A parallel Branch-and-Fix Coordination based mathewrglgorithm for
solving large sized multistage stochastic mixed 0-1 prokle

Unai Aldasor@, Laureano F. EscudetoMaria Merind, Gloria Pére%

aBCAM - Basque Center for Applied Mathematics, Spain. uaide@bcamath.org
bEstadistica e Investigacién Operativa, Universidad R@nJGarlos, URJC, Spain. laureano.escudero@urjc.es

®Matematica Aplicada, Estadistica e Investigacion OpeeatUniversidad del Pais Vasco, UPV/EHU, Spain.
maria.merino@ehu.es, gloria.perez@ehu.es

Abstract

A parallel matheuristic algorithm is presented as a spfrfroin the exact Branch-and-Fix Coordination
(BFC) algorithm for solving multistage stochastic mixedL (eroblems. Some steps to guarantee the
solution’s optimality are relaxed in the BFC algorithm, kubat an incomplete backward branching scheme
is considered for solving large sized problems. Additibna new branching criterion is considered, based
on dynamically-guided and stage-wise ordering schemes, that fewer Twin Node Families are expected
to be visited during the execution of the so-called H-DBF@osdthm. The inner parallelization IH-DBFC
of the new approach, allows to solve in parallel scenaristehs MIP submodels at different steps of the
algorithm. The outer parallel version, OH-DBFC, considedependent paths and allows iterative incumbent
solution values exchanges to obtain tighter bounds of theiso value of the original problem. A broad
computational experience is reported for assessing thktyjoé the matheuristic solution for large sized
instances. The instances dimensions that are considereg o two orders of magnitude larger than in some
other works that we are aware of. The optimality gap of the BFD solution value versus the one obtained
by a state-of-the-art MIP solver is very small, if any. Thevregproach frequently outperforms it in terms of
solution’s quality and computing time. A comparison withr @lochastic Dynamic Programming algorithm
is also reported. The use of parallel computing providesorma hand, a perspective for solving very large
sized instances and, on the other hand, an expected langgticedin elapsed time.

Keywords: Multistage stochastic mixed 0-1 optimization, matheigj®ranch-and-Fix Coordination, break
stage scenario clustering, parallel computing, messagsipg interface

1. Introduction

A multistage stochastic mixed-integer optimization moldas a more complex scenario information
structure than its related, sometimes approximate, tagesinodel. Moreover, there have not been too many
attempts to solve large sized general multistage stochastied 0-1 models up to optimality, due to their
complexity, seel[41, 49, 50], among others. Thus, stoahastigrams for many real-life instances require
intensive computational effort. The solution has to be inlstéby using decomposition algorithms that exploit

1Corresponding author. Maria Merino.
Tel.: +34 946012523; fax: +34 946012516
E-mail address: maria.merino@ehu.es
Address: Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain

Preprint submitted to European Journal of Operational Resk August 27, 2016

the nice structure of models based on scenario analysis@nexity. Those algorithms and others can be
classified in the following types for two-stage and multgtgroblems:

1. Benders Decomposition (BD) methodology [8]. Probalilys the most used exact methodology for
solving two-stage problems with continuous variables m ¢$bcond stage. The L-Shaped algorithm
[69] is the well-known first published algorithm on the sudtjeSee alsa [5, 51], among many others.
The (nested) version for multistage problems, by constsactioes not guarantee the optimality of the
solution for problems with integer variables in any stagg tbe first one. However, it is one of the best
known algorithms for linear problems, see the seminal wafK,[recently|[75], among others.

2. Two-stage Lagrangean Decomposition (LD) heuristic metthogy. It is another very interesting
methodology for problem solving in mathematical optimiaat The main aim of LD consists of
providing (hopefully, strong) bounds (in case of minimiaa) on the solution value of a problem,
such that the goodness of a feasible solution obtained l®r oteans can be assessed. However there
are well-known conditions (see [34,/35]) under which the d&agrangean solution can be declared an
optimal one. Furthermore, if it is not an optimal one, it carulsed by an ad-hoc algorithm for obtaining
a feasible solution, based on the scheme that fixes appt®pea&aables to some of their Lagrangean
values. Afterwards, the resulting model is solved, such ithaas usually either an structure to take
benefit from it or can be decomposed in submodels that areeagpenough to solve.

3. Multistage Clustering Lagrangean Decomposition (MClLHa)ristic methodology. There are very
few LD approaches for solving multistage stochastic mixedf@¥oblems. See our approach|[26] for
obtaining strong lower bounds to the solution values of smsaimedium sized instances, where the
scenarios are distributed in clusters (also so-called lesihdThe distribution reduces in a systematic
way the number of NAC (non-anticipativity constraints tegtiate the scenario cluster variables in the
splitting formulation of the model). The scheme is based so-aalled break stage, such that the NAC
of the variables to be dualized belong to the nodes in theasitetree whose related stages are up to
the break one. See also[24] as a specialization of [26] foviding a Lagrangean heuristic solution for
the multistage stochastic pure 0-1 version of the difficatedministic (combinatorial) facility location
- assignment problem. The quasi-optimality gap that has lodtained for large sized instances is
very small. This type of MCLD approach has also been consitiar [25] for obtaining strong lower
bounds on the solution value of a problem with a mixture offitet- and second-order time stochastic
dominance (TSD) risk averse measure. Other types of magistD algorithms, see [52], also split
the scenario tree in blocks, so that the root node is alsoemad to the leaf ones by considering
NAC of some variables. However, the related nodes do notssacdy belong to the same stage.
NAC dualization allows to obtain lower bounds to the probkemd, from there, heuristic solutions are
obtained by an ad-hoc scheme. The NAC (to dualize) are chuessad on the scenario tree structure of
the problem to solve.

4. Regularization. To the best of our knowledge, an intergstpproach for speeding up the convergence
of LD approaches for solving mathematical optimizatioeéanmodels was first introduced in [53] 62],
and coined as Augmented Lagrangean Decomposition (ALDg. iidrative approach considers the
splitting variable representation of the original modekisthat the constraints equating the replicas of
the variables are dualized, and the square terms of thostraors are appended to the Lagrangean
function; its convergence is proven. Some computationpeggnce is reported in_[53] by solving
guadratic scenario submodels using a nonlinear interiont@gorithm. Recently, [45] and others
have extended the ALD approach to stochastic optimizatioblpms, where the constraints equating
the replicas of some variables in some scenarios are phedise NAC of each splitting variable.
An extension of the (convex) quadratic terms for reducingaressive oscillation of the successive
solutions (and, then, speeding up the convergence of tbeitllon) has been coined as the regularization
term. The methodology has been known regularized decomigrosiThe quadratic regularization for

2

stochastic linear optimization was first developed.in [@8]tivo-stage problems, see alsol[66] for two-
stage and multistage problems, ano. [6, 7] for multistagélpraos, among others. The Stochastic Dual
Dynamic Programming (SDDP) approachl[56, 57] is a decontiposinethodology that has been most
frequently used for testing different regularization magisms, since there it is assumed the stage-
wise independence of the random process and, then, the simnerof the scenario tree could still
be manageable. The mechanism that is considered in|[6, 63 dostage-wise independence of the
random process consists of appending to the objectiveibtmtte (convex) quadratic regularization
function. This function is based on the difference betwédenvariables in the nodes of the tree and
their values in the incumbent solution of the model. Howgf@ra high number of periods in the time
horizon or, as it frequently happens in practice, the ouiofrthe random parameters at a given stage
is not independent of the outcomes of the previous stages, the number of regularized quadratic
terms could be unmanageable. For that type of problemsng€giis Algorithm 2 where the incumbent
solutions are not indexed by the nodes of the scenario tiegh& reference for the quadratic function
could have different parts of the left hand side of constsaialated to the stages and not to the nodes
in the tree. Faster convergence is proved.

5. The Progressive Hedging algorithm (PHA) for multistagenal decomposition was introduced in [60]
as a specific regularization approach for solving up to oglitpmmultistage stochastic linear problems.
Itis broadly used and, recently it has been extended [72$toc@nsidering integer variables. However,
by construction, the optimality of the incumbent solutiamnot be guaranteed any more. The basic
idea of PHA is as follows: (a) Decompose the original modesbgnarios (i.e., relaxing the NAC of
variables in all nodes in the scenario tree) and solve eabmadel, where a (linear) penalization
term and its (quadratic) regularization have been addedath scenario function; (b) Obtain an
implementable solution (i.e., a solution satisfying the@JAhat probably is not a feasible one (i.e.,
an admissible solution) by averaging for each node in thettre related scenario solutions. Notice
that now, by construction, the NAC are satisfied, but likedyng of the other constraints are not; (c)
Update the (linear) penalization term for each scenariomatel by using a subgradient estimator
type of the non-implementable solution (i.e., the differenf the scenario solution with respect to the
currentimplementable one) for each node; (d) Append thalfEtion term to each scenario submodel
plus its weighted square function; (e) Iterate until a stogriterion is satisfied. We conjecture that
the convergence of PHA could be speed up by building sceclrgter submodels, instead of single
scenario ones, by using the break stage based scheme prese[6]. See in[[33] an extension of
the algorithm for two-stage and multistage by using by usisgenario cluster (bundle is called there)
approach. It allows to obtain lower bounds of the optimalediinteger solution and, then, the goodness
of the solution can be assessed. Moreover, in that casepfiieach would not be too far from one of
the Lagrange multipliers updating schemes used in that atberithm, aside that the objective function
should have (convex) quadratic terms for mixed integerdaiged problems. Limited computational
experience for two-stage is reported. The multistage cas#llia challenge.

6. Multistage Stochastic Dynamic Programming (SDP). It ivamiant of the SDDP methodology
mentioned above, for solving large sized Risk Neutral (RNjitistage stochastic linear problems
with stage-wise independent uncertainty. See [56, 57, &dme works in the literature allow to
consider Markovian multistage stochastic problems, wlleeeuncertainty in each node of a given
stage depends on the history of its ancestor nodes, see,[85B0The treatment of the Conditional
Value-at-Risk (CVaR) risk averse measure in SDP was intedun [36,[42| 68]. Recently, some
works consider mixed-integer problems, seel [3, 16] andn ¢ivee-consistent and time-inconsistent
stochastic dominance risk averse measures! see [31, 38 @ie integer character of some variables,
the usage of SDP for problem solving with integer variabiesy stage, cannot guarantee the solution’s
optimality but, in any case, they can deal with very largedinstances.

7. Multistage scenario cluster primal decomposition. T of algorithms is very promising, since the
3

related decomposition is performed on clusters of scegpaseeking for a (hopefully, good) feasible
solution. Some of those algorithms guarantee the optiyadithe incumbent solution. Specifically, see
[14,[22,23] 29, 64, 74, 75] for decomposition approachetsaiasider scenario clustering for solving
large sized multistage stochastic mixed integer problérhs. so-called Branch-and-Fix Coordination
(BFC) methodology is used in the decomposition approactesepted in/ [22, 23, 29, 55] to generate
independent scenario clusters, such that multiplicityryf scenario is not allowed among the clusters.
The BFC methodology is an exact one that relaxes a given sobsen-anticipativity constraints
(NAC) from the model (up to the break stage mentioned abdw)t takes care of them in the execution
of the algorithm. The bounding method presented in [64] ree@ension and improvement of the two-
stage bounding method introducediin/[65], splits the sdersat in clusters. For that purpose, the NAC
are relaxed in the nodes of the tree, so that the relatedisosiaae grouped in different clusters. Notice
that this primal based algorithm splits the scenario treerimanner that is close (conceptually, at least)
to the scheme used in the dual algorithm presented in [52¢ sBenario multiplicity in the clusters
allows to obtain strong lower bounds. On the other hand, arsehfor fixing the solution of some
scenario clusters allows to obtain feasible solutions &meh, upper bounds on the solution value of
the original model can be computed. The bounding methodepted in|[[74] decomposes the scenario
tree into a number of smaller trees. Vertex cuts are usech&drpgurpose and, then, the scenarios are
clustered depending on the stages used for the cuts, schthabdt in the tree is separated from the
leaves. Lower bounds are computed as the weighted sum oblhios values of the subproblems
associated with the subtrees that are built (i.e., a NACxagian is performed on the nodes of the
scenario tree related to the vertex cuts). Upper boundstdaained by fixing the root-to-cut variables
at their best values.

