.7)

100 0.7 1.1 1.6 0.7 1.4 704.4 0.9 2.2 707.9 1.0 3.0 958.8 1.1 3.1 1163.0 1.1 4.4 1.5 6.1
(0.1) (0.1) (0.5) (0.2) (0.6) (45.4) (0.4) (1.1) (49) (0.7) (1.6) (66.7) (0.5) (0.8) (94.9) (0.5) (1.6) (0.6) (1.5)

150 1.5 2.8 3.0 1.6 3.9 1928.4 2.0 8.0 2245.6 3.9 9.0 4.0 11.9 5.4 14.1 5.7 18.8

(0.3) (0.7) (0.7) (0.9) (1) (96.4) (0.5) (2.5) (113.4) (1.8) (3) (1.4) (2.8) (2.5) (2.8) (1.2) (2.7)

200 2.3 7.4 8.2 2.9 11.7 3532.5 4.4 15.4 5.1 16.1 8.4 26.8 8.9 33.1 10.5 48.6

(1.1) (1.5) (0.9) (1.3) (1.7) (187.6) (0.8) (2.2) (1.8) (3.4) (3.1) (5.1) (2.2) (3.8) (3.4) (5.4)

250 4.3 15.2 21.1 5.4 23.3 8.9 28.5 12.8 39.2 13.8 52.9 15.7 65.5 17.4 98.2
(1.1) (3.4) (6.7) (2.1) (2.1) (1.2) (7.9) (2.8) (7.2) (8) (8.4) (5.1) (4.6) (4.1) (8.3)

300 9.2 25.1 32.5 10.5 36.0 14.8 52.0 15.6 57.6 21.0 91.2 29.7 141.5 29.8 202.3
(2.5) (5.8) (6.9) (1.7) (9.5) (3.1) (4.9) (4.7) (9.3) (3) (10.9) (7.4) (14.1) (9.8) (15.5)

350 16.2 39.9 55.1 19.1 53.9 20.8 67.3 30.0 107.9 44.5 175.9 56.9 210.5 56.4 293.6

(3.1) (6.4) (1.1) (5.2) (13.7) (3) (5.5) (11.3) (18.5) (14.7) (5.9) (14.9) (10.9) (13.8) (15.6)

400 23.5 54.6 94.5 31.2 96.8 33.0 119.7 48.1 182.4 65.5 257.3 77.9 353.9 104.7 472.7

(3.7) (5.6) (8.5) (3.1) (12.2) (5.2) (31.7) (6.1) (19) (20.5) (28.5) (23.8) (41.5) (26.9) (33.7)

450 32.8 90.1 157.9 48.1 134.1 56.5 172.2 64.8 277.8 83.2 356.9 83.2 464.8 120.3 678.8
(4.8) (11.9) (8.9) (4.4) (10.3) (7.9) (25) (9.5) (26.2) (8) (31.3) (0.8) (38.9) (28.5) (83)

500 49.1 141.1 251.6 60.0 206.9 75.3 238.3 105.2 339.0 120.9 466.4 139.7 684.9 179.9 781.6

(5.4) (13.2) (17.2) (7.8) (33.2) (11.8) (19.2) (14.1) (47.8) (14) (26.2) (16.5) (50.9) (67.8) (3.3)

550 75.8 203.8 365.4 81.1 270.2 109.7 343.6 132.4 502.2 195.0 626.2 194.4 949.8 256.4 981.4

(4) (31.6) (20.6) (11.1) (41.9) (13.2) (19.4) (11.2) (66.7) (62.9) (55.6) (13.8) (83.7) (87.4) (125.4)

600 88.3 244.8 479.6 122.6 338.9 154.2 450.7 183.4 627.3 244.8 1021.5 330.0 1114.1 422.2 1629.0
(22.8) (30) (39.9) (13.6) (10.7) (23.9) (74.5) (52.2) (50) (7.9) (96.9) (97.5) (96.4) (147.6) (217.9)

650 123.7 341.4 665.8 143.3 466.1 187.0 550.1 226.4 727.7 339.1 1132.4 447.5 1372.9 485.1 1990.8

(25.4) (46.3) (28.4) (16.4) (13) (39.5) (66.1) (12.8) (22.2) (93.9) (43.3) (87.2) (373.3) (99.6) (290.6)

700 144.2 402.0 867.0 220.6 550.9 245.7 650.5 316.9 948.2 412.2 1368.0 571.1 1586.6 629.1 2757.3

(12.1) (38.3) (51.1) (12.9) (25.9) (22.4) (94.6) (42.6) (91.9) (45.9) (85.4) (41.4) (677) (10.6) (323.8)

The accuracy of the solutions is assessed by the AMSE statistic and 𝑅𝑎𝑢𝑔
2 on Table 2. The results

indicate that the methods have similar performances, while dual of PMCLS performs slightly better.

The value of 𝑅𝑎𝑢𝑔
2 for the dual of PMCLS and PMCLS in all scenarios is less than 10−7. Therefore,

PMCLS and its dual obtain the optimal solution to MCLS in a reasonably shorter time. The dual

problem is solved significantly faster than PMCLS, and its performance with regard to the AMSE

statistic is slightly better, therefore the dual of PMCLS is the preferred formulation for solving a

monotonic concave least squares problem.

Table 2. AMSE of the three formulations. The value of 𝑹𝒂𝒖𝒈
𝟐 for D.PMCLS and PMCLS in all

scenarios is less than 𝟏𝟎−𝟕.

Inputs 2 3 4 5 6 7 8

Obs.

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

D
.

P
M

C
L

S

P
M

C
L

S

M
C

L
S

50 8.78 8.79 8.79 7.68 7.71 7.72 7.19 7.19 7.19 6.18 6.23 6.23 6.19 6.21 6.22 5.95 6.00 6.00 7.27 7.30 7.30

100 9.55 9.55 9.62 8.44 8.45 8.45 8.31 8.31 8.31 7.22 7.22 7.23 7.08 7.12 7.14 7.58 7.60 6.82 6.83

150 9.99 9.99 9.99 8.60 8.60 8.60 8.69 8.69 8.70 7.48 7.49 7.87 7.90 7.88 7.92 7.27 7.31

200 9.47 9.48 9.48 9.20 9.20 9.20 8.70 8.71 8.25 8.26 7.81 7.83 8.01 8.06 7.94 7.96

250 9.42 9.43 9.43 9.03 9.03 8.99 9.00 8.43 8.47 8.24 8.27 8.43 8.44 7.72 7.74

300 9.38 9.39 9.39 9.72 9.73 8.97 8.97 8.51 8.52 8.36 8.39 8.58 8.61 8.73 8.76

350 9.79 9.80 9.80 9.59 9.61 9.15 9.16 8.71 8.74 8.86 8.88 8.87 8.89 8.30 8.33

400 9.35 9.37 9.36 9.47 9.48 9.41 9.42 9.07 9.10 8.91 8.95 8.60 8.63 8.17 8.23

450 9.81 9.83 9.82 9.45 9.46 9.17 9.19 8.78 8.80 8.94 8.97 8.75 8.76 8.46 8.49

500 9.51 9.52 9.52 9.62 9.62 9.30 9.32 8.99 9.01 8.47 8.49 8.61 8.64 8.76 8.77

550 9.98 9.99 9.99 9.43 9.44 9.28 9.29 8.72 8.76 9.03 9.05 8.76 8.81 8.76 8.78

600 10.06 10.07 10.07 9.78 9.80 9.39 9.41 9.16 9.17 9.02 9.05 8.77 8.81 8.85 8.89

650 9.84 9.85 9.84 9.68 9.69 9.48 9.50 9.02 9.05 9.14 9.17 8.85 8.89 8.81 8.87

700 9.77 9.77 9.77 9.45 9.47 9.20 9.23 9.01 9.04 8.94 8.98 8.96 9.07 9.96 10.00

Combining the results of the experiment together, we conclude that PMCLS and its dual are

computationally more efficient than the original formulation of the problem, and the dual of PMCLS

has the best performance in running times.

