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Abstract

The goal of this paper is to introduce facility capacities into the Reliability Fixed-
Charge Location Problem in a sensible way. To this end, we develop and compare different
models, which represent a tradeoff between the extreme models currently available in the
literature, where a priori assignments are either fixed, or can be fully modified after failures
occur. In a series of computational experiments we analyze the obtained solutions and
study the price of introducing capacity constraints according to the alternative models
both, in terms of computational burden and of solution cost.
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1 Introduction

Reliable facility location models are increasingly being studied in the discrete facility location
literature, since they allow to make strategic decisions that, without too large increases in
the regular operating costs, prevent the systems from severe deteriorations when facilities fail.
Although some literature exists dealing with reliability issues in location problems defined on
networks(e.g. Puerto et al. [2014]) or on the plane (Fathali [2015]), we will concentrate on
the discrete case.

This type of models where first proposed in Drezner [1987], where the authors analyzed
the extensions of the classical p-center and p-median problems that are obtained when facility
failure probabilities are taken into account, but the number of facilities that can fail is fixed.
However, these models were not very much studied until some years later, restarting with
Snyder and Daskin [2005]. The reader is referred to Snyder [2006] for a survey on early works
concerning this type of models.

More recently, authors have considered different modeling assumptions regarding several
aspects of the problem. Some works present heuristics [Shen et al., 2011, Peng et al., 2011,
Alcaraz et al., 2012, Aydin and Murat, 2013, Aboolian et al., 2013] while only a few ones are
concerned with exact solution methods (see, e.g. O’Hanley et al. [2013], Alcaraz et al. [2015,
2016]). Additionally, there is a vast literature that explores different modeling assumptions,
and their effect on the solution structure. On the one hand, a common assumption in the
early literature was that all facilities share the same failure probability. This assumption has
been relaxed in several papers, as, for instance Berman et al. [2007b], Cui et al. [2010], or
O’Hanley et al. [2013]. In a similar way, while all early references concentrated on problems
where facility failures take place independently, works addressing correlated failures are being
more and more studied [Li and Ouyang, 2010, Berman et al., 2013, Li et al., 2013b].

Other alternatives that can be found in the literature refer to the number of failures
considered (as many as located facilities in some cases, like Snyder and Daskin [2005], or
just a few of them, like Zhan [2007],Lee and Chang [2007] or Li et al. [2013a]) or the system
behavior after a failure takes place. In this case, some authors distinguish between problems
with complete information, and problems with incomplete information where customers are
only aware of facility failures upon arrival (see, for instance Berman et al. [2009] or Albareda-
Sambola et al. [2015]).

Most often, facilities operating in real word have limited capacities. Therefore, introducing
capacitated facilities in this type of models is of real interest. To the best of our knowledge,
only a few recent references exist where capacities have been taken into account. These include
Gade and Pohl [2009], where allocation of customers to facilities is only made in a second
stage, once the facilities that have failed are known. For this problem, the authors propose
a solution method based on sample average approximation. In contrast to this work, where
authors assume that demands are splittable and can thus be partially served from different
facilities, Aydin and Murat [2013] address a similar model with unsplittable demands, where
excess demand is served from an emergency facility with a higher assignment cost. Similar
models can be found in Qin et al. [2013], where only a set of possible scenarios is considered
or in An et al. [2014] where the possibility that facility disruptions cause variations on the
demands is also modeled. Recently, a capacitated p-center problem with potential failures
has been considered in Espejo et al. [2015]. In this case, it is assumed that customers will
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always be served from their closest available facility and the obtained solutions guarantee that
facility capacities will not be exceeded if at most one facility fails.

Another work addressing capacitated facilities is Azad et al. [2014]. Here, the authors
consider quite a general model where disruptions can occur both, in the facilities and in the
transportation network. Failure probabilities are site-dependent and partial failures are also
considered. In their model, on top of location decisions, for each located facility and each
assignment it also has to be decided whether it is reliable or unreliable. In case of assignments
to unreliable facilities, a backup safe assignment needs to be decided. An interesting issue
introduced in this work is the minimization of the conditional value at risk, which requires
the use of some risk measure within this context. This model shares some characteristics with
some reliability problems defined on networks, although in those cases the measures of system
performance are completely different (e.g. Lin and Chang [2012]).

Finally, Lim. et al. [2013] is a rather theoretical paper where the authors evaluate the
impact of using inaccurate estimates of failure probabilities and correlation among disruptions
in reliable location problems. To this end, they consider a continuously distributed demand
on a plane and evaluate the cost associated with a given set of facilities. In the analysis of
models with correlated disruptions they include capacities at the facilities, since in this case
correlations are more relevant. Furthermore, they impose a unit penalty cost to the reliable
facility when it serves additional demand beyond its capacity. In this setting, they conclude
that the expected total cost for the capacitated facility reliability problem increases with the
degree of correlation and decreases with the facility capacity.

In a different context, some authors have considered the so-called location problems with
stochastic demands and congestion, where demands arise according to a Poisson process,
and the set of located facilities act as servers with limited queue lengths. In these cases,
facility congestion can be seen as a facility failure endogenous to the system. In these models,
customers are supposed to be more likely to renounce as they have to travel further from their
locations in order to get service. The goal in this case is not always to minimize the system
costs, but to maximize the expected covered demand. In Berman et al. [2007a], for instance,
the authors assume that customers travel to their closest facility, and use the approximations
of the actual queue performance measures obtained by ignoring the fact that, in this case,
facility congestion events are not independent. A similar problem is heuristically solved in
Zhang et al. [2009].

In this work, we consider a fixed charge facility location problem with unsplittable de-
mands. Facilities can fail with homogeneous probability, and these failures occur indepen-
dently. For each customer, a sequence of assignments to open facilities is defined. An extra
dummy non-failing facility with large assignment costs is used to model situations where a
customer is either lost or outsourced. Capacity constraints on the facilities are stated as
hard constraints for the scenario where no failures occur, but relatively small violations are
allowed if they do. In Section 2 we motivate our modeling assumptions, we discuss how the
expected demand gives insufficient information about the solution and that the full realloca-
tion of customers when failures occur is not always the best option. In Section 3 we introduce
the notation and the basic model for introducing capacities to the so called reliable facility
location problem. In Section 4 we give the details of four different models which enlarge the
basic formulation with new capacity constraints; this is the main section of the paper. Sec-
tion 5 is devoted to the analysis of our computational experiments. Finally, some conclusions
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and future research lines are stated in Section 6. Some extra technical details regarding the
proposed models are provided in the two appendices that close the paper.

2 Notation and Modeling assumptions

Let I be a set of customers, and J the set of potential sites for the facilities. For each
customer i ∈ I and each site j ∈ J , dij represents the transportation cost per unit of demand
served from j to i, hi the demand of customer i, and fj and Qj are, respectively, the set-up
cost and the regular capacity of facility j. Moreover, facilities are split into two disjoint sets
J = F ∪NF . Each of the facilities in set F , if open, can fail with probability q (common to
all unreliable facilities). As opposite, non-failing facilities (those in NF ) are assumed to be
fully reliable. We also consider that facility failures take place independently of each other.
Moreover, if t facilities from F are opened, 2t scenarios can occur, depending on which of
those facilities are available and which ones have failed.

To model the situations where a customer is lost or outsourced, we include a dummy
facility u ∈ NF , with fu = 0, unlimited capacity, and assignment costs equal to the cost of
loosing or outsourcing a customer. This facility is forced to be open.

In the Reliable Fixed-charge Location Problem with Capacity constraints (CRFLP) a set
of facilities has to be opened, and a sequence of them has to be associated with each customer
in such a way that all customers are served by a real facility as their primary assignment,
capacity constraints are strictly satisfied in the situation where all open facilities are operative
and, at least, nearly satisfied in all other scenarios. The goal of the CRFLP is to minimize
the total cost, which includes fixed costs for opening facilities, regular service costs, expected
service costs, and expected outsourcing costs.

As mentioned above, the literature on reliable facility location problems is quite extensive
and covers a wide range of modelling assumptions. The basic ones refer to the type of objective
(center, median, including or not location costs, including extra costs for fortification or
penalties, etc.), or the nature of the facility failures (independent or correlated, and having
common or site dependent probabilities). Additional assumptions concerning the service
strategy must be also made to clearly define how the system will adapt in the scenarios where
failures occur.

