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Abstract

Post-optimal analysis is the task of understanding the behavior of the solution of a prob-

lem due to changes in the data. Frequently, post-optimal analysis is as important as obtaining

the optimal solution itself. Post-optimal analysis for linear programming problems is well

established and widely used. However, for integer programming problems the task is much

more computationally demanding, and various approaches based on branch-and-bound or

cutting planes have been presented. In the present paper we study how much coefficients

in the original problem can vary without changing the optimal solution vector, the so-called

tolerance analysis. We show how to perform exact tolerance analysis for the 0-1 knapsack

problem with integer coefficients in amortized time O(c log n) for each item, where n is the

number of items, and c is the capacity of the knapsack. Amortized running times report the

time used for each item, when calculating tolerance limits of all items. Exact tolerance lim-

its are the widest possible intervals, while approximate tolerance limits may be suboptimal.

We show how various upper bounds can be used to determine approximate tolerance limits

in time O(logn) or O(1) per item using the Dantzig bound and Dembo-Hammer bound, re-

spectively. The running times and quality of the tolerance limits of all exact and approximate

algorithms are experimentally compared, showing that all tolerance limits can be found in

less than a second. The approximate bounds are of good quality for large-sized instances,

while it is worth using the exact approach for smaller instances.

Keywords: Robustness & Sensitivity Analysis; Knapsack Problem; Post-optimal Analysis; Dy-

namic Programming

1 Introduction

In many combinatorial optimization problems the data are not given with certainty, and hence a

natural question is how large the errors on the coefficients can be without distorting the sought

optimal solution. Combinatorial problems, unlike linear programming problems, behave in an
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unstable manner under small changes in the initial data, making tolerance analysis a challenging

but important problem.

In this paper we distinguish between sensitivity analysis and tolerance analysis. Sensitivity

analysis in linear programming studies in which range the coefficients can vary without changing

the current basic solution. Since we do not have basic solutions in combinatorial problems,

tolerance analysis studies the robustness of an optimal solution vector to perturbations in the

problem coefficients. Tolerance analysis is also known as stability analysis in the literature.

Greenberg [7] gives a quite recent bibliography for post-optimal analysis in combinatorial

optimization, and mentions a number of papers on knapsack problems [4, 8, 14, 22]. Klein and

Holm [13] presented a general cutting-plane framework for post-optimal analysis of combinato-

rial problems and gave sufficient conditions for preserving the same optimal solution when the

right-hand side or an objective coefficient is altered.

The 0-1 knapsack problem consists of packing a subset of n items, each item i having a profit

pi and a weight wi, into a knapsack of capacity c such that the overall profit is maximized. See,

e.g., Kellerer et al. [12] for a thorough introduction. Tolerance analysis for the knapsack problem

consists of determining the intervals αpk
≤ pk ≤ βpk

and αwk
≤ wk ≤ βwk

for which the profit or

the weight of a given item k can be perturbed such that a given optimal solution remains optimal

for the problem. Exact tolerance limits are the widest possible intervals, while approximate

tolerance limits may be suboptimal (i.e., a subset of the exact tolerance limits). Notice that at

any time we only alter a single item k.

Hifi et al. [11] proved several results that characterize the tolerance limits. Using these

results they proposed two algorithms, one to compute the profit tolerances and one to compute the

weight tolerances. The profit algorithm, having a running time of O(n2), applies upper bounds to

derive exact and approximate tolerance intervals. The weight algorithm, having a running time

of O(n2c), applies dynamic programming to derive exact and approximate tolerance intervals.

The main objective of this paper is to present an exact algorithm for the tolerance analysis

of the 0-1 knapsack problem based on dynamic programming. The algorithm can determine the

exact tolerance interval for the profit or weight of an arbitrary item.

This approach resembles the approach of Hifi et al. [11] in the way that both approaches take

advantage of the dynamic programming solution, but differs in the fact that some of the results

of Hifi et al. [11] are approximate while this new method is exact for all results. In addition the

new algorithm has a better computation time, O(nc logn).
Table 1 summarizes the results of Hifi et al. [11] and of the present paper, reporting the

time needed to compute a tolerance limit for a specific item k. The first two rows concern the

perturbation of profit pk while the next two rows concern the perturbation of weight wk. Columns

4, 6 and 7 report running times for finding Exact tolerance limits, while columns 5, 8 and 9 report

running times for finding Approximate tolerance limits. Depending on the value of the current

optimal solution x∗k the upper and lower limits can be calculated in a variety of ways. All running

times are for a given item k, and it is assumed that the current optimal solution is known in

advance, including the residual capacity of the solution. Worstcase denotes worst-case running

time, while Amortized denotes amortized running time. Amortized running times report the time

used for each item, when calculating tolerance limits of all items. Two different approximate
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Table 1: Summary of the results presented by Hifi et al. [11] and the present paper. Notice that the quality of

the approx bounds is different. The approx LP-bound generally gives the most correct tolerance limits of the three

approx methods.