Parallel Computing (PC) offers an alternative for solviregwlarge sized problems by parallelizing the
execution of the MIP submodels that appear in the decompnsityorithms. Currently, at hardware level, PC
is mainly based on clusters and multicore processors. FBic bdormation, see [17, 37], among others. The
nature of the cooperation between processors can diffeardipg on the way in which processors exchange
information. One of the parallel architectures is distrénlmemory, managed hyessage passingor
example, using Message Passing Interface, MPI). Over shéna decades papers on stochastic optimization
have appeared in the relevant literature that use PC forstage and multistage stochastic linear as well as
mixed 0-1 optimization, see e.d.| [1, 9/ 46, 21] and refeeertherein. Recently, parallel computing versions
of the exact BFC methodology was presented.in [4, 55]. Seetldésparallel matheuristic bounding methods
presented in [3./6, 53, 61,164,/ 74] that also allow large simstances to be solved.

This work presents several strategies in order to improgerformance of decomposition algorithms
for solving large sized multistage stochastic mixed 0-1bjgms. In particular, we introduce an algorithm
so-calledDynamically-guided and stage-ordered Branch-and-Fix @owation algorithm (for short, DBFC)
that, belonging to the multistage BFC methodology, strgnigiproves the performance of previous BFC
algorithms presented inl[4,22] and references therein.nfdia improvements are in the dynamic branching
mechanism that allows to solving much larger sized muljiststochastic mixed 0-1 problems, they are as
follows: (1) The scenario cluster partitioning is based loa $o-called break stage. It is one of the key
elements in the new approach and considers stage-wisélaoi@ering in the problem and auxiliary scenario
cluster submodels; (2) The selection of the stage-wisereddgranching variable in the Branch-and-Fix (BF)
nodes (i.e., scenario cluster based Brand-and-Bound notegointly handled) jumps over the variables that
are currently satisfying their non-anticipativity coretits (NAC); (3) Dynamically-guided branching in the
selection of the 0-1 direction to be considered first. It isdzhon the frequency of the values of the branching
variable in the solution of the previous submodels of thenade clusters to which the variable belongs to;
(4) The solution of the scenario cluster submodels is fratjyeequired for the same branching path, so, the
submodels are only solved once and stored for later use;5mifferent types of submodels are considered
for obtaining feasible solutions by fixing a variety of vdolies at the values obtained in previous steps.

4

Additionally, as very large sized instances are not expktiebe solved efficiently up to optimality, a
matheuristic algorithm, so-called H-DBFC is proposed,eldasn the new approach, DBFC. Its different
strategies are intended to guarantee an harmony betweetioa@ quality and computational effort (in
memory and computing time) as it can be assessed in the catigmal experience whose results are reported
in the paper. It has the advantage of being applicable totaciiastic mixed 0-1 optimization problem without
the high model dependence exhibited by some StochasticrbigrRrogramming (SDP) schemes, see [16].
However, it is not yet able to solve the gigantic sized instsnsolved by the SDP algorithm, since its lower
decomposition capabilities lead to memory limit issues.

Another important contribution of this work is the extensaf the parallel versions of H-DBFC presented
in [2], so-called inner and outer ones, to the matheurigtidrenment, where a triple thread assignment
is considered for the thread hierarchy. The inner paraketsion provides a perspective for solving very
large sized instances. It allows to solve in parallel sdenguster MIP submodels at different steps of the
algorithm. Due to the features of the new H-DBFC approachefecluster submodels are solved by each
iteration, on average; therefore, a smaller number of tte&aneeded to achieve an equivalent work balance
as in the previous paper. The outer parallelization presenere has been adapted to deal with a dynamic
root node matching criterion, as opposed to the deterrigrisie of the old algorithm. It allows for seeking
better solutions since it uses an iterative dynamical seffengenerating paths of partial variable branchings.
Then, tighter bounds of the original problem’s solutionueatan also be obtained. Both versions allow to
solve problems up to several millions constraints, ovef aahillion 0-1 variables and a couple of million
continuous variables with a very small quasi-optimalitigtance in an affordable elapsed time.

The rest of the paper is organized as follows: Sedfion 2 pteghe basic models and scenario cluster
submodels used in the multistage DBFC algorithm. SelianirBduces the algorithm as well as the aim and
perspective of the proposed spin-off matheuristic H-DBBEEction 4 presents the inner and outer parallel
versions of H-DBFC. Sectidnl 5 reports the main results ofaatircomputational experience to assess the
validity of H-DBFC to solve large sized problems for the akend parallel versions of the algorithm. The
computational results are compared with plain use of CPLE&CKthe serial and parallel versions of our SDP
algorithm. Finally, Sectiohl6 concludes and outlines fetwork.

2. Multistage stochastic mixed 0-1 models

For the general formulation of a multistage model, wherdgi@es have to be made in a stage-wise
manner, letQ denote the finite set of scenarios that are considered tofresentative of the uncertainty
quantification in the problem and is the set of stages in a given time horizon (whéres | 7| is the last
stage). Let a multistage scenario tree to represent thetairdy, where? is the set of nodes in the scenario
tree ands! C ¢ is the set of nodes that belong to stagfert € .7. Let alsog, for g € ¢', denote a node in
the tree, such thatg) € .7 gives the stage to which nodeelongs to; an@9 € Q is the set of scenarios that
belong to group (with a one-to-one correspondence with ngda the scenario tree) that have an identical
realization of their uncertain parameters up to stdgg Let <79 and.#9 denote the set of ancestor nodes in
the tree to nodg (including itself), and the set of successor nodes to rpdespectively.

It is worth to point out that it is also known in hodewhat scenarios will not happen in the future, i.e.,
the scenarios in s&2/Q9. So, the decision variables in each nagshould, thus, be based on the known
information (given by set7%) on one hand and without anticipating future events on therdiand, although
using as much information as possible, given by.&8 forge ¢ :t(g) < T. That is, the extension of the
non-anticipativity principle introduced in [73] for twdage problems should be satisfied.

Without loss of generality, consider the compact repregant of the multistage stochastic mixed 0-1

model for minimizing the objective function expected vatver the set of scenarids,

22PM =" min y wi(a%d +by?)
geY
sty (AgKI+Bgy?)=h? Vge¥ (1)
ge./9
X9€{0,1}™9 Yy cRMY Vvge¥,

wherewd is the weight of node (i.e., probability of the scenario grpg to be computed aF ,,cqs W*; w
is a scenario in se@9; w* is the modeler-driven weight assigned to scenarie Q, wherey ;oW = 1;
/9 C o/9 is the set of indexes for the ancestor nodes of mp¢iacluding itself) whose decision variables
have direct influence (i.e., have non zero elements) on thsti@ints in nodg, whereer* = {1}; x9 andy?
are the vectors of the 0-1 and continuous variables for mpdespectivelyad andb? are the vectors of the
objective function coefficients for the 0-1 and continuoasgables, respectivelys] andBg are the constraint
matrices of the ancestor node .79 in nodeg for the vectors® andyY, respectivelyh® is the right-hand-side
vector (rhs) for node; andnx(g) andny(g) are the number of 0-1 and continuous variables, respegtioel
g€ Y, NX= Y 4eq NX(g) @andny = ¥ e NY(g), Such that it is assumed thax(g) + 1 andny(g) + 1 are the
numberings of the first 0-1 and continuous variables for rpélel € ¢, respectively. Observe th&? is a
singleton set fog € 4. Seel[11} 39, 20, 58, 59, /€7, 71], among others, for the maineguts on stochastic
optimization via scenario tree analysis. Notice that md@pis so-called Risk Neutral (RN) model.

2.1. Scenario clustering

In [22] we propose a decomposition of the scenario tree insetaof subtrees. Based on this cluster
decomposition concept a mixture of the splitting and cormpepresentations of the original multistage
stochastic mixed 0-1 RN modéll(1) is presented. The reasothi® decomposition is based on the way
in which our BFC decomposition algorithm works. It expligitonsiders the NAC of the variables of the
nodes in different cluster subtrees. By construction,ghasdes belong to stages up to a given so-called break
staget* (see below). On the other hand, the NAC of the variables imthees that belong to the stages
from t* + 1 until the last one are implicitly considered while solvitige scenario cluster submodels. For
completeness, let us consider the following definitiongitefkom [22].

Definition 1. A break stage, say t, is a modeler-driven stage from sét such that the number of scenario
clusters ig%| = |9 +1|. In this case, any scenario cluster indexed with c, fer€, is induced by a scenario
tree node, saygfrom set?! 1, and it contains all the scenarios belonging to gradfr (that has a one-to-
one correspondence with nodgig the scenario tree).

Definition 2. Thescenario cluster submodels are those that result from the relaxation of th€ MAmodel
@@ in the nodes that belong to stages up to break stage t

Let us first split the set of stage¥ in two subsets, such tha¥ = 71J %, where 7, = {1,...,t*}
and.% = {t*+1,...,T}. Once the break stagé is decided, the corresponditigcluster partition is given
and, then, the number of scenario clusteriiis fixed to|%' +1|, i.e., each node i&' +! belongs to just
one cluster in se¥’ = {1,...,C}, with C = |£|. For a nodeg. in set' +1, let Q. = Q% denote the set of
scenarios in the tree ay C ¢ is the set of nodes in cluste ¢, where a nodg belongs to se¥; provided
thatQ9N Q. 0;x2 andy? denote the replicas of the variables in vectérandy? for nodeg € % in cluster
c e ¢, respectively; and. andy; are the vectors that include the set of variables in the vegfoandyg for
all nodesg € ¢ in clusterc € ¥, respectively. Notice that there is only one replicati@) € % and there
are|%| replicas fort(g) € .77, at most. Propertiess! N%, is singleton fott € .7 : t <t*+1; let¥9 denote
the set of scenario clusters where a scenario, at leashdeeto grou?, for g € ¢, so0,%9 is a singleton for
t(g) € Jcec69=9gc Y forge¥; Q. C QIforge 4.NG', t € 71, cc€;andQ? C Q. forge % N¥Y",
te %,ce?.

Now, the scenario cluster submodel can be expressed in ainmgpaiesentation, far€ &,

zz= min) wg(a®+b%g)
9<%
st ; gAgxg +BYyd = ho A)
qél
x2 € {0,1}™9) y@ e RMY) Vge %,

wherewg = 3 e qana, W* for g € % and, sowd = w for g: t(g) € 71 andwd = w8 for g : t(g) € .
Observe that in the splitting-compact representation ef dhiginal model[{lL), the nonanticipativity
principle is implicitly taken into account for the stages %, since the submodel for each cluster is
formulated via a compact representation. On the other ilhadexplicit) NAC of the variables in the scenario
tree nodes that belong to the stages inggtan be formulated by observing that the clusteemdc’ have

nodeg in common (i.e.g € %.N%y) ifand only ifg € ¢' : t € 7. So, the cluster submodeld (2) are linked
by the NAC to be expressed,

X—x3=0 Vc,cde?:c ¢, ge4%nNYy (3)
Y¥-yl=0 Vc,ded:c ¢, ge%nY. 4)

Model (T) can be represented by a mixture of the splittingade representation (for explicitly satisfying
the NAC between the cluster submodels) and the compactsemaion (for implicitly satisfying the NAC
of each cluster submodel). So, the cluster splitting-carhpepresentation can be expressed

M= miny Y w(@d+b%g)
cEC 9€Ye

s.t. Ix3 + BJyd = ho Vg€ %, ce€
2, T B (5)

NAC @) — @)
e {0,1}™9 V@ cRMIY vVge¥, ce¥.

It is worth to point out that the efficiency of a MIP engine fahdng model [3) is very low, but it paves
the way for performing model decomposition, see below.

Note: As a technical point to be used through this work, letcassider that the numbering of the
nodes in the scenario tree is consecutive, angl is the first lexicographically ordered node in £k,
theng — 1 is the last lexicographically ordered node in ¥t. Moreover,.#¢ and % denote the set
of indexes of the variables in vectaf andy®, respectively, forg € ¢, and (X9); and (y9); are thei-th
variables in the vectors corresponding to the set of indigeg¢g— 1) +1,...,nx(g)} C {1,...,nx} and
{ny(g—1)+1,...,ny(9)} C {1,...,ny}, respectively.

2.2. Main concepts of the Branch-and-Fix Coordination metilogy

For completeness, let us review some concepts of the examtcBrand-Fix Coordination(BFC)
methodology, see [22], where DBFC, a substantial improvénias been derived from.