For instance, capacities can be considered in different ways. To the best of our knowledge,
most of the authors that have considered them, stated them as strict limits on the throughput
of a facility. However, in many situations, the capacity of a facility is stated in terms of its
production in regular conditions, being it possible to increase it in emergency situations.
Therefore, in this work we propose to allow assignments for which some facilities might have
to serve a demand that is slightly over their capacity if exceptional failures occur. The goal of
this paper is to explore different models that allow solutions of this kind, but keep a limit on
these excesses. Note that the expected demand at a facility gives some idea on the deviations
from the capacity, but some extra information is needed to have a clear view of the risk of
overload at a facility.

To illustrate this fact, we consider the example situation of Figure 1. Squares represent
open facilities, all with capacity 5 and failure probability equal to 0.2, and circles represent
customers, whose demand is given inside the circle. In each configuration, continuous lines
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Figure 1: Example 1: Different assignment configurations

show the assignment of customers to facilities in the scenario where no facilities fail. If that
facility fails, the dotted line gives the facility where the customer will be served from instead.
For instance, in configuration 1, the facility marked with an X, if available, will always serve
at least two customers (with demands 1 and 2), but it will also have to serve the other three
customers in all the scenarios where the leftmost facility fails, which have a probability equal
to 0.2. So, the expected demand at X is 1 · 3 + 0.2 · 5 = 4.

For the three proposed assignment configurations, the expected demand at the facility
marked with an X is equal to 4, but they represent quite different situations. Figure 2 gives
the probability distribution of the demand received at facility X, conditional to the event that
X has not failed.
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Figure 2: Demand distribution at facility X in Example 1

In this figure it can be seen that in all three cases, even if the expected demand is smaller
than the capacity, there are scenarios where the capacity is exceeded, and this happens with
different probabilities and by different amounts, depending on the assignment pattern. De-
tailed information is provided at the bottom of Figure 2. Here, E stands for expectation, P
stands for probability, and the overload of a facility is defined as the expected value of the
amount by which its assigned demand exceeds the facility capacity. Obviously, the difference
between the expected demand and the facility capacity provides a lower bound on the ex-
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pected facility overload, but this lower bound is quite weak, as it can be seen in this example.
To attain the goal of this work, tighter bounds and estimates of this excess will be presented
which can be expressed linearly in terms of the decision variables. In Example 1, according to
Figure 2 if we ignore the costs, we shall choose Configuration 3 among the three configurations
since here overload occurs with the smallest probability, and its expected value is also the
smallest one.

Of course, since the motivation behind the idea of allowing some capacity violations is
the feeling that facilities can serve demands a bit beyond their capacities in some critical
situations, in this work, we assume that in regular conditions (that is, in the scenario where
no facility fails) capacity constraints are strictly satisfied at all the facilities.

Another main decision that needs to be made to devise a strategy is to define what decisions
must be made a priori, and which ones can be made later, once the set of available facilities is
known, in order to adapt the a priori solution to the actual situation. In this context, several
alternatives can be considered depending on the flexibility of the supply chain, ranging from
the high flexibility of Gade and Pohl [2009], Aydin and Murat [2013], An et al. [2014] or Qin
et al. [2013], where all assignments can be freely modified in the case of disruptions, to the
rigid situation of Azad et al. [2014], where customers only have one assignment for regular
operating mode, and one assignment for emergencies.

In this paper, we propose an intermediate strategy that aims at guaranteeing a certain
stability in the assignment of customers to facilities while improving the resilience of the
system. To this end, each customer has several prioritized assignments, fixed at a first stage
and, for a given scenario he will be served from the first available facility from this assignments
list. To model these prioritized assignments, we define several assignment levels for each
customer, starting from level 0 (primary assignment), and we consider that the customer will
be served from the facility it is assigned to at level r, if all the facilities it is assigned to at
levels r′ < r have failed.

When facilities are uncapacitated, the optimal assignment sequence corresponds to assign-
ing each customer to its closest open facility that is operative, and therefore, the two extreme
policies described above, in fact, coincide. However, in presence of capacity constraints, as-
signments to the closest available facility might be unfeasible, and the two policies (deciding
assignments a posteriori, and perform actual assignments according to a predefined order)
may yield to different solutions, as it is shown in the following example.

Consider the situation of Figure 3 where each of the five customers (circles) has one
unit of demand, three failing facilities (squares) are open, each with a capacity of 3 units,
and an extremely large outsourcing cost, ρ. Also, let the failure probability be q = 0.1
and assume that service costs are associated with Euclidean distances (a unit grid is also
plotted). Assuming that capacity constraints are strict, each row represents the optimal
actual assignments for the different scenarios, when assignments can be defined a posteriori.
At each scenario, filled squares represent operating facilities, and empty ones, facilities that
have failed. For the customers, an arrow is shown to give their actual assignment for that
scenario, or they are filled in black if they are outsourced/lost. For brevity, the scenario where
all facilities fail has been not included in the picture since, in this case, the assignment cost
is trivially C = 5ρ. For the remaining scenarios both, the scenario probability and the cost of
the actual assignments for that scenario are given at the right hand side of the figure. Being
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Figure 3: Example 2: Least-cost a posteriori assignments

the failure probability 0.1, the expected service cost in this case would be

8 · (0.9)3 + (15 + 10 + 11) · 0.1 · (0.9)2

+ ((6 + 2ρ) + (6 + 2ρ) + (9 + 2ρ)) · (0.1)2 · (0.9) + 5ρ · (0.1)3

= 8.937 + 0.059ρ.

Note, however, that the above solution does not correspond to any set of predefined
assignment sequences for the customers. For instance, the first assignment of customer 4 is to
facility B but, under the second scenario, it is being served from C, even if B is available, in
order to make it feasible to serve customers 1, 2 and 3 from B. In fact, the optimal solution
using our policy, if capacities are set as strict limits, is given by the following lists (D is used
to refer to the dummy facility that represents loosing or outsourcing a customer). 1 ← AD,
2 ← ABD, 3 ← BACD, 4 ← BCD, and 5 ← CD. (For instance, using these lists, in the
scenario where facility B fails and the other two facilities are available, customers 1, 2 and 3
would be served from A, and 4 and 5, from C.) Using these sequences, capacity constraints
are satisfied in all scenarios, and the expected distribution cost is 8.469 + 0.221ρ. Note that,
as expected, for reasonable values of ρ this solution has a larger expected cost than the
flexible solution since, to guarantee that the demands assigned to each facility never exceed
its capacity, customers are more likely to be outsourced. This effect can be somehow reduced
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by allowing slight capacity violations in some scenarios, as discussed above. For instance, if we
consider the solution given by the lists 1 ← ABD, 2 ← ABD, 3 ← BACD, 4 ← CBD, and
5 ← CBD, then, the capacity constraint is only violated in the scenario where only facility
B is available, which has a probability of 0.9%, and the expected excess demand overload is
2 · 0.009 = 0.018. By allowing this, the overall expected cost is now 10.332 + 0.041ρ that, for
large outsourcing costs ρ is much smaller than before.

Despite being less flexible than the assumption made in most of the related literature, we
believe that this type of strategy is already flexible enough to cope adequately with emergency
situations where some facilities fail, and it is much easier to implement, since with the previ-
ously used strategies, the decision maker needs to systematically solve generalized assignment
problems at an operational level to decide, under each scenario, what are the optimal assign-
ments of the customers. Additionally to the complexity associated with implementing them,
such policies propagate the effect of facility disruptions to the entire system whereas, with the
proposed policy, this effect is much more local, since it only affects the customers that were
originally assigned to a facility that has failed. This quality is specially relevant in systems
with multiple agents. For instance, if different carriers are in charge for the distribution, hav-
ing predefined assignment sequences allows them working autonomously, while planning the
distribution according to a completely flexible policy would force them to work coordinately.

Consider the following binary variables:

• Xj that takes value 1 if a facility is open at site j ∈ J

• Yijr that takes value 1 if customer i ∈ I is assigned to facility j ∈ J at level r = 0, 1, 2, . . .