Pertur- Current Limit Hifi et al. [11] Our Results

bation Solution Exact Approx Exact Exact Approx Approx

x∗ Worstcase Amortized LP-bound DH-bound

profit pk x∗k = 0 αpk
O(1) O(1) O(1)

βpk
O(n) O(nc) O(c logn) O(logn) O(1)

x∗k = 1 αpk
O(n) O(nc) O(c logn) O(logn) O(1)

βpk
O(1) O(1) O(1)

weight wk x∗k = 0 αwk
O(n2c) O(nc) O(c logn) O(logn) O(1)

βwk
O(1) O(1) O(1)

x∗k = 1 αwk
O(n2c) O(nc) O(c logn) O(logn) O(1)

βwk
O(n) O(n) O(1)

tolerance limits are presented in this paper using either the Dantzig upper bound (Approx LP-

bound) or Dembo-Hammer [5] upper bound (Approx DH-bound).

Several related problems have been studied recently in the literature: Belgacem and Hifi [3]

and [10] consider the perturbation of a subset of items in a binary knapsack problem. Monaci

et al. [18] consider the related robust knapsack problem. Archetti et al. [1] consider the reop-

timization of a knapsack problem when new items are added to the problem. Various heuristics

and approximation algorithms are presented. Monaci and Pferschy [17] consider a variant of

the knapsack problem where the exact weight of each item is not known in advance but belongs

to a given interval. The worsening of the optimal solution is analyzed. Plateau and Plateau

[21] consider how a knapsack problem can be reoptimized given that the data has been slightly

modified.

The paper is organized as follows: Section 2 describes the 0-1 knapsack problem and its

“dual” denoted the weight knapsack problem, which is advantageous when determining weight

tolerance limits. Dynamic programming methods and upper/lower bounds are presented for both

problems. Section 3 formally defines the tolerance analysis of a 0-1 knapsack problem and

presents some special cases for which the profit or weight tolerance limits can be identified.

Section 4 presents the exact profit and weight tolerance limits, and describes an O(nc) algorithm

per item (or O(n2c) in total) which can be used to calculate the limits. Section 5 shows how the

amortized time complexity of the algorithm can be improved to O(c logn) per item (or O(nc logn)
in total) by making use of overlapping subproblems in the dynamic programming. Moreover, we

show how to calculate the tolerance limits by solving a single 0-1 knapsack problem. This makes

it possible to use any state-of-the-art algorithm for solving the knapsack problem, and introduces

the opportunity to find approximate tolerance limits by use of various upper bounds for the 0-1

knapsack problem.
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2 The 0-1 Knapsack Problem

The 0-1 knapsack problem consists of packing a subset of n items into a knapsack of capacity c.

Each item i has profit pi and weight wi and the objective is to maximize the profit of the items in

the knapsack without exceeding the capacity c. Using the binary variable xi to indicate whether

item i is included in the knapsack, we get the formulation:

(KP) maximize
n

∑
i=1

pixi

subject to
n

∑
i=1

wixi ≤ c (1)

xi ∈ {0,1}, i = 1,2, . . . ,n

Without loss of generality we assume that the profits and the weights are positive integers (see

Kellerer et al. [12] for transformations to this form). Also, we assume that ∑n
i=1 wi > c. An

optimal solution vector to KP is denoted x∗ and the optimal solution value z∗. A knapsack

problem with capacity c is denoted KP[c], and we use the terminology KP := KP[c] whenever

the capacity is the original capacity. KP[c] \ {k} denotes the knapsack subproblem KP[c] where

item k is excluded. z(K) is the optimal objective function of knapsack instance K. KP(x′) is the

instance with variables x fixed at x′, hence z(KP(x′)) = ∑n
i=1 pix

′
i.

The LP-relaxed (or fractional) knapsack problem, where 0 ≤ xi ≤ 1 for i = 1,2, . . . ,n can be

solved to optimality by a greedy algorithm, in which the items are sorted according to nonin-

creasing profit-to-weight ratio pi/wi and the knapsack is packed with items 1,2, . . . until the first

item s (the split item) which does not fit into the knapsack. The optimal solution value z∗LP is then

z∗LP =
s−1

∑
i=1

pi +

(

c−
s−1

∑
i=1

wi

)

ps

ws
. (2)

Knowing that all profits are integers, we may round down the solution value to ⌊z∗LP⌋ getting the

Dantzig upper bound.