Furthermore, the performance of the methods is tested on large problems by simulating scenarios

with thousands of observations. The starting number of observations is 1000 with increment of 500,

and the maximum running time is five hours for every simulation. Every scenario is simulated 5

times. The results are reported in Table 3. The largest problem that is solved via problem (6) has 2500

observations. The average solution time of the dual of PMCLS for problems with 2500 observations

is around 187 minutes. The largest problem that problem (4) solved has 2000 observation and the

average solution time is 264 minutes. The maximum 𝑅𝑎𝑢𝑔
2 in all scenarios is 10−4. The original

formulation (problem 1) cannot solve any of the large problems in the time limit.

Table 3. The solution times in seconds for problems with more than 1000 observations.

 D. PMCLS PMCLS MCLS

1000 914 2204 -

 (143) (301)

1500 2966 8284 -

 (423) (792)

2000 7258 15856 -

 (1226) (1785)

2500 11259 - -

 (1988)

By using penalized MCLS and its dual multivariate concave and convex least squares functions

can be estimated for problems with several thousands of observations. As we discussed in the

introduction section, the computation time is one of the major difficulties in using shape restricted

least squares, which can be effectively eliminated by using problems (4) and (6).

4. Empirical study

The computation advantages of problem (6) over problem (1) is used in this section to analyze the

room rates of a sample of hotels. The data consists of the average room rates and 12 hotel attributes

of 126 hotels with minimum star rating of 2 in Finland. The data set is collected from Expedia.com

in January 2016. The conventional approach to explain the price based on the attributes of the hotel

is to use the hedonic pricing analysis (see for example Chen & Rothschild, 2010; Espinet, Saez,

Coenders, & Fluvia, 2003; Rigall-I-Torrent & Fluvià, 2011; Semere, 2014; Thrane, 2007). In this

section, we first show that a monotonic concave function generates a better fit than a linear function.

This is not however a surprise because set ℱ includes linear functions and a linear hedonic function

is a restricted case of a piecewise linear function. Secondly, we estimate an efficient frontier that

shows the maximum of room rate for every hotel if their pricing strategy is efficient in comparison

with the hotels in the sample. Hotel attributes are explained in Table 4. The selection of attributes is

based on similar researches.

Table 4. Descriptions of attributes for the hotels in the sample (𝒏 = 𝟏𝟐𝟔).

Attribute Description Mean Std. Dev.

Average rate Average room rate, logged 5.14 0.38

Rooms Number of rooms 162.33 96.24

Stars Star rating of hotel 3.64 0.64

Distance Distance to central railway station (KM) 2.53 3.69

Chain Hotel is associated with a chain (binary) 0.75 0.44

Breakfast Free breakfast is included (binary) 0.56 0.5

Business Business facilities, such as meeting rooms, are available (binary) 0.65 0.48

Fitness Fitness facilities is present at hotel (binary) 0.66 0.48

Parking Free parking is included (binary) 0.21 0.41

Hair dryer Hair dryer is present at hotel (binary) 0.75 0.44

Pool Pool is present at hotel (binary) 0.45 0.5

Sauna Sauna is present at hotel (binary) 0.82 0.39

Spa Spa is present as hotel (binary) 0.87 0.34

Let 𝐑𝑖 be a 𝑚 vector of attributes of hotel 𝑖, 𝑝(𝐑𝑖) be the room rate, and 𝑦𝑖 be the logarithm of the

average room rate. The natural logarithm of the average room rates are used to maintain a more nearly

linear function (Gelman & Hill, 2007). Thus 𝑦𝑖 = 𝑝(𝐑𝑖) + 𝜀𝑖 where 𝜀𝑖 is an error term. While the

dual of PMCLS (problem 6) obtains the optimal solution in around 2 seconds, problem (1) cannot be

solved for this sample of hotels within a one-hour limit (𝑛 = 126, 𝑚 = 12).

The linear hedonic function is also estimated and the 𝑅2 coefficients of both models are reported

in Table 5. As it is shown, the estimated monotonic concave function generates a better fit. The 𝑅2

of MCLS is 66% which is 1.8 times of 𝑅2 of a linear function. Therefore, it is concluded that a

monotonic piecewise linear function explains more of the variations of the room rates. However,

problem (1) cannot be practically used to estimate such a piecewise linear function due to the lack of

memory in the computer and to the lengthy solution times.

Table 5. The coefficients of determination of the estimated linear and monotonic piecewise linear

functions

Function Linear Monotonic piecewise linear

𝑅2 36% 66%

Let 𝑝̂(𝐑𝑖) be the estimated price for hotel 𝑖 via problem (6). The variation of 𝑦𝑖 from 𝑝̂(𝐑𝑖) may

be either due to the performance of the pricing strategy of the hotel or it may be because of a random

noise. The method of StoNED provides a basis to estimate the performance of the pricing strategy of

the hotel. This method is well studied in several publications, for example see Keshvari and

Kuosmanen, (2013) and Kuosmanen and Kortelainen (2012). By using StoNED, the error term (𝜀) is

decomposed into a noise part (𝑣) and an asymmetric inefficiency part (𝑢 > 0) such that 𝜀𝑖 = 𝑢𝑖 −

𝑣𝑖. The inefficiency term 𝑢𝑖 is assumed to be half-normally distributed with the variance 𝜎𝑢
2, and the

noise term 𝑣𝑖 is assumed to be normally distributed with the zero mean and the variance 𝜎𝑣
2. By using

the method of moments the standard deviation of the inefficiency term is estimated as 𝜎̂𝑢 =

√𝑀̂3 [√2 𝜋⁄ (4 𝜋⁄ − 1)]⁄
3

 where 𝑀̂3 = ∑ 𝜀𝑖
3𝑛

𝑖=1 𝑛⁄ is the estimated third central moment of 𝜀. The

expected room rate in then estimated by 𝑦̂𝑖 = 𝑝̂(𝐑𝑖) + 𝜎̂𝑢√2 𝜋⁄ . The difference between the room

rate and the estimated room rate via StoNED shows the amount by which the hotel can adjust the

room rate to be efficient in the sample.