If a given customer is assigned to a facility at level r > 0, it will be served from that
facility in all scenarios where the facility is available, and all the facilities to which it has
been assigned at lower levels have failed. In the assignments provided above for Example 2
(1 ← ABD, 2 ← ABD, 3 ← BACD, 4 ← CBD, and 5 ← CBD), the following Y variables
are 1: Y1A0, Y1B1, Y1D2, Y2A0, Y2B1, Y2D2, Y3B0, Y3A1, Y3C2, Y3D3, Y4C0, Y4B1, Y4D2, Y5C0, Y5B1,
Y5D2.
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Using these variables, the CRFLP can be modeled as:

(CRFLP) min α

∑
j∈J

fjXj +
∑
i∈I

hidijYij0

+ (1− α)
∑
i∈I

hi

∑
j∈NF

∑
r∈R

dijq
rYijr +

∑
j∈F

∑
r∈R

dijq
r(1− q)Yijr


(1)

s.t. Xu = 1 (2)∑
j∈F

Yijr +
∑
j∈NF

r∑
s=0

Yijs = 1 i ∈ I, r ∈ R (3)

∑
r∈R

Yijr ≤ Xj i ∈ I, j ∈ J (4)∑
i∈I

hiYij0 ≤ QjXj j ∈ J (5)

Capacity constraints mostly hold (6)

Xj ∈ {0, 1} j ∈ J (7)

Yijr ∈ {0, 1} i ∈ I, j ∈ J, r ∈ R (8)

where R = {0, . . . , |F | − 1} and α is a value in (0, 1).
Obseve that, for i ∈ I and j ∈ F , (1− q)

∑
r∈R q

rYijr is the probability that customer i is
served from facility j; if Yijr = 1, then r facilities have to fail before i needs being served from
j, which happens with probability qr. Moreover, for this service to take place, facility j has
to be operative, which happens with probability (1− q) (Note that these computations take
advantage of the independence of failures). In the case of non-failing facilities, this last factor
is not required, since they are always operative. This has been used to compute the expected
service costs in the objective function. Note that in this objective function we consider a
convex combination (α ∈ (0, 1)) of this expected service cost and the full system cost under
the scenario where no facility fails. This is a common practice in reliable facility location
models (Snyder and Daskin [2005]) that allows the end-user decide to what extent the chosen
solution should depend on the potential facility failures.

Constraint (2) guarantees that the dummy facility used to model outsourced customers is
indeed open. To force each customer to have one assignment at each level until it is assigned
o a non-failing facility we use constraints (3). Furthermore, constraints (4) forbid both,
assignments to sites where no facility has been located, and assignments of one customer to
the same facility at different levels. Capacity constraints in the scenario where no facility
fails are stated as (5). Finally, constraints (7) and (8) set the domains of the different sets of
variables.

Constraint (6) is the focus of this paper. As we discussed throughout this section, the
idea of this constraint is to forbid potential facility overloads that are too large, or that are
too likely to occur. Obviously, there is no straightforward way to state this condition. In the
next section we explore alternative sensible ways to deal with it. Later on, in Section 4 we
will compare them in a series of computational experiments.
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3 Alternatives for modeling capacity satisfaction

From now on, we will denote with QRFLP formulation CRFLP without constraints (6), that
is, a CRFLP where capacities are only taken into account in the scenario where no facility fails.
In what follows, we explore different alternative ways to state constraints (6). As mentioned
above, the role of these constraints is to allow assignment configurations that may yield some
facility overloads, but only by small amounts and with small probabilities.

3.1 Limits on the expected loads

A first naive approach to try to avoid capacity violations occurring too often or by large
amounts is to keep the expected total demand at each facility below its capacity. This type of
approach can be further relaxed by allowing these expected demands to exceed the capacities
by a limited amount (V ) and in a limited number of facilities, γ. To do so, we will use the
following additional variables:

• νj ∈ R+: amount by which the expected demand at facility j ∈ J exceeds its capacity.

• uj ∈ {0, 1}: indicates wether or not the expected demand at facility j ∈ J exceeds the
capacity Qj .

Then, the above mentioned limits can be established using the following constraints instead
of (6):

∑
i∈I

hi
∑
r∈R

qrYijr 6 QjXj + νj j ∈ J (9)

νj 6 V uj j ∈ J (10)∑
j∈J

uj 6 γ (11)

νj > 0 j ∈ J (12)

uj ∈ {0, 1} j ∈ J (13)

Constraints (9) are used to compute the values of variables νj , while constraints (10) are
used both, to identify the facilities where these variables are positive and to establish their
limit, V . A limit γ on the number of facilities where ν variables can be positive is set by
constraint (11). Finally, constraints (12) and (13) fix the domains of the new variables.

Note that, as opposite to the case of the objective function in formulation CRFLP, in
the computation of the expected demand at facility j the factor (1 − q) standing for the
probability that facility j is available, is not required. Indeed, here we are computing the
expected demand at j given that j is operative, since this demand is only relevant in this
case.

In the computational experiments section we will refer to formulation QRFLP enlarged
with constraints (9)-(13) as CRFLP-LEL(V, γ). The suffix LEL stands for Limits on Expected
Loads.
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3.2 Bounds on the expected overloads

As mentioned in Example 1, one global measure of the facility overloads is given by the
expected overload, which is formally defined next.

Given a feasible solution (X,Y ) to QRFLP, let O(X) ⊂ J be the set of locations where
facilities have been placed: O(X) = {j ∈ J : Xj = 1}. For each j ∈ O(X), let ξj be the
Bernoulli random variable that takes value 1 if facility j is operative, and 0 if it has failed.
That is, ξj ∼ Bernoulli(1 − q) for j ∈ O(X) ∩ F , and ξj = 1 for j ∈ O(X) ∩NF . Then, the
expected overload of the solution is defined as:

E(X,Y ) =
∑

j∈O(X)

E



ξj ·
∑
i∈I

hi

∑
r∈R

Yijr ·
∏
s<r

 ∑
j′∈O(X)

Yij′s(1− ξj′)


︸ ︷︷ ︸

demand at j according to ξ

−Qj


+ , (14)

where (•)+ = max{0, •}. That is, the expected overload of the solution is the sum, over all
open facilities, of the expected values of the positive difference between the demand allocated
to the facility and its capacity. Here, the demand allocated to a facility j ∈ O(X) is computed
as ∑

i∈I
hi

∑
r∈R

Yijr ·
∏
s<r

 ∑
j′∈O(X)

Yij′s(1− ξj′)

 .

That is, for each i ∈ I, its demand hi will be allocated to j if and only if

• i is allocated to j at some level r (Yijr = 1) and,

• for all levels s < r, the facility to which j is assigned at level s (the only j′ satisfying
Yij′s = 1), fails (that is, 1− ξj′ = 0).

Accordingly, the demand allocated to an available facility at each scenario is the demand it
receives at level 0 plus some of the demands whose primary assignment was made to a facility
that has failed in that scenario. Since overloads are defined to be nonnegative, the expected
overload increases with both, the probability of a positive overload, and the actual overload
in the scenarios where it is positive.

Imposing predefined limits on the expected overload would be, theoretically, a reasonable
way to state capacity constraints (6) in the CRFLP. However, as can be seen from expression
(14), even the evaluation of E(X,Y ) in one solution is computationally expensive. Therefore,
solving a variant of the CRFLP that includes a constraint of this type would be computation-
ally unaffordable.

In this section we propose three linear approximations of the expected overload and prove
that two of them are actually upper bounds of E(X,Y ). Therefore, constraints forcing these
bounds to be below some predefined limit guarantee that the same constraints are satisfied
in terms of the actual expected overload.

Proposition 3.1. Given a solution (X,Y ) to QRFLP, for j ∈ O(X) and r > 0, let νjr =(
Qj−

∑
i∈I
∑r−1

s=0 hiYijs

)+
be the capacity slack available at j if it only had to serve customers
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assigned to it at levels smaller than r, and λjr =
(∑

i∈I hiYijr − νjr
)+

be the overload at j

caused by assignments at level r after all assignments at lower levels have been considered.
Then,

E1(X,Y ) =
∑
r>0

∑
j∈F

(
(1− q)qr

)
λjr +

∑
j∈NF

qrλjr

 (15)

is an upper bound of E(X,Y ). That is, E1(X,Y ) > E(X,Y ).

Proof:
In fact, it suffices to prove that for any facility j0 ∈ O(X), the contribution of j0 to

E1(X,Y ) is an upper bound on its contribution to E(X,Y ).

Case j0 ∈ F Consider a particular solution for which facilities in O(X) can be sorted in a
sequence such that, for any customer i assigned to j0 at a certain level r (Yij0r = 1), its
previous assignments are given by Yij1,r−1 = Yij2,r−2 = · · · = Yijr0 = 1.

In this case, j0 will receive the requests of the customers assigned at level r whenever
facility j0 is available and facilities j1, . . . , jr fail, which happens with probability (1−q)qr
and, therefore, in this particular solution, the expected overload at j0 equals

∑
r>0(1−

q)qrλjr, i.e., in this case, j0 contributes with exactly the same amount to E(X,Y ) and
to E1(X,Y ).

