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Abstract

A parallel matheuristic algorithm is presented as a spin-off from the exact Branch-and-Fix Coordination
(BFC) algorithm for solving multistage stochastic mixed 0-1 problems. Some steps to guarantee the
solution’s optimality are relaxed in the BFC algorithm, such that an incomplete backward branching scheme
is considered for solving large sized problems. Additionally, a new branching criterion is considered, based
on dynamically-guided and stage-wise ordering schemes, such that fewer Twin Node Families are expected
to be visited during the execution of the so-called H-DBFC algorithm. The inner parallelization IH-DBFC
of the new approach, allows to solve in parallel scenario clusters MIP submodels at different steps of the
algorithm. The outer parallel version, OH-DBFC, considersindependent paths and allows iterative incumbent
solution values exchanges to obtain tighter bounds of the solution value of the original problem. A broad
computational experience is reported for assessing the quality of the matheuristic solution for large sized
instances. The instances dimensions that are considered are up to two orders of magnitude larger than in some
other works that we are aware of. The optimality gap of the H-DBFC solution value versus the one obtained
by a state-of-the-art MIP solver is very small, if any. The new approach frequently outperforms it in terms of
solution’s quality and computing time. A comparison with our Stochastic Dynamic Programming algorithm
is also reported. The use of parallel computing provides, onone hand, a perspective for solving very large
sized instances and, on the other hand, an expected large reduction in elapsed time.

Keywords: Multistage stochastic mixed 0-1 optimization, matheuristic, Branch-and-Fix Coordination, break
stage scenario clustering, parallel computing, message-passing interface

1. Introduction

A multistage stochastic mixed-integer optimization modelhas a more complex scenario information
structure than its related, sometimes approximate, two-stage model. Moreover, there have not been too many
attempts to solve large sized general multistage stochastic mixed 0-1 models up to optimality, due to their
complexity, see [41, 49, 50], among others. Thus, stochastic programs for many real-life instances require
intensive computational effort. The solution has to be obtained by using decomposition algorithms that exploit

1Corresponding author. María Merino.
Tel.: +34 946012523; fax: +34 946012516
E-mail address: maria.merino@ehu.es
Address: Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain

Preprint submitted to European Journal of Operational Research August 27, 2016



the nice structure of models based on scenario analysis and convexity. Those algorithms and others can be
classified in the following types for two-stage and multistage problems:

1. Benders Decomposition (BD) methodology [8]. Probably, it is the most used exact methodology for
solving two-stage problems with continuous variables in the second stage. The L-Shaped algorithm
[69] is the well-known first published algorithm on the subject. See also [5, 51], among many others.
The (nested) version for multistage problems, by construction, does not guarantee the optimality of the
solution for problems with integer variables in any stage, but the first one. However, it is one of the best
known algorithms for linear problems, see the seminal work [10], recently [75], among others.

2. Two-stage Lagrangean Decomposition (LD) heuristic methodology. It is another very interesting
methodology for problem solving in mathematical optimization. The main aim of LD consists of
providing (hopefully, strong) bounds (in case of minimization) on the solution value of a problem,
such that the goodness of a feasible solution obtained by other means can be assessed. However there
are well-known conditions (see [34, 35]) under which the ownLagrangean solution can be declared an
optimal one. Furthermore, if it is not an optimal one, it can be used by an ad-hoc algorithm for obtaining
a feasible solution, based on the scheme that fixes appropriate variables to some of their Lagrangean
values. Afterwards, the resulting model is solved, such that it has usually either an structure to take
benefit from it or can be decomposed in submodels that are alsoeasy enough to solve.

3. Multistage Clustering Lagrangean Decomposition (MCLD)heuristic methodology. There are very
few LD approaches for solving multistage stochastic mixed 0-1 problems. See our approach [26] for
obtaining strong lower bounds to the solution values of small to medium sized instances, where the
scenarios are distributed in clusters (also so-called bundles). The distribution reduces in a systematic
way the number of NAC (non-anticipativity constraints thatequate the scenario cluster variables in the
splitting formulation of the model). The scheme is based on aso-called break stage, such that the NAC
of the variables to be dualized belong to the nodes in the scenario tree whose related stages are up to
the break one. See also [24] as a specialization of [26] for providing a Lagrangean heuristic solution for
the multistage stochastic pure 0-1 version of the difficult deterministic (combinatorial) facility location
- assignment problem. The quasi-optimality gap that has been obtained for large sized instances is
very small. This type of MCLD approach has also been considered in [25] for obtaining strong lower
bounds on the solution value of a problem with a mixture of thefirst- and second-order time stochastic
dominance (TSD) risk averse measure. Other types of multistage LD algorithms, see [52], also split
the scenario tree in blocks, so that the root node is also connected to the leaf ones by considering
NAC of some variables. However, the related nodes do not necessarily belong to the same stage.
NAC dualization allows to obtain lower bounds to the problemand, from there, heuristic solutions are
obtained by an ad-hoc scheme. The NAC (to dualize) are chosenbased on the scenario tree structure of
the problem to solve.

4. Regularization. To the best of our knowledge, an interesting approach for speeding up the convergence
of LD approaches for solving mathematical optimization linear models was first introduced in [53, 62],
and coined as Augmented Lagrangean Decomposition (ALD). The iterative approach considers the
splitting variable representation of the original model, such that the constraints equating the replicas of
the variables are dualized, and the square terms of those constraints are appended to the Lagrangean
function; its convergence is proven. Some computational experience is reported in [53] by solving
quadratic scenario submodels using a nonlinear interior point algorithm. Recently, [45] and others
have extended the ALD approach to stochastic optimization problems, where the constraints equating
the replicas of some variables in some scenarios are precisely the NAC of each splitting variable.
An extension of the (convex) quadratic terms for reducing anexcessive oscillation of the successive
solutions (and, then, speeding up the convergenceof the algorithm) has been coined as the regularization
term. The methodology has been known regularized decomposition. The quadratic regularization for
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stochastic linear optimization was first developed in [63] for two-stage problems, see also [66] for two-
stage and multistage problems, and [6, 7] for multistage problems, among others. The Stochastic Dual
Dynamic Programming (SDDP) approach [56, 57] is a decomposition methodology that has been most
frequently used for testing different regularization mechanisms, since there it is assumed the stage-
wise independence of the random process and, then, the dimensions of the scenario tree could still
be manageable. The mechanism that is considered in [6, 63] for the stage-wise independence of the
random process consists of appending to the objective function the (convex) quadratic regularization
function. This function is based on the difference between the variables in the nodes of the tree and
their values in the incumbent solution of the model. However, for a high number of periods in the time
horizon or, as it frequently happens in practice, the outcome of the random parameters at a given stage
is not independent of the outcomes of the previous stages, then, the number of regularized quadratic
terms could be unmanageable. For that type of problems, see in [6] its Algorithm 2 where the incumbent
solutions are not indexed by the nodes of the scenario tree. So, the reference for the quadratic function
could have different parts of the left hand side of constraints related to the stages and not to the nodes
in the tree. Faster convergence is proved.

5. The Progressive Hedging algorithm (PHA) for multistage primal decomposition was introduced in [60]
as a specific regularization approach for solving up to optimality multistage stochastic linear problems.
It is broadly used and, recently it has been extended [72] to also considering integer variables. However,
by construction, the optimality of the incumbent solution cannot be guaranteed any more. The basic
idea of PHA is as follows: (a) Decompose the original model byscenarios (i.e., relaxing the NAC of
variables in all nodes in the scenario tree) and solve each submodel, where a (linear) penalization
term and its (quadratic) regularization have been added to each scenario function; (b) Obtain an
implementable solution (i.e., a solution satisfying the NAC) that probably is not a feasible one (i.e.,
an admissible solution) by averaging for each node in the tree the related scenario solutions. Notice
that now, by construction, the NAC are satisfied, but likely some of the other constraints are not; (c)
Update the (linear) penalization term for each scenario submodel by using a subgradient estimator
type of the non-implementable solution (i.e., the difference of the scenario solution with respect to the
current implementable one) for each node; (d) Append the penalization term to each scenario submodel
plus its weighted square function; (e) Iterate until a stopping criterion is satisfied. We conjecture that
the convergence of PHA could be speed up by building scenariocluster submodels, instead of single
scenario ones, by using the break stage based scheme presented in [26]. See in [33] an extension of
the algorithm for two-stage and multistage by using by usinga scenario cluster (bundle is called there)
approach. It allows to obtain lower bounds of the optimal mixed integer solution and, then, the goodness
of the solution can be assessed. Moreover, in that case, the approach would not be too far from one of
the Lagrange multipliers updating schemes used in that other algorithm, aside that the objective function
should have (convex) quadratic terms for mixed integer large sized problems. Limited computational
experience for two-stage is reported. The multistage case is still a challenge.

6. Multistage Stochastic Dynamic Programming (SDP). It is avariant of the SDDP methodology
mentioned above, for solving large sized Risk Neutral (RN) multistage stochastic linear problems
with stage-wise independent uncertainty. See [56, 57, 61].Some works in the literature allow to
consider Markovian multistage stochastic problems, wherethe uncertainty in each node of a given
stage depends on the history of its ancestor nodes, see [6, 30, 75]. The treatment of the Conditional
Value-at-Risk (CVaR) risk averse measure in SDP was introduced in [36, 42, 68]. Recently, some
works consider mixed-integer problems, see [3, 16] and, even time-consistent and time-inconsistent
stochastic dominance risk averse measures, see [31, 32]. Given the integer character of some variables,
the usage of SDP for problem solving with integer variables in any stage, cannot guarantee the solution’s
optimality but, in any case, they can deal with very large sized instances.