Figure 3 shows histogram of the estimated adjustments of room rate, i.e. 𝑦𝑖 − 𝑦̂𝑖. According to this

figure, 45 hotels have a negative adjustment value, which means that based on this sample of hotels,

there are some potentials for them to increase their room rate. Most of these hotels (34) may increase

the prices by up to 50 euros, and two of the hotels have the adjustment value of 150 euros. On the

other hand, there are 14 hotels with a positive adjustment value. It is suggested that 9 hotels decrease

the prices by up to 50 euros and there are also some hotels that may decrease their room rates by up

to 250 or 300 euros. This analysis of the room rate is based on the frontier analysis and further research

is required to investigate and analyze the drivers of the room rates of the hotels in the sample.

However, as Table 5 shows, this method gives a better fit than a traditional hedonic pricing analysis

which is currently the main method for explaining the relations between the room rate and hotel

attributes.

Figure 3. Histogram of the room rates and the estimated room rates.

5. Conclusions

In this paper, we proposed an alternative formulation for concave and convex regression via least

squares. Despite the interesting properties and wide range of applications of such estimators, solving

the problem is very time consuming. One major source of complexity is the number of constraints in

the QP problems. In our proposal, we reformulate the problem as a non-negative unconstrained QP.

This problem can be solved by using available QP solvers. The numerical tests show that our

penalized monotonic concave regression and its dual perform significantly better than the original

problem. To analyze the pricing strategies of a sample of 126 hotels in Finland, we estimate a

piecewise linear concave function. While this problem cannot be solved via the original formulation

of MCLS in one hour, it is solved in around two seconds via the dual of PMCLS. The results show

that MCLS is a better fit than a linear function. The Matlab and R codes for solving the reformulated

problems are also provided in this paper.

Acknowledgements

The author would like to thank Professor Timo Kuosmanen (Aalto University) and Professor Andrew

L. Johnson (Texas A&M University) for the helpful discussions and comments.

References

Aït-Sahalia, Y., & Duarte, J. (2003). Nonparametric option pricing under shape restrictions. Journal

of Econometrics (Vol. 116).

Andor, M., & Hesse, F. (2014). The StoNED age: The departure into a new era of efficiency analysis?

A monte carlo comparison of StoNED and the “oldies” (SFA and DEA). Journal of Productivity

Analysis, 41, 85–109.

Badinelli, R. D. (1986). Optimal safety stock investment through subjective evaluation of stockout

costs. Decision Sciences, 17(3), 312–328.

Birke, M., & Dette, H. (2007). Estimating a convex function in nonparametric regression.

Scandinavian Journal of Statistics, 34, 384–404.

Chen, C. F., & Rothschild, R. (2010). An application of hedonic pricing analysis to the case of hotel

rooms in Taipei. Tourism Economics, 16(3), 685–694.

Cheng, X., Bjørndal, E., & Bjørndal, M. (2014). Cost Efficiency Analysis based on The DEA and

StoNED Models : Case of Norwegian Electricity Distribution Companies. European Energy

Market (EEM), 11th International Conference IEEE, 1–6.

Corazza, M., Fasano, G., & Gusso, R. (2013). Particle Swarm Optimization with non-smooth penalty

reformulation, for a complex portfolio selection problem. Applied Mathematics and

Computation, 224, 611–624.

D’Halluin, Y., Forsyth, P. A., & Labahn, G. (2004). A penalty method for American options with

jump diffusion processes. Numerische Mathematik, 97(2), 321–352.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1959). On a linear-programming, combinatorial

approach to the traveling-salesman problem. Operations Research, 7(1), 58–66.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a Large-Scale Traveling Salesman

Problem. Journal of the Operations Research Society of America, 393–403.

Di Pillo, G., & Grippo, L. (1989). Exact Penalty Functions in Constrained Optimization. SIAM

Journal on Control and Optimization, 27(6), 1333–1360.

Dykstra, R. L. (1983). An Algorithm for Restricted Least Squares Regression. Journal of the

American Statistical Association, 78(384), 837–842.

Dykstra, R. L., & Robertson, T. (1982). An algorithm for isotonic regression for two or more

independent variables. The Annals of Statistics, 10(3), 708–716.

Eskelinen, J., & Kuosmanen, T. (2013). Intertemporal efficiency analysis of sales teams of a bank:

Stochastic semi-nonparametric approach. Journal of Banking & Finance, 37(12), 5163–5175.

Espinet, J. M., Saez, M., Coenders, G., & Fluvia, M. (2003). Effect on prices of the attributes of

holiday hotels: A hedonic prices approach. Tourism Economics, 9(2), 165–177.

Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: sequential unconstrained

minimization techniques. Classics in Applied Mathematics (Vol. 4). Philadelphia, PA: SIAM.

Fraser, D. A., & Massam, H. (1989). A mixed primal-dual bases algorithm for regression under

inequality constraints. Application to concave regression. Scandinavian Journal of Statistics,

65–74.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.

New York: Cambridge University Press: Cambridge.

Goldman, S. M., & Ruud, P. a. (1993). Nonparametric Multivariate Regression Subject to Constraint,

1–16.

Groeneboom, P., Jongbloed, G., & Wellner, J. a. (2001). Estimation of a convex function:

Characterizations and asymptotic theory. Annals of Statistics, 29(6), 1653–1698.

Hannah, L. A., & Dunson, D. B. (2013). Multivariate convex regression with adaptive partitioning.

The Journal of Machine Learning Research, 14, 3261–3294.

Hanson, D., & Pledger, G. (1976). Consistency in concave regression. The Annals of Statistics, 4(6),

1038–1050.

Hildreth, C. (1954). Point estimates of ordinates of concave functions. Journal of the American

Statistical Association, 49(267), 598–619.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal

Problems. Technometrics, 12(1), 55–67.

Holloway, C. A. (1979). On the estimation of convex functions. Operations Research, 27(2), 401–

407.

Hu, X. M., & Ralph, D. (2004). Convergence of a penalty method for mathematical programming

with complementarity constraints. Journal of Optimization Theory and Applications, 123(2),

365–390.

Keshvari, A., & Kuosmanen, T. (2013). Stochastic non-convex envelopment of data: Applying

isotonic regression to frontier estimation. European Journal of Operational Research, 231(2),

481–491.

Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares.

Econometrics Journal, 11(2), 308–325.

Kuosmanen, T. (2011). Cost efficiency analysis of electricity distribution networks: Application of

the StoNED method in the Finnish regulatory model.

Kuosmanen, T. (2012). Stochastic semi-nonparametric frontier estimation of electricity distribution

networks: Application of the StoNED method in the Finnish regulatory model. Energy

Economics, 34(6), 2189–2199.

Kuosmanen, T., & Kortelainen, M. (2012). Stochastic non-smooth envelopment of data: semi-

parametric frontier estimation subject to shape constraints. Journal of Productivity Analysis,

38(1), 11–28.

Lee, C. Y., Johnson, A. L., Moreno-Centeno, E., & Kuosmanen, T. (2013). A more efficient algorithm

for Convex Nonparametric Least Squares. European Journal of Operational Research, 227(2),

391–400.

Li, C., Yin, W., Jiang, H., & Zhang, Y. (2013). An efficient augmented Lagrangian method with

applications to total variation minimization. Computational Optimization and Applications,

56(3), 507–530.