In a more general solution, where the previously defined sequence does not exist, more
than r facilities need to fail before j0 completely receives the demand

∑
i∈I

hiYij0r. There-

fore, the overload λj0r is incurred with a probability that is bounded above by (1− q)qr
(it has some extra q factors) and, as a consequence,

∑
r>0(1−q)qrλjr is an upper bound

on the expected overload at j0.

Case j0 ∈ NF In the case where j0 ∈ NF all the previous arguments apply, except for the
probability that r facilities fail and j0 is operative that now equals qr, which is the
coefficient in E1(X,Y ) of λj0r in this case.

�

To illustrate this bound, consider Example 2 depicted in Figure 3 and the already studied
solution given by the sequences: 1 ← ABD, 2 ← ABD, 3 ← BACD, 4 ← CBD, and
5← CBD, which as mentioned above, would correspond to

Y1A0 = Y2A0 = Y3A1 = Y3B0 = Y1B1 = Y2B1 = Y4B1 = Y5B1 = 1 = Y4C0 = Y5C0 = Y3C2 = 1.

Since the capacity of all three facilities is 3, it is clear that the only facility where there can be
some overloads is facility B. Indeed, the only scenario where B is overloaded is the scenario
where B is operative and both A and C fail, which happens with probability (1 − q)q2. In
this case, B receives a total demand of 5, which exceeds its capacity by 2. Therefore, the
total expected overload for this solution is E(X,Y ) = 2(1− q)q2. On the other hand, it can
be clearly seen that, for this solution, the only nonzero capacity slacks are νA1 = 1, νB1 = 2,
νC1 = 1, νC2 = 1, and the only nonzero overload, λB1 = 2 (A total demand of 5 is assigned
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to B at levels r 6 1 which is 2 units over its capacity). Therefore, in this case we have
E1(X,Y ) = 2(1− q)q, which is not smaller than E(X,Y ) for any probability q 6 1.

One possibility to ensure that the expected total overload associated with a solution lays
below a certain threshold, is to impose some limit V to the value of its upper bound E1(X,Y ).
To do so, we can enhance formulation QRFLP by adding the following extra constraints:

r∑
s=1

∑
i∈I

hiYijs 6 Qj + νjr ∀j ∈ J, r ∈ R (16)

λj1 = νj1 ∀j ∈ J (17)

λjr = νjr − νjr−1 ∀j ∈ J, r > 1 (18)∑
j∈F

∑
r>0

qr(1− q)λjr +
∑
j∈NF

∑
r>0

qrλjr ≤ V (19)

λjr, νjr > 0 ∀j ∈ J, r ∈ R (20)

In what follows, we will refer to the resulting formulation as CRFLP-B1(V ). Here, B1
stands for Bound of Type 1. In this set of constraints, extra continuous variables λjr and
νjr are required to compute the value of E1(X,Y ). Constraints (16) are used to compute the
value of νjr that is consistent with the current values of Y variables. Constraints (17)− (18)
are required to set the right values to λjr variables, and constraint (19) is used to compute
and limit the value of E1(X,Y ). Finally, the domains of the new variables are set in constraint
(20).

In view of the proof of E1(X,Y ) be an upper bound on E(X,Y ), and of the previous
example, we can see that the bound E1(X,Y ) can be tight if all customers follow the same
prospective path, or rather loose if different customers end up at a given facility when different
sets of facilities fail. The next bound we present uses this observation to strengthen E1(X,Y ).

Proposition 3.2. Given a solution to the QRFLP, (X,Y ), let t = |O(X) ∩ F | and, for

j ∈ O(X) and k ∈ O(X) ∩ F , let εjk =

(( ∑
i:Yik0=1

hiYij1

)
− νj1

)+

. Then,

E2(X,Y ) =
∑
j∈J

∑
k∈F

εjkq(1− q)t−1 +
∑
j∈F

λj1q(1− (1− q)t−2)(1− q) +
∑
j∈NF

λj1q(1− (1− q)t−1)

+
∑
r>1

∑
j∈F

λjrq
r(1− q) +

∑
j∈NF

λjrq
r


(21)

is an upper bound on E(X,Y ) that is tighter than E1(X,Y ). That is,

E(X,Y ) 6 E2(X,Y ) 6 E1(X,Y ).

Proof:
E1(X,Y ) can be split into two terms as:

13



∑
j∈F

λj1q(1− q) +
∑
j∈NF

λj1q︸ ︷︷ ︸
A

+
∑
r>1

[
∑
j∈F

λjrq
r(1− q) +

∑
j∈NF

λjrq
r]︸ ︷︷ ︸

B

The term B equals the last term of E2(X,Y ); that is, the only difference between E1(X,Y )
and E2(X,Y ) refers to the assignments at level r = 1, which are taken into account in the first
two terms of the definition of E2 and in part A of the former decomposition of E1. Therefore,
it suffices to prove that

A >
∑
j∈J

∑
k∈F

εjkq(1− q)t−1 +
∑
j∈F

λj1q(1− (1− q)t−2)(1− q) +
∑
j∈NF

λj1q(1− (1− q)t−1) (22)

and that the expression at the right-hand side bounds the contribution to E(X,Y ) of assign-
ments at level r = 1.

Take j0 ∈ F ∩O(S). Then, the contribution of j0 to A is λj01q(1−q), which stands for the
excess caused by assignments at level r = 1 (recall that assignments at level r = 0 are forced
to be feasible with respect to the capacity by (5)) times the probability of one scenario where
j0 is operative and at least one other facility fails. This last probability can be decomposed
into the probability that exactly one facility different from j0 fails (and, therefore, the t − 2
remaining open failing facilities different from j0 are operative) plus the probability that more
than one of these facilities fail:

q(1−q) = q(1−q)(1−q)t−2+q(1−q)
(
1− (1− q)t−2

)
= q(1−q)t−1+q(1−q)

(
1− (1− q)t−2

)
Now, in the case that only one open facility k 6= j0 fails, the corresponding overload will only
be εj0k 6 λj01. Therefore, the contribution of j0 to A will be

Aj0 =
∑
k∈F

λj01q(1− q)t−1 + λj01q(1− q)
(
1− (1− q)t−2

)
>
∑
k∈F

εj0kq(1− q)t−1 + λj01q(1− q)
(
1− (1− q)t−2

)
,

(23)

which still bounds the contribution of j0 to the expected overload in the solution caused by
assignments at level r 6 1. Note that this last expression corresponds to the contribution of
j0 to the right-hand-side of (22), which only affects the first and the second term.

Take now j0 ∈ NF ∩ O(S). In this case, the probability that j0 is operative is 1. For
this reason, the weight of λj01 in A is just q. Now, the probability of one scenario where one
particular facility fails and all the others are operative is still q(1− q)t−1, but the probability
of any scenario where more than one facility fails is q −

(
1− (1− q)t−1

)
Following the same reasoning as before, now we have:

Aj0 =
∑
k∈F

λj01q(1− q)t−1 + λj01q
(
1− (1− q)t−1

)
>
∑
k∈F

εj0kq(1− q)t−1 + λj01q
(
1− (1− q)t−1

)
.

(24)
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Again, this last expression bounds the contribution of assignments at level r = 1 to j0, and
equals the part of the right-hand side of (22) corresponding to j0, which now only affects the
first and the third term.

�

To illustrate this bound, let us take once more Example 2 (see Figure 3) and the solution
with Y1A0 = Y2A0 = Y3A1 = 1, Y3B0 = Y1B1 = Y2B1 = Y4B1 = Y5B1 = 1, Y4C0 = Y5C0 =
Y3C2 = 1. Recall that in this solution the only facility where overload occurs is B, and the
total expected overload is E(X,Y ) = 2(1− q)q2.

