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Abstract

Many applications in decision making under uncertainty and probabilistic risk assessment require the assessment of mul-

tiple, dependent uncertain quantities, so that in addition to marginal distributions, interdependence needs to be modelled

in order to properly understand the overall risk. Nevertheless, relevant historical data on dependence information are

often not available or simply too costly to obtain. In this case, the only sensible option is to elicit this uncertainty through

the use of expert judgements. In expert judgement studies, a structured approach to eliciting variables of interest is

desirable so that their assessment is methodologically robust. One of the key decisions during the elicitation process

is the form in which the uncertainties are elicited. This choice is subject to various, potentially conflicting, desiderata

related to e.g. modelling convenience, coherence between elicitation parameters and the model, combining judgements,

and the assessment burden for the experts. While extensive and systematic guidance to address these considerations

exists for single variable uncertainty elicitation, for higher dimensions very little such guidance is available. Therefore

this paper offers a systematic review of the current literature on eliciting dependence. The literature on the elicitation

of dependence parameters such as correlations is presented alongside commonly used dependence models and experience

from case studies. From this, guidance about the strategy for dependence assessment is given and gaps in the existing

research are identified to determine future directions for structured methods to elicit dependence.

Keywords: Risk Analysis, Uncertainty Modelling, Dependence Elicitation, Structured Expert Judgement, Dependence

Modelling

1. Introduction

In decision making under uncertainty it is vital that de-

pendencies between uncertain variables are appropriately

modelled, as otherwise the model may not be fit for pur-

pose. Dependent uncertainty may arise either directly be-5
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cause variables in the model are correlated, or indirectly

when an uncertainty analysis of model parameters is car-

ried out to explore model robustness. Both cases exhibit

complex interrelations and dependencies which need to be

considered if assumptions such as independence are not10

justifiable.

However, it is often not straightforward to either model

or quantify dependence. In particular whenever no rele-

vant historical data are available, the only sensible way to

achieve uncertainty quantification is through eliciting ex-15
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pert judgements. When performed rigorously, the elicited

quantities, often aggregated from multiple experts, offer

reliable information for model quantification. Neverthe-

less, there are several different broad approaches and many

choices to be made by the analyst, all of which can affect20

the elicitation burden for experts and ultimately also the

reliability of the outcome.

While research and reviews that offer guidance exist for

methods addressing the elicitation of univariate quanti-

ties (European Food and Safety Authority (EFSA), 2014;25

French, 2011; O’Hagan et al., 2006; Jenkinson, 2005; Ouchi

et al., 2004; Cooke, 1991), and while dependence modelling

is an active research area (Kurowicka & Cooke, 2006), lit-

tle guidance exists about the elicitation of dependencies.

The exceptions are Bayesian (Belief) nets (BNs), though30

also for these modelling and elicitation challenges remain,

as shown later. In fact, developing defensible elicitation

processes for multivariate quantities is still much under de-

velopment despite its fundamental importance for decision

as well as risk analysis (Smith & Von Winterfeldt, 2004;35

Moskowitz & Bunn, 1987). Some of the first studies that

elicit dependence are Cooke & Kraan (1996), Keeney &

von Winterfeldt (1991), Kunda & Nisbett (1986), Gokhale

& Press (1982) and Kadane et al. (1980). Since then more

ways for quantifying multivariate distributions and models40

through experts have been investigated, yet on the actual

elicitation only little discussion and guidance is available.

References that introduce some aspects are Daneshkhah &

Oakley (2010), citetKurowickaCooke2006, O’Hagan et al.

(2006) and Garthwaite et al. (2005). However, a complete45

and systematic way of comparing different dependence pa-

rameters as elicited quantities, and reflecting their use in

dependence models in the form of a literature review has

been non-existent so far. Therefore, research and applica-

tions of several dependence measures in models and their50

elicitation methods are presented. With a practical focus,

case studies are discussed whenever available. This paper

addresses elicitation processes for dependence information

and aims at providing understanding of their use in ap-

plications. It offers guidance on making robust choices55

about which summary of expert knowledge on multivari-

ate distributions should be elicited, and how they might be

used within a dependence modelling context, as these are

key decisions within the overall elicitation process. This is

achieved by outlining how much is understood about the60

complexity of approaches to dependence modelling and the

cognitive assessment burden for experts.

Throughout this paper we use the word “dependence” in

a general sense (in contrast to specific association mea-

sures) to refer to situations where there are multiple uncer-65

tain quantities and gaining information about one would

change uncertainty assessments for some others. More for-

mally, two unknown quantities X and Y , are independent

(for me) if I do not change my beliefs about X when given

information about Y . For higher dimensions I regard all70

quantities independent of one another if knowledge of one

group of variables does not change my belief about other

variables. Dependence is simply the absence of indepen-

dence. It is a property of an expert’s belief about the quan-

tities. This definition relates to Lad (1996) who reminds us75

that in a subjective probability context one expert’s (in-)

dependence assessment might not be shared with another

expert possessing a different state of knowledge.

The definition of dependence as we use it here relates di-

rectly to the scope of this review. A first comment on80

the scope is that the word “dependence” is used in many

ways within Operational Research (OR) and related fields,

and it is worth clarifying how its use here differs from its

meaning in other OR contexts. The underlying frame-

work adopted is that of subjective probability (as afore-85

mentioned), which plays a key role within expected util-

ity maximisation for decision making. Dependence then,

refers to the way we model and assess the probability

dependence structure required for such decision support

processes. We do not consider non-probabilistic represen-90

tations of uncertainty, nor do we consider approaches to
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represent dependence between criteria used to model the

preferences of the decision maker as discussed widely in

the multi-criteria decision analysis (MCDA) literature.

The foundations of subjective probability are drawn from95

a wide literature, in which Savage (1954) provides one of

the most sophisticated accounts. In this account, probabil-

ities can be assessed through preferences over lotteries, and

there are implied consistency rules for preferences which

can be empirically validated. It is well known that there is100

a distinction between normative and empirical validation,

so the degree to which researchers choose to be led by nor-

mative or empirical consistency has led to many different

approaches. For instance, Dubois et al. (2001) provide a

theoretical framework which attempts to tie these strands105

together in the context of possibility theory, and the im-

plications of this are discussed in detail by Cooke (2004).

The modelling of dependence between attributes in MCDA

is the subject of a wide literature, and as discussed above,

is outside the scope of this review. Facilitative approaches110

within multi-attribute utility theory provide a variety of

models, for which (whenever possible) problem structuring

is used to ensure preference independence (Von Winter-

feldt & Fasolo, 2009; Wallenius et al., 2008), while other

approaches have been inspired by issues such as assessing115

the range of preferences within a stakeholder group (Flari

et al., 2011; Neslo & Cooke, 2011), or trying to model pref-

erences based on a limited number of attributes or limited

resolution of attribute measurement. For the latter, in

particular interaction among criteria in complex systems120

and dependence of attributes is modelled. This is done for

instance to assess the aggregated importance of correlated

criteria or further investigate dependent attributes for pre-

dictive modelling. Common methods in the OR literature

are: non-additive aggregation models such as Choquet and125

Sugeno integrals (Angilella et al., 2004; Marichal, 2004;

Grabisch, 1996), Robust Ordinal Regression (Greco et al.,

2014; Figueira et al., 2009) and (Dominance-Based) Rough

Set Approaches which use decision rules in the form of if

[condition] then [consequent] (B laszczyński et al., 2007;130

Greco et al., 2004, 2001). Another interesting approach

in this regard is Abbas (2009) who constructs a multi-

attribute utility function through a copula, a dependence

model that is introduced later for modelling probabilistic

dependence. A frequently considered empirical area for135

MCDA-based approaches is financial portfolio optimisa-

tion (Ehrgott et al., 2004).

A last comment on the scope is that while we discuss

the cognitive complexity of assessing dependence in var-

ious ways, such as offered by Kruskal (1958), and insights140

from psychological studies are mentioned, corresponding

research streams for causal and association judgements

are not reviewed exhaustively. Normative and descriptive

models for causal reasoning or mental conceptualisation of

correlations, which origin is often attributed to Smedslund145

(1963), are found for instance in Mitchell et al. (2009),

Gredebäck et al. (2000), Beyth-Marom (1982) and Allan

(1980). An overview and introduction to these areas is

given in Hastie (2016) and Shanks (2004).

The paper is organised as follows. Section 2 discusses the150

extent to which findings from eliciting univariate quanti-

ties apply to the elicitation of multivariate ones in order

to provide the reader with an indication for the scope of

the overall topic. Section 3 introduces the modelling con-

text which shows how modelling and eliciting dependence155

are related. This offers an overall structure to the re-

search problem. Then, Section 4 discusses how elicitation

is approached for quantifying various dependence models.

Section 5 presents dependence parameters that are com-

monly elicited together with its implications for experts’160

assessment burden before Section 6 briefly reviews findings

on mathematical aggregation of dependence assessments.

Section 7 provides an overview of the empirical contribu-

tions in the literature based on which Section 8 formulates

directions for future research and concludes the paper. We165

refer to Appendix B (Supplementary material) whenever

a technical term needs a more detailed explanation, how-
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ever the original references should be considered for an

extended introduction.

2. Generalisations of Univariate Elicitation Pro-170

cesses for Eliciting Dependence

Structured processes for the elicitation of dependence

follow historically from findings made when eliciting uni-

variate quantities. In the early days of uncertainty mod-

elling, formal processes for eliciting univariate uncertain-175

ties, such as marginal probabilities, were developed to en-

sure a methodologically robust approach to parameter quan-

tification in the face of lacking relevant historical data.

From these, methods to elicit dependence followed given

the need of accounting for relationships between uncertain-180

ties. Cooke (2013) discusses the historical development of

expert judgement in uncertainty analysis and its achieve-

ments in more detail.

This development is not surprising as univariate quantities

are (typically) more intuitive to experts and their speci-185

fication is required (at least implicitly) prior to eliciting

dependent distributions for two or more uncertain quanti-

ties.

In this section we discuss some main foci of structured ex-

pert judgement studies and evaluate the extent to which190

findings for univariate quantities are generalisable in the

multivariate case. This discussion outlines where in a pro-

cess adjustments are necessary when eliciting multivariate

uncertainty and therefore provides an indication for the

scope of dependence elicitation. Given the overall focus195

of the paper, we outline only the relevant considerations

for the elicited dependence parameters and the aggrega-

tion of judgements. However, it should be noted that an

elicitation process is much more complex and other deci-

sions in it, such as how to design the statistical training200

for experts prior to an elicitation, might vary as well con-

siderably when eliciting multivariate uncertainty.

Already the earliest expert judgement studies for univari-

ate quantities have shown that assessment outcomes can

differ greatly depending on the use of directly or indi-205

rectly elicited query formats (Spetzler & Stael von Hol-

stein, 1975). As a result, an extensive literature on heuris-

tics and biases is available on the matter of framing elic-

itation questions and choosing a form for the query vari-

able. Further, recommendations are made on the theo-210

retical suitability of the elicited format, e.g. objections

are made to non-observable quantities (Kadane & Wolf-

son, 1998). For eliciting multivariate quantities on the

other hand, the same conclusions are not readily applica-

ble. As will be seen, the effect of direct and indirect elici-215

tation approaches is less well-understood and findings are

often conflicting. The objection to non-observable quan-

tities is less clear and indeed we show later that eliciting

non-observable quantities performs well in terms of empir-

ical accuracy and mathematical coherence. Similarly, for220

heuristics and biases only some extensions for the multi-

variate case exist, such as “illusory correlation” (Chapman

& Chapman, 1969), stemming from the availability bias,

and “confusion of the inverse”, originating with the rep-

resentativeness bias (O’Hagan et al., 2006) (for both see225

Appendix B). While these findings indicate an overlap for

the existence of common biases, a lack of empirical re-

search on the effect of framing for multivariate elicitation

does not allow for generalisable conclusions.