Mammen, E. (1991). Nonparametric Regression Under Qualitative Smoothness Assumptions. The

Annals of Statistics, 19(2), 741–759.

Marcotte, P., & Zhu, D. L. (1996). Exact and inexact penalty methods for the generalized bilevel

programming problem. Mathematical Programming, 74, 141–157.

Meyer, M. C. (1999). An extension of the mixed primal–dual bases algorithm to the case of more

constraints than dimensions. Journal of Statistical Planning and Inference, 81, 13–31.

Meyer, M. C. (2003). A test for linear versus convex regression function using shape-restricted

regression. Biometrika, 90(1), 223–232.

Meyer, M. C. (2006). Consistency and power in tests with shape-restricted alternatives. Journal of

Statistical Planning and Inference, 136, 3931–3947.

Nemirovskii, A. S., Polyak, B. T., & Tsybakov, A. B. (1985). Convergence Rate of Nonparametric

Estimates of Maximum-Likelihood Type. Problems of Information Transmission, 21, 258–271.

Ray, S. C., Kumbhakar, S. C., & Dua, P. (Eds.). (2015). Benchmarking for Performance Evaluation.

Springer.

Rigall-I-Torrent, R., & Fluvià, M. (2011). Managing tourism products and destinations embedding

public good components: A hedonic approach. Tourism Management, 32(2), 244–255.

Seijo, E., & Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex

regression function. Annals of Statistics, 39(3), 1633–1657.

Semere, M. (2014). Determinants of Hotel Room Rates in Stockholm : A Hedonic Pricing Approach.

Södertörn University.

Thrane, C. (2007). Examining the Determinants of Room Rates for Hotels in Capital Cities: The Oslo

Experience. Journal of Revenue and Pricing Management, 5(4), 315–323.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1), 267–288.

Vanderbei, R. J. (2001). Linear Programming: Foundations and Extensions. Journal of the

Operational Research Society (Vol. 49).

Wang, Y., Wang, S., Dang, C., & Ge, W. (2014). Nonparametric quantile frontier estimation under

shape restriction. European Journal of Operational Research, 232(3), 671–678.

Varian, H. (1984). The nonparametric approach to production analysis. Econometrica: Journal of the

Econometric Society.

Varian, H. R. (1982). The nonparametric approach to demand analysis. Econometrica, 50(4), 945–

973.

Zhou, H., & Lange, K. (2013). A Path Algorithm for Constrained Estimation. Journal of

Computational and Graphical Statistics, 22(2), 261–283.

Appendix 1. Developing matrix form of MCLS

Note that problem (2) has 𝑛2 − 𝑛 constraints. By adding the condition ∑ 𝜀𝑖
𝑛
𝑖=1 = 0 to problem (2) and

repeating it 𝑛 times, there are 𝑛2 constraints. The condition ∑ 𝜀𝑖
𝑛
𝑖=1 = 0 is one of the finite sample

properties of shape restricted regression estimator (see for example Seijo & Sen, 2011). Here we

present an alternative proof to this property in Proposition 1.

Proposition 1: In the optimal solution to problem (1), the sum of residuals is zero.

Proof. See the Appendix 2.

Having this property, we categorize the constraints in (2) into 𝑛 blocks as follows:

Block 𝑖 (𝑖 = 1, … , 𝑛):

𝑦𝑗 − 𝑦𝑖 = 𝜀𝑗 − 𝜀𝑖 + (𝒙𝑗 − 𝒙𝑖)𝜷𝑗 + 𝑠𝑖𝑗, 𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑖,

∑ 𝜀𝑖
𝑛
𝑖=1 = 0,

where ∑ 𝜀𝑖
𝑛
𝑖=1 = 0 is appended to all blocks such that there are 𝑛 constraints in every block. Here,

our aim is to develop the matrix form of block 𝑖. To accomplish this purpose we use the following

auxiliary matrices:

𝟎𝑐×𝑑 = matrix of zeros of size 𝑐 × 𝑑,

𝟏𝑐×1 = vector of ones of size 𝑐,

𝟏 = matrix of ones of size 𝑛 × 𝑛,

𝐈 = the identity matrix of size 𝑛,

𝐄𝑖 = [𝟎𝑛×(𝑖−1) 𝟏𝑛×1 𝟎𝑛×(𝑛−𝑖)] ,

𝐀𝑖 = 𝐈 − 𝐄𝑖 + 𝐄𝑖
′,

𝓧𝑖 = (𝐝1, … , 𝐝𝑚, 𝟎𝑛×𝑛(𝑖−1), 𝐈, 𝟎𝑛×𝑛(𝑛−𝑖)),

𝐝𝑝 = 𝑑𝑖𝑎𝑔(𝐱𝑝) − 𝑥𝑖𝑝𝐈 , 𝑝 = 1, … , 𝑚,

where 𝑑𝑖𝑎𝑔(𝒙𝑝) refers to the diagonal matrix of vector 𝒙𝑝. 𝓧𝑖 is a sparse matrix of data, which is

made of 𝑚 + 𝑛 sub-matrices. The first 𝑚 sub-matrices (𝐝𝑝) are diagonal matrices. The next 𝑛 sub-

matrices of 𝓧𝑖 consist of 𝑛 − 1 zero matrices and one identity matrix. The identity matrix is placed

such that 𝓧𝑖𝛙 = ∑ (𝑑𝑖𝑎𝑔(𝒙𝑝) − 𝑥𝑖𝑝𝐈)𝛃𝑝𝑚
𝑝=1 + 𝐬𝑖.

With the help of the auxiliary matrices, the 𝑖-th block of matrices is written as

(𝐈 − 𝐄𝑖)𝐲 = 𝐀𝑖𝛆 + 𝓧𝑖𝛙, (A1)

where 𝛆 = (𝜀1, 𝜀2, … , 𝜀𝑛)′. Consider that constraint ∑ 𝜀𝑖
𝑛
𝑖=1 = 0 is placed as the 𝑖-th equality in (A1).

By using equation (A1), problem (2) is written as {min
𝛆,𝛙

1

2
𝛆′𝛆 𝑠. 𝑡. (𝐈 − 𝐄𝑖)𝐲 = 𝐀𝑖𝛆 + 𝓧𝑖𝛙 , 𝑖 =

1, … , 𝑛, 𝛙 ≥ 𝟎}. Building the matrices 𝐐, 𝐕, and the vector 𝐜 are heavily based on the auxiliary

matrices. To simplify the calculations, we summarize the necessary operations in the following

proposition.

Proposition 2. Matrix 𝐀𝑖 is invertible. Moreover, the following properties hold for the auxiliary

matrices:

a) 𝐀𝑖
−1 = 𝐈 −

1

𝑛
𝟏 +

2

𝑛
𝐄𝑖 − 𝐞𝑖𝑖,

b) 𝐀𝑖
−1(𝐈 − 𝐄𝑖) = 𝐈 −

1

n
𝟏,

c) 𝐀𝑖
−1′𝐀𝑖

−1 = 𝐈 −
1

𝑛
𝟏 +

1

𝑛
(𝐄𝑖 + 𝐄𝑖

′) − 𝐞𝑖𝑖,

d) 𝐀1𝐀𝑖
−1 = 𝐈 − 𝐄1 − 𝐞𝑖𝑖 + 𝐞1𝑖 ,

e) (𝐈 −
1

𝑛
𝟏) 𝐀1

−1 = 𝐈 −
1

𝑛
𝟏 +

1

𝑛
𝐄1 − 𝐞11,

where 𝐞𝑖𝑗 is an 𝑛 × 𝑛 matrix whose (𝑖, 𝑗) element is 1 and other elements are zero.