Since all three facilities A,B,C ∈ F , in this solution t = 3. As it happened with E1, for
this solution, the only nonzero capacity slacks are νA1 = 1, νB1 = 2, νC1 = 1, νC2 = 1 and
the only nonzero overload is λB1 = 2. However, if only facility A fails, on top of its 0-level
assignments, B receives the demand of customers 1 and 2, so that εBA = (2− 2)+ = 0. In a
similar way, εCA = 0. For j 6= B it is straightforward to see that εjk = 0 for any k. Thus, the
value of E2 for this solution is E2(X,Y ) = 0q(1− q)2 + 0q(1− q)2 + 2q(1− q)

(
1− (1− q)1

)
=

2q2(1− q) = E(X,Y ) < E1(X,Y ).
Bounding E2(X,Y ) as it was done for E1(X,Y ) with constraints (16)-(20) involves an

extra complexity, since for computing this new bound the number of open failing facilities
t, is required. This might be done using a discretized formulation. For simplicity, here we
only present the constraints that would be required to do so if NF = {u} and a cardinality
constraint on the set of open facilities was imposed:

The computation of λ and ν variables is equal to the case of bound E1. Therefore,
constraints (16)-(19) and (20) are again required. Additionally, to limit the value of E2, the
following constraints are also needed

∑
j∈J\{u}

Xj = t (25)

Dijk > hiYij1 − hiM(1− Yik0) i ∈ I, j ∈ J (26)

εjk >
∑
i∈I

Dijk − νj1 ∀j ∈ J, k ∈ F (27)∑
j∈J

∑
k∈F

q(1− q)t−1εjk +
∑
j∈F

q(1− (1− q)t−2)(1− q)λj1

+
∑
j∈NF

q(1− (1− q)t−1)λj1 +
∑
r>1

∑
j∈F

qr(1− q)λjr +
∑
j∈NF

qrλjr

 6 V (28)

Dijk, εjk > 0 i ∈ I, j ∈ J, k ∈ F.
(29)

In what follows, we will refer to the resulting formulation as CRFLP-B2(V , t) where B2
stands for bound of Type 2. Here, variables Dijk take the value of the demand hi only for
customers whose 0-level assignment is to k, and whose 1-level assignment is j. For all other
customers, i, Dijk = 0. This variable is used to compute the value of εjk in constraint (27).
Finally, constraint (28) imposes a limit on the value of E2 and (29) set the domains of the
new variables.
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Note that, even this simplification of the model, where the number of failing facilities to
open is fixed, the computational burden associated with limiting bound E2 is rather large.
Indeed, a large number of variables and constraints need to be added to the formulations.
Therefore, the general case where this limit is not imposed, which would require using several
replicas of some of the variables, is left out of the scope of this work.

Furthermore, the idea of splitting the customers assigned to a facility at a certain level
according to their previous assignments pattern might be extended to levels r > 1. However,
we believe that the complexity that this would involve would make this approach impracticable
in realistic size instances.

The two last proposals limit the value of an upper bound on E(X,Y ) to avoid expected
overload overflows. This is quite a conservative strategy, specially if the used bound can be
rather loose in some cases, as it happens with E1(X,Y ). Indeed, in this work, limiting the
expected overload is only considered as a means of keeping possible overloads under control.
Therefore, the imposed limits V are quite subjective and, in general, they do not correspond
to a physical limitation. For this reason, we next propose to use an approximation of E(X,Y )
that, without being an upper bound, gives a closer estimate of its real value, yielding a less
conservative model.

3.3 A linear estimate of the expected overload

In order to obtain a linear estimate of the expected overload, we propose here to fit a linear
regression model using the data obtained on a large set of randomly generated instances. For
each of these instances, we obtained several solutions, using all the formulations presented
in this work with different parameter settings and, for each solution, we computed the cor-
responding expected overload together with a series of solution characteristics, λ•1, . . . , λ•4,
that can be linearly computed as:

λ•r =
∑
j∈J

λjr (30)

We also computed the average values

λ•r = λ•r/
∑

j∈J\{u}

Xj .

After analyzing different model proposals, the linear approximation that yielded the best
fit (R2 = 0.9748) was

Ê(X,Y ) = 2.67827qλ•1 + 1.66348q2λ•2 + 1.92325q3λ•3 + 4.43350q4λ•4 (31)

The details on the used instances and the model validation are gathered in Appendix A.
Therefore, the fourth model we propose in this work, that from now on will be referred

to as CRFLP-LR(V ) (LR stands for Linear Regression) can be formulated by adding to
formulation QRFLP constraints (16)-(18) and (20) to set the right values to the λjr variables,
together with:

λ•r =
∑
j∈J

λjr r ∈ {1, . . . , 4} (32)
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2.67827qλ•1 + 1.66348q2λ•2 + 1.92325q3λ•3 + 4.43350q4λ•4 6 V
∑

j∈J\{u}

Xj (33)

Note that the complexity of this formulation is similar to that of formulation CRFLP-B1
since, basically, here the upper bound E1 is replaced by Ê, but their computation is pretty
similar. However, we expect to obtain different solutions by solving either model, since in
the first case the bound can be quite loose, so that overloads will be heavily constrained,
while in the second one, where only an approximation is used, the limit V established in the
formulation might be even exceeded in a solution, but, in general, the estimate and the real
value of the expected excess should be much closer to each other. Therefore, in this second
case, the choice of the value of the limit V is much more meaningful.

3.4 Using staggered capacities

All the models proposed previously are rather involved. This is partly due to the need of
adding several extra variables to estimate or bound the expected overloads associated with a
given solution. In fact, by constraining any of these bounds and estimates, we obtain solutions
where the overall amount of demand assigned to a given facility is small enough. Indeed, this
overall demand is computed by weighting the assigned demands by smaller factors as the
assignment level r increases, to account for the smaller probability that those assignments
eventually yield an actual service request.

Intuitively, this can be interpreted as the possibility of assigning a facility amounts of
demand larger than its capacity, as long as those assignments are made at high assignment
levels. The rationale behind the last model we propose in this section is to use this idea to
build auxiliary capacities for the facilities to bound the total amount of demand assigned to
them up to a given level r. According to the ideas presented so far, these capacities should
increase with r. Therefore, we propose to scale capacities Qj with different powers of a scale
factor β > 1 and replace constraints (6) with the following set:

r∑
s=0

∑
i∈I

hiYijs 6 β
rQj j ∈ J, r > 1 (34)

The formulation obtained by doing so will be denoted CRFLP-S(β) where S indicates Stag-
gered.

CRFLP-S(β) is simpler to state than the three previously proposed models. Nonetheless,
we expect that by suitably choosing the scale factor β it can provide high quality solutions
as well.

In the next section we compare the performance of the four proposed models with different
parameter settings, and analyze the solutions they provide.

4 Computational experiments

In this section we present the results obtained from the computational experience. We have
generated several instances from the capacitated p-median instances available at the OR-
LIBRARY (Beasley [1990]). In particular, we have generated a total of 400 CRFLP instances,
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divided in three different sets, based on some of the original p-median instances. The char-
acteristics of the set of instances are given in Table 1. In all cases, the first locations of the
original p-median instance have been taken to act both, as customers and as potential facility
locations, and the following ones are taken exclusively as potential facility locations. Also, in
the objective function (1), a weighting factor α = 0.5 has been used and the outsourcing cost
has been fixed to ρ = 400. In Table 1, column under heading ] gives the number of instances
of each group, and the following columns give the number of customers, the number of failing
and non-failing facilities (excluding the dummy one) and the failure probability q. Regarding
the facility set-up costs, we only considered two different costs in each instance; fF for each
of the facilities in F , and fNF for those in NF (except for the dummy one). In the instance
groups where several values appear for the same characteristic, all possible combinations have
been used.

] Customers |F| |NF |(∗) q fF (×1000) fNF /fF
S20 50 a 180 20 50 0 0.05, 0.10, 0.20 1, 2, 3 1, 2
S20 50 b 180 20 35 15 0.05, 0.10, 0.20 1, 2, 3 1, 2
S50 50 a 10 50 50 0 0.05 2 2
S50 50 b 10 50 35 15 0.05 2 2
S50 75 a 10 50 75 0 0.05 2 2
S50 75 b 10 50 45 30 0.05 2 2

(∗): excluding dummy

Table 1: Generated instances

Our experiments were conducted on a PC with a 2.33 GHz Intel Xeon dual core processor,
8.5 GB of RAM, and operating system LINUX Debian 4.0. We use the optimization engine
CPLEX v11.0.

We next compare the performance of the different models we have proposed for deal-
ing with facility capacities. Namely, we compare the basic model, QRFLP with CRFLP-
LEL(V ,γ), CRFLP-B1(V ), CRFLP-LR(V ) and CRFLP-S(β). Additionally, we have consid-
ered different parameter values for each model to evaluate their impact on the solution, as
can be seen in Tables 2-6. We do not give comparisons with CRFLP-B2(V , t) since it is the
only model where the number of open plants is fixed beforehand. Moreover, in the case of
model CRFLP-B1(V ) we have replaced (19) with∑

j∈F

∑
r≤`

qr(1− q)λjr +
∑
j∈NF

∑
r≤`

qrλjr ≤ V, (35)

which only accounts for assignments up to a fixed level (` = 4 in our experiments) to ap-
proximate the upper bound E1(X,Y ) of the total expected overload. This was done this way
since using inequality (19) is highly time consuming and this truncation varies very slightly
the estimate of the expected overload as we prove in Appendix B.