Once the dependence information has been elicited in the230

form of some dependence parameter (which is thoroughly

addressed in the following sections), a well-researched topic

for univariate uncertainty, which generalisation would be

desirable for multivariate elicitation, is the use of scoring

rules. Roughly, a scoring rule is a numerical evaluation of235

a probability assessment based on observations. In expert

judgement studies, they are typically used for two rea-

sons, first to present an incentive for truthful assessment

and second to measure the quality of an assessment after

the elicitation, usually to inform a weighted combination240

of the judgements. In other words, they are used to de-

fine desirable properties of the assessment itself and they
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serve as a reward structure when evaluating an assessment.

While an incentive is given by using (strictly) proper scor-

ing rules which ensure that experts achieve their maximal245

expected score if and only if stating their true belief, a

main property of measuring the quality of an assessment is

its calibration, i.e. the statistical accuracy after observing

an event of interest. Suppose an expert provides a prob-

ability distribution P over a set of n mutually exclusive250

events i. Then, after observing the events of interest, we

can construct the sample distribution S with S(i) equal

to the number of times that i is observed divided by n.

While it appears reasonable to state at first thought that

an expert is not well calibrated if S 6= P , this might be255

false if we suppose that true values represent independent

samples from a random variable with distribution P . In

this case, P relates to “reality”, but we will never have

S = P due to statistical fluctuations. Loosely, an expert

is therefore said to be well-calibrated if the true values of260

the uncertain quantities can be regarded as independent

samples of a random variable with distribution P (Cooke,

1991).

When evaluating experts’ performance, we have to distin-

guish between scoring rules for individual variables and265

scoring rules based on sets of assessments together with

sets of realisations. The first, assigning scores to each in-

dividual assessment and summing these scores over a set

of variables, is often suggested in the literature for the pur-

pose of rewarding, yet it is not a sensible approach. A main270

issue is that the resulting scores cannot be interpreted in

a meaningful way without knowing the number of quanti-

ties assessed and their overall sample distribution. This is

due to the possible additive decomposition of these types of

scores into a “calibration” and “resolution” term (DeGroot275

& Fienberg, 1983). Resolution measures how well experts

partition the variables into statistically distinct categories

while not considering whether the distributions assigned

to these categories correspond to the experts’ assessment.

This becomes problematic when high resolution overpow-280

ers low statistical accuracy. A more detailed presentation

of this drawback and some intuitive examples are given

in Cooke (2014, 1991). Therefore, scoring rules for aver-

age probabilities are highly encouraged for evaluating and

combining experts. While some main properties of scoring285

rules are applicable in the multivariate case, others cannot

be readily used.

Jose et al. (2009) discuss (for the univariate case) the in-

clusion of order information (requiring an ordered state

space). Ordered events allow for rewarding that takes ac-290

count of nearness to an event’s realisation. In the multi-

variate case the lack of natural ordering means that this

approach is not possible. Further, Jose et al. (2008) discuss

a wide class of scoring rules, called generalised divergence

scores, that allow for any baseline distribution (rather than295

a uniform by default), and which reward according to a

measure of distance between the assessed distribution and

the baseline distribution. Of interest for multivariate elic-

itation is the derivation of a weighted scoring rule that is

closely related to the Hellinger distance which is a mea-300

sure of divergence that has been used in the calibration of

experts’ multivariate assessments (Section 6).

3. Guide to Modelling and Elicitation Context

The main purpose of eliciting dependence is to quan-

tify a multivariate stochastic model when this cannot be305

done wholly by conventional statistical estimation (which,

in our view is a common situation). This section discusses

broad approaches to dependence modelling in order to pro-

vide a clear structure for the next sections by highlighting

the link between dependence modelling and expert judge-310

ment. Figure 1 shows this general view on the modelling

context with three different broad approaches to assess-

ing dependence and illustrates the relationships between

model input and output variables.

In this general context, S represents the vector of stochas-315

tic variables in the model, and T the vector of output
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R S Tb a

c

Figure 1: Schematic representation of modelling and elicitation con-

text

variables which depends deterministically on S. R repre-

sents another set of auxiliary variables used to evaluate

the uncertainty on S. The solid arrows show deterministic

relationships between the variables, and hence the direc-320

tion in which uncertainty can be propagated.

It is not uncommon for there to be dependence between

the output variables T . This can arise simply as a result of

the functional dependence represented in arrow a, even if

the stochastic variables in S are modelled as being stochas-325

tically independent. In many applications, however, it is

not appropriate to model the variables in S as indepen-

dent, and so we should find a way to model and assess

dependence in S.

330

Approach a. In Approach (a) we model the dependence

relations between the variables in S directly. The main

techniques are BNs, copulas, parametric families of multi-

variate distributions (e.g. the multivariate Gaussian dis-

tribution), and Bayes Linear methods. We provide exam-335

ples for each method in the next section. Having assessed

the dependence and hence having specified the distribu-

tion of the variables in S, uncertainty is then propagated

through the model (arrow a) to the output variable (or

variables) T . As we shall see later, direct assessment of340

dependence on the variables S is most predominant in the

literature. However, two other approaches are also impor-

tant and worth discussing.

Approach b. In Approach (b) we introduce a new set of345

auxiliary variables R, which are not directly part of the

model variables (though may in practice have some over-

lap with the variables S). The variables R are chosen so

that their uncertainty is easier to quantify – in particular

one might choose these variables so that they can be con-350

sidered stochastically independent, with the dependence in

the variables S arising as a result of the complex relation-

ship between the “explanatory” variables R and those in

S. This is shown in Figure 1 as arrow b. This approach is

of interest particularly when change of variables methods355

(frequently used in multivariate statistics) can be used to

simplify the variable set from S. A common model type

used in this context is a regression model and an example

of introducing and assessing auxiliary variables is given in

Section 4.2.360

Approach c. In Approach (c) we “calibrate” the uncertain-

ties on S through considering some set of output variables

T on which the uncertainties can be assessed. Obviously,

to be useful, this would have to be a different situation

than the one in which the overall model is to be used (see365

dashed node inside T ), as we would otherwise be simply di-

rectly assessing the uncertainty in the variables of interest.

This calibration of uncertainties relies on the backwards

propagation of uncertainty from T back to S, shown by

arrow c. The dotted arrow is used to indicate a key dif-370

ference with the solid arrows a and b. In general, more

than one distribution on S will forward-propagate to the

given distribution on T , that is, the inverse problem has no

unique solution (or even worse, it has no solution). Other

criteria (such as max entropy) are then used to select a375

unique inverse. That solution then defines a dependence

structure on S, which can be propagated back through

arrow a to look at other output contexts. This is called

Probabilistic Inversion (PI) (Kurowicka & Cooke, 2006;

Kraan & Bedford, 2005; Cooke, 1994) and we show an ex-380

ample in Section 4.3. This approach is of interest when

the dependence structure in S is difficult to determine di-

rectly, but must satisfy reasonable conditions on output
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variables that are easier to understand and hence easier to

quantify.385

A common theme in the latter two approaches is the model

boundary. In both cases we choose to extend the model

to include other input or output variables in addition to

those which are strictly necessary for direct modelling. In-

deed it may happen that the auxiliary variables represent390

simplifications of more complex issues which are insuffi-

ciently understood to be included explicitly in the model

but which are known to collectively impact the behaviour

of the system significantly. An example of this is the mod-

elling of common cause events in risk analysis (Bedford &395

Cooke, 2001) where the range of underlying causes is too

wide to be modelled individually, but which together have

a substantial effect in inducing dependencies in the overall

system behaviour.

We illustrate the dependence structures shown in Figure400

1 with the following simplified project risk management

example which shows how choices can be made in the var-

ious modelling contexts.

We are managing a project which has an overall cost (model

output variable T ). The cost is determined by individual405

activities with associated costs (variables in S) that are

of importance for the project completion. If we want to

model the stochastic dependence between activities in or-

der to obtain information about the overall cost, a first

option is to do so directly by specifying the dependencies410

directly between the cost elements. The dependence mod-

els used here are part of modelling context a.

If modelling the dependence between the individual activi-

ties directly does not produce a satisfactory model output,

we have the choice to include explanatory variables (R)415

that help us to understand the relationship better. For

instance, we can include factors like environmental uncer-

tainties if we belief that our project’s activity costs are

(partly) influenced by them. The techniques used here are

part of modelling context b. Recall that we are choosing420

to extend the model which relates to the earlier discussion

on the model boundary. The reason for modelling depen-

dency in this way is because it may be easier to consider

the impact of certain factors explicitly rather than implic-

itly when only using approach a.425

If the model output resulting from the inclusion of ad-

ditional factors is still not satisfactory, we might choose

to model some systemic impacts of the project. For in-

stance, factors like the availability of qualified staff might

be present and result in a subtle dependence relationship,430

leading to the distribution for the overall cost (the model

output variables T ) being incorrectly assessed. With meth-

ods used in c, we would have a separate assessment of the

distribution (or at least for features of this distribution)

for the overall cost which would lead to a changed model435

for the joint distribution of the activity costs (modelling

context a or b). We could also consider modelling a more

complex situation in which we manage several projects. In

this case, the overall cost becomes multivariate instead of

univariate (i.e. T becomes a vector of variables). Then,440

we can use methods (from c) that allow propagating our

uncertainty from one project about which we have infor-

mation backwards in order to make inference about the

distribution of the activities (S) and hence the distribu-

tion for overall costs (T ).445

The common objective is to find a good model for the

uncertainties relating S and T . Conceptually, we can only

ever specify part of the required information for this model,

so that in practice our model is always underspecified (though

this point is often not appreciated because modellers of-450

ten adopt low-dimensional parametric families of models

early on). Approaches b and c provide complementary ap-

proaches to specify further information about the model.

4. Dependence Models and Expert Judgement

Before presenting and reviewing dependence parame-455

ters as elicited quantities explicitly, in this section we first

discuss expert judgement for common dependence models.

This includes main challenges when using experts to quan-
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tify models as well as the applicability of elicited forms for

a satisfactory representation of the experts’ information in460

the model. We present the modelling aspects first given

that decisions here precede and strongly affect the choice of

which dependence parameter to elicit. In accordance with

the earlier framework (see Figure 1), BNs and copulas to-

gether with probabilistic and non-probabilistic parametric465

models are introduced for context (a), regression models

for (b) and Probabilistic Inversion for (c).

4.1. Elicitation for Direct Modelling

4.1.1. Bayesian (Belief) Networks

In (a), a common way of integrating high dimensional470

uncertainty in a probabilistic model is by specifying a

multivariate distribution for the random variables through

the product of marginal and conditional probabilities. A

common modelling framework is a BN (Darwiche, 2009;

Pearl, 2000). A random variable is described by a node475

in the graph while arcs represent the qualitative depen-

dence relationships amongst variables. The direct prede-

cessors/successors of a node are called parents/children,

and the BN is specified (for example) by determining for

every child node its conditional probability distribution480

given the states of its parent nodes. Hence, it is com-

posed of a directed acyclic graph with marginal distri-

butions for source nodes and conditional distributions for

child nodes given the parents. A simple example BN to be

used throughout this review is shown in Figure 2.485

X

Y1

Y2

Yk

Figure 2: Example Bayesian Network with one child and three inde-

pendent parents

When using expert judgement, French (2011) views

eliciting BNs as an obvious approach for obtaining depen-

dence information. However, while more has been written

about eliciting the qualitative dependence structure (the

arrows in the BN) (Nadkarni & Shenoy, 2004; Max, 1989),490

eliciting dependence quantitatively has been recognised

as a main issue when constructing BNs (Renooij, 2001;

Druzdel & Van Der Gaag, 2000). Identified difficulties are

the elicitation for high dimensional models and the assess-

ment burden due to an exponentially growing number of495

probabilities to assess (in discrete BNs). Therefore, some

alternative modelling approaches have been developed to

be used in conjunction with expert judgement methods.

While in the low dimensional, discrete case, experts pro-

vide information in form of conditional probabilities to500

populate conditional probability tables, in higher dimen-

sions this is intractable and too time-consuming. An al-

ternative approach is to model continuous distributions

and to elicit dependence information through (un-) condi-

tional rank correlations. These models are known as non-505

parametric BNs for which a review of applications can be

found in Hanea et al. (2015). For these, Morales Nápoles

et al. (2008) developed a way of eliciting conditional ex-

ceedance probabilities for higher dimensions to derive the

required rank correlations. This method is detailed in the510

next section when discussing elicited forms of dependence

parameters explicitly.