Definition 3. A Branch-and-FixBF) tree, say BE associated with scenario cluster indexed with c is a
Branch-and-Boundtree (B&B) for solving the MIP subma@lbut in a coordinated way with the submodels
of the other clusters in sé&f, since the NAQ3)-(d) must be satisfied.

Definition 4. Two 0-1 variables, sayxd); and (xJ);, for i € %, are said to becommon variableor the
scenario clusters cand,dorc,c € €:c d,ie 9 ge ¥t t € 7, provided that g 4. NYy.

As an additional notation, let/; be the set of active nodesBi, cc %.

7

Definition 5. Any two BF nodes, say,@.4; and d € .4 for ¢ ¢ are said to bewin nodeswith respect

to a given scenario tree node if their paths from the root atdeeach of them in their trees B&nd BRy are
such that some of their common variable); and (xg)i, have been branched on or fixed at the same 0-1
value, forcc e ¢:c c,ie %, ge%%nYy.

Definition 6. A Twin Node Family(for short, TNF)_#; is a set of nodes such that any node isvin node
to all the other node members of the family, fog 7, where.Z is the set of the families.

Definition 7. A TNF is said to be aandidate TNKfor short, cTNF) if there is one common variable, at least,
in each of their BF node members that has not been yet brarmmetbr fixed at 0-1 values.

Definition 8. A TNF is said to be atinteger TNFif all common variables in the TNF have already been
branched on or fixed at (obviously, the same) 0-1 values agid itlated NAC(3)) are satisfied (see below).

The branching in each trdgR; for c € ¥ in the BFC methodology is only performed on the common
variables, such that once done, a feasible solution for ¢kaagio clusters can be obtained by solving the
submodels{2Yc € ¢ where the common variables are fixed at the branched on QugxaNotice thax, y-
solution is a feasible one for the original modegl (5) proddeat the NAC[(B){(#4) are satisfied. The feasibility
of NAC (@) can be obtained by coordinating the branching ecthmmon variables such that tieh variable
is equatedx?)i =xJ =0,vc,c € ¥ :c ¢, ge%nYy forallie %2, ge ", t € 71 onthe 0-1 branched
values. See in [22] the details of the BFC algorithm.

Remark 1. A BF tree differs from a single B&B tree associated with a seencluster in that the fixing of a
0-1 common variable in a B&B node (in our case, BF node), salerm automatically produces the fixing of
the replica of that variable to the same value in all nodesia TNF under consideration, say/t+ such that
ce s, and the implications could go further.

Remark 2. The BFC methodology does not consider BF nodes in an indiVishasis and, then, it does only
consider TNFs, so, through the rest of the paper the term i®dely used for scenario tree nodes.

2.3. Auxiliary models to be used in DBFC

Let us introduce some additional notation:

o Y, set of indices of the commonvariables. They are to be branched on or fixed at in the BStree
such that# = Uge 295, where2 = {g € ¢ : t(g) € Z1}. Analogously, %, = Ugc 2.5 .

e i, index of the branching (common) variable, far .%, to be performed at Steps 2 and 3 of H-DBFC,
see Algorithni]l introduced in Sectibn B.3, so that a givenlETd\considered at Step 4.

o 71 C 4, set of indices of the already branched on or fixed at commdablas at a given cTNF. Let
the set of common variables be denoted{Ry. i € .#1}. Notice that it is assumed that those variables
are step-wise lexicographically ordered.

o 32, the 0-1 value vector of vectaf, if any, for scenario clustarc % : g € %, such that(g) € .73, thus
%9 = % provided that the NACL{3) are satisfied.

The pruning scheme at a cTNF is done by comparing the incutviadure, sayz°=™ for model [1) and
z=Y ¢ Z, Wherez; is the solution value of submodél (2) for scenario clustigrat has been obtained in the
branching iteration of the last branched on variabjdor x; € .71, wherei € % for g € %.

Notice that for the cTNF defined by branching on variaklethe NAC [3) in model[(b) are already
algorithmically satisfied for the branched on or fixed valesly;, Vi € .#;. After the cluster submodelsl(2) are
solved at Step 4 of H-DBFC (see Section 3.3), the NBC (3) oftirebles(x9);, Vi € .43, g 4t € % are

8

implicitly satisfied. Additionally, if the testing of the N& of the variables;, Vi € %\ .# is positive (i.e.,
they are satisfied), then, an integer TNF has been obtained.

At any integer TNF a feasible solution for the original mo@lcould be obtained (in Step 5 of H-DBFC)
by fixing all thex—variables at their current 0-1 values, such that the LP moatebe expressed

Zp = miny wi(@a%I+bhpo)

geYy
s.t. (AIXI+BWY) =h? Vge¥
2, AT B ©)
x8=x9 Vge¥
yd € R™M9) Vge 9.

It is worth to point out that the LP modédI](6) can have very hilijnensions. For those instances, given
the nice structure of the model, it can tiebased Lagrangean decomposed as_in [26], where a quadratic
regularization term can be appended to speed up the comaergéthe approach. See in Secfidn 6 our future
research plans on the subject. Notice that if the model isitfisathen the new incumbent solution value is
DEM — min{Z NF, 20EM}.

Let (89, y9TNF) denote the solution of modéll(8) € ¥, t € .71. Observe that the related NACI (3) and
(@) are satisfied. Additionally, a new auxiliary MIP submb(@ is defined by fixing the vectord andy? at
the values i andy®™NF | respectively.

zZINF = min > wi(a? + bdyd)

ge¥
st (AdXA + BIy) = hd Vge ¥
2, AT 7)
X9 =9, y9 = yoTNF vge¥éte A

e {0,1}™MI YW cRMI) vYged' te D

It can be observed that modEl (7) is easily decomposed byasoesiusters, so that it can be expressed

7N =y 7§, ®)

ce?

where _
ZisF = min y wi(a¥¢+b%g)
9€Y%

Ayd 1+ RAI — 9

s.t. qe;g APd+Bdyd =h Vge %)
x¢ =%,y = yoTNF Vge%:t(g) € A

X € {0,1}™9 2 e RMI vge % :t(g) € S.

3. Matheuristic algorithm H-DBFC

3.1. Dynamic candidate TNF branching

The static candidate TNF (cTNF) branching strategy usedRg B22] consists of fixing the selected
x-variable first at 0 for minimization and 1 for maximizatiamd, afterwards, the opposite branching is
considered in the already branched BF node. See othergasita [28] for guided static branching related
to the root node in the BF tree, see alsa [55]. By contrastnaohjc branching strategy in DBFC is presented
in this work, such that it is based on the values of the comnaiables, sayx:);, in the solution of the

9

immediate previous solving of the cluster submodels (2), g@od feasible solutions can be found earlier
by the algorithm and, then, fewer cTNFs are visited durisgeitecution. In addition to the improvement
in the serial version, the scheme has significant potentighé outer parallelization version, since some
simultaneous dynamic cTNF branching paths can be exeagedectionl4.

Let (X;); denote the value of variablge); in the solution of submodel§](2). Leg for i € % be the
next branching variable in the stage-wise ordering, predithat the branching jumps to the first common
variable that does not yet satisfy its NAQ (3). And #tC % denote the set of cluster submodéls (2) that
have variable; in common. A rough description of tHgynamically-Guided branchin@G) scheme for any
CcTNF consists of branching first on that variable in the &-#lirection that can be expressed

1
o, fif (Xe)i < 5%
O_I_: CGZ%T I 2 I
1, otherwise

3

Notice that, by construction, the val&eof variablex: does not satisfy the NACK3) in the solution of the
submodels[{2) that are used for computinig Observe that; is the most frequent value in the current
solution of those%;| submodels.

Another important feature of DBFC consists of solving thastér submodel$12) for easbranching
path just only at the first time they are required in the BF tnee, then, they are stored for future needs. This
entails a remarkable improvement in the time required fetances with a large number of quite difficult
submodels at the price of a major storage effort, see Sdtion

3.2. H-DBFC strategy

The matheuristic H-DBFC for solving the original model (4)dgresented in Sectidn 8.3. The strategy is
based on the relaxation of some steps of the exact DBFC #igodand, then, the guarantee of optimality is
lost. Let us point out that the breadth of the BF tree, soeda##.% .77, can become an algorithmic bottleneck
for instances with a large number of common variables.

The strategy performs ancomplete backward branchir(¢B) scheme, such that the previous variables
in the lexicographically order are jumped back provided thay were jumped over during the forward
branching because they satisfied the NBIC (3). Additiona#iystopping criterion(SC) consists of the relative
difference between two consecutive incumbent solutionesbeing smaller than a given tolerance,say0.
Notice that the type ofB branching does not allow the branching on the oppd4ite o) direction of those
variables inx; in the already updated sef;, that implicitly have been branched on the @jldirection, by
jumping over them in the forward step for choosing the neaghbhing variable. It is pointed out that the
jumping is only performed when their solutian= o; satisfies their NAC in the submoddl$ (2). Alternatively,
different types of stronger strategies could be considéredolving problems with smaller dimensions that
those whose results are reported in sedflon 5. Examples®é ttrategies are: i) keeping backward branching
on reverting to the cTNF with the immediate previous commariable in the lexicographic order or ii)
skipping the solving of the scenario cluster submodeélst{eainteger TNFs.

3.3. Algorithm H-DBFC
The H-DBFC proposal is formally presented in Algoritiin 1. t Les describe the main steps of the
algorithm.

The input parameteamaxis a modeler-driven limit on the number of times that the nin@) and[9) are
allowed to be solved (in Sep 5) for any integer TNF; anid a counter of the number of incumbent feasible
solutions found along the iterations, so that it plays the obthe index for the related incumbent valadgsM.

10

In Step 1 a scenario cluster based lower bound Z8&8Y, is obtained by solving the MIP submoddI$ (2)
for all clusters. Additionally, parametex, i € .#4 is computed for future needs while selecting in H-DBFC
the 0-1 branching direction on the next branching (commanpble.

The stage-wise ordering of the variables allows the brangchin a common variable to be selected in Step
2 for the given cTNF, instead of considering a fixed selectiorthe BF node to be branched on (as done in
BFC). Additionally, the selection of the branching variekl can be dynamically replaced in some situations
(see below) by jumping to the first common variable does nosgtsfy the NAC[(B) in the last time that the
cluster submodel§2) are solved.

The Dynamically-GuidedDG) branching scheme in Step 3 of H-DBFC requires to recoverdhgisn
of the common variables from the immediate previous solaifithe scenario cluster submodél$ (2), so that
the 0-1 direction of the branching variablgeis selected based on the Ogtparameter, see SectibnB.1, as
opposed to the static branching criterion used in BFC.

The branching forward scheme used in Step 2 and Step 3 of HEDBIS a significantly simpler encoding
than the one in BFC (Step 2 to Step 5). Notice that the stage-rmariable control in BFC is no longer
needed. Instead, it suffices to consider the frequency dithealues of the common variables in the stage-
wise ordering, since the variable branching direction @sgm based on the— parameter.

In Step 4 the cluster submodel§ (2) are solved for a given TidEias been built with the branching
path included by the related Od-directions of a subset of common variables (whose indicesneset.#;)
up to the last branched variablgin the 0-1c; direction. Next, the forward step jumps from the current
branching variable to the first one in the lexicographicdeornof set %\ .#1 whose value in the solution of
the submodel§{2) does not satisfy the NAC (3). This very irgu feature does not exists in BFC and it is
crucial for speeding up the convergence of the algorithm.

Step 5 for the integer TNF includes a set of submodels to hedolt is worth to point out that mod€ll(6)
for k > 1 consists of the values of the solution of modél (9) for theariables related to the nodes at stages
t > t* in the scenario tree. Notice that for both models the valdi¢gseox-variables in stages up tb are the
ones obtained in Step 4.

Step 4 and 5 include the stopping criterion based on the nasitfie solution that is found.

Step 7 performs the backward branching scheme, branchakgdéhe variable according to the explicitly
branched forward criterion.

Notice that the pruning check in Step 8 and the opposite biagalirection in Step 9 are performed
according to ther— parameter, so, the static branching criterion used in BFR©isonger used in DBFC.