The following tables show the averages over the corresponding sets of instances of five
measures of the solution: v∗ stands for the optimal value, E(X,Y ) stands for the value of
the expected overload (14) in the optimal solution, P(overload) represents the probability
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of having overload computed as the sum of the probabilities of all the scenarios with some
positive overload, Dummy represents the expected demand at the dummy facility, i.e., the sum
of the demands that the dummy facility receives over all the possible scenarios weighted by
the probability of the scenario. Finally, Time is the time in seconds for solving the problem.

v∗ E(X,Y ) P(overload) Dummy Time
QRFLP 8997.20 5.19 0.07 0.26 7.75
CRFLP-LEL(0,|J |) 9019.43 4.99 0.07 0.32 29.63
CRFLP-LEL(1,|J |) 9010.38 5.13 0.07 0.30 11.94
CRFLP-LEL(2,|J |) 9004.69 5.17 0.07 0.27 10.88
CRFLP-LEL(∞,1) 8997.20 5.19 0.07 0.26 7.54
CRFLP-LEL(∞,2) 8997.20 5.19 0.07 0.26 7.45
CRFLP-B1(3) 9378.19 1.64 0.06 1.92 30.20
CRFLP-B1(6) 9143.23 3.90 0.07 0.94 32.33
CRFLP-LR(3) 9287.02 2.53 0.07 1.68 31.71
CRFLP-LR(6) 9051.44 4.65 0.07 0.56 17.82
CRFLP-S(1.1) 9536.01 0.46 0.04 2.39 59.41
CRFLP-S(1.2) 9417.45 1.03 0.05 1.87 42.17
CRFLP-S(1.3) 9327.98 1.75 0.06 1.52 39.59

Table 2: Average values for S20 50 instances with q = 0.05

In Tables 2-5 we report the results on the set of smaller instances for failure probabilities
q = 0.05, q = 0.10, and q = 0.20, respectively. Results in Table 6 refer to the medium-size
instances; in this case, we considered q = 0.05. Column Solved in Tables 6 and 7 refers to
the number of solved instances among the 20 considered within the time limit which is set
to 3600 seconds. Note that results regarding instances with and without non-failing facilities
have been aggregated in all cases except in the smaller instances with q = 0.1 (Tables 3 and
4) since the same behavior was consistently observed.

v∗ E(X,Y ) P(overload) Dummy Time
QRFLP 9355.96 10.26 0.15 1.22 5.05
CRFLP-LEL(0,|J |) 9444.94 8.84 0.14 1.31 163.68
CRFLP-LEL(1,|J |) 9436.18 8.92 0.15 1.27 128.17
CRFLP-LEL(2,|J |) 9429.87 9.07 0.15 1.24 69.22
CRFLP-LEL(∞,1) 9355.96 10.26 0.15 1.22 5.38
CRFLP-LEL(∞,2) 9355.96 10.26 0.15 1.22 5.25
CRFLP-B1(3) 10294.36 1.49 0.07 3.02 112.30
CRFLP-B1(6) 9879.32 3.96 0.12 1.82 84.77
CRFLP-LR(3) 10172.13 2.20 0.09 2.56 403.62
CRFLP-LR(6) 9849.81 4.30 0.12 1.75 72.72
CRFLP-S(1.1) 110349.16 0.81 0.07 3.52 315.23
CRFLP-S(1.2) 10040.49 2.14 0.10 2.29 123.55
CRFLP-S(1.3) 9863.07 3.41 0.11 1.70 82.10

Table 3: Average values for S20 50 a instances with q = 0.1
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v∗ E(X,Y ) P(overload) Dummy Time
QRFLP 9187.60 7.18 0.10 0.61 8.78
CRFLP-LEL(0,|J |) 9243.07 6.03 0.10 0.65 88.80
CRFLP-LEL(1,|J |) 9236.05 6.23 0.10 0.67 90.63
CRFLP-LEL(2,|J |) 9230.16 6.31 0.10 0.64 78.32
CRFLP-LEL(∞,1) 9187.60 7.18 0.10 0.61 9.23
CRFLP-LEL(∞,2) 9187.60 7.18 0.10 0.61 9.28
CRFLP-B1(3) 9690.77 0.90 0.05 1.54 48.52
CRFLP-B1(6) 9473.40 2.47 0.07 0.91 43.72
CRFLP-LR(3) 9625.14 1.27 0.05 1.28 84.72
CRFLP-LR(6) 9455.83 3.31 0.08 0.96 38.28
CRFLP-S(1.1) 19727.21 0.50 0.04 1.82 168.18
CRFLP-S(1.2) 9565.06 1.22 0.06 1.19 55.93
CRFLP-S(1.3) 9472.12 1.85 0.06 0.86 43.42

Table 4: Average values for S20 50 b instances with q = 0.1

First of all, from the comparison of the results in Tables 3 and 4 we can see that the
possibility of including in the system fully reliable facilities allows to reduce the overloads in
all cases, both, in terms of its expected value, and of the probability that they occur, at the
same time that it allows to reduce the outsourced demand (assigned to the dummy facility).
In terms of computational burden, with the only exception of the basic model QRFLP, where
the only scenario where capacities arise is the one with no failures, solving problem instances
with fully reliable facilities results in smaller computation times. We further analyzed the
results used to build these tables and, in the case of the instances in Table 4, the number of
opened facilities in the optimal solution ranges between 2 and 6 and, among them, between
0 and 4 belong to NF , therefore, it becomes clear that, depending on the cost structure, and
on the tightness of capacity constraints, it might pay or not to open facilities in NF . As for
the total solution costs, we believe that the smaller costs observed in S20 50 b instances are
strongly related with the cost structure of the generated instances.

Analyzing Tables 2-5, we can see that QRFLP obviously yields the cheapest solutions and
the ones with larger overloads and overload probabilities. Also, the demand received at the
dummy facility is smaller in QRFLP solutions for small failure probabilities (q = 0.05 and
q = 0.1) although it takes intermediate values when q = 0.2. QRFLP is also nearly always the
one which requires the least computational time (except for q = 0.05 where some CRFLP-LEL
variants are solved slightly faster). Thus, reducing the overloads as done by the other models
increases both, the solution costs and the computational burden. According to Tables 2-5
model CRFLP-S(1.1) is the one yielding the smallest overloads and overload probabilities and
in contrast it is the one with largest solution costs and larger demands for the dummy facility:
model CRFLP-S(1.1) strongly forces the reduction of overloads in exchange of losing clients
and increasing the investment. Models CRFLP-B1(3) and CRFLP-LR(3) are also effective for
reducing the expected overload and the overload probability as compared with QRFLP and
they lose less clients. For each block of rows in Tables 2-5, form top to bottom the parameters
go from stricter to more relaxed: for CRFLP-LEL(V,|J |) which represents the situation in
which all the facilities in the system may receive demands whose expected value exceeds their
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v∗ E(X,Y ) P(overload) Dummy Time
QRFLP 9995.34 12.73 0.21 2.44 7.25
CRFLP-LEL(0,|J |) 10066.36 8.63 0.17 1.58 68.19
CRFLP-LEL(1,|J |) 10064.61 8.69 0.18 1.58 71.06
CRFLP-LEL(2,|J |) 10063.03 8.71 0.18 1.58 83.51
CRFLP-LEL(∞,1) 9995.34 12.72 0.21 2.44 7.49
CRFLP-LEL(∞,2) 9995.34 12.72 0.21 2.44 7.43
CRFLP-B1(3) 10975.59 1.27 0.05 2.63 236.17
CRFLP-B1(6) 10512.67 4.60 0.12 1.62 954.25
CRFLP-LR(3) 10636.21 3.48 0.09 1.16 744.68
CRFLP-LR(6) 10503.05 4.49 0.11 1.55 944.17
CRFLP-S(1.1) 10879.70 1.30 0.07 3.38 1252.76
CRFLP-S(1.2) 10451.35 3.68 0.14 2.29 344.71
CRFLP-S(1.3) 10215.46 5.76 0.15 1.41 49.83

Table 5: Average values for S20 50 instances with q = 0.20

capacities, V = 0 is the situation in which no facility can receive any excess, V = 1 the
situation in which each facility can receive an overload of at most one unit, and V = 2 for
two units; for CRFLP-LEL(∞, γ) which represents the situation in which exactly γ facilities
can receive demands whose expected value may exceed their capacities by any quantity, the
option γ = 2 only allows to freely allocate to two facilities and the option γ = 3 allows to
freely allocate to three facilities.