In order to address the reduction of the assessment burden

(in the discrete case), one way is to reduce the number of

necessary assessments. For instance, Wisse et al. (2008)515

propose piecewise linear interpolation (see Appendix B) in

order to reduce the overall number of required assessments

for a full conditional probability table. Their method elic-

its conditional probabilities which are discussed in the next

section as an elicited form. Another method that reduces520

the number of required assessments is through assump-

tions on the causal interpretation of a BN. The assump-

tions on the causal interpretation originate with noisy-OR

gates (Pearl, 1988) which use an underlying parametric

distribution that reduces necessary assessments logarith-525

mically (see Appendix B). The functional OR relationship
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denotes how individual parent nodes are combined for a

common effect and assumes that they are independent of

each other with respect to their causal effect on the child

nodes. Thus, the presence of one parent node suffices to530

produce an effect on the child independently of other par-

ents (with a certain probability – hence noisy rather than

deterministic). A leaky noisy-OR gate includes a back-

ground probability that represents the influence of non-

modelled causes. From this, Zagorecki & Druzdzel (2004),535

building onto Druzdzel & Van Der Gaag (1995), introduce

the elicitation of leaky and non-leaky noisy-OR parame-

ters as alternatives to conditional probabilities. They use

parameters introduced by (Max, 1989) and (Diez, 1993)

and a potential framing (for the BN in Figure 2) is:540

”What is the probability that X is present when Y1 is

present and all other causes of X (addition for leaky case:

including those not modelled explicitly) are absent?”

In an experimental setting, Zagorecki & Druzdzel (2004)

elicit leaky and non-leaky noisy-OR parameters together545

with conditional probabilities. An artificial dependence

relation between three parents and one child node was de-

termined (causes for anti-gravity of an unknown type of

rock) and in a small simulation, participants could choose

the influence (strength level of presence or absence) of each550

cause and observe what happens as an effect (anti-gravity

or not). Then they assessed the conditional probability

distribution with each assessment method, i.e. non-leaky

and leaky noisy-OR parameters and a direct conditional

probability assessment. The leaky noisy-OR parameter555

was assessed as most accurate (in terms of Euclidean dis-

tance to empirical distribution) while conditional proba-

bility was found least accurate. The authors claim that

with an increasing number of nodes their method offers

a clear advantage over conditional probability elicitation560

as the latter will become unmanageable. More generally,

noisy-OR methods belong to the group of canonical models

(Pearl, 1988). For these, assumptions on the underlying

probabilistic relationship are made so that a conditional

probability table can be generated algorithmically given565

parameters that are assessed by experts and which only

grow linearly with the number of parent nodes. Usually

the parameters refer to conditional assessments which are

made about a number of combinations of the states of

the parent nodes. An alternative to the aforementioned570

noisy-OR method is the noisy-MAX method (Diez, 1993).

Within the same group of methods is also the ranked nodes

approach (Fenton et al., 2007). Briefly, ranked nodes are

random variables with discretised ordinal scales which are

typically assessed by experts through verbal descriptors of575

the scale. The usage of verbal classifiers to assess BNs has

also been proposed more generally to counteract a high

assessment burden. Here, the influence of a node is sim-

ply determined verbally rather than numerically. For in-

stance, van der Gaag et al. (1999) use a scale containing580

both, numerical and verbal anchors, and Mkrtchyan et al.

(2015) conclude (in a review on the use of expert judge-

ment for BNs in human reliability assessment) that the use

of verbal labelling for inferences in BNs is common. We

discuss verbal elicitation of dependence explicitly in the585

next section. Another way to facilitate judgement is by

providing graphical support. Hänninen et al. (2014) pro-

vide experts with the pie chart probability tool available in

GeNIe Bayesian Network Software to adjust assessments.

Probability masses are determined and the resulting distri-590

bution is graphically visible immediately. This procedure

is repeated until the experts feel comfortable with their

assessments.

As shown in Section 7, the use of expert judgement for

BNs is considered in a variety of empirical areas given the595

popularity of this dependence model itself.

4.1.2. Copulas

In certain situations of context (a), a multivariate dis-

tribution can also be modelled by a copula rather than

by the “marginal-and-conditional approach” (Clemen &

Reilly, 1999), presented for BNs before. While an exten-
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sive introduction to copulas can be found in Durante &

Sempi (2015) and Joe (2014), recall first that for a con-

tinuous random variable X with distribution function FX ,

the random variable U = FX(X) is uniformly distributed.

If we have two continuous random variables X and Y , then

the distribution of the vector (FX(X), FY (Y )) is supported

on the unit square and has uniform marginals. Any such

distribution is called a (bivariate) copula. This construc-

tion can be reversed: Any set of univariate distribution

functions combined with a copula represents a multivari-

ate distribution as a result of Sklar (1959). The notion of a

copula is easily extended to greater than two dimensions.

Often a one–parameter copula family is used, Cθ(u, v),

that can be indexed by a parameter θ related to a rank

correlation such as those of Spearman or Kendall (see Ap-

pendix B). In fact, both can be expressed in terms of the

copula: Spearman’s correlation is

ρC = 12

∫∫
[0,1]2

C(u, v)dudv − 3

and Kendall’s τ is

τC = 4

∫∫
[0,1]2

C(u, v)dudv − 1

Within a chosen family of copulas (see Appendix B), ex-

pert elicitation can be used to determine the correlation

and hence specify the dependence. Whenever the family is

uncertain, information on how copulas differ for upper or

lower tail concentration, i.e. tail (in-)dependence (see Ap-

pendix B), needs be elicited additionally. For this, upper

(or lower) asymptotic tail dependence is of interest. The

asymptotic upper tail dependence parameter is defined as:

λU (X,Y ) = lim
u→1−

P (Y > F−1Y (u)|X > F−1X (u))

when a limit λU ∈ [0, 1] exists. In this case, X and Y

are defined as dependent in the upper tail when λU > 0,

whereas whenever λU = 0, they are tail independent (Joe,600

2014). In other words, for the former case, it is more

likely to observe high values for Y given high values for

X. Following naturally from the concept of tail depen-

dence, the tail concentration function distinguishes vari-

ous copula formats and is defined for any u in (0, 1) as605

λU = P (U > u, V > v)/(1 − u). For the (upper) tail, it

leads to the tail dependence coefficient in form of λU =

(1− 2u+ C(u, u))/(1− u).

The review results presented later show limited experience

for expert judgement within a copula modelling frame-610

work. One reason might be that copulas are distinguished

on the one hand by measures of association such as rank

correlations, but on the other hand also by its behaviour

along the dependence function as indicated by its fam-

ily. This constitutes a great deal of complexity to be inte-615

grated into an elicitation method. However, both types of

information are highly important given that two different

copula families exhibit a very different behaviour even for

the same rank correlation (as shown in Appendix B). This

is particularly crucial for copula families that model ex-620

treme joint dependence through asymptotic upper/lower

tail dependence (as considered in the first elicitation ap-

proach presented below) in contrast to tail independent

ones. At this point, it is important to note that the use

and elicitation of measures of association related to tail625

dependence depends (obviously) on whether one is inter-

ested in capturing tail dependence explicitly or another

measure might serve the modelling purpose better, given

the increased cognitive complexity for experts to assess

tail dependence. Some proposed methods that aim at a630

sensible representation of an expert’s understanding of de-

pendence in form of a copula are outlined in the following.

Arbenz & Canestraro (2012) decompose the asymptotic

upper tail dependence coefficient (presented above) and

query its components from experts before combining it635

again. They consider this as a non-asymptotic approxi-

mation of λU (X,Y ). The elicitation is as follows: in a

first step, all non-negligible causes for X to be “extremely

large” denoted as events j, j = 1, 2, . . . , J , are listed.

Then, experts assess P (event j|X = ”extremely large”), so640

the likelihood that the chosen event is present if X is in the
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tail of its distribution. Lastly, experts are queried P (Y =

”extremely large”|event j), i.e. the probability that the

corresponding event affects Y with the implied magni-

tude. All assessments are then combined by λU (X,Y ) ≈645 ∑J
j=1 P (Y = ”extremely large”|event j)P (event j|X =

”extremly large”). The proposed framing is:

”Given that an extremely bad outcome is observed in X,

what is your estimate of the probability that Y will experi-

ence an extremely bad outcome?”650

According to the authors (whose experts were actuaries)

this method was perceived as cognitively easy.

Another option that is being researched further by sev-

eral co-authors of this review but has not been published

so far is querying conditional exceedance probabilities for655

chosen quantiles from experts to fit a parametric copula.

This is done by plotting elicited values for each considered

quantile together with candidate copula choices and after

a first “eyeballing”, use conventional goodness-of-fit tests

for the distance to parametric families. Figure 3 shows660

simulated conditional exceedance probabilities for several

parametric copulas with given rank correlations. With the

assessment of the probability that Y exceeds its uth quan-

tile given that X exceeds its uth quantile for a certain

number of thresholds u, a sensible copula choice that rep-665

resents the experts’ beliefs can be estimated. We address

the details of eliciting conditional exceedance probabilities

in the next section.

As a non-standard parametric alternative, Meeuwissen &

Bedford (1997) discuss using a minimally informative cop-670

ula with given rank correlation. A copula is modelled by

asking experts to provide a dependence constraint between

two random variables, and taking the copula which is min-

imally informative with respect to the uniform (indepen-

dent) copula. This is further developed in Bedford et al.675

(2016) and Bedford (2002). Here, experts assess the expec-

tation of functions for the two underlying variables. From

that a (min inf) joint probability is constructed which sat-

isfies the expected value constraint. An advantage is that

Figure 3: Conditional Exceedance Probabilities at uth quantiles

(rank correlations: 0.2 to 0.9)

in this approach it is easier to relate a copula parameter680

to an observable quantity than it is for common paramet-

ric families. An example is given for the dependence of

failure times between machine components. Minimal infor-

mativeness also served as motivation for Kotz & Van Dorp

(2010) who consider a sub-family of generalized diagonal685

band (DB) copulas which require a dependence parameter.

It is specified by experts through conditional exceedance

probabilities (given the median value). Van Dorp (2005)

regards DB copulas as advantageous when using expert

judgement as a dependence parameter that relates to its690

one copula parameter can be defined. We will introduce

this dependence parameter in the next section when we ad-

dress forms of elicited dependence parameters explicitly.

Besides some empirical work in maintenance optimisation

(Bunea & Bedford, 2002), the majority of experiences for695

eliciting copulas, such as the first approach presented above,

comes from banking and insurance (Shen et al., 2015; Ar-

benz & Canestraro, 2012; Regis et al., 2011; Böcker et al.,
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2010), an area in which the popularity of copulas has in-

creased lately (Genest et al., 2009). Here, expert judge-700

ment is typically used to assess conditional and joint prob-

abilities of (extreme) loss events. These studies might be

helpful for other areas where copulas are gaining increased

interest, such as hydrology (Genest & Favre, 2007).

4.1.3. (Probabilistic) Parametric Models: Multivariate Dis-705

tributions

Another way to model dependence in (a) is by speci-

fying a multivariate distribution. For an introduction and

overview of the distributions discussed here, see Balakrish-

nan & Nevzorov (2004). As a main challenge when elicit-710

ing a multivariate distribution is that its full specification

would be cognitively too complex for experts, we should

impose a structure on the distributional choice. While for

univariate distributions it might be sufficient to assume a

minimal structure such as a continuous and smooth cu-715

mulative distribution function which can be specified sat-

isfactorily by a few quantile assessments (O’Hagan et al.,

2006), in higher dimensions this is still unreasonable for

practical use. Rather, a parametric multivariate distri-

bution that represents an expert’s belief sufficiently is a720

necessary assumption. Then, an expert’s opinion is fully

specified by determining a few parameters. While any dis-

tributional assumptions have to be in agreement with the

experts, they should be as well in accordance with the

modelling purpose. For instance, it should be suitable for725

its use in a specific decision problem for which a distri-

butional form is predetermined or its use as a conjugate

prior in a Bayesian modelling framework. The latter offers

a probabilistic framework to complement the lack of data

for some common statistical dependence models. Prior be-730

liefs of experts (see Appendix B) for given parameters are

updated once observations are available. A conjugate prior

is chosen so that it can be most easily updated (O’Hagan

et al., 2006). Generally, this is a different elicitation sit-

uation/purpose than using expert judgements to obtain735

beliefs about uncertainties without the inclusion of future

observations (what is done in most of the literature re-

viewed here), but this is not of importance for us as with

regards to dependence elicitation both methodologies have

similar challenges. Hence, both methodologies contribute740

to the findings presented here.