The matheuristic character of H-DBFC is due to the schiBnas well as the stopping criterion to start
with. Additionally, notice that the values of tlyevariables for the nodes in the stages up to the break one in
model [6) to be solved at any integer TNF (Step 5)anky obtained for the 0-1 values of tixevariables in the
solution of the cluster submode€[$ (2) that are solved in tep 8. Observe also that an additional scheme such
as the one presented in Step 7 of BFEQ [22] could be used to mpearaptimality. However, given the large
size of the instances that are aimed with H-DBFC, see Sdgtitire computing effort would be unaffordable
and, thus, preventing such scheme from being used in theagipr

Remark 3. The selection of the break stage is crucial for the efficiavfcthe algorithm. The smaller the
break staget, the smaller the cardinality af%. And then, the depth of the BF trees can likely be smaller
as well as the higher the chance in Step 4 of the matheurifgmrithm H-DBFC (presented next) that the
solution of the decomposition cluster submod@)scan satisfy the NA@3) of the common variables. So,
the convergence for obtaining feasible solutions in m@@eand submodel@) is accelerated. However, the
smaller the break stagé tthe higher the dimensions of the submod@)sand (@). So, an instance-driven
balance is required.

11

Algorithm 1 H-DBFC algorithm

Step 0: (Initialization)
Setv:=0,28M = w,1:=0, .7 := {T}.

Step 1: (Root TNF)
Solve the scenario cluster MIP submodEls (2) to oltaitvc € %'
Computez’®M = 5 .. z (lower bound) andy;, Vi € .%.
If any (xc)i variable does not satisfy NACI(3)& %, c € ¢, then go to Step 2.
If any (yc)i variable does not satisfy NACI(4)e .%,c € ¢, then go to Step 5.
Otherwisey := v +1,Z2%M := zand go to Step 10.

Step 2: (Forward TNF branching)
Resef :=i+1. Updatd according to the first variable (in the lexicographic ordkgt does not satisfy NAC.
Update.#; := .# U {i}.

Step 3: (Dynamically Guided branching)
Set(xc); := oy, Ve € ¢

Step 4: (Candidate TNF)
Solve the scenario cluster MIP submodEls (2) to oltaitvc € %'
Computez= 5 .. Ze anda;, Vi € H\ 4.
If z>Z2EM then go to Step 6.
If any variable(xc); does not satisfy NAQ{3)e %,c € ¢, then go to Step 2.
If any variable(y.); does not satisfy NAQ{4)e .#,,c € €, then go to Step 5.

Updatev :=v+1,20EM:=2
SDEM _,DEM
L*l 7 ‘ < &, then go to Step 10.

Test the stopping criterion:

Go to Step 6.
Step 5: (Integer TNF models)
Resetk := 1.
Step 5.1: Solve LP modé€Il(6) to obtaifi'F.
If it is feasible andg’ N'F < ZDEM, then update := v + 1, ZDEM := Z[NF.
If K = Kmax then if % < €, then go to Step 10.
Solve the submodelg](9) to obtafl'F, Vc € %.
If all of them are feasible, then computE"F = 5 .- zINF and
if ZfNF < ZDEM then update := v + 1, 20EM := z[NF
If all the x variables from[{P) are the same as in fhe (6) solution, thea Kmax
If K = Kmax then if‘%’ < €, then go to Step 10.
If K < Kmax then update := k + 1 and go to Step 5.1.
Step 6: (Branch pruning).
If (Xc); has been branched ondgfor anyc € %;, then go to Step 9.
Step 7: (Backward TNF branching)
Resef :=1— 1. Update backwardaccording to the branching forward scheme.
If T =0, then go to Step 10.
Step 8: (Prune checking)
If (Xc); =1— o;foranyc e 4, then goto Step 7.
Step 9: (Opposite branching)
Reset(x;); ;== 1— 07, Vc € % and go to Step 4.
Step 10: (End of the algorithm)
ZDEMizDEM

The H-DBFC solution, its valug?®™ andOG = “—sei— % have been foun&TOP.

zeEM

12

4. Outer and Inner parallelization of H-DBFC

Large sized multistage stochastic mixed 0-1 optimizatiabems are very difficult to solve, mainly due
to the number of constraints and the 0-1 variables. In om@nprove the performance of our matheuristic
H-DBFC algorithm for solving large sized problems, SecHofl presents some considerations based on the
performance of the parallel version presented.in [4] for BB@ one hand, the so-called inner parallelization
reduces the execution time for solving the independent sdleis that are associated with each TNF. On the
other hand, the so-called outer parallelization reducestmber of TNFs to be visited by splitting the BF
tree and, then, allowing to obtain earlier tighter bounds.

Parallel algorithms have been developed in stochastienigdtion for linear programs, see [12,| 54]
as we know for the first parallel versions of Benders decoiitipas see [9/ 19] for two-stage programs
and [4,[13, 47, 48, 55, 61, 64,170, 74] for multistage ones. deone applications in several fields, see
[18,120,2¥| 43, 44]. Recently, [55] has presented a paizliigdn of the algorithm BFC. In this section the
inner and outer parallel versions of H-DBFC are presented.

4.1. Parallelization schemes

We use the following definitions of the three thread typesgiin [4] for parallelizing H-DBFC (see
Algorithm[): coordinator threagdwhere the non-parallelized tasks are execupeidhary thread solves the
scenario cluster submodels (2) ahdl (9) in parallel; anxiliary thread used by each call to the MIP solver
of choice. Then, denote aa x b x h) the thread configuration of a joint outer-inner parallalian execution,
whereais the number of coordinator threads (one for gaatin, see below)b is the number of primary threads
associated with each coordinator thread (including iseifih is the number of auxiliary threads associated
with each primary thread (including itself). If there are tbdeads available, as an example, configuration
(2 x 4 x 8) means that 2 coordinator threads are defined (associéte@ waths in the outer parallelization
scheme, see below), 4 threads for solving the scenariceclsabmodeld{2) and](9) in parallel (associated
with the inner parallelization scheme) and 8 threads to led by the MIP solver of choice.

The inner parallelization in H-DBFC has the configurationx(bh x h) whereb < C, such that the
parallelization is performed for solving up to tkecluster submodel$]2) in Step 1 and Step 4 as well as
to solve theC submodeld{9) in Step 5. Different strategies can be useeindipg on the number g@irimary
threadsto use in distributed memory (MPI threads) and the numbexwdliary threadsto use in shared
memory (by the MIP solver of choice). As an example, assuraegithreads are available for parallelizing
theC independent submodels. Some options are as follows: Caafign (1x 8 x 1), 8 MPI threads are used
for solving the submodels (one per each thread) and runhmMP solver in only one auxiliary thread for
each primary thread (i.e., the MIP solver is not allowed te iernal functions in parallel); (2 4 x 2), 4
MPI threads are used with 2 MIP solver threads eaclx; 21 4), 2 MPI threads are used with 4 MIP solver
threads each; and (1 x 8), 1 MPI thread and 8 MIP solver threads. Elsewhere [4] we prtesevider
description of the inner parallelization.

The outer parallelization is managed by the so-called p#thsumep coordinator threads, the procedure
starts by defining a set of 0-1 variables in a lexicograptiarah, such that the combinations of their 0-1 values
allow the p paths to be initiated. Each combination of the 0-1 valuetio$¢ variables is implemented by a
coordinator thread and it is associated with the followitegreents: (1) Dynamically reassigned subproblem
of an unvisited BF tree, defined by a path BF tree, &% Jpan, and its corresponding root TNF, say
/Vpath = (X1,%2,...,%); (2) Algorithm H-DBFC; (3) Set of primary and auxiliary ttads; and (4) MPI
(Message Passing Interface) environment with other coatdr threads. Its efficiency is greatly increased
by the interconnect synchronization of the executions dDBFC. It is obtained by using the following
elements: (a) Local incumbent solution values, E%S{r‘," of the subproblems handled by the coordinator
threads, making earlier branch pruning, and (b) The reaswgt of the path subproblem in those threads
associated with paths that have no more TNF to visit, by reohgfithe root TNF, 4,4 and the related path

13

BF tree, %.% Jpan. This is the result of splitting the tree of an unfinish®d” 7 path. So, the parallelization
of the set of paths may shorten the number of TNFs to be visitebtithe reduction of the computing time,
such that the upper bound of the solution of the original nh{ecan be tightened.

The outer parallelization of H-DBFC has the following steps

e Starting the parallel executing of thepaths, each one with its root TNE?path. The optimization and
MPI variables are declared and the global environment isidéfior all coordinator threads.

e The execution of each path consists of executing the stepsDBFC from its root path until the
starting of the synchronization phase (see Algorithm 2).

e A path reaches the synchronization phase, illustratedaithshed red box in Figuré 1, when it satisfies
one of the following conditions, at least: (i) all BF nodeséaeen visited, and (ii) an integer TNF have
just been visited. Tablé 1 illustrates such situations iexample. It is important to underline that the
dynamically-guided (DG) branching in H-DBFC aims pregysiel visit integer TNFs often, therefore,
the idle time is reduced with respect to the strategy thatawe lpresented elsewhere, see [4].

e The synchronization phase is activated once all paths leaahed it. See next how it operates.

The operation of the synchronization phase is as followsstFall paths gather the current incumbent
solution value obtained by each pafi}! and update the incumbent global pa#t"' of the original model
(@. Second, the dead/active path analysis starts and dhe &dllowing three situations arises:

o If all paths are dead, then all TNFs of the BF tre@s” 7,4, have been visited, so, the original BF
tree2.% 7 have been fully visited and the execution end in all pathsthemouter parallel version of
H-DBFC stops (global end).

o Ifall paths are active, then each one will continue brangrits own%.7 7an with the new updated

Z0EM,

e Otherwise, each dead path will match with an active path. dthier parallelization presented here has
been extended to deal with the dynamic and matheuristic@afuhe H-DBFC algorithm, as opposed
to the root node matching criterion inl [4]. Thus, only the leifly branched forward variables are
candidates for the matching, since their influence is camsiiito be more significant. Let ymath
andpathy be a dead and an active path, respectively. Consider thdbthe leveld; andly have been
explicitly reached in the BF tree from the root node, respely i.e., the root TNF for current active
pathy in the matheuristics perspective. i, = (52,... ,)?l%), and the root TNF for the current dead

pathy is Apatn, = (&,....%), such that the situation is as follows:

— All the successor TNFs from the dead path have already besregy

— The dead pathpathy will restart the execution of H-DBFC from the root TNB%atm =
(Xts- s Xigs Mg 1) = (R, ,>‘<|%, 1— 0j,+1) and its associated Ne¥W.7 Tpath, -

— The new starting combination of 0-1 values#¥ Jpa, is included by values of the variables
already branched on or fixed at in the current branchingatfy plus the opposite value for the
new (next) explicitly branched variable with respectpathy branching. See Sectign 8.1 for the
description of they-parameter. Notice that in/[4] the dead path is always bradd¢b value 1 in
the matching, due to the static branching criterion.

— The activepathy will continue branching as stated in H-DBFC, but its root Th&S been updated
to </Vpath) = (Xla et 7X|07X|0+l) = ()225 et 7)?%7 O]o+1)'

14

Algorithm 2 Synchronization phase

(All paths gather ZD5M and deadyars status)[All coordinator threads].
When a path is dead or has obtained a feasible solution,
setz?EM = min(Z°=M, minpan{Zpg })-
If all deadyatn = 1 (dead) then
(Finish MPI environment) [All coordinator threads].
GLOBAL END.

else

(Dead paths receive active paths variable branching)
[All coordinator threads].
Dead paths are reassigned by splitting active pétha Jpath.
All paths update root TNF/Vpath.
Paths wher@lead;h = O (active) continue branching.
Paths wher@eadh = 1 restart H-DBFC at the partial branching of
its related matched patitiead,qnh = 0, see AlgorithniLfL.

4.2. lllustrative example

Figure2 and Tablgl1 show an illustrative example of the opeeallel version of H-DBFC while solving
P3, a randomly generated instance taken fram [4, 22]. It vgepaths, where the TNFs of Path 1 and Path
2 are in blue and green, respectively. Notice that when twibspare available only one 0-1 variable can be
fixed for the initial definition of the path, say variabte. Thus, Path 1 starts the algorithm with root TNF
11 (1) = (0) and Path 2 with#2 : (x1) = (1). The synchronization phase is reached four times during the
global solving, see below for the process.