Models CRFLP-B1(3) and CRFLP-B1(6) impose that the upper bound of the expected
overload is smaller than 3 and 6, respectively while models CRFLP-LR(3) and CRFLP-LR(6)
limit to the same values the linear estimate of this overload. Model CRFLP-S(1.1) is also
more exigent than CRFLP-S(1.2) which, in turn, is more restrictive than CRFLP-S(1.3). So,
at each block when reading the values from top to bottom, optimal values decrease, expected
overloads and overload probabilities increase and dummy demands decrease. Considering
the most permissive options of each block (CRFLP-LEL(2,|J |), CRFLP-LEL(∞,2) CRFLP-
B1(6), CRFLP-LR(6) and CRFLP-S(1.3)), the options CRFLP-LEL(2,|J |) and CRFLP-
LEL(∞,2) only reduce the overload of QRFLP slightly. Comparing CRFLP-B1 with CRFLP-
LR both, with V = 3 and V = 6, model CRFLP-LR(V) proves to take advantage of the
goodness of fit of our estimate of the expected overloads; actual expected overloads seldom
exceed the requirements (only in the case with larger demand probability we observe 3.48>3)
and they are much closer to the requirements than they are with model CRFLP-B1(V): the
expected overloads with CRFLP-B1(3) are always smaller than the expected overloads with
CRFLP-LR(3) and the same happens with CRFLP-B1(6) and CRFLP-LR(6). This is consis-
tent with the design of the models; recall that CRFLP-B1 limits de value of an upper bound
of the expected overload, while what is limited in the case of CRFLP-LR is a linear approx-
imation of this expected overload, which can be either an underestimate or an overestimate.
This should be taken into accout by decision makers before setting the value of V in either
model.

In terms of computational time all the models perform quite well: when q = 0.05 or q = 0.1
nearly all the instances require less than four minutes. Even when q = 0.2 computational times

21



for models CRFLP-B1(V), CRFLP-LR(V) and CRFLP-S(β), although being larger, are still
affordable. Finally, it can be seen in Tables 2-5 that when q increases all the measures taken
into account change, but not uniformly. Of course, the optimal value increases uniformly with
the value of q but this does not hold for the expected overload, the overload probability, the
dummy demand or the computational time. In most cases the expected overload, the overload
probability and the dummy demand increase with q and in half of the cases the increase in q
implies an increase in computational time. Summarizing, if we consider only the above results
we shall advice the use of CRFLP-LR(V) or CRFLP-S(β) depending on the importance we
give to each measure.

Figure 4: Relative cost increase vs. relative expected overload reduction

In order to learn more about the four different models and the sensitivity to their parameter
values, among the five measures in Tables 2-5 we further analyze the optimal value and the
expected overload. To this end, in Figure 4, we plot one point for each of the smaller 360
instances as follows. For each obtained solution we have computed the ratio between its value
and the optimal QRFLP value for the same instance, and the ratio between its expected
overload, and the expected overload of the optimal QRFLP solution. The figure shows the
expected overload’s ratio against the optimal value’s ratio. For each of the four models
CRFLP-LEL(V,γ), CRFLP-B1(V), CRFLP-LR(V) and CRFLP-S(β) we have considered the
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same parameters as in Tables 2-5 except CRFLP-LEL(∞,2) because all the corresponding
points overlap those of CRFLP-LEL(∞,1) and most of them coincide at point (100,100).
Point (100, 100) represents an instance for which the new model obtains the same expected
overload as QRFLP at the same cost, i.e., for that instance, either the new model does not
contribute to our goal, or the capacity is not binding. Points to the left of the vertical straight
line at 100 correspond to instances where we reduced the overload, and their ordinate indicates
the relative cost of doing so. Points to the right of the vertical straight line in 100 represent
instances for which although some constraint aiming at reducing the overload was imposed,
it has increased, possibly because we have not allowed enough margin. Points on the vertical
axis represent situations in which we have totally reduced the expected overload; the closer
they are to the intersection of the axis, the the smaller is the cost increase of the new solution
with respect to the QRFLP solution. Points on the horizontal axis represent instances with
no increase in the optimal value. Ideally, one would like to have points near the intersection
of the axes, which represent high reduction of the expected overload and small cost increase.
Considering the different symbols for the different parameters we observe that, as expected, as
we become more strict, the points tend to move closer to the vertical axis. The cloud of points
for model CRFLP-LEL(V,γ) lies below 110% of cost, but it is not close to the intersection of
the axes. The cloud of points for models CRFLP-B1(V) and CRFLP-S(β) are quite similar
and promising because they try to concentrate in the intersection of the axes. The cloud
of points for model CRFLP-LR(V) is much more structured because all points concentrate
on few locations and they always show an overload ratio below 30% and cost ratio below
120%. Thus, model CRFLP-LR(V) performs homogenously and is consistently successful in
reducing the expected overloads. This illustrates the goodness of the approximation used for
the expected overloads. The information in these graphs evidences the superiority of CRFLP-
LR(V), which successfully achieves the goal of the additional constraints. Furthermore, the
required parameter V has a direct interpretation.

In Table 6 we report the results for the medium-size instances. Here we can observe the
same behavior as in Tables 2-5, but more exaggerate. Again, QRFLP yields the cheapest
solutions, which have the largest expected overloads and overload probabilities. Moreover, it
again gives intermediate values of demand allocated to the dummy facility and of CPU times.
Model CRFLP-S(1.1) is the one with smaller expected overloads and overload probabilities
and, consequently, it is again the one with the largest solution values which are once more
related to large demands for the dummy facility. Models CRFLP-LEL(2,|J |) and CRFLP-
LEL(∞,2) reduce only slightly the expected overload of QRFLP. Comparing CRFLP-B1(3)
with CRFLP-LR(3) (analogously CRFLP-B1(6) with CRFLP-LR(6)) model CRFLP-LR(V)
seems to use a more accurate estimate of E(X,Y ), since the deviations of this expected
overload from the limit set in the model are much smaller in this case ( |3− 2.33| > |3− 3.31|
and |6− 4.71| > |6− 6.41|). Apparently, model CRFLP-S(1.3) tends to give better solutions
than CRFLP-LR(6) since, on the average, solution costs are smaller as well as expected
overloads and demand allocated to the dummy facility, while the overload probability is
almost the same. However, if we become more restrictive the small advantage of the solution
costs obtained with CRFLP-S(1.2) with respect to those obtained with CRFLP-LR(3), comes
along with an increase of both, the expected overload and the overload probability. As for
the CPU requirements, model CRFLP-S is much more demanding than the rest, followed by
CRFLP-LR which, surprisingly, is much more expensive than CRFLP-B1. Summarizing, if
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v∗ E(X,Y ) P(overload) Dummy Time Solved
QRFLP 17955.67 22.06 0.23 0.00 719.03 18
CRFLP-LEL(0,|J |) 18024.36 19.35 0.23 0.00 800.75 19
CRFLP-LEL(1,|J |) 18015.69 19.43 0.23 0.00 751.15 20
CRFLP-LEL(2,|J |) 18009.50 19.54 0.23 0.00 728.45 20
CRFLP-LEL(∞,1) 17955.67 22.00 0.23 0.00 716.95 18
CRFLP-LEL(∞,2) 17955.67 22.00 0.23 0.00 703.05 18
CRFLP-B1(3) 21428.69 2.33 0.15 16.37 187.00 20
CRFLP-B1(6) 20870.85 4.71 0.19 13.37 215.00 20
CRFLP-LR(3) 21198.76 3.31 0.16 15.12 1152.60 18
CRFLP-LR(6) 20449.32 6.41 0.21 11.07 1188.75 16
CRFLP-S(1.1) 21357.77 1.75 0.15 14.66 2514.90 10
CRFLP-S(1.2) 20682.61 3.40 0.20 8.97 2554.80 11
CRFLP-S(1.3) 20016.06 5.07 0.22 3.75 3600.00 0

Table 6: Average values for S50 50 instances with q = 0.05

computational time is not an issue, model CRFLP-S may be used to obtain good solutions
both in terms of cost and capacity utilization. However, in general, CRFLP-LR gives the best
compromise between computational effort and solution quality.