In the literature on eliciting parameter information for

quantifying a multivariate distribution, mainly multivari-

ate normal (Al-Awadhi & Garthwaite, 2001, 1998; Garth-

waite & Al-Awadhi, 2001; Dickey et al., 1985) , or t (Al-745

Awadhi & Garthwaite, 2001; Kadane et al., 1980) and

Dirichlet distributions (Zapata-Vázquez et al., 2014; Elfadaly

& Garthwaite, 2013; Chaloner & Duncan, 1987) are consid-

ered. A method that specifies a multivariate distribution

in a more flexible way (as shown below) is given in Moala750

& O’Hagan (2010).

For the common parametric assumption of a multivariate

normal or t distribution, the elicitation aims at quanti-

fying the mean vector, µ, and the covariance matrix, Σ.

Instead of determining the variables of interest directly,755

even though this has been attempted through interactive

graphical methods (Chaloner et al., 1993), typically hyper-

parameters that follow from distributional assumptions on

the form of µ and Σ and therefore specify (or index) the

multivariate distribution of interest are determined. In760

other words, the values of the hyperparameters reflect the

available subjective prior knowledge about the unknown

model parameters. This is typically based on specifying hi-

erarchical priors assuming exchangeability (see Appendix

B) for the joint distribution in question. The variables765

of interest are then conditionally independent given the

hyperparameters. This is known as Bayesian hierarchi-

cal modelling (see Appendix B) which is a common way

to restructure dependence in order to elicit parameters as

univariate quantities. Typically, the hyperparameters con-770

sist of means, scale parameters, degrees of freedom and

the spread matrix which (whenever possible) are elicited

through univariate quantities and conditional medians of
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observable variables. Percy (2004, 2002) presents how the

specification of suitable prior distributions can be simpli-775

fied and how values of hyperparameters can be elicited

from experts through quantiles of predictive prior distri-

butions for a variety of common distributions in the relia-

bility context of mathematical modelling of maintenance.

While we explain this approach below (for Dirichlet distri-780

butions), it is noteworthy here that a main advantage is

that observable quantities can be used. Further, he pro-

poses to elicit fewer quantiles than unknown hyperparame-

ters and use interaction of experts for further adjustments.

A different problem for which a multivariate distribution785

needs to be specified is whenever an event can take one

of k possible outcomes (k > 2) and the probability of the

ith outcome, pi, is elicited from experts. This might be

denoted as eliciting the opinion about a “set of propor-

tions” (Zapata-Vázquez et al., 2014). As the sum of all pi790

must equal 1, pi cannot be assessed in isolation. Further,

with k > 2, a multinomial distribution models the over-

all outcome given that we have independent trials and the

probability of each outcome is the same in each trial. The

commonly chosen parametric distribution is then a Dirich-795

let distribution, the conjugate prior distribution of a multi-

nomial one (O’Hagan et al., 2006). One of the earliest ap-

proaches in Chaloner & Duncan (1987) uses an elicitation

strategy based on predictive distributions. When consid-

ering a specified number of draws from the population of800

interest, the expectation of the number that belongs to a

category is in fact pi. Given that, they ask their experts

for the joint modes of the predictive distribution. Other

methods assess the Dirichlet distribution by imaginary ob-

servations, i.e. by determining the extent to which ex-805

perts change their belief given an observation from a draw

(O’Hagan et al., 2006). More recently, Zapata-Vázquez

et al. (2014) proposed a refinement to acknowledge the

strong assumptions of a Dirichlet distribution (due to the

small number of parameters that determine its form) and810

therefore make use of over-fitting. Loosely, they ask ex-

perts for more assessments than (strictly) necessary to fit

a distribution in order to reject the choice of a Dirichlet

distribution if it is inappropriate.

A more flexible method that avoids experts’ belief to fit815

a pre-specified parametric family is presented in Moala &

O’Hagan (2010). While the focus of the elicitation is laid

on the analyst who seeks to identify the probability density

function for a multivariate vector, the posterior distribu-

tion is based on the prior distribution as specified by an820

expert. In order to ensure flexibility on the parametric as-

sumptions, the analyst’s prior belief is a Gaussian process

which allows the multivariate distribution to take a variety

of forms given the experts’ assessments. The elicited pa-

rameters are univariate quantities and a small number of825

joint probabilities, unless the elicitation of the latter can

be reduced to querying univariate information as well, de-

pending on assumptions for the multivariate vector’s prob-

ability space.

Given that dependence information for quantifying para-830

metric multivariate distributions is (mainly) elicited through

univariate quantities, experimental studies show a similar

performance to expert judgement studies with univariate

variables of interest. For instance, (conditional) medians

are regarded as cognitively easy and reliable to assess (Al-835

Awadhi & Garthwaite, 2006). Empirical findings on the

elicitation of multivariate distributions are scarce however

which is why no indication for a particular application area

can be given.

4.1.4. (Non-Probabilistic) Parametric Models: Bayes Lin-840

ear Methods

An alternative to eliciting distributional (prior) beliefs

for Bayesian models in (a) is the Bayes linear method

(BLM) (Goldstein & Wooff, 2007). It differs by using

expectation as basis and is able to represent more com-845

plex problems through adjusting beliefs by linear fitting.

Without distributional assumptions all required parame-

ters are first and second moments (Farrow, 2003). Hence,
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eliciting dependence information concerns beliefs about

the covariance of parameters (rather than joint probabili-850

ties). While not much experience on the actual elicitation

is found in the literature, Revie et al. (2011, 2010) and

Revie (2008) address expert judgement for BLM specifi-

cally. The dependence model considered is Y = αX + R

where X is the explanatory variable of Y . R represents855

the unexplained uncertainty between X and Y (with no

correlation between X and R) and α is used to measure

the strength of the relationship between X and Y . As a

pragmatic way to elicit covariance information, the elicita-

tion of quantiles is proposed whereas the relation between860

these and the moments needs to be derived. A possibil-

ity is through Pearson & Tukey (1965), further developed

in Keefer & Bodily (1983), who propose eliciting from

three to five percentiles to obtain means and variances.

Hence, with the 5th, 50th and 95th quantiles specified as865

x0.05,x0.5,x0.95 for an uncertain variable X, the mean is

derived by µX = 0.63x0.5 + 0.185[x0.05 + x0.95] and the

variance by σ2
X = ((x0.95−x0.05)/(3.29−0.1(∆/σ0))2 with

∆ = x0.95 + x0.05 − 2x0.5 and σ0 = ((x0.95 − x0.05)/3.25)2.

In (Revie et al., 2010) five elicitation techniques are com-870

pared. A first one is the direct elicitation of cross-moments

which is omitted here given that it is discussed in the next

section as a commonly elicited form. For the remaining

methods we assume that the mean and variance of X and

Y have been elicited beforehand. In the direct calcula-875

tion approach, experts assess their updated belief of E(Y )

after the observation that E(X) increased hypothetically.

While α can be computed, for the uncertain variable R the

experts’ 5th, 50th and 95th quantiles are elicited through:

”Given that X is known to be x̄ with complete certainty,880

what are the 5th, 50th and 95th quantiles of Y ?”

It follows that E(R) and var(R) can be calculated as

shown above and then E(Y ) = αE(X) +E(R), var(Y ) =

α2var(Y ) + var(R) and cov(X,Y ) = αvar(X). For ad-

justed expectation, experts are asked to re-assess their be-885

lief about X based on the true value of Y . When defining

the true value as ȳ, the new belief for E(X) is EY (X) =

XY with observed ȳ. The covariance can then be calcu-

lated as cov(X,Y ) = ((EY (X)−E(X))/(Y−E(Y )))var(Y ).

The value of α is again computed and defines the values an890

expert can assess for coherence reasons. Adjusted uncer-

tainty works in the same way as adjusted expectation, with

the only difference that the variance of X is updated based

on an observation of the true Y . With the adjusted vari-

ance denoted as varY (X), the adjusted covariance is then895

derived using cov(X,Y ) =
√

(var(X)− varY (X))var(Y ).

In an experimental setting of the same study, experts were

presented with the pairs of variables for life expectancy

between males and females (in the same country), height

and weight of male students, as well as mean time to fail-900

ure between vehicles. All experts were familiar with ba-

sic statistical summaries, but not with BLM. The differ-

ent techniques were compared for accuracy, incoherence

and intuitiveness. Thereby, adjusted uncertainty was the

only method that exhibited incoherent assessments and905

also had more inaccurate results with far more assessments

of negative or no correlation when all empirical data was

positively correlated. Direct calculation on the other hand

had the best performance in terms of accuracy and no in-

coherent assessments. Direct correlation and adjusted ex-910

pectation barely showed any differences for experts’ perfor-

mance. However, over 15% of the responses were deemed

inconsistent.

While this is the first and only such complete attempt

to explicitly focus on the actual elicitation of covariance915

in BLM, some main references for empirical studies with

documented expert judgment approaches are Gosling et al.

(2013), Revie et al. (2011), Bedford et al. (2008), Farrow

et al. (1997) and O’Hagan et al. (1992).
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4.2. Elicitation for Indirect Modelling with Auxiliary Vari-920

ables

4.2.1. Regression Models

A common dependence model in context (b) is a re-

gression model. For recent overviews, see Ryan (2008) and

Weisberg (2005). Recall that here information on the de-

pendence is modelled indirectly by restructuring the natu-

ral input. Technically restructuring is done using variable

transformation techniques. Beliefs about parameters are

then elicited while being formulated as univariate query

variables. Similar to quantifying parametric multivariate

distributions, elicitation here is typically done for prior be-

liefs in a Bayesian methodology.

The parameter of interest is a regression coefficient, β. The

likelihood function p(Y |X,β) relates observed data Y to

regression coefficients β and covariates X. Experts then

specify the prior distribution for p(β) typically through

hyperparameters which are the mean and the variance of

the regression coefficient (James et al., 2010). Eliciting

moments of regression coefficients directly however might

be cognitively too complex given that experts would need

to understand the effect that a change of covariate X has

on Y . Therefore, the literature on eliciting priors for re-

gression models proposes indirect approaches. For these,

experts provide a probability of the response value based

on specified values of the explanatory variables or vice

versa. From this, prior elicitation methods for linear mod-

els, normal (Kadane et al., 1980) and multiple (Garth-

waite & Dickey, 1991), piecewise-linear (Garthwaite et al.,

2013) as well as logistic regression models (O’Leary et al.,

2009) have been developed. For the latter, experts typ-

ically assess conditional means, E(Y |X,β) (James et al.,

2010; Bedrick et al., 1996) for a probability of presence,

pi, with binary responses for observation i modelled as

logit(pi) = β0 +β1xi,1) +β2xi,2 + ...+βjxi,j + εi (O’Leary

et al., 2009). For instance, Choy et al. (2009) elicit the

probability of presence for a certain wallaby type at a spec-

ified location with fixed habitat characteristics in habitat

modelling. Depending on distributional assumptions for

the probability of presence (such as a Beta distribution)

the mode rather than an arithmetic average or median

might be elicited due to the potential skewness of the dis-

tribution.

In a similar manner, parameters can be elicited for (multi-

ple) linear regression models. Garthwaite & Dickey (1991)

propose a model of the form:

E(Y |x1, x2, ..., xi) = (β1x1, β2x2, ..., βixi)

where again β denotes the regression coefficient and

E(Y |x1, x2, ..., xi) is the expected (average) value of Y

when X1 = x1, X2 = x2, ..., Xi = xi. Experts then specify925

the prior distribution of β by assessing hyperparameters.