7. Multistage scenario cluster primal decomposition. Thistype of algorithms is very promising, since the
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related decomposition is performed on clusters of scenarios, seeking for a (hopefully, good) feasible
solution. Some of those algorithms guarantee the optimality of the incumbent solution. Specifically, see
[14, 22, 23, 29, 64, 74, 75] for decomposition approaches that consider scenario clustering for solving
large sized multistage stochastic mixed integer problems.The so-called Branch-and-Fix Coordination
(BFC) methodology is used in the decomposition approaches presented in [22, 23, 29, 55] to generate
independent scenario clusters, such that multiplicity of any scenario is not allowed among the clusters.
The BFC methodology is an exact one that relaxes a given subset of non-anticipativity constraints
(NAC) from the model (up to the break stage mentioned above),but it takes care of them in the execution
of the algorithm. The bounding method presented in [64], as an extension and improvement of the two-
stage bounding method introduced in [65], splits the scenario set in clusters. For that purpose, the NAC
are relaxed in the nodes of the tree, so that the related scenarios are grouped in different clusters. Notice
that this primal based algorithm splits the scenario tree ina manner that is close (conceptually, at least)
to the scheme used in the dual algorithm presented in [52]. The scenario multiplicity in the clusters
allows to obtain strong lower bounds. On the other hand, a scheme for fixing the solution of some
scenario clusters allows to obtain feasible solutions and,then, upper bounds on the solution value of
the original model can be computed. The bounding method presented in [74] decomposes the scenario
tree into a number of smaller trees. Vertex cuts are used for that purpose and, then, the scenarios are
clustered depending on the stages used for the cuts, so that the root in the tree is separated from the
leaves. Lower bounds are computed as the weighted sum of the solution values of the subproblems
associated with the subtrees that are built (i.e., a NAC relaxation is performed on the nodes of the
scenario tree related to the vertex cuts). Upper bounds are obtained by fixing the root-to-cut variables
at their best values.

Parallel Computing (PC) offers an alternative for solving very large sized problems by parallelizing the
execution of the MIP submodels that appear in the decomposition algorithms. Currently, at hardware level, PC
is mainly based on clusters and multicore processors. For basic information, see [17, 37], among others. The
nature of the cooperation between processors can differ depending on the way in which processors exchange
information. One of the parallel architectures is distributed memory, managed bymessage passing(for
example, using Message Passing Interface, MPI). Over the last two decades papers on stochastic optimization
have appeared in the relevant literature that use PC for two-stage and multistage stochastic linear as well as
mixed 0-1 optimization, see e.g., [1, 9, 46, 21] and references therein. Recently, parallel computing versions
of the exact BFC methodology was presented in [4, 55]. See also the parallel matheuristic bounding methods
presented in [3, 6, 53, 61, 64, 74] that also allow large sizedinstances to be solved.

This work presents several strategies in order to improve the performance of decomposition algorithms
for solving large sized multistage stochastic mixed 0-1 problems. In particular, we introduce an algorithm
so-calledDynamically-guided and stage-ordered Branch-and-Fix Coordinationalgorithm (for short, DBFC)
that, belonging to the multistage BFC methodology, strongly improves the performance of previous BFC
algorithms presented in [4, 22] and references therein. Themain improvements are in the dynamic branching
mechanism that allows to solving much larger sized multistage stochastic mixed 0-1 problems, they are as
follows: (1) The scenario cluster partitioning is based on the so-called break stage. It is one of the key
elements in the new approach and considers stage-wise variable ordering in the problem and auxiliary scenario
cluster submodels; (2) The selection of the stage-wise ordered branching variable in the Branch-and-Fix (BF)
nodes (i.e., scenario cluster based Brand-and-Bound nodesto be jointly handled) jumps over the variables that
are currently satisfying their non-anticipativity constraints (NAC); (3) Dynamically-guided branching in the
selection of the 0-1 direction to be considered first. It is based on the frequency of the values of the branching
variable in the solution of the previous submodels of the scenario clusters to which the variable belongs to;
(4) The solution of the scenario cluster submodels is frequently required for the same branching path, so, the
submodels are only solved once and stored for later use; and (5) Different types of submodels are considered
for obtaining feasible solutions by fixing a variety of variables at the values obtained in previous steps.
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Additionally, as very large sized instances are not expected to be solved efficiently up to optimality, a
matheuristic algorithm, so-called H-DBFC is proposed, based on the new approach, DBFC. Its different
strategies are intended to guarantee an harmony between solution’s quality and computational effort (in
memory and computing time) as it can be assessed in the computational experience whose results are reported
in the paper. It has the advantage of being applicable to any stochastic mixed 0-1 optimization problem without
the high model dependence exhibited by some Stochastic Dynamic Programming (SDP) schemes, see [16].
However, it is not yet able to solve the gigantic sized instances solved by the SDP algorithm, since its lower
decomposition capabilities lead to memory limit issues.

Another important contribution of this work is the extension of the parallel versions of H-DBFC presented
in [2], so-called inner and outer ones, to the matheuristic environment, where a triple thread assignment
is considered for the thread hierarchy. The inner parallel version provides a perspective for solving very
large sized instances. It allows to solve in parallel scenario cluster MIP submodels at different steps of the
algorithm. Due to the features of the new H-DBFC approach, fewer cluster submodels are solved by each
iteration, on average; therefore, a smaller number of threads is needed to achieve an equivalent work balance
as in the previous paper. The outer parallelization presented here has been adapted to deal with a dynamic
root node matching criterion, as opposed to the deterministic one of the old algorithm. It allows for seeking
better solutions since it uses an iterative dynamical scheme for generating paths of partial variable branchings.
Then, tighter bounds of the original problem’s solution value can also be obtained. Both versions allow to
solve problems up to several millions constraints, over half a million 0-1 variables and a couple of million
continuous variables with a very small quasi-optimality tolerance in an affordable elapsed time.

The rest of the paper is organized as follows: Section 2 presents the basic models and scenario cluster
submodels used in the multistage DBFC algorithm. Section 3 introduces the algorithm as well as the aim and
perspective of the proposed spin-off matheuristic H-DBFC.Section 4 presents the inner and outer parallel
versions of H-DBFC. Section 5 reports the main results of a broad computational experience to assess the
validity of H-DBFC to solve large sized problems for the serial and parallel versions of the algorithm. The
computational results are compared with plain use of CPLEX and the serial and parallel versions of our SDP
algorithm. Finally, Section 6 concludes and outlines future work.

2. Multistage stochastic mixed 0-1 models

For the general formulation of a multistage model, where decisions have to be made in a stage-wise
manner, letΩ denote the finite set of scenarios that are considered to be representative of the uncertainty
quantification in the problem andT is the set of stages in a given time horizon (whereT ≡ |T | is the last
stage). Let a multistage scenario tree to represent the uncertainty, whereG is the set of nodes in the scenario
tree andG t ⊆ G is the set of nodes that belong to staget, for t ∈ T . Let alsog, for g∈ G t , denote a node in
the tree, such thatt(g)∈T gives the stage to which nodeg belongs to; andΩg ∈ Ω is the set of scenarios that
belong to groupg (with a one-to-one correspondence with nodeg in the scenario tree) that have an identical
realization of their uncertain parameters up to staget(g). Let ˜A g andS g denote the set of ancestor nodes in
the tree to nodeg (including itself), and the set of successor nodes to nodeg, respectively.

It is worth to point out that it is also known in nodeg what scenarios will not happen in the future, i.e.,
the scenarios in setΩ/Ωg. So, the decision variables in each nodeg should, thus, be based on the known
information (given by set ˜A g) on one hand and without anticipating future events on the other hand, although
using as much information as possible, given by setS g, for g∈ G : t(g) < T. That is, the extension of the
non-anticipativity principle introduced in [73] for two-stage problems should be satisfied.

Without loss of generality, consider the compact representation of the multistage stochastic mixed 0-1
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model for minimizing the objective function expected valueover the set of scenariosΩ,

zDEM = min ∑
g∈G

wg(agxg+bgyg)

s.t. ∑
q∈A g

(Aq
gxq+Bq

gyq) = hg ∀g∈ G

xg ∈ {0,1}nx(g),yg ∈ R
ny(g) ∀g∈ G ,

(1)

wherewg is the weight of node (i.e., probability of the scenario group) g to be computed as∑ω∈Ωg wω ; ω
is a scenario in setΩg; wω is the modeler-driven weight assigned to scenarioω ∈ Ω, where∑ω∈Ω wω = 1;
A g ⊆ ˜A g is the set of indexes for the ancestor nodes of nodeg (including itself) whose decision variables
have direct influence (i.e., have non zero elements) on the constraints in nodeg, whereA 1 = {1}; xg andyg

are the vectors of the 0-1 and continuous variables for nodeg, respectively;ag andbg are the vectors of the
objective function coefficients for the 0-1 and continuous variables, respectively;Aq

g andBq
g are the constraint

matrices of the ancestor nodeq∈A g in nodeg for the vectorsxq andyq, respectively;hg is the right-hand-side
vector (rhs) for nodeg; andnx(g) andny(g) are the number of 0-1 and continuous variables, respectively, for
g ∈ G , nx= ∑g∈G nx(g) andny= ∑g∈G ny(g), such that it is assumed thatnx(g)+ 1 andny(g)+ 1 are the
numberings of the first 0-1 and continuous variables for nodeg+1∈ G , respectively. Observe thatΩg is a
singleton set forg∈ G T . See [11, 39, 40, 58, 59, 67, 71], among others, for the main concepts on stochastic
optimization via scenario tree analysis. Notice that model(1) is so-called Risk Neutral (RN) model.

2.1. Scenario clustering

In [22] we propose a decomposition of the scenario tree into aset of subtrees. Based on this cluster
decomposition concept a mixture of the splitting and compact representations of the original multistage
stochastic mixed 0-1 RN model (1) is presented. The reason for this decomposition is based on the way
in which our BFC decomposition algorithm works. It explicitly considers the NAC of the variables of the
nodes in different cluster subtrees. By construction, those nodes belong to stages up to a given so-called break
stage,t∗ (see below). On the other hand, the NAC of the variables in thenodes that belong to the stages
from t∗ + 1 until the last one are implicitly considered while solvingthe scenario cluster submodels. For
completeness, let us consider the following definitions taken from [22].

Definition 1. A break stage, say t∗, is a modeler-driven stage from setT such that the number of scenario
clusters is|C |= |G t∗+1|. In this case, any scenario cluster indexed with c, for c∈C , is induced by a scenario
tree node, say gc from setG t∗+1, and it contains all the scenarios belonging to groupΩgc (that has a one-to-
one correspondence with node gc in the scenario tree).

Definition 2. Thescenario cluster submodels are those that result from the relaxation of the NAC in model
(1) in the nodes that belong to stages up to break stage t∗.