Proof. See the Appendix 2.

Proposition 2 proves that matrix 𝐀𝑖 is invertible. Hence, we calculate the closed form definition

of the error vector 𝛆 as the following:

𝛆 = −𝐀𝑖
−1 𝓧𝑖𝛙 + (𝐈 −

1

n
𝟏) 𝐲, 𝑖 = 1, … , 𝑛. (A2)

To estimate the residuals we use the first block of equation (A2), i.e. 𝑖 = 1, but this choice is arbitrary

and any of the blocks may be used. Equation (A2) is used in theorems 1 and 2 to obtain the penalty

term.

Note that matrices 𝐀1
−1′𝐀1

−1, 𝐀1𝐀𝑖
−1 and (𝐈 −

1

𝑛
𝟏) 𝐀1

−1 that are used in the calculations of the

penalized problem, have closed form definitions in Proposition 2. These matrices depend only to the

number of observations and not to the problem data. Hence, we may compute them prior to solve the

problem. Such matrices may be used to enhance the speed of computations in large-scale problems.

Appendix 2. Proofs and algebraic computations

Proposition 1: In the optimal solution to problem (1), the sum of residuals is zero.

Proof. To prove this proposition we use the optimality conditions of problem (1) based on the

Karush–Kuhn–Tucker (KKT) conditions. Suppose (𝜀𝑖
∗, 𝛼𝑖

∗, 𝛃𝑖
∗), 𝑖 = 1, … , 𝑛 is a global minimizer of

problem (1). Hence, there exist parameters 𝜆𝑖, 𝜇𝑖𝑗, 𝛄𝑖 = (𝛾𝑖1, … , 𝛾𝑖𝑚)′ (𝑖, 𝑗 = 1, … , 𝑛) that satisfy the

following conditions:

KKT conditions for the CLS problem

−2𝜀𝑖 = 𝜆𝑖 , 𝑖 = 1, … , 𝑛, (A3)

𝜆𝑖 + ∑ 𝜇𝑖𝑗
𝑛
𝑗=1 − ∑ 𝜇𝑗𝑖

𝑛
𝑗=1 = 0, 𝑖 = 1, … , 𝑛, (A4)

𝐱𝑖
′𝜆𝑖 + ∑ 𝐱𝑖′𝜇𝑖𝑗

𝑛
𝑗=1 − ∑ 𝐱𝑖′𝜇𝑗𝑖

𝑛
𝑗=1 + 𝛄𝑖 = 0, 𝑖 = 1, … , 𝑛,

 𝛄𝑖
′𝛃𝑖 = 0, 𝑖 = 1, … , 𝑛,

𝜇𝑖𝑗(𝛼𝑖 + 𝐱𝑖𝛃𝑖 − 𝛼𝑗 − 𝐱𝑖𝛃𝑗) = 0, 𝑖, 𝑗 = 1, … , 𝑛,

𝛄𝑖 ≥ 𝟎, 𝜇𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, … , 𝑛,

𝑦𝑖 = 𝛼𝑖 + 𝐱𝑖𝛃𝑖
′ + 𝜀𝑖, 𝑖 = 1, … 𝑛,

𝛼𝑖 + 𝐱𝑖𝛃𝑖
′ ≤ 𝛼𝑗 + 𝐱𝑖𝛃𝑗

′ , 𝑖, 𝑗 = 1, … , 𝑛,

𝛃𝑖 ≥ 𝟎, 𝑖 = 1, … , 𝑛,

where 𝜆𝑖 and 𝜇𝑖𝑗 are Lagrange multipliers of the first and the second constraints of the CLS problem,

respectively, and 𝛄𝑖 is the vector of Lagrange multipliers of the nonnegativity constraints.

Among all the conditions above, we need (A3) and (A4). Consider that ∑ ∑ 𝜇𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 =

∑ ∑ 𝜇𝑗𝑖
𝑛
𝑗=1

𝑛
𝑖=1 . Hence, we have ∑ 𝜆𝑖

𝑛
𝑖=1 = 0 from condition (A4). Consequently, there is ∑ 𝜀𝑖

𝑛
𝑖=1 = 0

from condition (A3). ■

Proposition 2. Matrix 𝐀𝑖 is invertible. Moreover, the following properties hold for the auxiliary

matrices in (6):

a) 𝐀𝑖
−1 = 𝐈 −

1

𝑛
𝟏 +

2

𝑛
𝐄𝑖 − 𝐞𝑖𝑖,

b) 𝐀𝑖
−1(𝐈 − 𝐄𝑖) = 𝐈 −

1

n
𝟏,

c) 𝐀𝑖
−1′𝐀𝑖

−1 = 𝐈 −
1

𝑛
𝟏 +

1

𝑛
(𝐄𝑖 + 𝐄𝑖

′) − 𝐞𝑖𝑖,

d) 𝐀1𝐀𝑖
−1 = 𝐈 − 𝐄1 − 𝐞𝑖𝑖 + 𝐞1𝑖 ,

e) (𝐈 −
1

𝑛
𝟏) 𝐀1

−1 = 𝐈 −
1

𝑛
𝟏 +

1

𝑛
𝐄1 − 𝐞11,

where 𝒆𝑖𝑗 is an 𝑛 × 𝑛 matrix which its (𝑖, 𝑗) element is 1 and other elements are zero.

Proof.

First, we show 𝐀𝑖 is positive definite, and hence it is invertible. Let 𝐪 be a nonzero vector of size 𝑛.

There is 𝐪′𝐀𝑖𝐪 = 𝐪′(𝐈 − 𝐄𝑖 + 𝐄𝑖
′)𝐪 = 𝐪′𝐪 > 0.

To prove the other statements, we use the following equalities:

𝟏𝐄𝑖 = 𝑛𝐄𝑖, 𝟏𝐄𝑖
′ = 𝟏, 𝟏𝐞𝑖𝑖 = 𝐄𝑖, 𝟏𝟏 = 𝑛𝟏, 𝐄𝑖𝐄𝑖 = 𝐄𝑖, 𝐄𝑖𝐄𝑖

′ = 𝟏, 𝐄𝑖
′𝐄𝑖 = 𝑛𝐞𝑖𝑖, 𝐞𝑖𝑖𝐄𝑖 = 𝐞𝑖𝑖, 𝐄𝑖𝐞𝑖𝑖 =

𝐄𝑖, 𝐞𝑖𝑖𝐞𝑖𝑖 = 𝐞𝑖𝑖,

and for 2 ≤ 𝑖 ≤ 𝑛: 𝐄1𝐄𝑖 = 𝐄𝑖, 𝐄𝑖
′𝐄1 = 𝑛𝐞𝑖1, 𝐄1𝐞𝑖𝑖 = 𝟎, 𝐄1

′ 𝐞𝑖𝑖 = 𝐞1𝑖.■

Theorem 1. 𝛆′𝛆 = 𝛙′𝓧1
′ 𝐀1

−1′𝐀1
−1𝓧1𝛙 − 2𝐲′ (𝐈 −

1

𝑛
𝟏) 𝐀1

−1𝓧1𝛙 + 𝐲′ (𝐈 −
1

𝑛
𝟏) 𝐲

Proof.