To do so, the authors introduce design points, values at

which a prediction is made after hypothetical data are

given. Likewise, Kadane et al. (1980) elicit fractiles for

a predictive distribution with specified values at design930

points, using a bisection method (see Appendix B).

Regression elicitation is further explored in Choy et al.

(2009), O’Leary et al. (2009) and Al-Awadhi & Garth-

waite (2006). O’Leary et al. (2009) present three differ-

ent elicitation methods with graphical support, similarly935

to Al-Awadhi & Garthwaite (2006) who use an interac-

tive graphics method as well. Empirical studies for expert

judgement in regression modelling are mainly found in the

area of ecology for which e.g. Choy et al. (2009) summarise

various approaches.940

4.3. Elicitation for Modelling Propagation of Output

4.3.1. Probabilistic Inversion

In modelling context (c), a common situation is that

input parameters of a dependence model are not observ-

able. Therefore, a direct quantification of these variables is945

not sensible and methods such as PI (Kurowicka & Cooke,

2006; Cooke, 1994) are used. Its aim is to take the dis-

tribution representing the uncertainty on certain observ-

ables and translate it on the uncertainty of target vari-

ables. While the distribution can come from historical950
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data, PI can be used as well as a method for transforming

expert assessments of some observable model outputs into

uncertainties on parameter values. A motivation for PI

(that was never published as such) originated in the de-

velopment of expert judgement methods and uncertainty955

analysis in the nuclear sector (for a historical overview,

see (Cooke, 2013; Kraan & Cooke, 1997)) where experts

refused to assess transfer coefficients directly. Similarly,

(Kraan & Bedford, 2005) elicit outputs of a power law

that models spread of lateral plume in atmospheric dis-960

persion in form of σy(x) = Ayx
By . The output σy(x)

denotes the lateral (indicated as y) spread at wind-speeds

x and is determined by the dispersion coefficients A and

B. Instead of querying the joint distribution on (A,B),

which would require experts to consider all possible effects965

of this relationship through the model, they are asked to

quantify uncertainty on the output at various downwind

distances through a univariate elicitation method. In addi-

tion to modelling plume spread, the same paper discusses

a case study in banking. Empirical findings of the method970

are however lacking which is why no indication of specific

application areas can be given.

5. Forms of Elicited Dependence Parameters

This section reviews the proposed forms of dependence

parameters for elicitation, i.e. association measures or975

summary types of an expert’s joint distribution that are

used in an elicitation question. As well, the corresponding

framing of elicitation questions is presented. In addition to

outlining the main elicited forms, an evaluation regarding

desirable properties is given whenever possible. Chosen980

desiderata allow for guidance on the suitability of elicited

dependence parameters from different perspectives.

Desiderata for Elicited Dependence Parameters

A first perspective concerns theoretical feasibility whereas

a common desideratum for expert judgement is that the985

elicited forms are observable and physically measurable.

This allows assessments to be credible and defensible (Cooke,

1991). With a similar objective, a rigorous foundation in

probability theory is desirable.

A further perspective considers the assessment burden for990

experts. In this regard Kadane & Wolfson (1998) empha-

sise practicality, i.e. that experts feel comfortable at as-

sessing uncertainty while their opinion is captured to a

satisfactory degree. For the former, query variables should

be kept intuitively understandable. For the latter, queried995

information should be linked as directly as possible to the

specific dependence model of interest, ensuring that an

expert’s assessment is satisfactorily reflected in the final

output of the model. As variables are often transformed

into some other parameter than the one that populates a1000

dependence model (e.g. due to a potential reduction in

the assessment burden), it is important to measure and

control the degree of resemblance between the resulting

assessments (through the model) and the dependence in-

formation as specified by the expert (Kraan, 2002). Note1005

that the transformation of dependence parameters is typ-

ically based on assumptions about the underlying bivari-

ate distribution. For instance, when transforming a prod-

uct moment correlation coefficient into a rank correlation,

this is straightforward under the assumption of bivariate1010

normality. However, positive definiteness is not guaran-

teed which relates to the next desideratum, that of math-

ematical coherence. Coherence means that the outcome

should be within mathematically feasible bounds. For de-

pendence measures, ensuring positive definiteness of a re-1015

sulting correlation matrix might be a potential issue and

methods that adjust expert’s judgements might be neces-

sary (Lurie & Goldberg, 1998). Yet, whether an expert

agrees with this adjustment or not determines their confi-

dence in the final assessment. Another solution to incoher-1020

ence is to fix possible bounds for the assessment a priori,

even though this can severely decrease the intuitiveness of

the assessment. A last desideratum is to calibrate assess-

ments on statistical accuracy. This means, we would like
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to test experts’ performance (in terms of statistical accu-1025

racy) against empirical data (if available), often to inform

the weighting for mathematically combining judgements.

While no elicited dependence parameter meets all desider-

ata, their consideration supports comparison and allows a

better guidance in terms of suitability within certain mod-1030

elling situations.

At a broad level, a distinction for elicited quantities can

be made between probabilistic and statistical approaches

(Morales Nápoles et al., 2008; Kraan, 2002; Clemen &

Reilly, 1999). Whenever possible the presented findings1035

are categorised into one of the groups. Approaches that

do not fit in any of these classifications can be found in

Section 5.3.

5.1. Probabilistic Methods

In the selected literature popular variables to elicit are1040

of probabilistic nature. This popularity can be attributed

to the firm foundation (in probability theory) and the (po-

tential) observability of the elicited variables which accom-

pany this choice.

5.1.1. Forms of Probabilistic Dependence Parameters1045

Conditional (Exceedance) Probabilities. In the context of

probabilistic measures of dependence, conditional proba-

bility might be the best known one. A common way to

elicit conditional probabilities is to provide an expert with

the information that the conditioning variable is observed1050

above (or below) its median value (marginal probabilities

are elicited first or are known from data) before the prob-

ability that the target variable lies above (or below) its

median value is enquired. A possible framing of the ques-

tion is:1055

”Consider the pair of variables, X and Y . Suppose now

that Y has been observed to be above its/your median value

for it. What is the probability that X lies also above its/your

median value for it?”

This might be extended to any quantile defining for the1060

pair of random variables X and Y the elicited form for a

conditional probability as PCP (xi, yi) := P (X ≥ xi|Y ≥

yi) where i = 0.5 refers to the median value, but i might

take any other quantile. Experts assess independence be-

tween X and Y as PCP (xi, yi) = P (X ≥ xi) implying1065

that learning about P (Y ≥ yi) does not add any infor-

mation. For a (strong) negative relationship experts state

their belief as PCP ∈ [0, P (X ≥ xi)) while for a (strong)

positive it is PCP ∈ (P (X ≥ xi), 1]. Given the above

form, a conditional probability is sometimes also called1070

conditional exceedance probability. In contrast, another

way to elicit a conditional probability is by PCP (xi, yi) :=

P (X ≥ xi|Y = yi). This way can be applied similarly and

its use depends strongly on context. However, (O’Hagan

et al., 2006) regard it as less cognitively complex.1075

In order to transform a conditional probability into a prod-

uct moment correlation coefficient (e.g. for modelling pur-

poses) the relation between the two can be derived as

shown in Figure 4.

Figure 4: Expert’s conditional probability assessment as a function

of the product moment correlation coefficient.

The above derivation is possible only when an assump-1080

tion about the underlying copula is made (Kurowicka and

Cooke, 2006). Figure 4 was obtained under the assump-

tion of normal copula density for X and Y. The analyst

finds the product moment correlation that ensures a pos-

itive definite correlation matrix and satisfies the expert’s1085

assessments (Morales et al., 2008).
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Experts’ performance when eliciting conditional probabil-

ities (in comparison to six other methods) has been in-

vestigated in Clemen et al. (2000). The assessed pairs of

variables are relationships such as height-weight, as well1090

as dependence between individual stocks, their indices and

the relation between stocks and their indices. Participat-

ing experts were MBA students with some basic statistical

training. In this experimental setting, conditional proba-

bility is among the worst performing methods for coher-1095

ence and fourth out of six in terms of accuracy against

empirical data. Similar coherence issues when assessing

conditional probabilities were observed by Moskowitz &

Sarin (1983) who therefore provided their experts with a

Joint Probability Table which led to large improvements1100

in performance. Generally, for this method the elicitation

of several values to condition on is recommended (Cooke

& Kraan, 1996).

In the case-study literature (Section 7), the elicitation of

conditional probabilities is nevertheless favoured as it of-1105

ten serves as direct model input. Main references where

this approach has been formally used stem from the Joint

CEC/USNRC Uncertainty Analysis framework (Cooke &

Kelly, 2010). The experts participating in these studies

became familiar with this format which underlines the im-1110

portance of training experts to ensure familiarity.

An alteration to the elicitation of conditional probabili-

ties which is also closely related to concordance proba-

bilities (see below) is presented in Fackler (1991). Ex-

perts are asked to assess the median deviation concordance1115

probability which is also known as quadrant probability

(Kruskal, 1958). It is defined as the probability of the two

variables, X and Y , falling both either below or above their

medians, i.e. PQP (x, y) := P ((X − x0.5)(Y − y0.5) > 0)

with x0.5 and y0.5 being the respective medians. This could1120

be asked for as follows:

”Consider the pair of variables X and Y . You have in-

dicated that there is a 50/50 chance of X being above or

below x0.5 and Y being above or below y0.5. What is the

probability that X and Y both will either be above or below1125

their medians?”

The above formulation is a slightly altered version of the

original reference to offer a general framing. While the

conditional probability cannot be fully represented with

a quadrant probability, the author claims that the de-1130

pendence elicitation concentrates on events that experts

“should be capable of making most informed judgements

about” (Fackler, 1991). According to Kruskal (1958), this

is “perhaps the simplest measure of association between

two random variables” and an advantage is that it can1135

be assessed on the customary range of [−1, 1] where a

value of 0 refers to independence. This measure is non-

parametric, meaning that is has a well-defined interpreta-

tion (even) when structural assumptions, such as bivariate

normality, do not hold. Further, it is ordinally invariant,1140

i.e. it remains unchanged by monotone functional trans-

formations of its coordinates. This has advantages with

regards to modelling convenience as well as in terms of

cognitive complexity to assess it. The measure is closely re-

lated to Blomqvist β (Blomqvist, 1950) which is defined as1145

β = P ((X−x0.5)(Y −y0.5) > 0)−P ((X−x0.5)(Y −y0.5) <

0). Similar to Kruskal (1958) when discussing the con-

veniences of using the quadrant probability, Blomqvist

(1950) describes his measure of association as being “valid

under rather weak assumptions regarding the distribution1150

of the population” and “easy to deal with in practice”.

Under the assumption of bivariate normality, a relation

to the correlation coefficient, ρ, is given by (2/π arcsin ρ).

Given the advantages from a modelling together with elic-

itation perspective and as pointed out by a reviewer of an1155

earlier version of this paper, the quadrant probability and

Blomqvist β deserve more attention when eliciting depen-

dence.

Conditional (Exceedance) Probabilities (for higher dimen-

sions). Eliciting higher dimensions of dependence such as1160

in Morales Nápoles et al. (2013) and Morales Nápoles et al.
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(2008) requires the assessment of conditional rank corre-

lations in addition to unconditional ones. To do so, the

variables of interest that are conditioned onto are ordered

according to some order of preference. This corresponds1165

for instance to the relation of parent to child nodes in a

directed acyclic graph. Once experts have assessed the un-

conditional rank correlation ρX,Y1
in Figure 2) with any of

the other techniques presented here, the conditional rank

correlations need to be determined ρX,Y2|Y1
and ρX,Yk|Y2,Y1

1170

in Figure 2). A probabilistic way to do so is through con-

ditional (exceedance) probabilities for higher dimensions

which directly follow from the low dimensional case dis-

cussed above. A question (according to Figure 2) might

be framed as follows:1175

”Suppose that not only Y1 but also Y2 has been observed

above its/your median values. What is now your proba-

bility that also X will be observed above its/your median

value?”