Let us first split the set of stagesT in two subsets, such thatT = T1
⋃

T2, whereT1 = {1, . . . , t∗}
andT2 = {t∗+1, . . . ,T}. Once the break staget∗ is decided, the correspondingt∗-cluster partition is given
and, then, the number of scenario clusters inC is fixed to |G t∗+1|, i.e., each node inG t∗+1 belongs to just
one cluster in setC = {1, ...,C}, with C = |C |. For a nodegc in setG t∗+1, let Ωc = Ωgc denote the set of
scenarios in the tree andGc ⊆ G is the set of nodes in clusterc∈ C , where a nodeg belongs to setGc provided
thatΩg∩Ωc /0; xg

c andyg
c denote the replicas of the variables in vectorsxg andyg for nodeg∈ Gc in cluster

c∈ C , respectively; andxc andyc are the vectors that include the set of variables in the vectorsxg
c andyg

c for
all nodesg∈ Gc in clusterc∈ C , respectively. Notice that there is only one replica fort(g) ∈ T2 and there
are|C | replicas fort(g) ∈ T1, at most. Properties:G t ∩Gc is singleton fort ∈ T : t ≤ t∗+1; let C g denote
the set of scenario clusters where a scenario, at least, belongs to groupΩg, for g∈ G , so,C g is a singleton for
t(g) ∈ T2; c∈ C g ≡ g∈ Gc for g∈ G ; Ωc ⊆ Ωg for g∈ Gc

⋂

G t , t ∈ T1, c∈ C ; andΩg ⊆ Ωc for g∈ Gc
⋂

G t ,
t ∈ T2, c∈ C .
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Now, the scenario cluster submodel can be expressed in compact representation, forc∈ C ,

zc = min ∑
g∈Gc

wg
c(a

gxg
c +bgyg

c)

s.t. ∑
q∈A g

Aq
gxq

c +Bq
gy

q
c = hg ∀g∈ Gc

xg
c ∈ {0,1}nx(g),yg

c ∈R
ny(g) ∀g∈ Gc,

(2)

wherewg
c = ∑ω∈Ωg∩Ωc wω for g∈ Gc and, so,wg

c = wgc for g : t(g) ∈ T1 andwg
c = wg for g : t(g) ∈ T2.

Observe that in the splitting-compact representation of the original model (1), the nonanticipativity
principle is implicitly taken into account for the stagest ∈ T2, since the submodel for each cluster is
formulated via a compact representation. On the other hand,the (explicit) NAC of the variables in the scenario
tree nodes that belong to the stages in setT1 can be formulated by observing that the clustersc andc′ have
nodeg in common (i.e.,g∈ Gc∩Gc′ ) if and only if g∈ G t : t ∈ T1. So, the cluster submodels (2) are linked
by the NAC to be expressed,

xg
c − xg

c′ = 0 ∀c, c′ ∈ C : c c′, g∈ Gc∩Gc′ (3)

yg
c − yg

c′ = 0 ∀c, c′ ∈ C : c c′, g∈ Gc∩Gc′ . (4)

Model (1) can be represented by a mixture of the splitting variable representation (for explicitly satisfying
the NAC between the cluster submodels) and the compact representation (for implicitly satisfying the NAC
of each cluster submodel). So, the cluster splitting-compact representation can be expressed

zDEM = min ∑
c∈C

∑
g∈Gc

wg
c(a

gxg
c +bgyg

c)

s.t. ∑
q∈A g

Aq
gxq

c +Bq
gy

q
c = hg ∀g∈ Gc, c∈ C

NAC (3)− (4)
xg

c ∈ {0,1}nx(g), yg
c ∈ R

ny(g) ∀g∈ Gc, c∈ C .

(5)

It is worth to point out that the efficiency of a MIP engine for solving model (5) is very low, but it paves
the way for performing model decomposition, see below.

Note: As a technical point to be used through this work, let usconsider that the numbering of the
nodes in the scenario tree is consecutive, and ifg′ is the first lexicographically ordered node in setG t ,
then g′ − 1 is the last lexicographically ordered node in setG t−1. Moreover,I g

x andI g
y denote the set

of indexes of the variables in vectorxg and yg, respectively, forg ∈ G , and (xg)i and (yg)i are thei-th
variables in the vectors corresponding to the set of indices{nx(g− 1) + 1, . . . ,nx(g)} ⊂ {1, . . . ,nx} and
{ny(g−1)+1, . . .,ny(g)} ⊂ {1, . . . ,ny}, respectively.

2.2. Main concepts of the Branch-and-Fix Coordination methodology

For completeness, let us review some concepts of the exact Branch-and-Fix Coordination(BFC)
methodology, see [22], where DBFC, a substantial improvement, has been derived from.

Definition 3. A Branch-and-Fix(BF) tree, say BFc, associated with scenario cluster indexed with c is a
Branch-and-Bound tree (B&B) for solving the MIP submodel(2), but in a coordinated way with the submodels
of the other clusters in setC , since the NAC(3)-(4) must be satisfied.

Definition 4. Two 0-1 variables, say,(xg
c)i and (xg

c′)i , for i ∈ I g
x , are said to becommon variablesfor the

scenario clusters c and c′, for c,c′ ∈ C : c c′, i ∈ I g
x , g∈ G t , t ∈ T1, provided that g∈ Gc∩Gc′ .

As an additional notation, letNc be the set of active nodes inBFc, c∈ C .
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Definition 5. Any two BF nodes, say, a∈ Nc and a′ ∈ Nc′ for c c′ are said to betwin nodeswith respect
to a given scenario tree node if their paths from the root nodes to each of them in their trees BFc and BFc′ are
such that some of their common variables(xg

c)i and (xg
c′)i , have been branched on or fixed at the same 0-1

value, for c,c′ ∈ C : c c′, i ∈ I g
x , g∈ Gc∩Gc′ .

Definition 6. A Twin Node Family(for short, TNF)J f is a set of nodes such that any node is atwin node
to all the other node members of the family, for f∈ F , whereF is the set of the families.

Definition 7. A TNF is said to be acandidate TNF(for short, cTNF) if there is one common variable, at least,
in each of their BF node members that has not been yet branchedon, nor fixed at 0-1 values.

Definition 8. A TNF is said to be aninteger TNFif all common variables in the TNF have already been
branched on or fixed at (obviously, the same) 0-1 values and their related NAC(3) are satisfied (see below).

The branching in each treeBFc for c ∈ C in the BFC methodology is only performed on the common
variables, such that once done, a feasible solution for the scenario clusters can be obtained by solving the
submodels (2)∀c∈ C where the common variables are fixed at the branched on 0-1 values. Notice thatx,y-
solution is a feasible one for the original model (5) provided that the NAC (3)-(4) are satisfied. The feasibility
of NAC (3) can be obtained by coordinating the branching on the common variables such that thei-th variable
is equated(xg

c)i = xg
c′ = 0, ∀c, c′ ∈ C : c c′, g∈ Gc∩Gc′ for all i ∈ I g

x , g∈ G t , t ∈ T1 on the 0-1 branched
values. See in [22] the details of the BFC algorithm.

Remark 1. A BF tree differs from a single B&B tree associated with a scenario cluster in that the fixing of a
0-1 common variable in a B&B node (in our case, BF node), say node c, automatically produces the fixing of
the replica of that variable to the same value in all nodes in the TNF under consideration, say,J f such that
c∈ J f , and the implications could go further.

Remark 2. The BFC methodology does not consider BF nodes in an individual basis and, then, it does only
consider TNFs, so, through the rest of the paper the term nodeis only used for scenario tree nodes.

2.3. Auxiliary models to be used in DBFC

Let us introduce some additional notation:

• Ix, set of indices of the commonx-variables. They are to be branched on or fixed at in the BF trees,
such thatIx = ∪g∈QI g

x , whereQ ≡ {g∈ G : t(g) ∈ T1}. Analogously,Iy = ∪g∈QI g
y .

• i, index of the branching (common) variable, fori ∈ Ix, to be performed at Steps 2 and 3 of H-DBFC,
see Algorithm 1 introduced in Section 3.3, so that a given cTNF is considered at Step 4.

• I1 ⊆ Ix, set of indices of the already branched on or fixed at common variables at a given cTNF. Let
the set of common variables be denoted by{xi : i ∈ I1}. Notice that it is assumed that those variables
are step-wise lexicographically ordered.

• x̂g
c, the 0-1 value vector of vectorxg

c, if any, for scenario clusterc∈ C : g∈ Gc, such thatt(g)∈ T1, thus
x̂g = x̂g

c provided that the NAC (3) are satisfied.

The pruning scheme at a cTNF is done by comparing the incumbent value, say,zDEM for model (1) and
z= ∑c∈C zc, wherezc is the solution value of submodel (2) for scenario clusterc that has been obtained in the
branching iteration of the last branched on variablexi , for xi ∈ I1, wherei ∈ I g

x for g∈ Gc.

Notice that for the cTNF defined by branching on variablexi , the NAC (3) in model (5) are already
algorithmically satisfied for the branched on or fixed variablesxi , ∀i ∈I1. After the cluster submodels (2) are
solved at Step 4 of H-DBFC (see Section 3.3), the NAC (3) of thevariables(xg)i , ∀i ∈ I g

x , g∈ G t , t ∈ T2 are
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implicitly satisfied. Additionally, if the testing of the NAC of the variablesxi , ∀i ∈ Ix \I1 is positive (i.e.,
they are satisfied), then, an integer TNF has been obtained.

At any integer TNF a feasible solution for the original model(1) could be obtained (in Step 5 of H-DBFC)
by fixing all thex−variables at their current 0-1 values, such that the LP modelcan be expressed

zTNF
LP = min ∑

g∈G

wg(agxg+bgyg)

s.t. ∑
q∈A g

(Aq
gxq+Bq

gyq) = hg ∀g∈ G

xg = x̂g ∀g∈ G
yg ∈ R

ny(g) ∀g∈ G .

(6)

It is worth to point out that the LP model (6) can have very highdimensions. For those instances, given
the nice structure of the model, it can bet∗-based Lagrangean decomposed as in [26], where a quadratic
regularization term can be appended to speed up the convergence of the approach. See in Section 6 our future
research plans on the subject. Notice that if the model is feasible then the new incumbent solution value is
zDEM := min{zTNF

LP , zDEM}.

Let (x̂g, ŷg,TNF) denote the solution of model (6)∀g∈ G t , t ∈ T1. Observe that the related NAC (3) and
(4) are satisfied. Additionally, a new auxiliary MIP submodel (7) is defined by fixing the vectorsxg andyg at
the values in ˆxg andŷg,TNF, respectively.

zTNF
f = min ∑

g∈G

wg(agxg+bgyg)

s.t. ∑
q∈A g

(Aq
gxq+Bq

gyq) = hg ∀g∈ G

xg = x̂g, yg = ŷg,TNF ∀g∈ G t , t ∈ T1

xg ∈ {0,1}nx(g),yg ∈ R
ny(g) ∀g∈ G t , t ∈ T2.