The 0-1 knapsack problem can be solved by use of dynamic programming. Let KP be a

knapsack instance, and consider for j = 0, . . . ,n the subproblem KP j[d] of KP consisting of the

items {1,2, . . . , j} and having integer capacity d ≤ c.

KP j[d] = max

{

j

∑
i=1

pixi

∣

∣

∣

∣

∣

j

∑
i=1

wixi ≤ d; xi ∈ {0,1},∀i

}

= KP[d]\{ j+1, j+2, . . . ,n}. (3)

Let the optimal solution value of KP j[d] be denoted z j(d). The values of z j(d) can be calculated

by use of the following recursion:

z j(d) = max
{

z j−1(d), z j−1(d−w j)+ p j

}

, (4)

where we set z0(d) = 0 for d = 0, . . . ,c. We assume that z j−1(d −w j) = −∞ when d −w j < 0.

The running time of Recursion (4) is O(nc). If we only save undominated states in the dynamic

programming recursion (i.e. pairs of (d,z j(d)) which do not dominate each other) the running

time can be limited to O(nmin{c,z∗}), where z∗ is the optimal solution value of KP.
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2.1 Weight Knapsack Problem

The 0-1 knapsack problem has a reverse formulation

(WKP) minimize
n

∑
i=1

wixi

subject to
n

∑
i=1

pixi ≥ z (5)

xi ∈ {0,1}, i = 1,2, . . . ,n

where we ask for the minimum weight sum such that the profit sum z can be achieved. A specific

weight knapsack problem with target sum z will be denoted WKP[z]. WKP[z] \ {k} denotes the

weight knapsack subproblem WKP[z] where item k is excluded. y(K) is the optimal objective

function of weight knapsack instance K. WKP(x′) is the instance with variables x fixed at x′,

hence y(WKP(x′)) = ∑n
j=1 w jx

′
j.

If KP[c] has a unique optimal solution x∗ with solution value z∗ then x∗ will also be a unique

optimal solution to WKP[z∗]. If several equivalent solutions to KP[c] exist with the solution value

z∗ then WKP[z∗] will return a solution using the least weight.

The LP-relaxed (or fractional) weight knapsack problem, where 0 ≤ xi ≤ 1 for i = 1,2, . . . ,n
can be solved in a similar way as the ordinary knapsack problem by sorting the items according

to nonincreasing profit-to-weight ratio. Let the weight split item s′ be the first item where the

profit sum is not smaller than z. The optimal solution value zw∗
LP is then

zw∗
LP =

s′−1

∑
i=1

wi +

(

z−
s′−1

∑
i=1

pi

)

ws′

ps′
. (6)

Knowing that all weights are integers, we may round up the solution value to ⌈zw∗
LP⌉ getting what

we will call the weight Dantzig lower bound.

We may solve WKP by use of dynamic programming in time O(nmin{c,z∗}), where z∗ is

the optimal solution value of KP (see Section 3.4 in [12]).

Notice, that a weight knapsack problem WKP can be transformed to an ordinary knapsack

problem KP as follows. Let the total profit and weight be given as pT =∑n
i=1 pi and wT =∑n

i=1 wi.

Then we have

y(WKP[z]) = min

{

n

∑
i=1

wixi

∣

∣

∣

∣

∣

n

∑
i=1

pixi ≥ z;xi ∈ {0,1}, i = 1,2, . . . ,n

}

(7)

= wT −max

{

n

∑
i=1

wixi

∣

∣

∣

∣

∣

n

∑
i=1

pixi ≤ pT − z;xi ∈ {0,1}, i = 1,2, . . . ,n

}

.

Hence we may use an ordinary KP algorithm for solving the latter maximization problem.
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3 Tolerance Analysis

Let KP be a knapsack instance with an optimal solution x∗ and an optimal solution value z∗. If

more than one optimal solution exists, we will in the following assume that the solution x∗ with

the least weight sum is chosen (i.e., with the largest residual capacity). Notice that this is an

important assumption since otherwise the stated theorems do not hold. Exact algorithms based

on dynamic programming methods can easily be modified to satisfy the property.

Tolerance analysis for the knapsack problem consists of determining the intervals for which

the profit or weight of a selected item k can be perturbed such that x∗ remains an optimal (but not

necessarily unique) solution.