For this the conditioning set of the unconditional case1180

will be extended to PCP (xi, y1,i, y2,i) := P (X ≥ xi|Y1 ≥

y1,i, Y2 ≥ y2,i) for the ith quantile, e.g. i = 0.5 for the

median. If experts assess (conditional) independence, the

estimate will be the same as for PCP (x, y1) = P (X ≥

xi|Y1 ≥ y1,i. Otherwise the positive/negative relationship1185

is assessed as before. Whenever PCP (x, y1, y2) 6= 1 or 0 it

follows that X is not completely explained by Y1 so that

Y2 adds to the explanation of the former. In psychological

research of causal learning theory, Y1, Y2 and Yk would be

referred to as cues that compete for associative strength1190

(Mitchell et al., 2009). The idea of associative strength

shows a key difference to the elicitation of noisy-OR pa-

rameters presented earlier in the context of BNs.

The intuitiveness of this method might be inhibited given

that the choice of the first (unconditional) correlation im-1195

poses restrictions of the possible values for the second (con-

ditional) correlation (similar to those of positive definite-

ness of a correlation matrix). This introduces the necessity

to compute (in real time) updated intervals (different than

the unrestricted [−1, 1]) into which the new assessment can1200

fall, to preserve coherence. Technical details can be found

in Morales Nápoles (2010).

In order to test experts’ performance when assessing a

multidimensional dependence structure, (Morales Nápoles

et al., 2013) compared conditional probabilities of exceedance1205

with the direct elicitation of pairwise correlation. In their

study, a group of 14 experts (with previous training on

statistics) was presented with two versions of a graphical

model for the relationship between sulphur dioxide emis-

sions and fine particular matter in Alabama, USA. The1210

experts were split into two groups so that different de-

pendence measures could be elicited. For the first model,

querying the rank correlation directly exhibited the best

performance when averaging out the absolute difference

of empirical data and all individual answers. Based on a1215

performance-based measure of accuracy (detailed in Sec-

tion 6), the top three most accurate experts assessed cor-

relation directly. However, when averaging performances

per elicitation technique and model, the conditional ex-

ceedance probabilities outperformed direct assessments. Nev-1220

ertheless, the authors could not formulate definitive con-

clusions since the different model versions might have had

an influence on the differences in experts’ performances.

Joint Probabilities. From conditional probabilities it fol-

lows naturally to consider the elicitation of joint probabil-1225

ities. A joint probability, PJP (x, y) := P (X ≤ x, Y ≤ y),

can be queried for two random variables, X and Y , by

asking:

”Consider the pair of variables X and Y . What is the

probability that both are within the lower (upper) kth per-1230

centage of their respective distributions?”

If an expert assesses independence between X and Y , the

joint probability corresponds to PJP (x, y) = FX(x)FY (y),

where FX and FY represent the cumulative distributions

of the corresponding elicitation variables. A positive rela-1235

tionship is assessed by either PJP (x, y) = FX(x) or PJP (x, y) =
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FY (y). For a negative relationship PJP (x, y) approximates

0.

A relation to the (product moment) correlation coefficient

is derived similarly as in the case of conditional proba-1240

bility. For medians, conditional probabilities are derived

by using the relation 2P (X ≥ x0.5, Y ≥ y0.5) = P (X ≥

x0.5|Y ≥ y0.5) (O’Hagan et al., 2006).

Daneshkhah & Oakley (2010) mention a modification to

elicit joint probabilities. It is presented in Moala & O’Hagan1245

(2010), where the elicited probability takes the form PJP (x, y) :=

P (x1 ≥ X ≥ x2, y1 ≥ Y ≥ y2). It is concluded that this

alternative is able to capture the most important features

of an expert’s distribution with a good accuracy and by

just making use of a small amount of data.1250

Eliciting joint probability directly however is seen as rather

cognitively complex and (even) assessing independence in

such a way is regarded as non-intuitive (Garthwaite et al.,

2005). A systematic bias for this kind of assessment is

that experts tend to overestimate the probability of con-1255

junctive events and underestimate that of disjunctive ones

(O’Hagan et al., 2006). This might be due to the require-

ment that certain knowledge of probability theory is nec-

essary for this method. (Clemen et al., 2000) found that

when elicited joint probabilities are transformed to corre-1260

lations, the obtained values tend to be out their feasible

bounds rather frequently. Further, it was the least accu-

rate method when compared to empirical data.

Concordance Probabilities. A further way to think prob-

abilistically about dependence is by considering concor-

dance (and discordance) of random variables. The concept

of concordance probabilities is closely related to the ear-

lier introduced quadrant probability and it is limited to

a frequency or cross-sectional interpretation for the pair

of variables in question, i.e. it requires a population to

draw from (Clemen & Reilly, 1999). The question can be

framed as:

”Consider two independent draws, (xa, ya) from their com-

mon underlying population a and (xb, yb) from population

b. Given that xa > ya holds for population a, what is your

probability that the relation xb > yb holds for population

b?”

Exemplary populations for a and b might be height and

weight of some specified group of people. Formally, the

probability of concordance between two random variables,

X and Y , considering n independent draws (xa, ya) to

(xb, yb) is given by:

PC(x, y) =

∑n−1
a=1

∑n
b=a+1 1C∗((xa, ya), (xb, yb))(

n
2

)
with C∗ = (xa–xb)(ya–yb) > 0. It can be assessed by an

expert on [0, 1]. A value of (or close to) 0 indicates a1265

strong negative relationship, 0.5 represents independence,

and 1 refers to a strong positive relationship. The trans-

formation to a rank correlation such as Kendall’s tau, τ , is

defined as τ = 2PC − 1. With the assumption that X and

Y can be approximated by a bivariate normal distribution,1270

the relation from τ to other correlation measures, such as

Pearson’s product moment correlation, ρ∗, or Spearman’s

rank correlation, ρ, can be inferred through ρ∗ = sin(πτ/2)

and ρ∗ = 2 sin(πρ/6) (Kruskal, 1958). Nevertheless, a

(transformed) product moment correlation matrix that is1275

positive definite is not guaranteed (Kraan, 2002).

Within the psychological literature of causal learning, the

concordance probability relates to the term degree of relat-

edness. In the classical experimental design, participants

are presented with information about the presence or ab-1280

sence of an input variable, representing a candidate cause,

as well as the presence or absence of an effect/outcome.

For instance, medical experts assess the likelihood of a dis-

ease from the (non-) occurrence of a symptom. Based on

their assessments of discordant and concordant observa-1285

tions the aim is to formulate descriptive rules for inferring

causal strength (Shanks, 2004).

In Clemen et al. (2000), this technique performed reason-

ably accurate in comparison to other methods and only

rarely incoherent assessments were made. Similarly, Garth-1290
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waite et al. (2005), Kunda & Nisbett (1986) and (Gokhale

& Press, 1982) come to the conclusion that this method

is reasonably accurate and might be preferred if a popula-

tion is given. Yet the importance of an expert’s familiarity

with the population is emphasized.1295

Expected Conditional Quantiles (Fractiles/Percentiles). The

quantile (fractile/percentile) method requires conditional

estimates and therefore shares certain characteristics with

eliciting conditional probabilities. Experts are presented

with information that the conditional value corresponds to1300

a certain quantile (or fractile/percentile) and given that in-

formation, the experts assess which expected quantile the

other variable takes. A possible framing might be:

”Consider variables X and Y . Given the value Y has been

observed at its ith quantile, qi. What is your expectation1305

of X’s value in terms of its quantile?”

For the pair of random variables, X and Y , this is defined

as E(FX(x)|Y = y(qi)) where FX(x) is the correspond-

ing distribution function of X and y(qi) is the value that

Y takes at its ith quantile. The relation to rank corre-1310

lation is given through the standard non-parametric re-

gression function of E(FX(x)|Y = y(qi)) = ρX,Y (FY (y)−

0.5) + 0.5 (Figure 5). The conditional quantile is bounded

by µmin ≤ E(FX(x)|Y = y(qi)) ≤ µmax where µmin =

minFY (y), 1− FY (y) and µmax = maxFY (y), 1− FY (y).1315

If FY (y) is above its median, the values close to the mini-

mum refer to a (strong) negative relationship, and the val-

ues close to the maximum indicate a (strong) positive one.

For independence, experts assess E(FX(x)|Y = y(qi)) =

0.5. A closely related method is predictive assessment1320

which was mentioned in the context of hyperparameters.

It should be noted that this dependence parameter has

certain characteristics which would have similarly justified

listing it among the statistical approaches which are pre-

sented in Section 5.2.1, after the general discussion on the1325

assessment burden of probabilistic methods.

Figure 5: Conditional Quantiles to Rank Correlations

5.1.2. Assessment Burden of Probabilistic Methods

Despite the limited empirical evidence available for ex-

perts’ intuitive understanding of different assessment meth-

ods, Morales Nápoles et al. (2008) and Clemen et al. (2000)1330

conclude that probabilistic statements are not perceived as

cognitively easy. Conditional as well as joint probability

assessments were rated by experts as most difficult among

all other methods presented to them. In particular, when

moving towards higher dimensions, the growing condition-1335

ing sets for conditional exceedance probabilities were met

with accordingly growing concern. Additionally, for con-

ditional quantiles (fractiles/percentiles) the expert must

understand these location properties of distributions quite

well together with the notion of regression towards the1340

mean which might induce cognitive difficulties (Clemen &

Reilly, 1999). A possible advantage of these techniques

is that the assessment burden can be decreased for most

probabilistic methods by re-framing the questions. For
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instance, it is often possible to express their forms as rela-1345

tive frequencies which are a more natural way of thinking

about probabilities. Such framings were found to have a

positive effect both on assessment burden and accuracy in

the univariate case (Hoffrage et al., 2000).

Recognition of the cognitive burden of assessing depen-1350

dence has existed at least since Kruskal (1958), who sup-

ports probabilistic methods, in particular the quadrant

probability, due to its intuitive decision analytic interpre-

tation in comparison to statistical methods.

5.2. Statistical Methods1355

Despite some objections to the direct elicitation of mo-

ments of distributions or even cross moments, such as non-

observability (Kadane & Wolfson, 1998), the literature of-

fers some interesting findings and conclusions about the di-

rect assessment of statistical measures of association (and1360

alternative formulations).

5.2.1. Forms of Statistical Dependence Parameters

Direct (Rank) Correlation. Directly asking experts for the

natural input of a dependence model is seen by some as a

natural way of eliciting dependence. Often, this is a cor-1365

relation coefficient. One option is to ask experts for an

estimate of the (rank) correlation between pairs of vari-

ables X and Y . A framing might be simply:

”Consider variables X and Y . What is the (rank) corre-

lation between them?”1370

This usually refers to the Spearman’s rank correlation co-

efficient (see Appendix B) which is defined on the interval

of [−1, 1]. A value of ρ = −1 denotes the strongest possi-

ble negative correlation, ρ = 0 expresses that X and Y are

uncorrelated while ρ = 1 refers to the strongest possible1375

positive relation. An advantage of eliciting rank correla-

tions over product moment ones is that the interpretation

of the former is independent of its marginal distributions

implying that its values are always in the aforementioned

interval. Nevertheless, for choosing the appropriate corre-1380

lation coefficient, an analyst has to take into account what

kind of relationship is assessed. Rank correlations, such as

Spearman’s version, assume monotonicity while Pearson’s

product moment coefficient (see Appendix B) can only be

meaningful for linear relationships (Reilly, 2000).1385

An obvious precondition for this type of dependence pa-

rameter to be intuitive is a certain level of familiarity with

statistical measures. Therefore, several (conflicting) con-

clusions have been made from research on this query vari-

able. Some studies, such as Kadane & Wolfson (1998),1390

Morgan et al. (1992), as well as Gokhale & Press (1982),

view a direct method as unreliable. The latter for in-

stance conclude that even trained statisticians will have

difficulties with this method even when being presented

with graphical output in form of scatterplots. This is in1395

agreement with Meyer et al. (1997) who conclude that ex-

perts judge the degree to which variables deviate from per-

fect correlation rather than directly assessing dependence

of variables when shown a scatterplot. Yet according to

other research, a direct elicitation has performed better in1400

comparison with other assessment methods. Revie et al.

(2010), Clemen et al. (2000) and Clemen & Reilly (1999)

concluded that eliciting a correlation coefficient is more

accurate than other dependence variables (in relation to

empirical data) as well as more coherent. The better per-1405

formance in comparison to other methods is primarily at-

tributed to sufficient normative expertise of the experts.