(7)

It can be observed that model (7) is easily decomposed by scenario clusters, so that it can be expressed

zTNF
f = ∑

c∈C

zTNF
f ,c , (8)

where
zTNF

f ,c = min ∑
g∈Gc

wg
c(a

gxg
c +bgyg

c)

s.t. ∑
q∈A g

Aq
gxq

c +Bq
gy

q
c = hg ∀g∈ Gc

xg
c = x̂g, yg

c = ŷg,TNF ∀g∈ Gc : t(g) ∈ T1

xg
c ∈ {0,1}nx(g),yg

c ∈ R
ny(g) ∀g∈ Gc : t(g) ∈ T2.

(9)

3. Matheuristic algorithm H-DBFC

3.1. Dynamic candidate TNF branching

The static candidate TNF (cTNF) branching strategy used in BFC [22] consists of fixing the selected
x-variable first at 0 for minimization and 1 for maximizationand, afterwards, the opposite branching is
considered in the already branched BF node. See other strategies in [28] for guided static branching related
to the root node in the BF tree, see also [55]. By contrast, a dynamic branching strategy in DBFC is presented
in this work, such that it is based on the values of the common variables, say(xc)i , in the solution of the

9



immediate previous solving of the cluster submodels (2). So, good feasible solutions can be found earlier
by the algorithm and, then, fewer cTNFs are visited during its execution. In addition to the improvement
in the serial version, the scheme has significant potential in the outer parallelization version, since some
simultaneous dynamic cTNF branching paths can be executed,see Section 4.

Let (x̂c)i denote the value of variable(xc)i in the solution of submodels (2). Letxi for i ∈ Ix be the
next branching variable in the stage-wise ordering, provided that the branching jumps to the first common
variable that does not yet satisfy its NAC (3). And letCi ⊆ C denote the set of cluster submodels (2) that
have variablexi in common. A rough description of theDynamically-Guided branching(DG) scheme for any
cTNF consists of branching first on that variable in the 0-1σi direction that can be expressed

σi =







0, if ∑
c∈Ci

(x̂c)i ≤
1
2
|Ci |

1, otherwise

Notice that, by construction, the valuexi of variablexi does not satisfy the NAC (3) in the solution of the
submodels (2) that are used for computingσi . Observe thatσi is the most frequent value in the current
solution of those|Ci | submodels.

Another important feature of DBFC consists of solving the cluster submodels (2) for eachx-branching
path just only at the first time they are required in the BF treeand, then, they are stored for future needs. This
entails a remarkable improvement in the time required for instances with a large number of quite difficult
submodels at the price of a major storage effort, see Section5.

3.2. H-DBFC strategy

The matheuristic H-DBFC for solving the original model (1) is presented in Section 3.3. The strategy is
based on the relaxation of some steps of the exact DBFC algorithm and, then, the guarantee of optimality is
lost. Let us point out that the breadth of the BF tree, so-calledBFT , can become an algorithmic bottleneck
for instances with a large number of common variables.

The strategy performs anincomplete backward branching(IB) scheme, such that the previous variables
in the lexicographically order are jumped back provided that they were jumped over during the forward
branching because they satisfied the NAC (3). Additionally,its stopping criterion(SC) consists of the relative
difference between two consecutive incumbent solution values being smaller than a given tolerance, sayε > 0.
Notice that the type ofIB branching does not allow the branching on the opposite(1−σi) direction of those
variables inxi in the already updated setI1, that implicitly have been branched on the 0-1σi direction, by
jumping over them in the forward step for choosing the next branching variable. It is pointed out that the
jumping is only performed when their solution ˆxi = σi satisfies their NAC in the submodels (2). Alternatively,
different types of stronger strategies could be consideredfor solving problems with smaller dimensions that
those whose results are reported in section 5. Examples of those strategies are: i) keeping backward branching
on reverting to the cTNF with the immediate previous common variable in the lexicographic order or ii)
skipping the solving of the scenario cluster submodels (9) at the integer TNFs.

3.3. Algorithm H-DBFC

The H-DBFC proposal is formally presented in Algorithm 1. Let us describe the main steps of the
algorithm.

The input parameterκmax is a modeler-driven limit on the number of times that the models (6) and (9) are
allowed to be solved (in Sep 5) for any integer TNF; andν is a counter of the number of incumbent feasible
solutions found along the iterations, so that it plays the role of the index for the related incumbent value,zDEM

ν .
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In Step 1 a scenario cluster based lower bound, sayzDEM, is obtained by solving the MIP submodels (2)
for all clusters. Additionally, parameterσi , i ∈ Ix is computed for future needs while selecting in H-DBFC
the 0-1 branching direction on the next branching (common) variable.

The stage-wise ordering of the variables allows the branching on a common variable to be selected in Step
2 for the given cTNF, instead of considering a fixed selectionfor the BF node to be branched on (as done in
BFC). Additionally, the selection of the branching variablexi can be dynamically replaced in some situations
(see below) by jumping to the first common variable does not yet satisfy the NAC (3) in the last time that the
cluster submodels (2) are solved.

The Dynamically-Guided(DG) branching scheme in Step 3 of H-DBFC requires to recover the solution
of the common variables from the immediate previous solvingof the scenario cluster submodels (2), so that
the 0-1 direction of the branching variablexi is selected based on the 0-1σ -parameter, see Section 3.1, as
opposed to the static branching criterion used in BFC.

The branching forward scheme used in Step 2 and Step 3 of H-DBFC has a significantly simpler encoding
than the one in BFC (Step 2 to Step 5). Notice that the stage-node variable control in BFC is no longer
needed. Instead, it suffices to consider the frequency of the0-1 values of the common variables in the stage-
wise ordering, since the variable branching direction is chosen based on theσ− parameter.

In Step 4 the cluster submodels (2) are solved for a given TNF that has been built with the branching
path included by the related 0-1σ -directions of a subset of common variables (whose indices are in setI1)
up to the last branched variablexi in the 0-1σi direction. Next, the forward step jumps from the current
branching variable to the first one in the lexicographical order of setIx \I1 whose value in the solution of
the submodels (2) does not satisfy the NAC (3). This very important feature does not exists in BFC and it is
crucial for speeding up the convergence of the algorithm.

Step 5 for the integer TNF includes a set of submodels to be solved. It is worth to point out that model (6)
for κ > 1 consists of the values of the solution of model (9) for the x-variables related to the nodes at stages
t > t∗ in the scenario tree. Notice that for both models the values of the x-variables in stages up tot∗ are the
ones obtained in Step 4.

Step 4 and 5 include the stopping criterion based on the new feasible solution that is found.

Step 7 performs the backward branching scheme, branching back to the variable according to the explicitly
branched forward criterion.

Notice that the pruning check in Step 8 and the opposite branching direction in Step 9 are performed
according to theσ− parameter, so, the static branching criterion used in BFC isnot longer used in DBFC.

The matheuristic character of H-DBFC is due to the schemeIB as well as the stopping criterion to start
with. Additionally, notice that the values of they-variables for the nodes in the stages up to the break one in
model (6) to be solved at any integer TNF (Step 5) areonlyobtained for the 0-1 values of thex-variables in the
solution of the cluster submodels (2) that are solved in the Step 4. Observe also that an additional scheme such
as the one presented in Step 7 of BFC [22] could be used to guarantee optimality. However, given the large
size of the instances that are aimed with H-DBFC, see Section5, the computing effort would be unaffordable
and, thus, preventing such scheme from being used in the approach.

Remark 3. The selection of the break stage is crucial for the efficiencyof the algorithm. The smaller the
break stage t∗, the smaller the cardinality ofIx. And then, the depth of the BF trees can likely be smaller
as well as the higher the chance in Step 4 of the matheuristic algorithm H-DBFC (presented next) that the
solution of the decomposition cluster submodels(2) can satisfy the NAC(3) of the common variables. So,
the convergence for obtaining feasible solutions in model(6) and submodels(9) is accelerated. However, the
smaller the break stage t∗, the higher the dimensions of the submodels(2) and (9). So, an instance-driven
balance is required.
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Algorithm 1 H-DBFC algorithm

Step 0: (Initialization)
Setν := 0, zDEM

ν := ∞, i := 0, I1 := {i}.
Step 1: (Root TNF)

Solve the scenario cluster MIP submodels (2) to obtainzc, ∀c∈ C .
ComputezDEM = ∑c∈C zc (lower bound) andσi , ∀i ∈ Ix.
If any (xc)i variable does not satisfy NAC (3),i ∈ Ix,c∈ C , then go to Step 2.
If any (yc)i variable does not satisfy NAC (4),i ∈ Iy,c∈ C , then go to Step 5.
Otherwise,ν := ν +1, zDEM

ν := zand go to Step 10.
Step 2: (Forward TNF branching)

Reseti := i +1. Updatei according to the first variable (in the lexicographic order)that does not satisfy NAC.
UpdateI1 := I1∪{i}.

Step 3: (Dynamically Guided branching)
Set(xc)i := σi , ∀c∈ Ci .

Step 4: (Candidate TNF)
Solve the scenario cluster MIP submodels (2) to obtainzc, ∀c∈ C .
Computez= ∑c∈C zc andσi , ∀i ∈ Ix\I1.
If z≥ zDEM

ν , then go to Step 6.
If any variable(xc)i does not satisfy NAC (3)i ∈ Ix,c∈ C , then go to Step 2.
If any variable(yc)i does not satisfy NAC (4)i ∈ Iy,c∈ C , then go to Step 5.
Updateν := ν +1, zDEM

ν := z.

Test the stopping criterion: if

∣

∣

∣

∣

zDEM
ν−1 −zDEM

ν
zDEM
ν

∣

∣

∣

∣

< ε, then go to Step 10.

Go to Step 6.
Step 5: (Integer TNF models)

Resetκ := 1.
Step 5.1: Solve LP model (6) to obtainzT NF

LP .
If it is feasible andzTNF

LP < zDEM
ν , then updateν := ν +1, zDEM

ν := zT NF
LP .