15

GLOBAL
START

INITIAL ROOT NODE ASSIGNATION TO PATHS
M1 =(0,0), S =(0,1), M= (1,0), Sz =(11)

PATH 1 N PATH 2 N . PATH 3 N
Root A7 := .M Root A3 := AN, Root A3 := .43

PATH4
Root A3 1= A,

[T b [
I I I	
H-DBFC | H-DBFC | H-DBFC | H-DBFC
Algorithm } Algorithm } Algorithm } Algorithm
- e e e
| | | |
' 2EM dead } ' 2BEM dead } ' 2EM, deady } ' 22EM dead
| [[[
| [[[
| [[[
|
} ALL COORDINATOR THREADS GATHEI'_'(PZEP)EJ‘:I AND THE EXECUTION STATUSdeadhath
l IF THERE IS A DEAD PATH OR FEASIBLE SOLUTION OBTAINED, GOTGYNCHRONIZATON PHASE
| [[[
]

.
4

~,
R4

UpdatezPEM = min(Z2EM, minpan{Zogh'})

GLOBAL
END

DEAD & ACTIVE PATH MATCHING N
Every coordinator thread associated to a dead path rededrasa matched active path its root nodatn

SYNCHRONIZATON PHASE

P T T

|
1
|
|
|
|
|
-
ni

|
|
|
1
|
|
1
|
|
|
|
|
|
1
|
|
|
|
|
|
1
-
|
1
|
|
|
1
|
|
1
|
|
|
1
|
|
1
|
|
|
|
|
|
1
|
|
1
|
|
|
1
|
|
1
|
|
|
1
|
|
1
|

~.------------------—

no 0 no 0
continue continue continue ontinue
branching | branching | branching | branching |
I yes I yes I yes I yes
| | | |
. | __ . | [festart | __ | [festart | __ . | [restart 4 restart

. algorithm algorithm algorithm algorithm ‘,'

S

Coordinator thread 1 Coordinator thread 2 Coordinator thread 3 Coordinator thread 4
associated to path 1 associated to path 2 associated to path 3 associated to path 4

Figure 1: lllustrative 4-path Outer PH-DBFC diagrafd x 1 x 1)

The first synchronization phase, denofy¢hcl in Figure[2, takes place when Path 1 obtains a feasible
solution (for the original model{1), that is, all common iadnles take 0-1 values) at TNF 06, where
ZDEM — 291665, and as it is still active, stead := 0; while Path 2 obtains a feasible solution at TNF
01,Z98M = 290398, so, the branch is pruned and, thet# .% is fully visited, so,dead := 1. After the
comparison of the path solution values,Z88M < Z2EM andZ2EM < ZPEM | thenZPEM .= Z0EM . As Path 2
is dead, let us descend to branch on a common variablepdaysharing Path 1 BF tree. The root TNF for
Path 1 is updated tof : (x1,%2) = (0,0) and continue branching. On the other hand, Path 2 will givihep
previous BF tree and, being linked to the root TNE : (x1,%2) = (0,1), it will restart H-DBFC to solve the
new path BF trees.% .%. Notice that root TNFs are indicated with double lined @gcin Figuré .

The second synchronization phase, den&gialc2, takes place when Path 1 obtains a feasible solution at
TNF 07 (whose value is smaller than the global vatdgM) wherezZPEM = —291709 and it is still active.

16

..............

......
.
.

prune
Sync4
—292070

GLOBAL END

x5 =0 xs=1 Syncd
—292109

- - Synchronization
Syncl Sync2 Sync2 Sync3 ZDaE‘hhA
—291665 —291709 —291988 —292022 [ZBEM]
[-291665 [291988 (291988 [-292022

Figure 2: Two-path Outer P-BFC performance for instance P3

On the other hand, Path 2 branches on TNFs 02 to 04, such tlestsible solution is obtained, where
ZDEM — 291988 (smaller than the global incumbent value) and itillsesttive. After the comparison of
the path solution values, singd@=M > Z2EM andZZEM < ZPEM it results thazPEM := Z2EM, and TNFs 07
and 04 are pruned in Path 1 and Path 2, respectivelylessi := 0 anddead := 0, root TNFs do not need
to be updated and both paths continue branching.

The third synchronization phase, denof¢hc3, takes place when Path 1 branches on TNFs 08 to 10
and, finally, it stops since it has finished branching at ite ¢tnee rooted at0,0). On the other hand, Path 2
branches on TNF 05 where a feasible solution is obtainedie#&M = —292022 (smaller than the global
incumbent value). After the comparison of the path solutialues, ag?®M > 22EM andZ2EM < °EM then
ZPEM :— Z2DEM " TNF 10 of Path 1 is pruned and the path is dedeiad := 1, since Path 2 is still active,
deag@ := 0. Path 1 has finished its own BF tree, therefore, let us desebranch a common variable, say
x3. Path 1 will give up the previous BF tree and, being linkedim TNF .41 . (x1,X2,%3) = (0,1,1), the root
TNF for Path 2 is updated tof2 : (x1,X2,%3) = (0,1,0).

Finally, the last synchronization phase, dendigtic4, takes place when Path 1 branches on TNF 11, a
feasible solution is obtained, whezB¥M = —292070 (smaller than the global incumbent solution). On the
other hand, Path 2 branches on TNFs 06 and 07, where a fessibi®n is obtained, whe@®M = —292109
(smaller than the global incumbent value). After the corigoar of the path solution values, &M > Z2EM
andzPEM < ZPEM | thenzPEM .= Z2DEM_TNF 11 of Path 1 is pruned. And, additionally, both pathsdead,
dead := 1 anddead := 1, since all TNFs at the path tregg8%# .7, and#.% % have been branched on. So,
the outer parallel version of H-DBFC has finished, and thermigent solution value i2°EM = —2921009.

17

Path 1 Path 2

ROOtTNF % 2DEM ROOtTNF 5 ZEM
Root(0) Root(1)
TNF 01 —292117 TNF 01 —290404 —290398
TNF 02 —291839
TNF 03 —291826
TNF 04 —291759
TNF 05 —291741
TNF 06 —291678 —291665
Obtain feas solnjead =0 Obtain feas soln and all TNFs branchddad = 1
Synchronization phase 1Z°=™ = —291665
Continue branching in H-DBFC Restart H-DBFC
Root(0,0) Root(0,1)
TNF 07 —291718 —291709 TNF 02 —292116
TNF 03 —292061
TNF 04 —291996 —291988
Obtain feas solnjead =0 Obtain feas solmjead =0
Synchronization phase 2Z°F™ = —291988
Continue branching in H-DBFC Continue branching in H-DBFC
Root(0,0) Root(0,1)
TNF 08 —291652 TNF 05 —292027 —292022
TNF 09 —291826
TNF 10 —291803 0
All TNFs brancheddead = 1 Obtain feas solmjead =0
Synchronization phase 3Z°EV = —292022
Restart H-DBFC Continue branching in H-DBFC
Root(0,1,1) Root(0,1,0)
TNF 11 —292075 —292070 TNF 06 —291733
TNF 07 —292114 —292109

Obtain feas soln and all TNFs branchdead = 1 Obtain feas soln and all TNFs branchddad = 1
Synchronization phase 4Z°™ = —292109
GLOBAL END

Table 1: Two-path Outer PH-DBFC performance

5. Computational experience

The computational experiments were conducted in the ARINAgutational cluster from SGI/1ZO-
SGlker at UPV/EHU, which provides 1926 cores divided asofefi: 1774 xeon cores, 248 Itanium2 cores
and 40 opteron cores. All computing nodes are connected bBgfaniband network with high bandwidth
and low latency. For this computational experiment xeon ¥86architecture (Xeon Nehalem-EP E5520 @
2.4GHz) type nodes were used, consisting of 18 nodes, satledich node (with 2 processors of 6 threads)
has 48 Gb of RAM, 2.4 Ghz and a QDR infiniband interconnecti®dr22 Tb high performance file system
based on Lustre was used for data storage.

The inner and outer parallel versions of matheuristic H-DB#ere implemented in a3 experimental
code which uses the state-of-the-art optimization LP/MdRexr CPLEX v12.5|[38] called from the open
source library COIN-OR v1.3.1[15]. The optimizer is usedstadve the MIP submodel§l(2) for the set of
scenario clusterg’ in Step 1 and Step 4, and the LP submofkl (6) and the MIP subdsi@Jdor the set of
scenario clusterg” in Step 5.

The computational experience is reported as follows: 8e#il presents the dimensions of the instances
we have experimented with. Sectionl5.2 details the perfoomaf the serial version of the matheuristic H-
DBFC, and Sectiorls 5.3 ahd 5.4 detail the performance ofdna&lpl versions of H-DBFC, so-called inner
IH-DBFC and outer OH-DBFC, respectively.

18

5.1. Testbed dimensions

We have considered in our computational experience 18-simpel instances from a realistic production
planning problem taken from![3, 16], whose dimensions aosvshin Tabld 2. The headings are as follows:
number of stagesn, number of constraintsix, number of 0-1 variablesixc number of common variables,
i.e., number of 0-1 variables in the subset of stages fj toy, number of continuous variablesel, number
of non zero coefficients in the constraint matrikens constraint matrix density (in %)[Q|, number of
scenarios{#|, number of nodes in the scenario tree; ditde scenario tree structurAS2ASS, whereA;
denotes the number of children that each node has in eaghadtatpcki, andB; denotes the number of stages
of blocki, fori = 1,2,3. Note: The break stage has been equal to 1 for all experinieat are reported, but
for instance c47 wher& = 2 in Table$ B andl4, and c¢55 whete= 6 in Table$ B and4 and = 3 in Tableb.
All results reported in the section consider that ¢hgtopping parameter is@05.

Table 2: Original mode[{1) dimensions (compact represiemta
Instance T m nxX nxc ny nel dens |Q] || Tree

c43 8 163080 42750 300 106650 892975 0.0037 432 8583324
c44 8 167355 42750 300 106650 1072525 0.0043 432 8553324
c45 8 234660 66000 600 154800 1635440 0.0032 432 66433
c46 8 241260 66000 600 154800 2142320 0.0040 432 66434
ca7 8 316755 85500 600 213300 2134790 0.0023 432 855324
c48 8 325305 85500 600 213300 2798270 0.0029 432 855324
c49 9 71148 19560 60 45720 200966 0.0043 1296 195643t
c50 9 75060 19560 60 45720 226394 0.0046 1296 195643t
c51 9 96948 25560 60 63720 262898 0.0030 1296 2558321
c52 9 102060 25560 60 63720 311462 0.0034 1296 2558%24
c53 11 392436 103320 60 258120 1115486 0.0008 5184 1038325
c54 11 413100 103320 60 258120 1239470 0.0008 5184 10333%2%1
c55 11 448020 116840 60 272760 1340022 0.0008 7776 11682°3%1
c56 11 424652 116840 60 272760 1199814 0.0007 7776 11682°3%1
c57 9 693876 195600 600 457200 4775444 0.0011 1296 19%@%34
c58 9 732996 195600 600 457200 7903088 0.0017 1296 19%@*3%1
c59 9 946476 255600 600 637200 6411860 0.0008 1296 25%8%24
c79 8 3032055 769500 5400 1919700 253365120 0.0031 432 8633241

Observe the high number of stages and scenarios, and thdihighsions of the largest instance, c79. It
is interesting to point out that the dimension is not the @idyificative factor for determining computational
complexity. The instances have a very nice structure, uadggmmetric tree, but the behaviour can be very
different.

5.2. Performance of serial matheuristic SH-DBFC

Table3 shows the performance of SH-DBFC with respect to matfastic Dynamic Programming-based
matheuristic serial version, S-SDP, as presented in [3flamglain use of CPLEX, with thread configuration
(1x 1x 8). The headings are as followmst, instance’s codez”=M, 22EM J andZ2EM 5, solution value
of the original model[{l1) and incumbent values of S-SDP andDB#C, respectivelyOG, optimality gap
in percentage shown by CPLEX, that is, the relative diffeeehetween the incumbent solution value and
the value of the objective function of the best actB&B node;GG% goodness gap, relative difference (in
percentage) between the solution values provided by thieguestics S-SDP and SH-DBFC, and the CPLEX

19

-DEM_ ,DEM
incumbent solution value, whose expressios{s% = 100- WW, where(.) is S-SDP or SH-DBFC;
ti(s), time instant (in seconds) at which the CPLEX incumbenttsmius found; and(s), total elapsed time
(in seconds).

The results are only reported for the matheuristic strategly the most accurate break stagje as
mentioned above. The strategy significantly reduces thebeuf candidate TNFs and integer TNFs visited
(and, thus, the number of cluster submodels (2) ahd (9) dadvsignificantly small); therefore, the elapsed
time required is also reduced.