In order to have an idea of how the previous conclusions extend to larger instances, we have
chosen one parameter for each of the three best performing models (CRFLP-B1(3),CRFLP-
LR(3) and CRFLP-S(1.2)) and compared their behavior on the set of larger instances. The
obtained results are summarized in Table 7

v∗ E(X,Y ) P(overload) Dummy Time Solved
CRFLP-B1(3) 11090.57 1.32 0.10 2.44 1412.03 19
CRFLP-LR(3) 10885.10 2.57 0.12 1.91 1337.10 17
CRFLP-S(1.2) 10737.63 2.35 0.13 2.09 1287.10 17

Table 7: Average values for S50 75 instances with q = 0.05

According to the results obtained with this last set of instances, the large differences in
computation time observed for the small instances tend to become smaller. Indeed, CRFLP-
B1 now takes larger times than the other two methods, while it was the least demanding
one for smaller instances. As for the obtained solutions, again, when the same parameter is
used CRFLP-LR becomes less demanding than CRFLP-B1, and the staggered model obtains
comparable solutions.

In general all the proposed models, except, maybe, for CRFLP-LEL, are quite effective at
reducing expected overloads and overload probabilities. Finally, to illustrate how the overload
distribution varies in different solutions, in Figure 5 we have represented the distribution func-
tion of the overload for the optimal solution of the fourth instance in S50 50 b corresponding
to models QRFLP and CRFLP-LR(6). The solution of QRFLP has an overload probability
equal to 0.23 and an expected overload equal to 19.62 while the solution of CRFLP-LR(6)
has larger overload probability 0.26 and smaller expected overload 5.40. Light grey bars cor-
respond to the solution of QRFLP and dark grey bars to the solution of CRFLP-LR(6). We
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Figure 5: Probability distribution of the “overload” random variable in two different solutions

have not drawn the bar for overload equal to zero because it has a huge probability with
respect the others. We observe that the mode for CRFLP-LR(6) is 25 while it is 85 for the
QRFLP. Likewise, the interquartile range for CRFLP-LR(6) is on the left of the interquar-
tile range for QRFLP. If we also draw the overload probability distribution for CRFLP-LEL,
CRFLP-B1 or CRFLP-S they are similar to the light gray one. So, Figure 5 illustrates how
the optimal solution changes, in terms of overloads when we impose the kind of constraints
that we have introduced in this paper.

5 Conclusions

In this paper we have proposed and analyzed four alternative models for including capac-
ity constraints in the reliable facility location problem, namely CRFLP-LEL, CRFLP-B1,
CRFLP-LR and CRFLP-S. The proposed models are obtained following different rationales,
although they all pursue the same goal: to minimize the solution costs while keeping facility
capacity overloads and the probabilities that they occur small.

RFLP-LEL focuses on the expected value of the demands allocated to each facility and,
depending on the used parameters, allows these expected values to exceed the capacity by a
limited amount, on a limited number of facilities. In contrast, the intention in both, CRFLP-
B1 and CRFLP-LR is to limit the expected overload value. Since this expected overload
is highly nonlinear on the decision variables, they use two different linear estimates of its
value; CRFLP-B1 uses an estimate which we proved to be an upper bound, and CRFLP-LR
uses a linear approximation found by using linear regression. Finally, CRFLP-S is based
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on a completely different idea, and simply uses auxiliary capacities that become larger as
higher assignment levels are considered, accounting for the smaller probabilities that these
assignments yield actual service requests.

In a series of computational experiments we have analyzed the evolution of the solutions
obtained with the different models and using different parameters, and compared them with
the solution of the problem with capacity constraints only for the scenario where no facility
fails. We have shown that, in many cases, it is possible to obtain relevant reductions of the
expected overloads without incurring dramatic cost increases, which in our opinion, is a strong
motivation to use these models. Regarding the comparison of the models, CRFLP-LR and
CRFLP-S have provided the most promising results. On the one hand, CRFLP-LR uses quite
an accurate estimate of the expected overload and, therefore, when the corresponding capacity
constraints are binding, the actual expected overloads are quite close to the imposed limits,
so that the imposed limits have a direct interpretation. In contrast, the more demanding
model, CRFLP-B1, uses an upper bound that in some occasions is rather loose, forbidding
thus solutions that might be indeed interesting for the decision maker. On the other hand,
CRFLP-S yields solutions with similar expected overloads to those obtained with CRFLP-B1,
but associated with solutions with slightly smaller costs. Unfortunately, this model becomes
computationally expensive as the number of customers increases. Therefore, CRFLP-LR can
be regarded as being superior to the others in terms of usability: it obtains high quality
solutions with affordable computational times.

We consider to develop heuristic methods for solving larger instances as a future research
line. Additionally, since the idea of controlling the expected overloads has provided very
interesting solutions in this case, we also plan to extend this idea to other reliability location
models.
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Appendix A

Validation of the regression model used in CRFLP-LR

For estimating the coefficients of the regression model we have used the first 5 instances with 50
nodes in the OR-LIBRARY. We have taken the number of non-failing facilities |NF | ranging in
{1, 11, 21}, the fixed cost of failing facilities fF in {500, 1500, 2500} and the fixed cost of non-
failing facilities in {fF , 2fF , 3fF }. We have also considered different failure probabilities, q ∈
{0.05, 0.15, 0.25, 0.35, 0.45}, and we have set α = 0.5. For these combinations of parameters
we have registered the values of λ•1, . . . , λ•4 for the optimal solutions of models CRFLP-
LEL((V, γ) = {(0, |J |), (3, |J |), (6, |J |), (2, 1), (2, 3)}), CRFLP-B1(V = {0.5, 1}) and CRFLP-
S(β = {1.1, 1.3}). Note that we have used here parameters different from those used in the
computational experiments to check the behavior of the model obtained in this learning phase,
on different problem instances.

We have adjusted with the statistical R-Project1 the model:

Ê(X,Y ) = β1qλ•1 + β1q
2λ•2 + β3q

3λ•3 + β4q
4λ•4. (36)

The obtained output is shown in Figure 6. Additionally to the estimated coefficient values,

Figure 6: R output

it illustrates the validity of the model with R2 = 0.9748 and tiny p-values.
The residual plots required to validate the model are shown in Figure 7. All of them corrob-
orate the adequacy of the model.

Apart from the traditional analysis of residuals, we also analyzed the quality of the estimate
provided by this model in the instances used in Section 4 which, as mentioned above, are
different from the set of instances used to collect the data and fit the model. To this end,
we have counted the number of instances in which the estimate of the expected overload has
exceeded the actual expected overload over the 120 instances in Tables 2-5 and over the 20
instances in Table 6. The results of the count are given in Tables 8 and 9 respectively: for
the instances with 20 customers around 40%(= (293/720) ∗ 100) of times we overestimate the
expected overload, for the instances with 50 customers this percentage is 80%(= 32/40)∗100).

1https://www.r-project.org
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Figure 7: Residual plots

β = 3 β = 6 Total

q = 0.05 61/120 51/120 112/240

q = 0.10 20/120 32/120 52/240

q = 0.20 75/120 54/120 129/240

Total 156/360 137/360 293/720

Table 8: Count of overloads in 20 customers instances

β = 3 β = 6 Total

q = 0.05 16/20 16/20 32/40

Table 9: Count of overloads in 50 customers instances

Apparently these values are large, however Tables 10 and 11 show that the excess is small: on
average we exceed 0.61 units of 3 and 0.44 units of 6 when solving instances with 20 customers
and we exceed 0.41 units of 3 and 0.59 units of 6 when solving instances with 50 customers.

β = 3 β = 6 Total

q = 0.05 0.49 0.65 0.57

q = 0.10 0.11 0.41 0.26

q = 0.20 1.21 0.26 0.74

Total 0.61 0.44 0.52

Table 10: Average overload in case of overload for 20 customers

β = 3 β = 6 Total

q = 0.05 0.41 0.59 0.50

Table 11: Average overload in case of overload for 50 customers
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Appendix B

Truncation error in CRFLP-B1

In order to reduce the computational effort required for solving CRFLP-B1, we can simplify
this model by truncating (19) as in (35). This implies that in some cases where the expected
overload limit is reached we can make an error and have an actual expected overload above
the imposed limit by the amount:

E =
∑
j∈F

∑
r>`

qr(1− q)λjr +
∑
j∈NF

l∑
r>`

qrλjr (37)

which is bounded by:

E ≤
∑
r>`

∑
j∈J

λjrq
r ≤ ql−1

∑
i∈I

hi.

In our case, we took ` = 4 and we have
∑

i∈I hi 6 203 when |I| = 20. Thus, the maximal
potential error by truncation is smaller than 0.00127, 0.0203 and 0.3248, respectively, for the
values of q = 0.05, q = 0.10 and q = 0.20. In the other case, when we use |I| = 50 and
q = 0.05,

∑
i∈I hi 6 490 then the possible truncation error is bounded by 0.003 (Recall that,

in this case, we only considered q = 0.05).
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