If κ = κmax, then if

∣

∣

∣

∣

zDEM
ν−1 −zDEM

ν
zDEM
ν

∣

∣

∣

∣

< ε, then go to Step 10.

Solve the submodels (9) to obtainzT NF
f c , ∀c∈ C .

If all of them are feasible, then computezTNF
f = ∑c∈C zT NF

f c and
if zTNF

f < zDEM
ν , then updateν := ν +1, zDEM

ν := zTNF
f .

If all the x variables from (9) are the same as in the (6) solution, thenκ := κmax.

If κ = κmax, then if

∣

∣

∣

∣

zDEM
ν−1 −zDEM

ν
zDEM
ν

∣

∣

∣

∣

< ε, then go to Step 10.

If κ < κmax, then updateκ := κ +1 and go to Step 5.1.
Step 6: (Branch pruning).

If (xc)i has been branched on toσi for anyc∈ Ci , then go to Step 9.
Step 7: (Backward TNF branching)

Reseti := i −1. Update backwardi according to the branching forward scheme.
If i = 0, then go to Step 10.

Step 8: (Prune checking)
If (xc)i = 1−σi for anyc∈ Ci , then go to Step 7.

Step 9: (Opposite branching)
Reset(xc)i := 1−σi, ∀c∈ Ci and go to Step 4.

Step 10: (End of the algorithm)

The H-DBFC solution, its valuezDEM
ν andOG=

zDEM−zDEM

zDEM % have been found,STOP.
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4. Outer and Inner parallelization of H-DBFC

Large sized multistage stochastic mixed 0-1 optimization problems are very difficult to solve, mainly due
to the number of constraints and the 0-1 variables. In order to improve the performance of our matheuristic
H-DBFC algorithm for solving large sized problems, Section4.1 presents some considerations based on the
performance of the parallel version presented in [4] for BFC. On one hand, the so-called inner parallelization
reduces the execution time for solving the independent submodels that are associated with each TNF. On the
other hand, the so-called outer parallelization reduces the number of TNFs to be visited by splitting the BF
tree and, then, allowing to obtain earlier tighter bounds.

Parallel algorithms have been developed in stochastic optimization for linear programs, see [12, 54]
as we know for the first parallel versions of Benders decomposition; see [9, 19] for two-stage programs
and [4, 13, 47, 48, 55, 61, 64, 70, 74] for multistage ones. Forsome applications in several fields, see
[18, 20, 27, 43, 44]. Recently, [55] has presented a parallelization of the algorithm BFC. In this section the
inner and outer parallel versions of H-DBFC are presented.

4.1. Parallelization schemes

We use the following definitions of the three thread types given in [4] for parallelizing H-DBFC (see
Algorithm 1): coordinator thread, where the non-parallelized tasks are executed;primary thread, solves the
scenario cluster submodels (2) and (9) in parallel; andauxiliary thread, used by each call to the MIP solver
of choice. Then, denote as (a×b×h) the thread configuration of a joint outer-inner parallelization execution,
wherea is the number of coordinator threads (one for eachpath, see below),b is the number of primary threads
associated with each coordinator thread (including itself) andh is the number of auxiliary threads associated
with each primary thread (including itself). If there are 64threads available, as an example, configuration
(2×4×8) means that 2 coordinator threads are defined (associated with 2 paths in the outer parallelization
scheme, see below), 4 threads for solving the scenario cluster submodels (2) and (9) in parallel (associated
with the inner parallelization scheme) and 8 threads to be used by the MIP solver of choice.

The inner parallelization in H-DBFC has the configuration (1× b× h) where b ≤ C, such that the
parallelization is performed for solving up to theC cluster submodels (2) in Step 1 and Step 4 as well as
to solve theC submodels (9) in Step 5. Different strategies can be used depending on the number ofprimary
threadsto use in distributed memory (MPI threads) and the number ofauxiliary threadsto use in shared
memory (by the MIP solver of choice). As an example, assume that 8 threads are available for parallelizing
theC independent submodels. Some options are as follows: Configuration (1×8×1), 8 MPI threads are used
for solving the submodels (one per each thread) and running the MIP solver in only one auxiliary thread for
each primary thread (i.e., the MIP solver is not allowed to use internal functions in parallel); (1×4×2), 4
MPI threads are used with 2 MIP solver threads each; (1×2×4), 2 MPI threads are used with 4 MIP solver
threads each; and (1× 1× 8), 1 MPI thread and 8 MIP solver threads. Elsewhere [4] we present a wider
description of the inner parallelization.

The outer parallelization is managed by the so-called paths. Assumep coordinator threads, the procedure
starts by defining a set of 0-1 variables in a lexicographicalform, such that the combinations of their 0-1 values
allow thep paths to be initiated. Each combination of the 0-1 values of those variables is implemented by a
coordinator thread and it is associated with the following elements: (1) Dynamically reassigned subproblem
of an unvisited BF tree, defined by a path BF tree, sayBFTpath, and its corresponding root TNF, say

ˆNpath = (x̂1, x̂2, . . . , x̂k); (2) Algorithm H-DBFC; (3) Set of primary and auxiliary threads; and (4) MPI
(Message Passing Interface) environment with other coordinator threads. Its efficiency is greatly increased
by the interconnect synchronization of the executions of H-DBFC. It is obtained by using the following
elements: (a) Local incumbent solution values, sayzDEM

path , of the subproblems handled by the coordinator
threads, making earlier branch pruning, and (b) The reassignment of the path subproblem in those threads
associated with paths that have no more TNF to visit, by redefining the root TNF, ˆNpath and the related path
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BF tree,BFTpath. This is the result of splitting the tree of an unfinishedBFT path. So, the parallelization
of the set of paths may shorten the number of TNFs to be visitedand the reduction of the computing time,
such that the upper bound of the solution of the original model (1) can be tightened.

The outer parallelization of H-DBFC has the following steps:

• Starting the parallel executing of thep paths, each one with its root TNFˆNpath. The optimization and
MPI variables are declared and the global environment is defined for all coordinator threads.

• The execution of each path consists of executing the steps ofH-DBFC from its root path until the
starting of the synchronization phase (see Algorithm 2).

• A path reaches the synchronization phase, illustrated witha dashed red box in Figure 1, when it satisfies
one of the following conditions, at least: (i) all BF nodes have been visited, and (ii) an integer TNF have
just been visited. Table 1 illustrates such situations in anexample. It is important to underline that the
dynamically-guided (DG) branching in H-DBFC aims precisely to visit integer TNFs often, therefore,
the idle time is reduced with respect to the strategy that we have presented elsewhere, see [4].

• The synchronization phase is activated once all paths have reached it. See next how it operates.

The operation of the synchronization phase is as follows: First, all paths gather the current incumbent
solution value obtained by each pathzDEM

path and update the incumbent global pathzDEM of the original model
(1). Second, the dead/active path analysis starts and one ofthe following three situations arises:

• If all paths are dead, then all TNFs of the BF treesBFTpath have been visited, so, the original BF
treeBFT have been fully visited and the execution end in all paths, so, the outer parallel version of
H-DBFC stops (global end).

• If all paths are active, then each one will continue branching in its ownBFTpath with the new updated
zDEM.

• Otherwise, each dead path will match with an active path. Theouter parallelization presented here has
been extended to deal with the dynamic and matheuristic nature of the H-DBFC algorithm, as opposed
to the root node matching criterion in [4]. Thus, only the explicitly branched forward variables are
candidates for the matching, since their influence is considered to be more significant. Let uspath1

andpath0 be a dead and an active path, respectively. Consider that thedown levelsl1 andl0 have been
explicitly reached in the BF tree from the root node, respectively, i.e., the root TNF for current active
path0 in the matheuristics perspective iŝNpath0 = (x̂0

1, . . . , x̂
0
l0
), and the root TNF for the current dead

path1 is ˆNpath1 = (x̂1
1, . . . , x̂

1
l1
), such that the situation is as follows:

– All the successor TNFs from the dead path have already been pruned;

– The dead pathpath1 will restart the execution of H-DBFC from the root TNFˆNpath1 =
(x1, . . . ,xl0,xl0+1) = (x̂0

1, . . . , x̂
0
l0
,1−σl0+1) and its associated newBFTpath1.

– The new starting combination of 0-1 values inBFTpath1 is included by values of the variables
already branched on or fixed at in the current branching ofpath0 plus the opposite value for the
new (next) explicitly branched variable with respect topath0 branching. See Section 3.1 for the
description of theσ -parameter. Notice that in [4] the dead path is always branched to value 1 in
the matching, due to the static branching criterion.

– The activepath0 will continue branching as stated in H-DBFC, but its root TNFhas been updated
to ˆNpath0 = (x1, . . . ,xl0,xl0+1) = (x̂0

1, . . . , x̂
0
l0
,σl0+1).
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Algorithm 2 Synchronization phase

(All paths gather zDEM
path and deadpath status)[All coordinator threads].

When a path is dead or has obtained a feasible solution,
setzDEM = min(zDEM,minpath{zDEM

path }).
If all deadpath= 1 (dead) then

(Finish MPI environment) [All coordinator threads].
GLOBAL END.

else
(Dead paths receive active paths variable branching)

[All coordinator threads].
Dead paths are reassigned by splitting active pathBFTpath.
All paths update root TNF ˆNpath.

Paths wheredeadpath= 0 (active) continue branching.
Paths wheredeadpath= 1 restart H-DBFC at the partial branching of
its related matched path :deadpath= 0, see Algorithm 1.

4.2. Illustrative example

Figure 2 and Table 1 show an illustrative example of the outerparallel version of H-DBFC while solving
P3, a randomly generated instance taken from [4, 22]. It usestwo paths, where the TNFs of Path 1 and Path
2 are in blue and green, respectively. Notice that when two paths are available only one 0-1 variable can be
fixed for the initial definition of the path, say variablex1. Thus, Path 1 starts the algorithm with root TNF

ˆN1 : (x1) = (0) and Path 2 with ˆN2 : (x1) = (1). The synchronization phase is reached four times during the
global solving, see below for the process.
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path AND THE EXECUTION STATUSdeadpath

IF THERE IS A DEAD PATH OR FEASIBLE SOLUTION OBTAINED, GOTOSYNCHRONIZATON PHASE

UpdatezDEM = min(zDEM, minpath{zDEM
path })

all deadpath

= 1?