Table 3: SH-DBFC performance versus S-SDP and plain use bEEP

CPLEX (1x 1x8) S-SDP(1x 1x 1) SH-DBFC(1x 1x 1)
Inst PEM O 0OG% ti(s) t(s) 2N, GG% t(s) [t ZBEMbgre GG t(9)
c43 3498249 0.06 4343 16217 3539594 1.18 33| 1 3505629 0.21 161
c44 4211366° 0.03 161 242520 4249979 0.92 145 1 4226605 0.36 86
c45 8036004 * 27 37| 8123167 1.08 28| 1 8127924 1.14 201
c46 8087808 * 74 375 8139108 0.63 51| 1 8149793 0.77 186
ca7 7151251 0.09 240 9421 7227178 1.06 433 2 7175002 0.33 227
c48 6594167 0.12 363 9007 6660629 101 108| 1 6603791 0.15 363
c49 993334 * 1 1| 1004692 1.14 23 1 993433 * 1
c50 1005119 * 2 2| 1006477 0.14 4 1 1005119 * 3
c51 772567 * 16 16 775933 0.44 14 1 772590 * 14
c52 862754 * 20 20 870090 0.85 18 1 863566 0.09 15
c53 670234° 0.32 1381 15091 685613 2.29 59| 1 675116 0.73 371
c54 769236° 0.19 2395 16939 776389 0.93 486 1 774450 0.68 183
c55 1163290° 0.07 6967 8948 1165132 0.16 73| 6 1169030 0.49 28
c56 1126270 * 43 43| 1128968 0.24 20| 1 1129264 0.27 37
c57 717421% 0.06 3829 3829 7256183 1.14 91| 1 7233506 0.83 299
c58 8753936° 0.02 22629 22629 8803020 0.56 2001 1 8863723 1.25 217
c59 8200795 0.08 2094 15974 8251017 0.61 171 1 8253812 0.65 197
c79 —a — 8h 8h | 61360087 — 14473| 1 61118713 - 14511

Average| 4062976 0.06 2623 840p 4097833 0.85 115

[EEY

4089550 0.47 152

*: Optimality/goodness gap achievée 0.01%)
—: non available

a: Time limit (8h) exceeded

b: Out of memory (35 Gb)

Notice that the choice of the break stagés very much instance dependent. Observe the results ebitain
by the three approaches for instances c55 and c56, wiresstructure and dimensions are identical, but the
realizations of the scenarios are different. CPLEX prosisienilar solution value for both instances, but the
elapsed time is 8948 seconds for c55 and 43 seconds for c&matheuristic algorithms provide solutions
whose GG are similar for the same instance with impressivgseld times, but SH-DBFC requires thiais
changed from 1 to 6 for instance c55. In any case, it is cledrttie time complexity depends not only on the
model dimensions but also on its tightness.

The last row of TablEI3 (as it happens for Talples 4[@nd 5) reploetaverage value for each column, where
the largest instance, ¢79, has not been included in the ciatiqy, rather it is separately considered.

Observe in Tablgl3 that the quality of the solution value &fically the same in the instances c49-¢52 for
CPLEX and SH-DBFC, and the solution value provided by SH-BB$ better in two thirds of the instances

20

(in fact, 67%) than the one provided by S-SDP. The reductighe elapsed time is remarkable in comparison
with plain use of CPLEX in both matheuristics, even with exstgo the time instant at which the best known
CPLEX solution is found. Notice that the instances are gahyesolved in very few minutes, being c47, c54
and c79 the hardest ones for S-SDP and c48, ¢53 and c79 theshares for SH-DBFC. Observe that 7 out
of the 18 instances are solved by SH-DBFC in less time thabB-$he average GG for instances c43 to
¢59 in SH-DBFC is 0.47% versus 0.85% in S-SDP, while the @yeedapsed times are 152 and 115 seconds,
respectively. For the biggest instance c¢79, where plainofi$&PLEX can not even obtain the LP solution
value in the 8h time limit, both matheuristics require santimes (4h approx). On the other hand, SH-DBFC
obtains a better solution value than S-SDP in a relativedifice of B9%. The break stage selection is an
important decision, since the smaller its value, the tigtite TNF bounds but more elapsed time is required
by the submodels solving. The appropiate selection depemtise problem dimensions and its complexity.

See i Appendix A some figures about the evolution of the perémce of the solution values obtained
by H-DBFC and SDP.

5.3. Performance of inner parallelization IH-DBFC

Table[4 shows the main results of the inner parallel IH-DB#@gad configuration (k 2 x 1), where
2 is the number of primary threads. It is also shown its comsparwith the inner parallel version, IP-SDP,
of matheuristic SDP|[3], thread configuration €112 x 1). The new headings are as followg=M
andzPEM . -, incumbent solutions of IP-SDP and IH-DBFC, respectiv&l% goodness gap, the relative

difference (in percentage) between the solution valuesiged by the inner parallel matheuristics IP-SDP
sDEM_ ,DEM

and IH-DBFC, and the CPLEX incumbent solution value, whogeession is5G% = 100- “W, where

(.) is IP-SDP or IH-DBFCC, number of scenario clusters (i.e., number of scenariortogies for the stage
t* +1); ¢, average number of scenario cluster submodeéls (2) byibertiat are solved in Step 4 (candidate
TNF branching) of the inner parallel version of DBF&;;, = tserial/tinner, SPe€d up when usirtdp primary
threadsE, = 100- Sp/th, efficiency when usingh primary threads.

As it has been stated above, by construction, the innerlpkzations of H-DFC and SDP, do notimprove
the quality solution provided by the related serial versi¢ifithe latter obtains the incumbent solution before
reaching the time limit); compare the incumbent solutiotuga in Tables13 anfll 4 for each algorithm.
However, observe in Tablé 4 the remarkable reduction in,tiReSDP obtains greater decreasing but using
much higher number of threads. However, the efficiency tesuk similar for both matheuristics, IP-SDP
with 12 threads and IH-DBFC with 2 threads. The efficiencyl#SDP is between 42% and 79% with an
average value of 60%, while the efficiency for IH-DBFC is beén 38% and 98% with an average value of
59%. The structure of the scenario tree is not the most apgieofor an inner parallelization of the DBFC
algorithm, since it is based on the number of scenario trefes© = |4 +1|. By construction, the SDP
algorithm may solve in parallel as many submodels as thereades ireachstage (and as there are scenarios
in the extreme case) . However, notice in the table that tkesge number of scenario cluster submodeéls (2)
solved at the candidate TNFs, is smaller than the number of submod&lshat could be solved at those
TNFs (one of the improvements of DBFC over BFC), see sulm&@il. It is worth to point out that the
oracle scheme in Step 4 of DBFC identifies the submodels thai@ needed to be solved again because the
solutions have already been obtained. For example, infioste55 (wheré* = 6) the number of nodes in set
¢ in the scenario tree 18 = 96, which means that the solution of all the 96 scenario eligibmodels have
to be provided in one way or another. However, the number lofngdels that the oracle in Step 4 identifies
is, on average; = 5.43, whose solution needs to be obtained, since it is not kept the previous candidate
TNF branching. It means that a great deal of time is savedeigdhial version. So, a small number of primary
threads are needed to obtain the same efficiency as P-SD@immr parallel version of H-DBFC.

As a final remark, notice that the chosen cluster distriloutigterion within threads aims to balance the
number of subproblems. Observe that the instances have ayioscenario trees, and then, the dimensions
of the scenario cluster submodels are quite similar in eastance. So, their solving complexity and elapsed

21

Table 4: IH-DBFC performance versus IP-SDP

IP-SDP(1x 12x 1) IH-DBFC (1x 2 x 1)

Inst EM . GG% t(Sp Ep% [t C T M. GG% t(5 S E%
c43 3539594 1.18 5 6.60 55001 3 164 3505629 021 128 1.26 62.89
c44 4249979 0.92 19 7.63 63.601 3 209 4226605 0.36 83 1.04 51.81
c45 8123167 1.08 5 560 46671 2 106 8127924 114 196 1.03 51.28
c46 8139108 0.63 8 6.38 53181 2 110 8149579 076 180 1.03 51.67
ca7 7227178 1.06 58 7.47 62212 9 1.92 7175002 0.33 188 1.21 60.37
c48 6660629 1.01 16 6.75 56251 3 2.04 6603906 0.15 185 1.96 98.11
c49 1004692 1.14 3 767 63801 2 200 993433 1 1.00 50.00
c50 1006477 0.14 1 667 55561 2 1.40 1005119 = 4 075 37.50
c51 775933 0.44 2 667 55561 3 1.60 772589 14 1.00 50.00
c52 870090 0.85 3 600 50001 3 2.00 863562 0.09 12 125 62.50
c53 685613 2.29 7 843 70241 3 200 674479 063 276 1.34 67.21
c54 776389 093 51 953 79411 3 3.00 774450 0.68 158 1.16 57.91
c55 1165132 0.16 9 811 67506 96 543 1169030 0.49 35 0.80 40.00
c56 1128968 0.24 2 833 69441 2 200 1129302 0.27 36 1.03 51.39
c57 7256183 114 13 7.00 58331 2 1.14 7234093 0.83 180 1.66 83.06
c58 8803020 056 26 7.69 64101 2 106 8864215 126 168 1.26 63.10
c59 8251017 0.61 30 570 47501 3 150 8253812 0.65 172 1.12 55.81
c79 61360087 — 2850 5.08 4237 1 3 1.29 61360087 — 11776 1.23 61.6]
Average| 4097833 0.85 15 7.19 59.911 8 1.94 4089572 0.46 119 1.17 5851

*: Optimality/goodness gap achievéd 0.01%)
—: non available

time are balanced. Moreover, the number of threads very close to the average numizenf submodels

([2) to be required to be solved, then it is more likely to haile threads rather than unbalanced solving tasks.
Notice that given the scheme used in algorithm H-DBFC, thmlmer of submodels to solve per iteration is
not constant and then,< C (number of cluster submodels).

5.4. Performance of outer parallelization OH-DBFC

Table[$ shows the main results of the outer parallel OH-DBIR@ eompares them with OP-SDP,
both with the same thread configuration (¥21 x 1). The new headings are as followg5Ms, and
Z2EMbgee, incumbent solution values of OP-SDP and OH-DBFC, respelgti GG% goodness gap, the

relative difference (in percentage) between the solutédnes provided by the outer parallel matheuristics OP-
zDEMizDEM
SDP and OH-DBFC, and the CPLEX incumbent solution value sehexpression i&§G% = 100- “W,
where (.) is OP-SDP and OH-DBFCG%, improvement gap of the outer parallel version of algonith
(.) over its related serial version, where (.) is either OBHT or OP-SDP, whose expressionl 3% =
7gzé\llDP77Cl3)|I15’5/|SDF’ _ZgEMDBFcijD)EMDBFC i
100- ==L or IG% = 100- r ; A%, the relative gap of OP-SDP over OH-DBFC,
P—SDP H—-DBFC
that is, the relative difference in percentage betweendheisn values provided by both algorithms, whose
-DEM ___-DEM
expression ig\z% = 100- %; At(s), increment (in seconds) of the elapsed time required by
H—DBFC
OP-SDP over OH-DBFC.