By using equation (6), the proof is straightforward. ■

Theorem 2. ∑ ∑ (𝜀𝑗 − 𝜀𝑖 + (𝐱𝑗 − 𝐱𝑖)𝛃𝑗
′ + 𝑠𝑖𝑗 − (𝑦𝑗 − 𝑦𝑖))

2
𝑛
𝑗=1

𝑛
𝑖=1 =

𝛙′(∑ (𝓧1 − 𝐀1𝐀𝑖
−1 𝓧𝑖)′(𝓧1 − 𝐀1𝐀𝑖

−1 𝓧𝑖)𝑛
𝑖=2)𝛙.

Proof.

The error is calculated by equation (3) for all blocks of constraints. To satisfy the constraints, we

calculate the error vector for block 𝑖 (𝑖 ≥ 2) by equation (3) and use it in block 1 (𝑖 = 1) by equation

(A1). Therefore, the following equation must hold for 𝑖 = 2, … , 𝑛:

(𝓧1 − 𝐀1𝐀𝑖
−1 𝓧𝑖)𝛙 = (𝐈 − 𝐄1 − 𝐀1 (𝐈 −

1

n
𝟏)) 𝐲.

Using Proposition 2, there is 𝐀1
−1(𝐈 − 𝐄1) = 𝐈 −

1

n
𝟏. Hence, the right hand side of the above

equation is 𝐈 − 𝐄1 − 𝐀1𝐀1
−1(𝐈 − 𝐄1) = 𝟎. Using this result, we reframe the block of constraints (A1)

as (𝓧1 − 𝐀1𝐀𝑖
−1 𝓧𝑖)𝛙 = 𝟎. Note that the left hand side of this equation shows the violation, and the

penalty is defined as sum of the quadratic violations.■

Theorem 3. The following properties hold:

a) Problem (4) has an optimal solution for any given 𝑀 ≥ 0,

b) Let 𝛙∗ and 𝛙∗(𝑀) be the optimal solutions to problems (2) and (4), respectively. Then

𝛙∗(𝑀) → 𝛙∗ as 𝑀 → ∞.

Proof.

a) We show that matrix 𝐇 is positive semidefinite. Matrix 𝐐 can be written as 𝐐 = 2𝐓′𝐓, where 𝐓 =

𝐀1
−1𝓧1. Let 𝐪 be a nonzero vector of size 𝑛𝑚 + 𝑛2. Hence, 𝐪′𝐓′𝐓𝐪 ≥ 0, and therefore 𝐐 is positive

semidefinite. Similarly, matrix 𝐕 is positive semidefinite, and hence 𝐇 is positive semidefinite.

Therefore, for any 𝑀 > 0 problem (4) is convex and it has a global minimizer.

b) First, assume that 𝛙∗(𝑀) is a feasible solution to problem (2). This means that all the constraints

are satisfied and 𝛙∗′𝐕𝛙∗ = 0. In this case, the objective function of (4) is equal to the objective

function of (2) minus the scalar value of 𝛾. Therefore, the optimal solutions of (2) and (4) are the

same: 𝛙∗(𝑀) = 𝛙∗.

Now assume that 𝛙∗(𝑀) is outside of the feasible region of (2). Let {𝑀𝑘}, 𝑘 = 1, 2, … ,∞ be an

increasing sequence of nonnegative numbers, and let us use a more simple notation for the optimal

solution of (4) as 𝛙(𝑘) = 𝛙∗(𝑀𝑘). Optimality of 𝛙(𝑘+1) and 𝛙(𝑘) implies that:

1

2
𝛙(𝑘)′(𝐐 + 𝑀𝑘𝐕)𝛙(𝑘) + 𝐜𝛙(𝑘) ≤

1

2
𝛙(𝑘+1)′(𝐐 + 𝑀𝑘𝐕)𝛙(𝑘+1) + 𝐜𝛙(𝑘+1),

1

2
𝛙(𝑘+1)′(𝐐 + 𝑀𝑘+1𝐕)𝛙(𝑘+1) + 𝐜𝛙(𝑘+1) ≤

1

2
𝛙(𝑘)′(𝐐 + 𝑀𝑘+1𝐕)𝛙(𝑘) + 𝐜𝛙(𝑘).

By adding these two inequalities and rearranging the terms, we have

(𝑀𝑘+1 − 𝑀𝑘)(𝛙(𝑘+1)′𝐕𝛙(𝑘+1) − 𝛙(𝑘)′𝐕𝛙(𝑘)) ≤ 0,

As 𝑀𝑘+1 − 𝑀𝑘 ≥ 0, there is 0 ≤ 𝛙(𝑘+1)′𝐕𝛙(𝑘+1) ≤ 𝛙(𝑘)′𝐕𝛙(𝑘). Hence, 𝛙(𝑘)′𝐕𝛙(𝑘) → 0 as 𝑘 →

∞, which means that the value of penalty term at the optimal solution to (4) decreases if 𝑀 →∞.

Therefore for a large 𝑀, 𝛙∗(𝑀) is in a tight neighborhood of the feasible region of (2), and it gets

closer to the feasible region if the value of 𝑀 increases. As a result, 𝛙∗(𝑀) → 𝛙∗ as 𝑀 → ∞.■

Some discussions about big 𝑴

The penalty term in problem (4) is zero if the solution is feasible to problem (2). Therefore at any

step of the solving process, if a feasible solution is obtained then the penalty is zero and the magnitude

of 𝑀 is not important. However, there are some concerns for the value of 𝑀 in practice, which are

related to the numerical precisions of the solver and the computer. Solvers usually use two tolerance

thresholds for the numerical computations of a QP: optimality tolerance (OT), and feasibility

tolerance (FT). The precision (PT) of the computer is also important since it causes rounding biases.

A rule of thumb for the value of 𝑀 is explained here. Let 𝛙 be a solution to (4), and let 𝑓 be an

upper limit for
1

2
𝛙′𝐐𝛙 + 𝐜𝛙 and 𝑔 be the value of

1

2
𝑀2𝛙′𝐕𝛙. If there exists some violation then

there should be 𝑔 > |𝑓|. Let assume there is a small violation (𝛿 > 𝐹𝑇) in every constraint of (2).

Thus 𝑔 is approximated by 𝑛2𝑀2𝛿 2⁄ , and there is 𝑀 > √
2|𝑓|

𝑛2𝛿
 which approximates the lower bound

of 𝑀. The value of 𝑓 can be approximated from the objective value of a linear regression problem.

For example, assume 𝑛 = 100, 𝐹𝑇 = 10−8, 𝛿 = 10−5, and an approximation for 𝑓 is −103 (note

that optimal value of 𝑓 is negative). Using this role of thumb, there is 𝑀 ≅ 140.