DEAD & ACTIVE PATH MATCHING
Every coordinator thread associated to a dead path receivesfrom a matched active path its root nodêNpath

dead1
= 1?

dead2
= 1?

dead3
= 1?

dead4
= 1?
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PC-BFCMS

Path 2
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Path 3
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Path 4
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Coordinator thread 1
associated to path 1

Coordinator thread 2
associated to path 2

Coordinator thread 3
associated to path 3

Coordinator thread 4
associated to path 4

Figure 1: Illustrative 4-path Outer PH-DBFC diagram,(4×1×1)

The first synchronization phase, denotedSync.1 in Figure 2, takes place when Path 1 obtains a feasible
solution (for the original model (1), that is, all common variables take 0-1 values) at TNF 06, where
zDEM
1 = −291665, and as it is still active, sodead1 := 0; while Path 2 obtains a feasible solution at TNF

01, zDEM
2 = −290398, so, the branch is pruned and, then,BFT2 is fully visited, so,dead2 := 1. After the

comparison of the path solution values, aszDEM
1 < zDEM

2 andzDEM
1 < zDEM, thenzDEM := zDEM

1 . As Path 2
is dead, let us descend to branch on a common variable, sayx2 by sharing Path 1 BF tree. The root TNF for
Path 1 is updated to ˆN1 : (x1,x2) = (0,0) and continue branching. On the other hand, Path 2 will give upthe
previous BF tree and, being linked to the root TNF̂N2 : (x1,x2) = (0,1), it will restart H-DBFC to solve the
new path BF treeBFT2. Notice that root TNFs are indicated with double lined circles in Figure 2.

The second synchronization phase, denotedSync.2, takes place when Path 1 obtains a feasible solution at
TNF 07 (whose value is smaller than the global valuezDEM) wherezDEM

1 = −291709 and it is still active.
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Figure 2: Two-path Outer P-BFC performance for instance P3

On the other hand, Path 2 branches on TNFs 02 to 04, such that a feasible solution is obtained, where
zDEM
2 = −291988 (smaller than the global incumbent value) and it is still active. After the comparison of

the path solution values, sincezDEM
1 > zDEM

2 andzDEM
2 < zDEM, it results thatzDEM := zDEM

2 , and TNFs 07
and 04 are pruned in Path 1 and Path 2, respectively. Asdead1 := 0 anddead2 := 0, root TNFs do not need
to be updated and both paths continue branching.

The third synchronization phase, denotedSync.3, takes place when Path 1 branches on TNFs 08 to 10
and, finally, it stops since it has finished branching at its own tree rooted at(0,0). On the other hand, Path 2
branches on TNF 05 where a feasible solution is obtained, where zDEM

2 = −292022 (smaller than the global
incumbent value). After the comparison of the path solutionvalues, aszDEM

1 > zDEM
2 andzDEM

2 < zDEM, then
zDEM := zDEM

2 . TNF 10 of Path 1 is pruned and the path is dead,dead1 := 1, since Path 2 is still active,
dead2 := 0. Path 1 has finished its own BF tree, therefore, let us descend to branch a common variable, say
x3. Path 1 will give up the previous BF tree and, being linked to root TNF ˆN1 : (x1,x2,x3) = (0,1,1), the root
TNF for Path 2 is updated to ˆN2 : (x1,x2,x3) = (0,1,0).

Finally, the last synchronization phase, denotedSync.4, takes place when Path 1 branches on TNF 11, a
feasible solution is obtained, wherezDEM

1 = −292070 (smaller than the global incumbent solution). On the
other hand, Path 2 branches on TNFs 06 and 07, where a feasiblesolution is obtained, wherezDEM

2 =−292109
(smaller than the global incumbent value). After the comparison of the path solution values, aszDEM

1 > zDEM
2

andzDEM
2 < zDEM, thenzDEM := zDEM

2 . TNF 11 of Path 1 is pruned. And, additionally, both paths aredead,
dead1 := 1 anddead2 := 1, since all TNFs at the path treesBFT1 andBFT2 have been branched on. So,
the outer parallel version of H-DBFC has finished, and the incumbent solution value iszDEM =−292109.
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Path 1 Path 2
Root/TNF zc

1 zDEM
1 Root/TNF zc

2 zDEM
2

Root(0) Root(1)
TNF 01 −292117 TNF 01 −290404 −290398
TNF 02 −291839
TNF 03 −291826
TNF 04 −291759
TNF 05 −291741
TNF 06 −291678 −291665
Obtain feas soln,dead1 = 0 Obtain feas soln and all TNFs branched,dead2 = 1

Synchronization phase 1:zDEM =−291665
Continue branching in H-DBFC Restart H-DBFC
Root(0,0) Root(0,1)
TNF 07 −291718 −291709 TNF 02 −292116

TNF 03 −292061
TNF 04 −291996 −291988

Obtain feas soln,dead1 = 0 Obtain feas soln,dead2 = 0
Synchronization phase 2:zDEM =−291988

Continue branching in H-DBFC Continue branching in H-DBFC
Root(0,0) Root(0,1)
TNF 08 −291652 TNF 05 −292027 −292022
TNF 09 −291826
TNF 10 −291803 ∞
All TNFs branched,dead1 = 1 Obtain feas soln,dead2 = 0

Synchronization phase 3:zDEM =−292022
Restart H-DBFC Continue branching in H-DBFC
Root(0,1,1) Root(0,1,0)
TNF 11 −292075 −292070 TNF 06 −291733

TNF 07 −292114 −292109
Obtain feas soln and all TNFs branched,dead1 = 1 Obtain feas soln and all TNFs branched,dead2 = 1

Synchronization phase 4:zDEM =−292109
GLOBAL END

Table 1: Two-path Outer PH-DBFC performance

5. Computational experience

The computational experiments were conducted in the ARINA computational cluster from SGI/IZO-
SGIker at UPV/EHU, which provides 1926 cores divided as follows: 1774 xeon cores, 248 Itanium2 cores
and 40 opteron cores. All computing nodes are connected by anInfiniband network with high bandwidth
and low latency. For this computational experiment xeon x86_64 architecture (Xeon Nehalem-EP E5520 @
2.4GHz) type nodes were used, consisting of 18 nodes, such that each node (with 2 processors of 6 threads)
has 48 Gb of RAM, 2.4 Ghz and a QDR infiniband interconnection.A 22 Tb high performance file system
based on Lustre was used for data storage.

The inner and outer parallel versions of matheuristic H-DBFC were implemented in a C++ experimental
code which uses the state-of-the-art optimization LP/MIP solver CPLEX v12.5 [38] called from the open
source library COIN-OR v1.3.1 [15]. The optimizer is used tosolve the MIP submodels (2) for the set of
scenario clustersC in Step 1 and Step 4, and the LP submodel (6) and the MIP submodels (9) for the set of
scenario clustersC in Step 5.

The computational experience is reported as follows: Section 5.1 presents the dimensions of the instances
we have experimented with. Section 5.2 details the performance of the serial version of the matheuristic H-
DBFC, and Sections 5.3 and 5.4 detail the performance of the parallel versions of H-DBFC, so-called inner
IH-DBFC and outer OH-DBFC, respectively.
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5.1. Testbed dimensions

We have considered in our computational experience 18 large-sized instances from a realistic production
planning problem taken from [3, 16], whose dimensions are shown in Table 2. The headings are as follows:T,
number of stages;m, number of constraints;nx, number of 0-1 variables;nxc, number of common variables,
i.e., number of 0-1 variables in the subset of stages up tot∗; ny, number of continuous variables;nel, number
of non zero coefficients in the constraint matrix;dens, constraint matrix density (in %);|Ω|, number of
scenarios;|G |, number of nodes in the scenario tree; andTree, scenario tree structureAB1

1 AB2
2 AB3

3 , whereAi

denotes the number of children that each node has in each stage of blocki, andBi denotes the number of stages
of block i, for i = 1,2,3. Note: The break stage has been equal to 1 for all experiments that are reported, but
for instance c47 wheret∗ = 2 in Tables 3 and 4, and c55 wheret∗ = 6 in Tables 3 and 4 andt∗ = 3 in Table 5.
All results reported in the section consider that theε-stopping parameter is 0.005.

Table 2: Original model (1) dimensions (compact representation)

Instance T m nx nxc ny nel dens |Ω| |G | Tree
c43 8 163080 42750 300 106650 892975 0.0037 432 855 163324

c44 8 167355 42750 300 106650 1072525 0.0043 432 855 163324

c45 8 234660 66000 600 154800 1635440 0.0032 432 660 162433

c46 8 241260 66000 600 154800 2142320 0.0040 432 660 162433

c47 8 316755 85500 600 213300 2134790 0.0023 432 855 163324

c48 8 325305 85500 600 213300 2798270 0.0029 432 855 163324

c49 9 71148 19560 60 45720 200966 0.0043 1296 1956 162434

c50 9 75060 19560 60 45720 226394 0.0046 1296 1956 162434

c51 9 96948 25560 60 63720 262898 0.0030 1296 2556 163424

c52 9 102060 25560 60 63720 311462 0.0034 1296 2556 163424

c53 11 392436 103320 60 258120 1115486 0.0008 5184 10332 163426

c54 11 413100 103320 60 258120 1239470 0.0008 5184 10332 163426

c55 11 448020 116840 60 272760 1340022 0.0008 7776 11684 162535

c56 11 424652 116840 60 272760 1199814 0.0007 7776 11684 162535

c57 9 693876 195600 600 457200 4775444 0.0011 1296 1956 162434

c58 9 732996 195600 600 457200 7903088 0.0017 1296 1956 162434

c59 9 946476 255600 600 637200 6411860 0.0008 1296 2556 163424

c79 8 3032055 769500 5400 1919700 253365120 0.0031 432 855 163324

Observe the high number of stages and scenarios, and the highdimensions of the largest instance, c79. It
is interesting to point out that the dimension is not the onlysignificative factor for determining computational
complexity. The instances have a very nice structure, undera symmetric tree, but the behaviour can be very
different.

5.2. Performance of serial matheuristic SH-DBFC

Table 3 shows the performance of SH-DBFC with respect to our Stochastic Dynamic Programming-based
matheuristic serial version, S-SDP, as presented in [3] andthe plain use of CPLEX, with thread configuration
(1×1×8). The headings are as follows:Inst, instance’s code;zDEM, zDEM

S−SDP andzDEM
SH−DBFC, solution value

of the original model (1) and incumbent values of S-SDP and SH-DBFC, respectively;OG, optimality gap
in percentage shown by CPLEX, that is, the relative difference between the incumbent solution value and
the value of the objective function of the best activeB&B node;GG% goodness gap, relative difference (in
percentage) between the solution values provided by the matheuristics S-SDP and SH-DBFC, and the CPLEX
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incumbent solution value, whose expression isGG% = 100·
zDEM
(.)