Observe in Tabl€]5 that the quality of the solution in the pytarallelization in either algorithm is
improved over their related serial versions in most of ttetances. The relative difference on average for

22

Table 5: OH-DBFC performance versus OP-SDP

OP-SDP(12x 1x 1) OH-DBFC (12x 1x 1) Comparison

Inst 2EVpp GG% t(s) 1G% | t* ZBEMgrc GG% t(s) 1G% | A% At(s)

c43 3538641 1.15 19 0.03| 1 3502309 0.12 331 0.09| 1.04 -312
c44 4249979 092 156 (—) | 1 4226604 0.36 130 (-) | 0.55 26
c45 8099878 0.79 237 0.29] 1 8127924 1.14 249 (—) | -0.35 -12
c46 8139979 0.65 59 -0.01| 1 8149579 0.76 270 (—) | -0.12 -211
ca7 7225961 1.04 65 0.02] 1 7172544 0.30 415 0.03| 0.74 -350
c48 6659199 099 82 0.02] 1 6603906 0.15 226 (—) | 0.84 -144
c49 1004692 1.14 23 (—) | 1 993433 * 2 (—)| 113 21
c50 1006476 0.14 4 (=) 1 1005149 * 4 (-)| 013 0
c51 775566 0.39 17 005 1 772589 * 17 (-) | 0.39 0
c52 869150 0.74 20 0111 863562 0.09 17 (-) | 0.65 3
c53 675583 0.80 592 148 1 674493 0.64 345 0.09| 0.16 247
c54 775311 0.79 305 0.14 1 773529 0.56 249 0.12| 0.23 56
c55 1165110 0.16 97 (—) | 3 1163434 0.01 724 0.48| 0.14 -627
c56 1128801 0.22 31 0011 1129261 0.27 113 (—) | -0.04 -82
c57 7255427 113 115 0.01| 1 7220685 0.65 808 0.18| 0.48 -693
c58 8801307 0.54 236 0.02| 1 8860548 1.22 249 0.04-0.67 -13
c59 8246290 0.55 1328 0.06| 1 8231762 0.38 488 0.27| 0.18 840
c79 61352973 — 2850 0.01| 1 61135509 - 17425 -0.03| 0.36 -14575
Average| 4095138 0.71 199 0.13]| 1 4086548 0.39 273 0.08| 0.32 -74

*. Goodness gap achievéd 0.01%)
(—): Improvement gap null< 0.01%)
—: non available

b: Out of memory (35 Gb)

instances c43 to ¢59 is 0.13% for OP-SDP and 0.08% for OH-DBF@ results obtained in instance c79

(whose dimensions are given in Table 2) need to be considematately. The other instances can be split
into two groups, one comprising c43 to ¢52 (medium sizedaimsts) and the other ¢53 to c59 (large sized
instances). Notice that the solution value obtained by GBFO is better than OP-SDP in 8 out of the 10

instances in group one; and that the former requires legsttian the latter in 3 out of the 10 instances while
both algorithms require the same time in 2 instances. Obsaso that the solution value obtained by OH-

DBFC is better than OP-SDP in 5 out of the 7 instances inclinlggoup two; and the former requires less

time than the latter in 2 out of the 7 instances. It is worth eéinpout that the larger the instances are, the
more time OH-DBFC requires in comparison with OP-SDP, altjtoit gives a better solution value.

Notice that for the largest instance, c79, OH-DBFC proviaéetter solution value than OP-SDP at the
price of requiring much more time. That increase is due tdithe required to solve the large LP modéel (6)
that results from fixing at 0-1 values tle-variables in the original moddIl(1) at any integer TNF (Stegf 5
the algorithm). Notice that no decomposition has been madesi algorithm for satisfying the NACI(4) of
they-variables related to the scenario tree nodes in stages lugak stage*, where all 0-1 variables have
already been fixed in the related branching. In Seéfion 6,|aleoeate on our future plan to address this issue.

23

6. Conclusions and future work

We have presented the new matheuristic H-DBFC, as a strgmguimg spin-off from the Branch-and-Fix
Coordination (BFC) methodology, and its related inner angtoparallel versions with several matheuristic
strategies for solving very large sized multistage stotihatixed 0-1 problems. A new branching criterion is
considered, based on stage-wise ordering and dynamigaitied schemes, such that fewer candidate TNFs
are expected to be visited in the algorithm’s execution awhef them requires a significant reduction in
the time required by its counterpart BFC. It is due to a higmbar of scenario cluster MIP submodels to be
solved in Step 4 for the candidate TNF that are identified bpa@dhoc oracle scheme as already solved in
previous iterations of the algorithm and, then, they aresobted again. The outer parallel version performs
parallel branching on the 0-1 common variables as well ageanative exchange of information about the
incumbent solution value to reduce the elapsed time. It @lgains tighter bounds on the solution value of
the original problem. The use of parallel computing progideperspective for solving large sized instances
on one hand, and a reduction in time on the other hand. The patallel H-DBFC can obtain much better
results when the number of paths is increased, i.e., whee ga@ordinator threads are considered to work
in parallel. A broad computational experience is reporteddsess the quality of the matheuristic solution
by comparing it with those obtained from plain use of theest#tthe-art CPLEX engine and a different
matheuristic algorithm of ours based on Stochastic Dyn&ragramming (SDP) [3]. We have experimented
with 18 instances from a realistic production planning peab|16]. The instances correspond to symmetric
scenario trees and are very well structured. Both mathteudiscomposition algorithms outperform the plain
use of CPLEX. The algorithms give solutions with very goodlgy and H-DBFC provides a better solution
value than SDP. However, for reasons stated above, the fag@nstances are, the longer the time required
by H-DBFC. In any case, the different parallel versions efitiatheuristics strongly improve the elapsed time
as well as the solution quality compared to the serial vessids an illustrative example of the computational
performance of the new approach, there is a large instan¢eweexperimented with whose dimensions are
448,020 constraints, 116,840 0-1 variables and 272,76fntmus variables. Serial H-DBFC (SH-DBFC)
gives a solution value with a 0.49% goodness gap versus pkenof CPLEX v.12.5 and it requires 28
seconds of elapsed time, while CPLEX stops since it was ngnmiit of memory (35Gb) after 8,948 seconds
whose solution value has a 0.07% quasi-optimality gap dttitme instant. The largest instance we have
experimented with has the following dimensions: 3,032 @&tstraints, 769,500 0-1 variables and 1,919,700
continuous variables. CPLEX stops after reaching the 8é liimit without getting the LP solution. However,
SH-DBFC gives a solution value with a 0.39% improvement gagsws Serial SDP (S-SDP) requiring both
an elapsed time of 14,511 and 14,473 seconds, respectively.

As future work we are also considering the solution of vemgdasized problems, by avoiding the
potential drawback of solving the compact version of the L&det [8) at any integer TNF (Step 5 of the
algorithm). Notice that a matheuristic based on a multistelgster Lagrangean Decomposition (MCLD)
scheme![26] could be considered by dualizing the NAC (4) efdbintinuous variables related to the scenario
tree nodes in the stages up to the break one. The decompositiold consist of solving (serially or in
parallel) as many LP submodels as there are scenario dugnaerated based on the chosen break stage. The
convergence could be accelerated by using a separableatjgddnction as a regularization mechanism using
the incumbent solution as a reference point. Another doedbr future research consists of extending the
SH-DBFC algorithm and its parallel versions to considek agerse strategies as opposed to the risk neutral
one considered here. We favour the multifunction multisttigie stochastic dominance risk averse strategy
introduced in|[23] for the reasons presented there. The oiatienge consists of handling the cross scenario
tree node constraints for selected stages along the tinizoimorThis could also be done by MCLD of NAC
and Lagrangean Relaxation of the risk averse based cartstraeel[23]. Another direction for research is
the expansion of our approach to allow a mixture of exogemmasendogenous uncertainties in the main
parameters.

24

Acknowledgements

This research has been partially supported by: BizkaianTa@d European Commission through
the COFUND programme, awarded in the 2015 Aid Programme &seRrchers with request reference
number AYD-000-280; Spanish Ministry of Economy and Coritpeiness MINECO and European Regional
Development Fund FEDER through the BCAM Severo Ochoa exwed accreditation SEV-2013-0323;
projects 1+D Excellence MTM2015-65317-P and MTM2015-63-F; Basque Government through the
BERC 2014-2017 program and Grupo de Investigacion IT928ah@ University of the Basque Country
UPV/EHU through the UFI BETS 2011 programme. The authorakhhe technical and human support
provided by 1Z0-SGI SGlker of UPV/EHU and the European furgdfERDF and ESF) as well as the two
anonymous reviewers for their help on clarifying some cpte@resented in the manuscript and whose
positive criticism strongly improved its presentation.

Appendix A. Performance evolution of SH-DBFC and S-SDP

Figure[A shows the performance of the matheuristics S-8BPSH-DBFC on the evolution of the
incumbent values in comparison with the value obtained lanplise of CPLEX for the medium sized
instances c44 and c47, the larger instances c53, c56 anchdstha largest instance c79, respectively. The
goodness gap is in parenthesis inside the legends.

25

g
g

4210000 4220000 4230000

c44

| (sDP) 4249979

A

| (HDBFC) 4226605

(CPLEX) 4211366

« = SDP(0.92)
== HDBFC (0.36)
= CPLEX

o 100

T T
200 300

00 500

7140000 7160000 7180000 7200000 7220000 7240000

c47

Jimo o= ¢ om ¢ am o = o o

+ = SDP (1.06)
== HDBFC (0.33)
= CPLEX

(SDP) 7227178

\ (HDBFC) 717500

(CPLEX) 7151251

2

100 200

T T
400

a0
Elapsed-time

500 600

Elapsed-time
c53 c56
e = SDP (2.29) e = SDP (0.24)
¢ = HDBFC (0.73) = e HDBFC (0.27)
il v — CPLEX g \ = CPLEX
| (sDP) 685613 B .
g R \
\
i —_— - g (HDBFC) 1129264
(HDBFC) 675116 g . - -—
g (CPLEX) 670234 (SDP) 1128968 (CPLEX) 1126270
E —— . -—
o pa o } o © o
Elapsed-time Elapsed-time
c57 c79
e = SDP(1.14) g . = SDP
1 " == HDBFC (0.83) 1 . 1 = HDBFC
5|1 = CPLEX e
g \(SDP) 7256183 £ ’
g (HDBFC) 7233506 s -l T e = -
g N (SDP) 61360087
g 1
€
g | (CPLEX) 7174215 gl (HDBFC) 61118713
o 200 o o0 2000
Elapsed-time Elapsed-time

Figure A.1: Comparison of H-DBFC, SDP and CPLEX for instancé4, c47, c¢53, ¢56, c57 and c79.

References

[1] T. Al-Khamisl and R. M’Hallah. A two-stage stochasticogramming model for the parallel machine scheduling probigth
machine capacityComputers & Operations Resear@8:1747-1759, 2011.

[2] U. Aldasoro. On parallel computing for stochastic optimization modet&l algorithms PhD thesis, University of the Basque
Country UPV/EHU, Spain, 2015. URhttps://addi.ehu.es/handle/10810/14315.

[3] U. Aldasoro, L.F. Escudero, J.F. Monge, M. Merino, andR@&rez. On Parallelization of a Stochastic Dynamic Progrengm
algorithm for solving large-scale mixed 0-1 problems ungeertainty. TOP, 23:703-742, 2015.

[4] U. Aldasoro, L.F. Escudero, M. Merino, and G. Pérez. Agoaithmic framework for solving large-scale multistagec$tastic
mixed 0-1 problems with nonsymmetric scenario trees. Pdpglrallelization.Computers & Operations Researet):2950-2960,
2013.

[5] L. Aranburu, L.F. Escudero, M.A. Garin, and G. Pérez.c8&stic models for optimizing immunization strategies xedi-income
security portfolios under some sources of uncertainty. lh Bassmann and W.T. Ziemba, edito&pchastic Programming:
Applications in Finance, Energy, Planning and Logistipages 173-220. World Scientific Publishing Co. Pte. Ltd12

[6] T. Asamov and W.B. Powell. Regularized DecompositionHijh-Dimensional Multistage Stochastic Programs with kéar
Uncertainty.arXiv: 1505,022272015.

26

https://addi.ehu.es/handle/10810/14315

[7]
(8]
9]
(10]

[11]
(12]

(13]
[14]
[15]
[16]
(17]

(18]
[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

(30]
(31]
(32]
(33]
[34]
(35]
(36]
(37]

(38]

T. Asamoy, D. F. Salas, and W. B. Powell. SDDP vs. ADP: Tifed of Dimensionality in Multistage Stochastic Optimiiza for
Grid Level Energy StoragearXiv preprint arXiv:1605.015212016.

J.F. Benders. Partitioning procedures for solving rdixariables programming problemSumerische Mathematik4:238-252,
1962.

P. Beraldi, L. Grandinetti, R. Musmanno, and C. Trik. &kl algorithms to solve two-stage stochastic linear paiots with
robustness constraintRarallel Computing 26:1889-1908, 2000.

J.R. Birge. Decomposition and partitioning methodsfiltistage stochastic linear progran3perations Resear¢i33:989-1007,
1985.

J.R. Birge and F.V. Louveauwtntroduction to Stochastic Programmingnd edition, Springer, 2011.

J.R. Birge, C.J. Donohue, D.F. Holmes, and O.G. Susksi A parallel implementation of the nested decomposititgorithm for
multistage stochastic linear programddathematical Programming’5:327-352, 1996.

J. Blomval. A multistage stochastic programming aithon suitable for parallel computingParallel Computing 29:431-445,
APR 2003.