In case an extremely big 𝑀 is used, at the optimal solution to (4) there is 𝛙∗′𝐕𝛙∗ ≅ 0 but the value

of
1

2
𝛙∗′𝑀2𝐕𝛙∗ may be still larger than

1

2
𝛙∗′𝐐𝛙∗ + 𝐜𝛙∗. If this case happens, the current solution

to (4) is thus hold the concavity condition. Therefore the estimated function is piecewise linear and

concave, which may be equivalent to a linear regression line, the average line (average of 𝑦 values),

or a piecewise linear function that is not necessarily the best fit.

Dual of penalized monotonic CLS

Let 𝛍 be the Lagrange multiplier of nonnegativity constraint in problem (4). We build the Lagrange

function 𝐿(𝛙, 𝛍) =
1

2
𝛙′𝐇𝛙 − (𝛍′ − 𝐜)𝛙 and minimize it in 𝛙. This is an unconstrained

optimization and the function is convex and differentiable, hence the minimum is given by ∇𝛙𝐿 = 0.

Therefore, 𝐇𝛙 = (𝛍 − 𝐜′) and 𝛙 = 𝐇−1(𝛍 − 𝐜′). By substituting 𝛙 into the Lagrange function, we

get the following dual function:

𝐿(𝛍) = −
1

2
(𝛍 − 𝐜′)′𝐇−1(𝛍 − 𝐜′),

and the dual problem is obtained by maximizing 𝐿 subject to nonnegative 𝛍. We perform the

following two steps to obtain dual of penalized monotonic CLS as presented in (6):

i. Define 𝐳 = 𝐇−1(𝛍 − 𝐜′), and obtain 𝛍 − 𝐜′ = 𝐇𝐳 . Hence, the dual problem is to

maximize −
1

2
𝐳′𝐇𝐳 subject to 𝐇𝐳 + 𝐜′ ≥ 𝟎,

ii. Use 𝐇 = 𝐅′𝐅 and define 𝐰 = 𝐅𝐳. Hence, the dual problem is to maximize −
1

2
𝐰′𝐰 subject

to 𝐅′𝐰 + 𝐜′ ≥ 0.

To obtain the dual of penalized CLS (8), consider that the Lagrange multipliers of the first 𝑚𝑛

elements of 𝛍 are free of sign.■

Appendix 3.

In this appendix we present two functions: Dual_PMCLS(x,y) and PMCLS(x,y), and one auxiliary

function to generate matrix 𝓧𝑖 (function make_X). To call the functions use the command as:

Matlab: [SSR,eps]=Dual_PMCLS(x,y), R: sol<-Dual_PMCLS(x,y)

where x is an 𝑛 × 𝑚 matrix of input values, y is a vector of outputs, SSR is the estimated SSR, and

eps is the error. The function make_X must be in the same folder as the main functions. In R, sol

is a list containing SSR and eps.

Part 1. Matlab codes

MATLAB code for dual of penalized MCLS
function [SSR,eps]=Dual_PMCLS(x,y)
%This function refers to dual of penalized monotonic CLS
%Please cite this paper if you use this function

n= size(x,1); m= size(x,2);
ai=sparse(eye(n));
E=@(i) sparse([zeros(n,(i-1)),ones(n,1),zeros(n,(n-i))]);
ei=@(i) sparse([zeros(n,(i-1)),ai(:,i),zeros(n,(n-i))]);
ei1=@(i) sparse([zeros((i-1),n);ai(1,:);zeros((n-i),n)]);
ainv=@(i) sparse(ai-(1/n)*ones(n)+(2/n)*E(i)-ei(i));%Inverse of matrix A(i)

X=@(i) make_X(i,m,n,x,ai,1);%We make matrix X via a separate function
Q=X(1)'*sparse((ai-(1/n)*ones(n)+(1/n)*(E(1)+E(1)')-ei(1)));
Q=Q*X(1);
C=-2*y'*(ai-(1/n)*ones(n)+(1/n)*E(1)-ei(1))*X(1);

%Building matrix F
r=cell(n,1);c=cell(n,1);v=cell(n,1);
for i=2:n
 [r{i},c{i},v{i}]=find(sparse((ai-E(1)+ei1(i)'-ei(i))*X(i)-X(1)));
 r{i}=(i-1)*n+r{i};
end;
r=cell2mat(r);
c=cell2mat(c);
v=cell2mat(v); v=round(v,8);
F=sparse(r,c,v,n^2,n^2+n*m);
H= sparse(1:n^2,1:n^2,ones(n^2,1),n^2 ,n^2);
F=100*F;
F(1:n,1:n*m+n^2)=sparse(sqrt(2)*(ainv(1)*X(1)));

% We use MOSEK to solve the problem. The reader may choose to use quadprog
% or other solvers instead.
param = [];
param.MSK_IPAR_LOG=0;
[res]=mskqpopt(H,zeros(n^2 ,1),F',[],C', [],[],param);

psi=-res.sol.itr.y;%Optimal values of psi variables
eps =sparse(eye(n)-(1/n)*ones(n,n))*y-ainv(1)*(X(1))*psi;
SSR=eps'*eps;
end

MATLAB code for penalized MCLS
function [SSR,eps]=PMCLS(x,y)
%This function refers to penalized monotonic CLS
%Please cite this paper if you use this function
n= size(x,1); m= size(x,2);
ai=sparse(eye(n));
E=@(i) sparse([zeros(n,(i-1)),ones(n,1),zeros(n,(n-i))]);
ei=@(i) sparse([zeros(n,(i-1)),ai(:,i),zeros(n,(n-i))]);
ei1=@(i) sparse([zeros((i-1),n);ai(1,:);zeros((n-i),n)]);
ainv=@(i) sparse(ai-(1/n)*ones(n)+(2/n)*E(i)-ei(i));%Inverse of matrix A(i)

X=@(i) make_X(i,m,n,x,ai,1);%We make matrix X via a separate function
Q=X(1)'*sparse((ai-(1/n)*ones(n)+(1/n)*(E(1)+E(1)')-ei(1)));
Q=Q*X(1);
C=-2*y'*(ai-(1/n)*ones(n)+(1/n)*E(1)-ei(1))*X(1);

%Building matrix F
r=cell(n,1);c=cell(n,1);v=cell(n,1);
for i=2:n
 [r{i},c{i},v{i}]=find(sparse((ai-E(1)+ei1(i)'-ei(i))*X(i)-X(1)));
 r{i}=(i-1)*n+r{i};
end;
r=cell2mat(r);
c=cell2mat(c);
v=cell2mat(v); v=round(v,8);
F=sparse(r,c,v,n^2,n^2+n*m);

V=F'*F;
H=2*Q+V*10000 ;H=round(H,8);

% We use MOSEK to solve the problem. The reader may choose to use quadprog
% or other solvers instead.
param = [];
param.MSK_IPAR_LOG=0;
[res]=mskqpopt(H,C',zeros(1,size(C,2)),[],[],zeros(size(C,2),1),[] ,param);

psi=res.sol.itr.xx;%Optimal values of psi variables
eps =sparse(eye(n)-(1/n)*ones(n,n))*y-ainv(1)*(X(1))*psi;
SSR=eps'*eps;
end