−zDEM

zDEM , where(.) is S-SDP or SH-DBFC;
ti(s), time instant (in seconds) at which the CPLEX incumbent solution is found; andt(s), total elapsed time
(in seconds).

The results are only reported for the matheuristic strategywith the most accurate break staget∗, as
mentioned above. The strategy significantly reduces the number of candidate TNFs and integer TNFs visited
(and, thus, the number of cluster submodels (2) and (9) solved is significantly small); therefore, the elapsed
time required is also reduced.

Table 3: SH-DBFC performance versus S-SDP and plain use of CPLEX
CPLEX (1×1×8) S-SDP(1×1×1) SH-DBFC(1×1×1)

Inst zDEM OG% ti(s) t(s) zDEM
S−SDP GG% t(s) t∗ zDEM

SH−DBFC GG% t(s)
c43 3498249b 0.06 4343 16212 3539594 1.18 33 1 3505629 0.21 161
c44 4211366b 0.03 161 24252 4249979 0.92 145 1 4226605 0.36 86
c45 8036004 * 27 37 8123167 1.08 28 1 8127924 1.14 201
c46 8087808 * 74 375 8139108 0.63 51 1 8149793 0.77 186
c47 7151251b 0.09 240 9421 7227178 1.06 433 2 7175002 0.33 227
c48 6594167b 0.12 363 9007 6660629 1.01 108 1 6603791 0.15 363
c49 993334 * 1 1 1004692 1.14 23 1 993433 * 1
c50 1005119 * 2 2 1006477 0.14 4 1 1005119 * 3
c51 772567 * 16 16 775933 0.44 14 1 772590 * 14
c52 862754 * 20 20 870090 0.85 18 1 863566 0.09 15

c53 670234b 0.32 1381 15091 685613 2.29 59 1 675116 0.73 371
c54 769236b 0.19 2395 16938 776389 0.93 486 1 774450 0.68 183
c55 1163290b 0.07 6967 8948 1165132 0.16 73 6 1169030 0.49 28
c56 1126270 * 43 43 1128968 0.24 20 1 1129264 0.27 37
c57 7174215b 0.06 3829 3829 7256183 1.14 91 1 7233506 0.83 299
c58 8753936b 0.02 22629 22629 8803020 0.56 200 1 8863723 1.25 212
c59 8200795b 0.08 2094 15974 8251017 0.61 171 1 8253812 0.65 192

c79 −a − 8h 8h 61360087 − 14473 1 61118713 - 14511

Average 4062976 0.06 2623 8400 4097833 0.85 115 1 4089550 0.47 152
*: Optimality/goodness gap achieved(< 0.01%)
−: non available
a: Time limit (8h) exceeded
b: Out of memory (35 Gb)

Notice that the choice of the break staget∗ is very much instance dependent. Observe the results obtained
by the three approaches for instances c55 and c56, whoseTreestructure and dimensions are identical, but the
realizations of the scenarios are different. CPLEX provides similar solution value for both instances, but the
elapsed time is 8948 seconds for c55 and 43 seconds for c56. The matheuristic algorithms provide solutions
whose GG are similar for the same instance with impressive elapsed times, but SH-DBFC requires thatt∗ is
changed from 1 to 6 for instance c55. In any case, it is clear that the time complexity depends not only on the
model dimensions but also on its tightness.

The last row of Table 3 (as it happens for Tables 4 and 5) reports the average value for each column, where
the largest instance, c79, has not been included in the computation, rather it is separately considered.

Observe in Table 3 that the quality of the solution value is practically the same in the instances c49-c52 for
CPLEX and SH-DBFC, and the solution value provided by SH-DBFC is better in two thirds of the instances
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(in fact, 67%) than the one provided by S-SDP. The reduction in the elapsed time is remarkable in comparison
with plain use of CPLEX in both matheuristics, even with respect to the time instant at which the best known
CPLEX solution is found. Notice that the instances are generally solved in very few minutes, being c47, c54
and c79 the hardest ones for S-SDP and c48, c53 and c79 the hardest ones for SH-DBFC. Observe that 7 out
of the 18 instances are solved by SH-DBFC in less time than S-SDP. The average GG for instances c43 to
c59 in SH-DBFC is 0.47% versus 0.85% in S-SDP, while the average elapsed times are 152 and 115 seconds,
respectively. For the biggest instance c79, where plain useof CPLEX can not even obtain the LP solution
value in the 8h time limit, both matheuristics require similar times (4h approx). On the other hand, SH-DBFC
obtains a better solution value than S-SDP in a relative difference of 0.39%. The break stage selection is an
important decision, since the smaller its value, the tighter the TNF bounds but more elapsed time is required
by the submodels solving. The appropiate selection dependson the problem dimensions and its complexity.

See in Appendix A some figures about the evolution of the performance of the solution values obtained
by H-DBFC and SDP.

5.3. Performance of inner parallelization IH-DBFC

Table 4 shows the main results of the inner parallel IH-DBFC,thread configuration (1× 2 × 1), where
2 is the number of primary threads. It is also shown its comparison with the inner parallel version, IP-SDP,
of matheuristic SDP [3], thread configuration (1× 12 × 1). The new headings are as follows:zDEM

IP−SDP
andzDEM

IH−DBFC, incumbent solutions of IP-SDP and IH-DBFC, respectively;GG% goodness gap, the relative
difference (in percentage) between the solution values provided by the inner parallel matheuristics IP-SDP

and IH-DBFC, and the CPLEX incumbent solution value, whose expression isGG%= 100·
zDEM
(.)

−zDEM

zDEM , where
(.) is IP-SDP or IH-DBFC;C, number of scenario clusters (i.e., number of scenario treenodes for the stage
t∗+1); c, average number of scenario cluster submodels (2) by iteration that are solved in Step 4 (candidate
TNF branching) of the inner parallel version of DBFC;Sth = tserial/tinner, speed up when usingth primary
threads;Eth = 100·Sth/th, efficiency when usingth primary threads.

As it has been stated above, by construction, the inner parallelizations of H-DFC and SDP, do not improve
the quality solution provided by the related serial versions (if the latter obtains the incumbent solution before
reaching the time limit); compare the incumbent solution values in Tables 3 and 4 for each algorithm.
However, observe in Table 4 the remarkable reduction in time, IP-SDP obtains greater decreasing but using
much higher number of threads. However, the efficiency results are similar for both matheuristics, IP-SDP
with 12 threads and IH-DBFC with 2 threads. The efficiency forIP-SDP is between 42% and 79% with an
average value of 60%, while the efficiency for IH-DBFC is between 38% and 98% with an average value of
59%. The structure of the scenario tree is not the most appropiate for an inner parallelization of the DBFC
algorithm, since it is based on the number of scenario tree nodesC = |G t∗+1|. By construction, the SDP
algorithm may solve in parallel as many submodels as there are nodes ineachstage (and as there are scenarios
in the extreme case) . However, notice in the table that the average number of scenario cluster submodels (2)
solved at the candidate TNFs,c, is smaller than the number of submodelsC that could be solved at those
TNFs (one of the improvements of DBFC over BFC), see subsection 3.1. It is worth to point out that the
oracle scheme in Step 4 of DBFC identifies the submodels that are not needed to be solved again because the
solutions have already been obtained. For example, in instance c55 (wheret∗ = 6) the number of nodes in set
G 7 in the scenario tree isC= 96, which means that the solution of all the 96 scenario cluster submodels have
to be provided in one way or another. However, the number of submodels that the oracle in Step 4 identifies
is, on average,c= 5.43, whose solution needs to be obtained, since it is not kept from the previous candidate
TNF branching. It means that a great deal of time is saved in the serial version. So, a small number of primary
threads are needed to obtain the same efficiency as P-SDP in the inner parallel version of H-DBFC.

As a final remark, notice that the chosen cluster distribution criterion within threads aims to balance the
number of subproblems. Observe that the instances have symmetric scenario trees, and then, the dimensions
of the scenario cluster submodels are quite similar in each instance. So, their solving complexity and elapsed
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Table 4: IH-DBFC performance versus IP-SDP
IP-SDP(1×12×1) IH-DBFC (1×2×1)

Inst zDEM
IP−SDP GG% t(s) S12 E12% t∗ C c zDEM

IH−DBFC GG% t(s) S2 E2%
c43 3539594 1.18 5 6.60 55.00 1 3 1.64 3505629 0.21 128 1.26 62.89
c44 4249979 0.92 19 7.63 63.60 1 3 2.09 4226605 0.36 83 1.04 51.81
c45 8123167 1.08 5 5.60 46.67 1 2 1.06 8127924 1.14 196 1.03 51.28
c46 8139108 0.63 8 6.38 53.13 1 2 1.10 8149579 0.76 180 1.03 51.67
c47 7227178 1.06 58 7.47 62.21 2 9 1.92 7175002 0.33 188 1.21 60.37
c48 6660629 1.01 16 6.75 56.25 1 3 2.04 6603906 0.15 185 1.96 98.11
c49 1004692 1.14 3 7.67 63.89 1 2 2.00 993433 ∗ 1 1.00 50.00
c50 1006477 0.14 1 6.67 55.56 1 2 1.40 1005119 ∗ 4 0.75 37.50
c51 775933 0.44 2 6.67 55.56 1 3 1.60 772589 ∗ 14 1.00 50.00
c52 870090 0.85 3 6.00 50.00 1 3 2.00 863562 0.09 12 1.25 62.50

c53 685613 2.29 7 8.43 70.24 1 3 2.00 674479 0.63 276 1.34 67.21
c54 776389 0.93 51 9.53 79.41 1 3 3.00 774450 0.68 158 1.16 57.91
c55 1165132 0.16 9 8.11 67.59 6 96 5.43 1169030 0.49 35 0.80 40.00
c56 1128968 0.24 2 8.33 69.44 1 2 2.00 1129302 0.27 36 1.03 51.39
c57 7256183 1.14 13 7.00 58.33 1 2 1.14 7234093 0.83 180 1.66 83.06
c58 8803020 0.56 26 7.69 64.10 1 2 1.06 8864215 1.26 168 1.26 63.10
c59 8251017 0.61 30 5.70 47.50 1 3 1.50 8253812 0.65 172 1.12 55.81

c79 61360087 − 2850 5.08 42.32 1 3 1.29 61360087 − 11776 1.23 61.61

Average 4097833 0.85 15 7.19 59.91 1 8 1.94 4089572 0.46 119 1.17 58.51
*: Optimality/goodness gap achieved(< 0.01%)
−: non available

time are balanced. Moreover, the number of threadsth is very close to the average numberc of submodels
(2) to be required to be solved, then it is more likely to have idle threads rather than unbalanced solving tasks.
Notice that given the scheme used in algorithm H-DBFC, the number of submodels to solve per iteration is
not constant and then,c<C (number of cluster submodels).