Let KP∆pk
be the knapsack instance derived from KP when a single profit pk is substituted

with pk +∆pk for some ∆pk ∈ Z.

(KP∆pk
) maximize

n

∑
i=1

pixi +∆pkxk

subject to
n

∑
i=1

wixi ≤ c (8)

xi ∈ {0,1}, i = 1,2, . . . ,n

Let z∗∆pk
be the optimal solution value to KP∆pk

and KP∆pk
(x∗) = ∑n

i=1 pix
∗
i +∆pkx∗k the solution

value of the original solution x∗ in KP∆pk
. Then we define αpk

and βpk
to be the lower and upper,

respectively, tolerance limit of pk in KP as:

αpk
= min

∆pk≤0
{pk +∆pk | KP∆pk

(x∗) = z∗∆pk
}, (9)

βpk
= max

∆pk≥0
{pk +∆pk | KP∆pk

(x∗) = z∗∆pk
}. (10)

Notice that since all coefficients are assumed to be integers, αpk
,βpk

will also be integers.

Analogously, we can define the knapsack problem KP∆wk
, where a single weight wk is sub-

stituted with wk +∆wk for some ∆wk ∈ Z.

(KP∆wk
) maximize

n

∑
i=1

pixi

subject to
n

∑
i=1

wixi +∆wkxk ≤ c (11)

xi ∈ {0,1}, i = 1,2, . . . ,n

Let z∗∆wk
be the optimal solution value to KP∆wk

and KP∆wk
(x∗) = ∑n

i=1 pix
∗
i = z∗ be the solution

value of the original solution x∗ in KP∆wk
. Then we define αwk

and βwk
to be the lower and upper,

respectively, tolerance limit of wk in KP as:

αwk
= min

∆wk≤0
{wk +∆wk | z∗ = z∗∆wk

,
n

∑
i=1

wix
∗
i +∆wkx∗k ≤ c}, (12)

βwk
= max

∆wk≥0
{wk +∆wk | z∗ = z∗∆wk

,
n

∑
i=1

wix
∗
i +∆wkx∗k ≤ c}. (13)
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As before we notice that αwk
,βwk

will be integers.

The intervals [αpk
,βpk

] and [αwk
,βwk

] thus represent the tolerance intervals for pk and wk in

KP.

The naı̈ve way to compute the profit tolerance interval [αpk
,βpk

] of an item k is to decrease

(or increase) by one unit the profit pk until the given optimal solution x∗ is no longer an optimal,

feasible solution. The weight tolerance interval [αwk
,βwk

] is computed similarly. If we use the

dynamic programming Recursion (4) to solve each instance of KP, the overall running time for

calculating the tolerance intervals of item k becomes O(nc(βpk
−αpk

+βwk
−αwk

)). This can be

slightly improved by using binary search, but still the running time may become unacceptably

large.

Hifi et al. [11]) identified some special cases in which the tolerance intervals can be calcu-

lated easily. These results are summed up in Appendix B.

Table 2: Exact and approximate tolerance limits for an instance with c = 9 specified in Columns 2 and 3.

Item Parameters Exact Approximate Exact Approximate

and profit profit weight weight

solution x∗ intervals intervals [11] intervals intervals [11]

i wi pi x∗i αpi
βpi

αpi
βpi

αwi
βwi

αwi
βwi

1 2 6 1 4 ∞ 4 ∞ 2 2 2 2

2 3 5 0 0 6 0 4 3 ∞ 3 ∞
3 6 8 0 0 9 0 8 5 ∞ 5 ∞
4 7 9 1 8 ∞ 10 ∞ 5 7 7 7

5 5 6 0 0 9 0 6 5 ∞ 5 ∞
6 9 7 0 0 15 0 15 5 ∞ 5 ∞
7 4 3 0 0 4 0 4 2 ∞ 2 ∞

Table 2 shows the exact profit and weight tolerance intervals computed by the naı̈ve algo-

rithm for a given example. It also lists the approximate tolerance intervals derived when using

ApproxLP, the method described in [11]. The tolerance analysis guarantees that the solution

remains optimal but not necessarily unique within the found interval. For item k = 3 we have

that x∗ remains optimal when p3 ∈ [0,9]. However, for p3 = 9 we have two optimal solutions:

x∗ = (1,0,0,1,0,0,0) or x∗ = (1,0,1,0,0,0,0) both with z∗ = 15.