MATLAB code for making matrix 𝓧
function X=make_X(i,m,n,x,ai,slacks)
d=@(i,p) sparse(diag(x(:,p))-x(i,p)*ai);
r=cell(m);c=cell(m);v=cell(m);
for p=1:m
 [r{p},c{p},v{p}]=find(d(i,p));c{p}=c{p}+n*(p-1);
end;
r=cell2mat(r);c=cell2mat(c);v=cell2mat(v);
X=sparse(r,c,v,n,n*m);
if slacks==1
 r=1:n;
 c=m*n+n*(i-1)+1:m*n+n*(i-1)+n;
 X2=sparse(r,c,ones(n,1),n,m*n+n^2);
 X2(:,1:m*n)=X;
 X=X2;
end;
end

Part 2. R codes

R code for dual of penalized MCLS
Dual_PMCLS = function(m,n,x,y){

 # This function refers to dual of penalized monotonic CLS

 # Please cite this paper if you use this function

 require(slam)

 require(quadprog)

 source("make_X.R") #the code for this script is available in the paper

 ai <- diag(n)

 E <-function(i) return(cbind(matrix(0,n,i-1),matrix(1,n,1),matrix(0,n,n-i)))

 ei <- function(i) return(cbind(matrix(0, n, i-1),ai[, i],matrix(0, n, n-i)))

 ei1 <- function(i) return(rbind(matrix(0, i-1, n),ai[1,],matrix(0, n-i, n)))

 ainv <- function(i) return(ai-matrix(1,n,n)/n +2*E(i)/n-ei(i))#Inverse of A(i)

 X <- function(i) make_X(i,m,n,x,ai,1)

 Q <- t(X(1)) %*% (ai-(1/n)*matrix(1, n, n)+(1/n)*(E(1)+t(E(1))-ei(1)))

 Q <- Q %*% X(1)

 C <- -2*t(y) %*% (ai-(1/n)*matrix(1, n, n)+(1/n)*E(1)-ei(1))%*%X(1)

 #Building matrix F

 r <- list(); c <- list(); v <- list()

 for (i in 2:n){

 temp <- (ai-E(1)+t(ei1(i))-ei(i))%*%X(i)-X(1)

 rc <- which(temp!=0,arr.ind = T)

 r[[i]] <- rc[,1]; c[[i]] <- rc[,2]; v[[i]] <- temp[rc];

 r[[i]] <- (i-1)*n + r[[i]];

 }

 r <- unlist(r); c <- unlist(c); v <- unlist(v);v <- round(v,8);

 F <- matrix(simple_triplet_matrix(r,c,v,n^2,n^2+n*m),n^2,n^2+n*m)

 H <-matrix(simple_triplet_matrix(1:n^2,1:n^2,matrix(1,n^2,1),n^2,n^2),n^2,n^2)

 F <- 100*F #big M = 100

 F[1:n,1:(n*m+n^2)] <- (sqrt(2)*(ainv(1) %*% X(1)))

 # Solve by using solve.QP in R. This works but a more efficient solver such as

 # CPLEX, Gurobi or Mosel is preferred

 H <- H + diag(0.000000001,dim(H)[1],dim(H)[2])

 res <- solve.QP(H, c(rep(0,n^2)), (-F), (-C), meq=0, factorized=F)

 psi <- res$Lagrangian #Optimal values of psi variables

 eps <- (ai-(1/n)*matrix(1,n,n))%*%y-ainv(1)%*%(X(1))%*%psi;

 SSR=t(eps) %*% eps

 return(list(SSR, eps))

}

R code for penalized MCLS
PMCLS=function(x,y){

 # This function refers to penalized monotonic CLS

 # Please cite this paper if you use this function

 require(slam)

 require(quadprog)

 source("make_X.R") #the code for this script is available in the paper

 n <- dim(x)[1]; m <- dim(x)[2];

 ai <- diag(n)

 E <-function(i) return(cbind(matrix(0,n,i-1),matrix(1,n,1),matrix(0,n,n-i)))

 ei <- function(i) return(cbind(matrix(0, n, i-1),ai[, i],matrix(0, n, n-i)))

 ei1 <- function(i) return(rbind(matrix(0, i-1, n),ai[1,],matrix(0, n-i, n)))

 ainv <- function(i) return(ai-matrix(1,n,n)/n +2*E(i)/n-ei(i))#Inverse of A(i)

 X <- function(i) return(make_X(i,m,n,x,ai,1))

 Q <- t(X(1)) %*% (ai-(1/n)*matrix(1, n, n)+(1/n)*(E(1)+t(E(1))-ei(1)))

 Q <- Q %*% X(1)

 C <- -2*t(y) %*% (ai-(1/n)*matrix(1, n, n)+(1/n)*E(1)-ei(1))%*%X(1)

 #Building matrix F

 r <- list(); c <- list(); v <- list()

 for (i in 2:n){

 temp <- (ai-E(1)+t(ei1(i))-ei(i))%*%X(i)-X(1)

 rc <- which(temp!=0,arr.ind = T)

 r[[i]] <- rc[,1]; c[[i]] <- rc[,2]; v[[i]] <- temp[rc];

 r[[i]] <- (i-1)*n + r[[i]];

 }

 r <- unlist(r); c <- unlist(c); v <- unlist(v);v <- round(v,8);

 F <- matrix(simple_triplet_matrix(r,c,v,n^2,n^2+n*m),n^2,n^2+n*m)

 V <- t(F)%*%F;

 H <- 2*Q+V*10000 ;H=round(H,8); # big M = 100

 # Solve by using solve.QP in R. This works but a more efficient solver such as

 # CPLEX, Gurobi or Mosel is preferred

 H <- H + diag(0.000001,dim(H)[1],dim(H)[2])

 res<-solve.QP(H,-t(C),diag(1,dim(H)[1]),c(rep(0,dim(H)[1])),

meq=0,factorized=F)

 psi <- res$solution #Optimal values of psi variables

 eps <- (ai-(1/n)*matrix(1,n,n))%*%y-ainv(1)%*%(X(1))%*%psi;

 SSR=t(eps) %*% eps

 return(list(SSR, eps))

}

R code for making matrix 𝓧
make_X = function(i,m,n,x,ai,slacks=0){

 d <- function(i,p) return(diag(x[,p])-x[i,p] * ai)

 r <- list()

 c <- list()

 v <- list()

 for (p in 1:m){

 rc <- which(d(i,p)!=0,arr.ind = T)

 r[[p]] <- rc[,1]

 c[[p]] <- rc[,2]

 v[[p]] <- d(i,p)[rc]

 }

 r <- unlist(r)

 c <- unlist(c)

 v <- unlist(v)

 X <- matrix(simple_triplet_matrix(r,c,v,n,n*m),n,n*m)

 if (slacks==1){

 r <- 1:n

 c <- (m*n+n*(i-1)+1):(m*n+n*(i-1)+n)

 X2 <- matrix(simple_triplet_matrix(r,c,matrix(1,n,1),n,m*n+n^2),n,m*n+n^2)

 X2[,1:(m*n)] <- X

 X <- X2;

 }

 return(X)

}