5.4. Performance of outer parallelization OH-DBFC

Table 5 shows the main results of the outer parallel OH-DBFC and compares them with OP-SDP,
both with the same thread configuration (12× 1 × 1). The new headings are as follows:zDEM

OP−SDP and
zDEM
OH−DBFC, incumbent solution values of OP-SDP and OH-DBFC, respectively; GG% goodness gap, the

relative difference (in percentage) between the solution values provided by the outer parallel matheuristics OP-

SDP and OH-DBFC, and the CPLEX incumbent solution value, whose expression isGG%= 100·
zDEM
(.)

−zDEM

zDEM ,
where (.) is OP-SDP and OH-DBFC;IG%, improvement gap of the outer parallel version of algorithm
(.) over its related serial version, where (.) is either OH-DBFC or OP-SDP, whose expression isIG% =

100·
zDEM
S−SDP−zDEM

OP−SDP
zDEM
OP−SDP

or IG% = 100·
zDEM
SH−DBFC−zDEM

OH−DBFC
zDEM
OH−DBFC

; ∆z%, the relative gap of OP-SDP over OH-DBFC,

that is, the relative difference in percentage between the solution values provided by both algorithms, whose

expression is∆z% = 100·
zDEM
OP−SDP−zDEM

OH−DBFC
zDEM
OH−DBFC

; ∆t(s), increment (in seconds) of the elapsed time required by

OP-SDP over OH-DBFC.

Observe in Table 5 that the quality of the solution in the outer parallelization in either algorithm is
improved over their related serial versions in most of the instances. The relative difference on average for
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Table 5: OH-DBFC performance versus OP-SDP
OP-SDP(12×1×1) OH-DBFC(12×1×1) Comparison

Inst zDEM
OP−SDP GG% t(s) IG% t∗ zDEM

OH−DBFC GG% t(s) IG% ∆z% ∆t(s)
c43 3538641 1.15 19 0.03 1 3502309 0.12 331 0.09 1.04 -312
c44 4249979 0.92 156 (−) 1 4226604 0.36 130 (−) 0.55 26
c45 8099878 0.79 237 0.29 1 8127924 1.14 249 (−) -0.35 -12
c46 8139979 0.65 59 -0.01 1 8149579 0.76 270 (−) -0.12 -211
c47 7225961 1.04 65 0.02 1 7172544 0.30 415 0.03 0.74 -350
c48 6659199 0.99 82 0.02 1 6603906 0.15 226 (−) 0.84 -144
c49 1004692 1.14 23 (−) 1 993433 * 2 (−) 1.13 21
c50 1006476 0.14 4 (−) 1 1005149 * 4 (−) 0.13 0
c51 775566 0.39 17 0.05 1 772589 * 17 (−) 0.39 0
c52 869150 0.74 20 0.11 1 863562 0.09 17 (−) 0.65 3

c53 675583 0.80 592 1.48 1 674493 0.64 345 0.09 0.16 247
c54 775311 0.79 305 0.14 1 773529 0.56 249 0.12 0.23 56
c55 1165110 0.16 97 (−) 3 1163434 0.01 724 0.48 0.14 -627
c56 1128801 0.22 31 0.01 1 1129261 0.27 113 (−) -0.04 -82
c57 7255427 1.13 115 0.01 1 7220685 0.65 808 0.18 0.48 -693
c58 8801307 0.54 236 0.02 1 8860548 1.22 249 0.04 -0.67 -13
c59 8246290 0.55 1328 0.06 1 8231762 0.38 488 0.27 0.18 840

c79 61352973 − 2850 0.01 1 61135509b - 17425 -0.03 0.36 -14575

Average 4095138 0.71 199 0.13 1 4086548 0.39 273 0.08 0.32 -74
∗: Goodness gap achieved(< 0.01%)
(−): Improvement gap null(< 0.01%)
−: non available
b: Out of memory (35 Gb)

instances c43 to c59 is 0.13% for OP-SDP and 0.08% for OH-DBFC. The results obtained in instance c79
(whose dimensions are given in Table 2) need to be consideredseparately. The other instances can be split
into two groups, one comprising c43 to c52 (medium sized instances) and the other c53 to c59 (large sized
instances). Notice that the solution value obtained by OH-DBFC is better than OP-SDP in 8 out of the 10
instances in group one; and that the former requires less time than the latter in 3 out of the 10 instances while
both algorithms require the same time in 2 instances. Observe also that the solution value obtained by OH-
DBFC is better than OP-SDP in 5 out of the 7 instances includedin group two; and the former requires less
time than the latter in 2 out of the 7 instances. It is worth to point out that the larger the instances are, the
more time OH-DBFC requires in comparison with OP-SDP, although it gives a better solution value.

Notice that for the largest instance, c79, OH-DBFC providesa better solution value than OP-SDP at the
price of requiring much more time. That increase is due to thetime required to solve the large LP model (6)
that results from fixing at 0-1 values thex−variables in the original model (1) at any integer TNF (Step 5of
the algorithm). Notice that no decomposition has been made in the algorithm for satisfying the NAC (4) of
they-variables related to the scenario tree nodes in stages up tobreak staget∗, where all 0-1 variables have
already been fixed in the related branching. In Section 6, we elaborate on our future plan to address this issue.
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6. Conclusions and future work

We have presented the new matheuristic H-DBFC, as a strong improving spin-off from the Branch-and-Fix
Coordination (BFC) methodology, and its related inner and outer parallel versions with several matheuristic
strategies for solving very large sized multistage stochastic mixed 0-1 problems. A new branching criterion is
considered, based on stage-wise ordering and dynamically-guided schemes, such that fewer candidate TNFs
are expected to be visited in the algorithm’s execution and each of them requires a significant reduction in
the time required by its counterpart BFC. It is due to a high number of scenario cluster MIP submodels to be
solved in Step 4 for the candidate TNF that are identified by anad-hoc oracle scheme as already solved in
previous iterations of the algorithm and, then, they are notsolved again. The outer parallel version performs
parallel branching on the 0-1 common variables as well as an iterative exchange of information about the
incumbent solution value to reduce the elapsed time. It alsoobtains tighter bounds on the solution value of
the original problem. The use of parallel computing provides a perspective for solving large sized instances
on one hand, and a reduction in time on the other hand. The outer parallel H-DBFC can obtain much better
results when the number of paths is increased, i.e., when more coordinator threads are considered to work
in parallel. A broad computational experience is reported to assess the quality of the matheuristic solution
by comparing it with those obtained from plain use of the state-of-the-art CPLEX engine and a different
matheuristic algorithm of ours based on Stochastic DynamicProgramming (SDP) [3]. We have experimented
with 18 instances from a realistic production planning problem [16]. The instances correspond to symmetric
scenario trees and are very well structured. Both matheuristic decomposition algorithms outperform the plain
use of CPLEX. The algorithms give solutions with very good quality and H-DBFC provides a better solution
value than SDP. However, for reasons stated above, the larger the instances are, the longer the time required
by H-DBFC. In any case, the different parallel versions of the matheuristics strongly improve the elapsed time
as well as the solution quality compared to the serial versions. As an illustrative example of the computational
performance of the new approach, there is a large instance wehave experimented with whose dimensions are
448,020 constraints, 116,840 0-1 variables and 272,760 continuous variables. Serial H-DBFC (SH-DBFC)
gives a solution value with a 0.49% goodness gap versus plainuse of CPLEX v.12.5 and it requires 28
seconds of elapsed time, while CPLEX stops since it was running out of memory (35Gb) after 8,948 seconds
whose solution value has a 0.07% quasi-optimality gap at that time instant. The largest instance we have
experimented with has the following dimensions: 3,032,055constraints, 769,500 0-1 variables and 1,919,700
continuous variables. CPLEX stops after reaching the 8h time limit without getting the LP solution. However,
SH-DBFC gives a solution value with a 0.39% improvement gap versus Serial SDP (S-SDP) requiring both
an elapsed time of 14,511 and 14,473 seconds, respectively.

As future work we are also considering the solution of very large sized problems, by avoiding the
potential drawback of solving the compact version of the LP model (6) at any integer TNF (Step 5 of the
algorithm). Notice that a matheuristic based on a multistage cluster Lagrangean Decomposition (MCLD)
scheme [26] could be considered by dualizing the NAC (4) of the continuous variables related to the scenario
tree nodes in the stages up to the break one. The decomposition would consist of solving (serially or in
parallel) as many LP submodels as there are scenario clusters generated based on the chosen break stage. The
convergence could be accelerated by using a separable quadratic function as a regularization mechanism using
the incumbent solution as a reference point. Another direction for future research consists of extending the
SH-DBFC algorithm and its parallel versions to consider risk averse strategies as opposed to the risk neutral
one considered here. We favour the multifunction multistage time stochastic dominance risk averse strategy
introduced in [23] for the reasons presented there. The mainchallenge consists of handling the cross scenario
tree node constraints for selected stages along the time horizon. This could also be done by MCLD of NAC
and Lagrangean Relaxation of the risk averse based constraints, see [23]. Another direction for research is
the expansion of our approach to allow a mixture of exogenousand endogenous uncertainties in the main
parameters.
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Appendix A. Performance evolution of SH-DBFC and S-SDP

Figure A.1 shows the performance of the matheuristics S-SDPand SH-DBFC on the evolution of the
incumbent values in comparison with the value obtained by plain use of CPLEX for the medium sized
instances c44 and c47, the larger instances c53, c56 and c57 and the largest instance c79, respectively. The
goodness gap is in parenthesis inside the legends.
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Figure A.1: Comparison of H-DBFC, SDP and CPLEX for instances c44, c47, c53, c56, c57 and c79.
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