Ratios of (Rank) Correlation. When considering higher

orders of dependence, a direct way to elicit this infor-

mation from experts is through ratios of (unconditional)1410

rank correlations. In this method, experts assess the “rel-

ative strength” of each rank correlation (Morales Nápoles,

2010). (Morales Nápoles et al., 2014) and (Delgado-Hernández

et al., 2014) present it as an alternative to conditional ex-

ceedance probabilities for higher dimensions which have1415

the requirement to assess large conditioning sets that make

the elicitation exercise rather unintuitive.

When defining unconditional rank correlations in the ex-
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emplary BN of Figure 2 as rX,Y1 and rX,Y2 , then for the

first conditional rank correlation, ρX,Y2|Y1
, the ratio R =1420

rX,Y2
/rX,Y1

would be elicited. The corresponding question

might be framed as:

Given your previous estimate, what is the ratio of rX,Y2 to

rX,Y1?

Similar to the conditional probabilistic techniques, the val-1425

ues that an expert can assess are restricted for each sub-

sequent ratio. Imposing bounds ensures coherence but

makes the elicitation less intuitive. Empirical comparisons

to probability of exceedance have neither shown a superior

nor an inferior performance. Nevertheless, the proponents1430

of this method found that experts often think in terms

of unconditional correlations rather than ratios. The in-

tention of the ratio framing is to prompt experts to think

in terms of relative influence between variables. However,

there is no way of ensuring the experts will follow the pro-1435

posed path.

Verbal. A further direct approach to elicit experts’ be-

liefs about dependence is through the use of a pre-defined

scale. The most common way to do so is by using verbal

descriptions that correspond to certain correlation coeffi-1440

cient values. For instance, Clemen et al. (2000) use a scale

of seven points on which the relationship between X and Y

is measured as SX,Y . The points range from 1 describing a

very strong negative relationship up to 7 which denotes a

very strong positive relationship. Accordingly, 4 refers to1445

no relationship. The transformation to Spearman’s rank

correlation is done through ρ = (SX,Y − 4)/3. Despite

its obvious subjectivity in determining the scale due to

the rather informal translation of verbal qualifiers, a good

performance in terms of coherence and accuracy can be ob-1450

served in empirical studies using this method. Moreover,

the method is intuitive which makes it popular. In the area

of human reliability analysis, Swain & Guttmann (1983)

introduce the Technique for Human Error Rate Predic-

tion (THERP) which uses a verbal scale for assigning the1455

dependence level between human errors. The conditional

probability for failure between tasks A and B is computed

as P (B|A) = (1+K ·P (B)/(K+1) where K is assessed via

verbal qualifiers of complete dependence (K = 0) to high

(K = 1), medium (K = 6), low (K = 19) and zero depen-1460

dence (K = ∞). The dependence assessment method in

THERP is the foundation of various further developments

of dependence modelling efforts in this area.

Coefficient of Determination. A method that has been

used rather rarely but that is still possible is to elicit the1465

coefficient of determination. For this, Clemen & Reilly

(1999) propose to ask for the percentage of variance ex-

plained as it would result from regressing one variable on

another (R2). Van Dorp (2005) uses this idea to construct

a dependence measure which can be used in the elicita-1470

tion of copula parameters. It is proposed for a common

risk factor model within the context of the Program Eval-

uation and Review Technique (PERT) for which depen-

dence is modelled with a DB copula (see previous section).

PERT is an operational research technique for analysing1475

and scheduling projects whereas the uncertainty in com-

pletion time is typically of interest. For modelling the

dependence between the (aggregated) common risk factor

Y (factors influencing project completion time) and ran-

dom variable X (completion time), first R(X) = b − a,1480

i.e. the range where realisations of X can be observed,

is defined. Next, the range of the conditional distribu-

tion, R(X|Y = y, φ), is specified where the state of dif-

ferent common risk factors that result in the aggregate

risk of Y as well as the dependence parameter of the DB1485

copula, φ, are known. From this, the dependence mea-

sure ξ(X|Y, φ) = ((1 − R(X|Y, φ))/(R(X)))100% is de-

rived (see reference for full elaboration). This measure

can be thought of as the average percent reduction in the

range of X when the state of common risk factor,Y , is1490

given. Suppose Y defines the set of possible risk factors,

Y = {rain, no rain}, and the range of X is the length of
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an activity, e.g. a project’s duration in days. Then the

query question is asked as follows:

”Not knowing the state of the common risk factor, Y , a1495

value of x has been assessed for X. Suppose you knew the

state of the common risk factor, Y , on average within a

spread of how many days could you now assess the com-

pletion of this activity, X?”

An expert’s assessment of five days would then correspond1500

to 50%, i.e. this is the percentage of uncertainty that is

explained by knowing the state of the risk factor. The

author highlights that the elicitation question is framed

in terms of X which is an observable quantity. While an

intuitive appeal for the method is mentioned, no empir-1505

ical results in terms of performance or cognitive burden

for experts have been reported. Extensions for use with

different copula families are achieved by slightly altering

the formulation of R(X).

5.2.2. Assessment Burden for Statistical Methods1510

Overall, the direct/statistical methods are seen as intu-

itively accessible for experts and enjoy favourable feedback

in terms of assessment burden (Revie et al., 2010; Clemen

et al., 2000). Especially verbal scales are seen as directly

applicable and have therefore enjoyed further considera-1515

tion. Clemen et al. (2000) report that for statistical meth-

ods training and feedback for follow-up studies improved

accuracy. This is confirmed by expert studies with fre-

quent feedback on correlation assessments, such as weather

forecasters (Bolger & Wright, 1994). Similarly, neurologi-1520

cal experiments in which experts get frequent feedback on

correlation coefficients find evidence for a human ability to

“learn” the effect of varying correlation coefficients (Wun-

derlich et al., 2011). Even though not conclusive, there are

reasons to believe that statistical methods for dependence1525

elicitation are more intuitively understandable, or at least

“learnable”, when compared to other approaches. This is

nevertheless a signal rather than a strong conclusion also

due to the fact that statistical methods have often been

tested (only) for simple examples (e.g. height-weight rela-1530

tionships) rather than complex elicitation problems.

With regards to the complexity of problems for which ex-

perts might assess a correlation directly, Kruskal (1958)

offers perhaps one of the most detailed discussions. He ad-

dresses the cognitive complexity required for assessing cor-1535

relation coefficients directly in terms of their operational,

decision-analytic and intuitive interpretation. From this

perspective, according to him the necessary level of cogni-

tive processing for assessing a correlation coefficient can be

rather high. For instance, when interpreting a (rank) cor-1540

relation, such as Kendall’s, in terms of concordance and

discordance of hypothetical observations of a population

(which has a clear and intuitive meaning) experts have to

assume (the rather unintuitive idea of) an infinite popula-

tion. For Spearman’s rank correlation, such a clear opera-1545

tional definition requires experts to think of the difference

between probabilities for three hypothetical observations

whereas at least one is concordant with the other two and

at least one is discordant with the other two (see Appendix

B for definition of rank correlations). The product moment1550

coefficient is seen as (even) more difficult to assess as it is

not ordinally invariant which (as aforementioned) inhibits

a simple, intuitive understanding given that any assess-

ment is interpreted with regards to the transformations

made to the marginal distributions.1555

5.3. Other Methods

In the following, methods that do not fit the categories

above (for reasons which will be explained) are considered.

One such method is proposed by (Abbas et al., 2010) who

elicit joint probabilities through univariate distributions1560

and isoprobability contours. In other words, dependence

is elicited indirectly. We present this approach separately

because experts express preferences over binary gambles

with identical payoffs rather than providing probabilistic

(or numerical) responses directly.1565

Loosely, an isoprobability contour is a collection or set of
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points which have the same cumulative probability. In

order to elicit the 50th percentile of a contour for two vari-

ables of interest, X and Y , experts assess first the common

quantiles for X, e.g. the median, x0.5, the 75th quantile,1570

x0.75, and so forth. Then, the experts are offered two gam-

bles, for which the authors propose the framing of:

A: You receive a fixed amount, z, if the outcome of vari-

able X is less than x0.5 and variable Y takes any value

(short: (x0.5, ymax)).1575

B: You receive the same fixed amount, z, if the outcome of

variable X is less than x0.75 and the outcome of variable

Y is less than y1 (with y1 < ymax; short: (x0.75, y1)).

The formulation has been altered to fit the wording of

the earlier framings for elicitation questions in this review.1580

The value for y1 is specified and depending on the response

of an expert, y1 is adjusted until the expert is indifferent

between the two gambles. If no indifference is achieved,

the process ends after a pre-determined number of itera-

tions and upper and lower bounds for y1 are specified to1585

choose the midpoint. With the same framing, the experts

continue choosing between binary deals while varying the

quantiles for X and values of yn, such as A:(x0.75, y1) and

B:(x0.9, y2) and so forth. Through enough iterations, i.e.

a sufficient number of indifferent choices that determine1590

the points on the contour, its 50th percentile is assessed.

Once this is achieved, the joint cumulative distribution of

any point, (x, y) ∈ [xmin, xmax] × [ymin, ymax], can be de-

rived with one additional assessment of a univariate quan-

tity such as a marginal probability for any of the vari-1595

ables of interest, Fx(x), by finding the point (x1, ymax)

lying on its isoprobability contour. The joint probability

assessment reduces then to a univariate problem through

F (x, y) = F (x1, ymax) , Fx(x1).

This approach was tested with graduate students who as-1600

sessed the joint probability of weight and height relation-

ships within their university cohort. A monetary incentive

was offered for obtaining honest and accurate answers.

The authors conclude that this method is sensible with

respect to difficulty, monotonicity and accuracy, but still1605

discuss some possible assumptions that might ease the as-

sessment burden. As a main advantage over conventional

methods they mention the flexibility in analysing the re-

sults by deriving various dependence measures from the

elicited outcomes.1610

Another method that has been proposed for specifying de-

pendence through expert judgements and which fits into

this sub-section is Papathomas & O’Hagan (2005). They

consider a Bayesian updating procedure for dependent bi-

nary random variables. Again, dependence assessments1615

are not made directly, but a threshold copula approach is

used to fully determine the dependence structure.

6. Aggregation of Dependence Assessments

As we typically elicit judgements from more than one

expert in order to obtain a broader perspective on the1620

uncertainties of interest, concerns around the aggregation

of multiple expert opinions also influence the decision of

which dependence parameter to elicit. Broadly, two groups

of aggregation methods exist, behavioural and mathemat-

ical ones. Behavioural ways seek consensus among the ex-1625

perts while mathematical methods use a weighting scheme

for the combination. Typically, mathematical aggregation

is preferred to avoid shortcomings of the first, such as indi-

vidual experts dominating (or even dictating) the assess-

ment result. A potential issue that might occur with math-1630

ematical aggregation in dependence elicitation is however

that not all dependence assessments are preserved. While

for instance a linear combination of correlation matrices

still is a correlation matrix, conditional independencies,

such as specified in a BN, will not be preserved.1635

When combining experts’ assessments mathematically, mainly

two methods are considered: Bayesian aggregation which

might account for biases (e.g. overconfidence) and pooling

methods which are seen as more robust and easier to use

(Hora & Kardeş, 2015). The latter are discussed in more1640

detail given their explicit consideration when aggregating
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dependence judgements. Generally, a pooling function is a

weighted combination of individual judgements. Experts

are assigned weights either equally or so that the weights

reflect their competence (all weights are non-negative and1645

sum to one). The most common types of pooling functions

are linear and geometric. In the theoretical literature,

both types are justified on axiomatic grounds (Dietrich

& List, forthcoming; McConway, 1981). However, in the

context of aggregating dependence assessments, it might1650

be considered problematic that these pooling methods are

not compatible with probabilistic independence preserva-

tion. This independence property ensures that if all ex-

perts agree for two variables to be (conditionally) inde-

pendent, then this is reflected in the combined assessment.1655

Yet, unless independence is justified on structural grounds

as well (e.g. through a graphical dependence represen-

tation) and is therefore not purely accidental, this nor-

mative requirement is questionable (Bradley et al., 2014).