N. Boland, I. Bakir, B. Dandurand, and A. Erera. Scema&et partition dual bounds for multistage stochastic @ogning: A
hierarchy of bounds and a partition sampling approach. fieahreport, School of Industrial and Systems Engineerdgorgia
Institute of Technology, Atlanta, GA, USA, 2016.

COIN-OR. COmputational INfrastructure for OperatoResearch. Websitettp://www.coin-or.org/.|

M.P. Cristébal, L.F. Escudero, and J.F. Monge. On Sistib Dynamic Programming for solving large-scale proiducplanning
problems under uncertaintComputers & Operations Resear@6:2418-2428, 2009.

D.E. Culler, A. Gupta, and J.P. SingtParallel Computer Architecture: A Hardware/Software Appch Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 198BN 1558603433.

G.B. Dantzig and P.W. Glynn. Parallel processors fanping under uncertaintyAnnals of Operations Researc®?:1-21, 1990.
A. de Silva and D.A. Abramson. Parallel algorithms fohsng stochastic linear programs. In A. Y. Zomaya, edifarallel and
Distributed Computing Handbookic Graw hill, New York, USA, 1996.

B.H. Dias, M.A. Tomin, A.L.M. Mercato, T.P. Ramos, R$.Brandi, I.Ch. da Silva jr., and J.A.P.Filho. Parallel @uiing
applied to stochastic dynamic programming for long ternragen planning of hydrothermal power systent&uropean Journal
of Operational Resear¢t229:212-222, 2013.

L.F. Escudero. On a mixture of the Fix-and-Relax Cooation and Lagrangean Substitution schemes for multisségghastic
mixed integer programmingTOP, 17:5-29, 2009.

L.F. Escudero, M.A. Garin, M. Merino, and G. Pérez. Agaaithmic framework for solving large-scale multistagec$tastic
mixed 0-1 problems with nonsymmetric scenario tré@smputers & Operations Resear@9:1133-1144, 2012.

L.F. Escudero, M.A. Garin, M. Merino, and G. Pérez. Ondistochastic dominance introduced by mixed integerdineeourse
in multistage stochastic program&uropean Journal of Operational Resear@49:164-176, 2016.

L.F. Escudero, M.A. Garin, C. Pizarro, and A. Unzuetan tBe strongest lagrangean bounds for stochastic locassignment
problems.Submitted2016.

L.F. Escudero, M.A. Garin, and A. Unzueta. Cluster dgmgyean decomposition for time stochastic dominance irtlbgemixed
integer-linear recourse in multistage stochastic opttion. Submitted 2016.

L.F. Escudero, M.A. Garin, and A. Unzueta. Cluster éamyean decomposition multistage stochastic optimiza@mmputers and
Operations Resear¢l67:48-62, 2016.

L.F. Escudero, J.L. de la Fuente, C. Garcia, and F.8tdriA parallel computation approach for solving multigtagochastic
network problems.Annals of Operations Resear®0:1-21, 1999.

L.F. Escudero, M.A. Garin, M. Merino, and G. Pérez. OilB®MSMIP: an exact branch-and-fix coordination approactséiving
multistage stochastic mixed 0-1 problenT©P, 17:96-122, 2009.

L.F. Escudero, M.A. Garin, M. Merino, and G. Pérez. OnBMSMIP strategies for scenario cluster partitioning ardnl
Node Families branching selection and bounding for mtétiys stochastic mixed integer programmir@omputers & Operations
Research37:738-753, 2010.

L.F. Escudero, J.F. Monge, D. Romero Morales, and J.g/V&xpected future value decomposition based bid pricergéor for
large-scale network revenue managemehtansportation Scien¢el7:181-197, 2013.

L.F. Escudero, J.F. Monge, and D. Romero Morales. An &pproach for multiperiod mixed 0-1 linear programming nisde
with stochastic dominance constraints for risk managem@oinputers & Operations Resear@8:32-40, 2015.

L.F. Escudero, J.F. Monge, and D. Romero Morales. Omr-ionsistent stochastic dominance risk averse measuf@adbical
Supply Chain Planning under uncertainubmitted:, 2016.

D. Gade, G. Hackebeil, S.M. Ryan, J.P. Watson, R.J-Bs\nd D.L. Woodruff. Obtaining lower bounds from the pesgive
hedging algorithm for stochastic mixed-integer prograMathematical Programmindl57:47-67, 2016.

A.M. Geoffrion. Lagrangean relaxation for integer gramming.Mathematical Programming Studiez:82 — 114, 1974.

M. Guignard. Lagrangian relaxatiomOP, 11:151-228, 2003.

V. Guigues. SDDP for some interstage dependent risksavgroblems and application to hydrothermal planni@gmputational
Optimization & Applications57:167-203, 2014.

J.L. Hennessy and D.A. Patterso@omputer Architecture: A Quantitative ApproaciMorgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

IBM. ILOG CPLEX optimizer. Website

.http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/|

27

http://www.coin-or.org/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[39]
[40]

[41]
[42]
(43]
[44]
[45]
[46]
[47]
(48]
[49]
(50]
(51]
(52]
(53]
(54]
(55]
[56]
[57]
[58]
[59]
(60]
(61]
(62]
(63]

(64]

(65]
(66]
(67]
(68]
(69]

[70]

P. Kall and S.W. WallaceStochastic Programminglohn Wiley, 1994.

A.J. King and S.W. Wallace.Modeling with Stochastic ProgrammingSpringer Series in Operations Research and Financial
Engineering, 2012.

E. Klerides and E. Hadjiconstantinou. A decomposiii@sed stochastic programming approach for the projeetisdimg problem
under time/cost trade-off setting and uncertain duratio@smputers & Operations Resear@v:2131-2140, 2010.

V. Kozmik and D. P. Morton. Risk-averse stochastic dublnamic programming. Optimization Online, org/DB
HTML/2013/02/3794:, 2013.

H. Li, Z. Lu, and X. Chi. Parallel computing for dynamisset allocation based on the stochastic programmin@01® WASE
International Conference on Information Engineering @}lvolume 2, pages 172-176, Beidaihe, Hebei, China, 201(EIEE
X. Li, J. Wei, T. Li, G. Wang, and W.W.-G. Yeh. A parallelydamic programming algorithm for multi-reservoir system
optimization. Advances in Water Resour¢é€§:1 — 15, 2014.

Z. Liand M. lerapetritou. Capacity expansion plannthgough augmented lagrangian optimization and scenadordposition.
AIChE Journa) 58:871-883, 2012.

J. Linderoth, A. Shapiro, and S. Wright. The empiricehbvior of sampling methods for stochastic programmingnnals of
Operations Researcli42:215-241, 2006.

J.T. Linderoth. Parallel and high performance commfor stochastic programming, 2003. Stochastic Programgntiecture 13,
Atlanta, GA, USA.

M. Lucka, I. Melichercik, and L. Halada. Application ofultistage stochastic programs solved in parallel in pbafmanagement.
Parallel Computing 34:469-485, 2008.

G. Lulliand S. Sen. A branch and price algorithm for rstéige integer programs with application to stochastictbaizing
problems.Management SciencB0:786—796, 2004.

G. Lulliand S. Sen. A heuristic procedure for stoch@astteger programs with complete recourBeropean Journal of Operational
Research171(3):879-890, 2006.

S. Lumbreras and A. Ramos. Optimal design of the eleadttayout of an offshore wind farm applying decomposititrategies.
IEEE Transactions on Power Systeri8:1434—-1441, 2013.

D. Mahlke. A Scenario Tree-Based Decomposition for Solving Multist&gochastic Programs: With Application in Energy
Production Stochastic Programming. Springer, 2011.

J.M. Mulvey and A. Ruszczyski. A new scenario decomposition method for large-scalémization method. Operations
Research43:477-490, 1995.

S.S. Nielsen and S.A. Zenios. Scalable parallel Bendecomposition for stochastic linear programmiigrallel Computing
23:1069-1088, 1997.

A. Pagés-Bernaus, G. Pérez-Valdés, and A. Tomasgard.parallelised distributed implementation of a Branch-&ixi-
Coordination algorithmEuropean Journal of Operational Resear@44:77-85, 2015.

M.V.F. Pereira and L.M.V.G. Pinto. Stochastic optiatibn of a multireservoir hydroelectric system, a decortfmrsapproach.
Water Resources Resear@1:779-792, 1985.

M.V.F. Pereira and L.M.V.G. Pinto. Multistage stoctia®ptimization applied to energy planninlathematical Programming
52:359-375, 1991.

G.Ch. Pflug and A. PichleMultistage Stochastic Optimizatioispringer, 2014.

A. Prekopa.Stochastic Programmind<luwer Academic Publishers, Dordrecht, 1995.

R.T. Rockafellar and R.J-B. Wets. Scenario and polipgragation in optimisation under uncertainiathematics of Operations
Research16:119-147, 1991.

A. Ruszczynski. Parallel decomposition of multistage stochastigpmmming problemsMathematical Programmings8:201—
228, 1993.

A. Ruszczynski. On convergence of an augmented lagrangian decorigosiethod for sparse convex optimizatidviathematics
of Operations ResearcR0:634-566, 1995.

A. Ruszczynski and A. Swietanowski. Accelerating the regularizedotiegosition method for two stage stochastic linear problems
SIAM Journal on Optimizatiqr24:127-153, 2014.

B. Sandikci and O.Y. Ozaltin. A scalable bounding methfor multi-stage stochastic integer programs. Techni-
cal report, Working paper 14-21, Booth School of Businessivérsity of Chicago, Chicago, IL, USA, 2014. URL
http://dx.doli.org/10.21.39/ssrn.26666.

B. Sandikci, N.Kong, and A.J. Schaefer. A hierarchy afibds for stochastic mixed-integer prograisithematical Programming
138:253-272, 2013.

S. Sen and Z. Zhou. Multistage stochastic decompasitibridge between stochastic programming and approxichatamic
programming. SIAM Journal on Optimizatiqr24:127-153, 2014.

A. Shapiro, D. Dentcheva, and A. Ruszoski. Lectures on stochastic programming: Modeling and thedWPS-SIAM Book
Series on Optimization 9, 2009.

A. Shapiro, W. Tekaya, J.P. da Costa, and M. Pereirak Rasitral and risk averse stochastic dual dynamic progragmiethod.
European Journal of Operational Resear@24:375-391, 2013.

R. van Slike and R.J.B. Wets. L-shaped linear prograritis application to optimal control and stochastic programn SIAM
Journal on Applied Mathematic47:638—663, 1969.

H. Vladimirou and S.A. Zenios. Scalable parallel congpions for large-scale stochastic programmirfnnals of Operations
Research90:87-129, 1999.

28

http://dx.doli.org/10.21.39/ssrn.26666

[71]
[72]

[73]
[74]

[75]

S.W. Wallace and W.T. Ziemba (edsApplications of Stochastic ProgrammingPS-SIAM Book Series on Optimization 5, 2005.
J.P. Watson and D. Woodruff. Progressive hedging iatioms for a class of stochastic mixed-integer resourceation problems.
Computational Management Scien8e355-370, 2011.

R.J-B. Wets. Stochastic programs with fixed recourdee @quivalent deterministic prograi8lAM Review16:309-339, 1974.
G.L. Zenarosa, O.A. Prokopyev, and A.J. Schaefer. &uettree decomposition: Bounds for multistage stochastked-integer
programs. Technical report, Technical paper, Departmignidoistrial Engineering, University of Pittsburgh, Piittsgh, PA, USA,
2014. URLhttp://dx.doli.org/10.21.39/ssrn.26666.

J. Zou, S. Ahmed, and X.A. Sun. Nested Decomposition aftistage Stochastic Integer Programs with Binary Statéa¥dées.
Technical report, School of Industrial and Systems EngingeGeorgia Institute of Technology, Atlanta, GA, USA 1%

29

http://dx.doli.org/10.21.39/ssrn.26666

	Introduction
	Multistage stochastic mixed 0-1 models
	Scenario clustering
	Main concepts of the Branch-and-Fix Coordination methodology
	Auxiliary models to be used in DBFC

	Matheuristic algorithm H-DBFC
	Dynamic candidate TNF branching
	H-DBFC strategy
	Algorithm H-DBFC

	Outer and Inner parallelization of H-DBFC
	Parallelization schemes
	Illustrative example

	Computational experience
	Testbed dimensions
	Performance of serial matheuristic SH-DBFC
	Performance of inner parallelization IH-DBFC
	Performance of outer parallelization OH-DBFC

	Conclusions and future work
	Performance evolution of SH-DBFC and S-SDP