As shown, often dependence parameters are elicited in a1660

modelling process in which structural judgements, such as

directed acyclic graphs, are included and therefore we take

the position that both sources of information are respected

and pooling methods can be regarded as valid combina-

tion functions. For other models, the structural informa-1665

tion in form of functional dependence might be assessed

separately and prior to the quantitative assessment in the

elicitation process.

Linear Pooling: Equal Weighting. One way of pooling ex-

perts’ assessments is by equally weighting their estimates1670

(i.e. averaging them). Equal weighting of several (directly)

elicited correlations was found to increase statistical accu-

racy when distance to empirical data was measured (Win-

kler & Clemen, 2004). The authors tested the robustness

of their conclusions by removing/adding experts from/to1675

the pool and found that the mean average error (MAE)

decreased as the number of experts increased.

Linear Pooling: Performance-Based Weighting. In the same

study, Winkler & Clemen (2004) show that taking the av-

erage of only the top performing cohort of experts as mea-

sured by the MAE reduces the overall error considerably

(calculated when averaging the entire set of estimates).

This finding is consistent with expert judgement studies

for univariate quantities (Cooke & Goossens, 2008) and

motivated the idea of developing a measure of calibration

to assess experts’ performance in terms of statistical ac-

curacy for multivariate assessments. Note that there is

some indication that a common calibration method for

univariate expert judgements (Cooke, 1991) was shown

not to be feasible for aggregating dependence assessments

(Morales Nápoles et al., 2013).

The first and only calibration score for multivariate as-

sessments (to the authors’ knowledge) is the dependence

calibration score introduced in Morales Nápoles & Worm

(2013) which makes use of the Hellinger distance. In order

to assess this score, seed variables known to the facilita-

tor/analyst but not the experts are elicited in addition to

the target variables. This is similar to Cooke’s Classical

model (Cooke, 1991). For two bivariate copulas, fC (a cop-

ula model used for calibration purposes) and fE (a copula

as estimated by expert opinions), the Hellinger distance H

is then:

H(fC , fE) =

∫∫
[0,1]2

√
1√
2

(
√
fC(u, v)−

√
fE(u, v))2dudv

In Abou-Moustafa et al. (2010) an overview of different

distances between distributions is given. If the distribu-

tions are Gaussian, these distances can be written in terms

of the mean and covariance matrix, i.e. the parameters of

the Gaussian distribution. Under the Gaussian copula as-

sumption, H might be parametrized by two correlation

matrices:

HG(ΣC ,ΣE) =

√
1− det(ΣC)1/4det(ΣE)1/4

(1/2det(ΣC) + 1/2det(ΣE))1/2

where ΣC is a correlation matrix used for calibration pur-

poses and ΣE the matrix derived from experts’ assess-

26



ments. The dependence calibration score is then:

D = 1−H

The score is 1 if an expert’s assessment corresponds to the

calibration model exactly. Conversely, it differs from 1 as

the expert’s assessment differs from the calibration model.1680

Under the Gaussian assumption, i.e. when using HG , the

score approaches 1 as ΣE approximates ΣC elementwise

and the score decreases as HG differs from HC element-

wise. A score equal to 0 means that at least two variables

are linearly dependent in the correlation matrix used for1685

calibration purposes and the expert fails to express this.

Or contrary to this, an expert expresses perfect linear de-

pendence between two variables when this is not the case.

For more details, see Morales Nápoles et al. (2016). In

the same study (Morales Nápoles et al., 2016), the au-1690

thors extend the method discussed in Morales Nápoles &

Worm (2013). They use the Hellinger distance to compare

a Gumbel copula generated from precipitation data with

a copula constructed from experts’ assessments of tail de-

pendence between rain amount and duration (the way to1695

obtain these estimates is discussed in (Morales Nápoles

et al., 2008). For that study, a combination of expert

opinions based on the dependence calibration score out-

performed individual expert opinions. Further, it is shown

that experts with highest calibration scores for univariate1700

assessments were not the experts with the highest depen-

dence calibration score.

In order to combine dependence assessments, experts are

weighted according to their dependence calibration score.

Similar to the univariate case, a cut-off level is established,1705

either chosen by the facilitator/analyst or by optimising

the performance of the combination. If an individual ex-

pert falls below this level, their score will be unweighted

for the pooling function.

7. Dependence Elicitation in the Empirical Liter-1710

ature

Following the previous discussions about elicitation in

various modelling contexts and about forms of elicited de-

pendence parameters, this section provides an overview of

the common approaches in practice that are prevalent in1715

the case study literature.

While a complete outline of our review methodology can

be found in Appendix A, we briefly present how the lit-

erature on eliciting dependence has been reviewed. The

objective for this literature review is two-fold:1720

1. Assess the application areas and approaches to de-

pendence modelling that are used in case studies

published in the literature, in order to evaluate the

reach of the different elicitation methods.

2. Ensure that the theoretical review is complete and1725

includes a broad variety of perspectives.

As a first step, a search strategy was formulated that de-

fined the key words used in order to ensure a thorough

search of potential references of interest. For this, we

started combining common key words of expert judge-1730

ment studies such as “expert judgement (British English) /

judgment (American English)” or “elicitation” itself, with

general key words of dependence elicitation and modelling.

This was refined by including key words for specific depen-

dence modelling techniques and dependence parameters.1735

Next, appropriate databases were identified, again start-

ing generally before searching explicitly in archives of the

topic’s research areas, such as Operational Research and

Decision as well as Risk Analysis. For evaluating the rel-

evance of references under equal principles, criteria that1740

specify the fit to this review (and which are outlined com-

pletely in Appendix A) had to be defined. The candi-

date references were then filtered and lastly, the selected

findings were distinguished between theoretical and prac-

tical contributions as the latter were categorised for the1745

overview in this section.
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In total 53 references have been identified in which de-

pendence has been elicited within decision analysis/risk

analysis case studies (in some, more than one dependence

parameter was elicited). The elicited dependence parame-1750

ters are categorised as conditional (exceedance) probabili-

ties (CP/CEP), point estimates as well as quantiles, joint

probabilities, statistical parameter such as correlation co-

efficients, verbal and other methods (whereas other meth-

ods here differ from the ones presented in Section 5.3). A1755

detailed list of the identified case studies can be found in

the additional online material. The empirical references

were investigated from different perspectives and Figure 6

summarises how the empirical literature is clustered. In

the upper-left corner it can be seen that the predominant1760

dependence model for which dependence is elicited is a

BN (61.02%). For that, the main dependence parameters

elicited are conditional (exceedance) probabilities (point

estimate) and verbal scales. Dependence is elicited much

less frequently for copulas, BLM approaches or parametric1765

multivariate distributions.

For dependence parameters per aggregation method an ap-

parent finding is that performance-based methods are used

mainly together with conditional (exceedance) probabili-

ties (through quantile assessments). This might not be1770

surprising given that the authors for these studies come

from the same expert judgement school that emphasises

the use of performance-based combination and quantile

(rather than point) assessment. In total performance-

based weighting is used in 22.03% of all case studies, just1775

more than equal weighting which is used in 18.64% of all

references. Most significant however is that for 37.28% of

all case studies the aggregation method is not described or

mentioned at all.

When clustering the experts’ domains and substantive ex-1780

pertise (upper-right corner), it is shown that in particu-

lar for environmental and ecological studies as well as in

risk analyses for infrastructure problems, dependence is

elicited through probabilistic variables (CP/CEP), point

and quantile assessments, together with verbal methods.1785

Overall, the main domains that experts have substantive

expertise in are environmental/ecological (38.98%), infras-

tructure (23.72%) and energy decision analysis/risk anal-

ysis (11.86%). In this context, it is an interesting obser-

vation that the relevant case-studies (see Supplementary1790

Material) are mostly published in domain-specific journals

rather than journals with a focus on the modelling and

hence elicitation methodology.

This gives a few indications about the status quo of the

empirical side of the research problem addressed in this1795

review. It shows that modelling dependence together with

expert judgement for quantification is a research problem

that is (actually) recognised in the identified domains. In-

terestingly, the domains have an established tradition of

applying rigorous risk analysis methods, often stemming1800

from the area of probabilistic risk analysis (Bedford &

Cooke, 2001). Further, this finding indicates that due to

a focus on the application in the fields, there is less fo-

cus on developing new theory for dependence modelling

and elicitation which would be found in journals with a1805

methodological focus. This allows for cross-fertilisation of

various findings discussed in the previous sections and our

review aims to establish a contribution for this. While a

recommended number of experts from marginal elicitation

protocols is between 5 and 10 experts (see aforementioned1810

references on guidance for univariate elicitation), for de-

pendence elicitation this is taken into consideration only

in 15.25% of the cases. Slightly more often (22.03%), less

than five experts are used. Again, the predominant per-

centage (33.89%) for “Multiple” implies a less clear docu-1815

mentation.

While these findings are not conclusive they offer an indi-

cation on the predominant approaches in the case study

literature.

28



Figure 6: Different perspectives on elicited dependence parameters’ use in the case study literature

8. Conclusions and Further Research1820

We have argued that multivariate decision models un-

der uncertainty are becoming more and more prevalent –

whether as BNs (continuous or discrete), as parametric

multivariate models, or as separate specifications of uni-

variate distributions together with copulas to model the1825

dependencies. We also argued that this immediately leads

to the need for elicitation techniques to quantify these

models.

The biggest challenge in the use of expert judgement to

quantify dependence is in the way we manage the elicita-1830

tion burden for experts. Implicit in our discussion above

is that the elicitation burden has two key dimensions:

• The required quantity of information - there is a dan-

ger that large amounts of information required from

experts will burden them too much in terms of time1835

and the prolonged intensity of the task.

• The complexity of the required information - there is

a danger that the experts might not be able to hold

all the required information in the forefront of their

minds while considering complex scenarios in which1840

(conditional) probabilities are required.
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Both considerations should guide the analyst to choose

between ways to reduce the elicitation burden, by: sim-

plifying the parameterisations of models, by considering

the qualitative and quantitative steps of elicitation sepa-1845

rately, or by finding ways of explaining in practical terms

the quantities that are being elicited. However, there is a

clear trade-off between easing the elicitation burden and

building models that replicate the important behaviour

of real world systems. Satisfying both the above require-1850

ments is challenging and under research.

The qualitative structure provided by a Bayesian network

is one example in this direction. However, often it is dif-

ficult to decide on a particular form of network. We may

have situations, for example, where a multivariate distri-1855

bution can be estimated from data for moderate values of

the variables, but where qualitatively different behaviour

can occur in the tails. Expert judgement may be more ap-

propriate in this context, as stochastic behaviour is then

driven by different relationships between variables.1860

The literature review illustrates clearly the challenge faced

in finding better ways to elicit multivariate uncertainties:

In many cases the reported studies use students instead

of (costly) experts. Often, when experts are used, they

are asked to only provide guidance on parameters, but the1865

justification for the chosen parametric family is not given.

Clearly, for purposes of validity and verification we need

to evolve better practices in selecting such families. Oth-

erwise we are not in a strong position to challenge poor

operational practice, such as the prevalence of the Gaus-1870

sian copula used widely in financial modelling prior to the

recent crash, and almost certainly still in equally wide use

(Salmon, 2009).

Finally, in the paper we have focused on the use of ex-

pert assessment in quantifying multivariate distributions.1875

However, the revolution in data analytics is using machine-

learning and expert systems rather than human experts. It

is therefore worth reflecting on the relative benefits, sim-

ilarities and complementarities of these approaches. An

individual human expert may be considered analogous to1880

a particular machine-learning model, and the empirical re-

sult that machine-learning model averaging typically gives

better results than any one of the models on their own,

reflects older observations in the use of expert judgement

that weighted averages of expert assessments are better1885

calibrated than individual experts. However, the human

expert may be able to provide simplifications through para-

metric model choices, and insights into model “phase changes”

that the machine-learning models struggle with, because

the data does not go far enough into the tail. The research1890

challenges we have set out above will help us find a more

satisfactory approach to combining human and machine

expert judgements for uncertainty modelling.
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