4 Exact Tolerance Analysis

In this section we present necessary and sufficient criteria for x∗ to remain optimal under various

perturbations of item k. The analysis makes use of dynamic programming, where we in turn place

the studied item k as the last item, in order to state the optimality criteria. An illustrative example

is presented in Appendix A. Stages in the dynamic programming recursion (3) correspond to

the addition of one item (i.e. one column in the dynamic programming table), while states
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correspond to the individual values in the table (i.e. a capacity d and the solution z j(d)). Instead

of writing a state as a pair (d,z j(d)), we will often use the shorthand notation z j(d) as the capacity

d is implicitly given from the context.

Theorem 1 Let KP be a knapsack instance with optimal solution x∗ and let KP∆pk
be the instance

where pk is substituted with p′k = pk +∆pk.

i) if x∗k = 1 then

x∗ is optimal for KP∆pk
⇔ p′k ≥ P (14)

ii) if x∗k = 0 then

x∗ is optimal for KP∆pk
⇔ 1 ≤ p′k ≤ P (15)

where

P = z(KP\{k})− z(KP[c−wk]\{k}).

Comment: The constraint 1 ≤ p′k in (15) is only necessary to ensure that profits are positive as

we assumed in the definition of (KP). If profits are allowed to be negative, then p′k is downward

unbounded.

Proof: The main idea in the proof is to find necessary and sufficient conditions for making the

same choices as in the optimal solution in a dynamic programming recursion.

Since Recursion (4) does not demand any specific ordering of the item, we may swap item k

to the last position. Then the recursion says

z(KP∆pk
) = max

{

z(KP∆pk
\{k}), z(KP∆pk

[c−wk]\{k})+ p′k

}

, (16)

where the first term in the maximum expression corresponds to xk = 0 and the second term

corresponds to xk = 1. Notice that if we choose the same term in (16) as in x∗, xk will correspond

to x∗k and also the rest of the solution vector will be the same, since in order to find the solution

vector we will backtrack from the same state in the dynamic programming recursion.

Since the only difference between KP and KP∆pk
concerns element k, we have that

KP∆pk
\{k} = KP\{k}, (17)

KP∆pk
[c−wk]\{k} = KP[c−wk]\{k}. (18)

Recursion (16) is hence equivalent to

z(KP∆pk
) = max

{

z(KP\{k}), z(KP[c−wk]\{k})+ p′k

}

, (19)

= max
{

z(KP\{k}), z(KP\{k})+ p′k −P
}

. (20)

Now, if p′k −P ≤ 0 the first term in the maximum expression is the largest, while if p′k −P ≥ 0

the second term is the largest. Since the first term corresponds to the case xk = 0, and the second

term corresponds to the case xk = 1, the stated now follows directly. ⊓⊔

8



Theorem 2 Let KP be a knapsack instance with optimal solution x∗ and let KP∆wk
be the in-

stance where wk is substituted with w′
k = wk +∆wk.

i) if x∗k = 1 then

x∗ is optimal for KP∆wk
⇔ c−W ≤ w′

k ≤ wk + r (21)

ii) if x∗k = 0 then

x∗ is optimal for KP∆wk
⇔ c−W ≤ w′

k (22)

where

W = max
0≤d≤c

{

d

∣

∣

∣
z(KP[d]\{k})≤ z(KP)− pk

}

.

Comment: One could have expected that w′
k was downward unbounded in (21) similarly to

Theorem 1. Indeed, decreasing w′
k will make it even more attractive to choose xk = 1, but if w′

k

becomes too small, other items may fit into the knapsack and the optimal solution x∗ will change.

Proof: Since Recursion (4) does not demand any specific ordering of the items, we may swap

item k to the last position. Then the recursion says

z(KP∆wk
) = max

{

z(KP∆wk
\{k}), z(KP∆wk

[c−w′
k]\{k})+ pk

}

, (23)

where the first term in the maximum expression corresponds to xk = 0 and the second term

corresponds to xk = 1.

Notice that in the case x∗k = 0, as long as we choose the first term in (23), the whole solution

vector x∗ will be unchanged, since we backtrack from the same state in the dynamic programming

recursion.

The situation is different in the case x∗k = 1, since z(KP∆wk
[c−w′

k] \ {k}) refers to different

states for each weight w′
k. These states may lead to different solution vectors x∗ when back-

tracking through the dynamic programming table. Hence it is not sufficient to choose the second

term in (23); we must also choose the exact same state z(KP∆wk
[c−wk]\{k}). This can only be

ensured if z(KP∆wk
[c−w′

k] \ {k}) = z(KP∆wk
[c−wk] \ {k}), in which case we may choose state

z(KP∆wk
[c−w′

k]\{k}) instead of state z(KP∆wk
[c−wk]\{k}).

Since the only difference between KP and KP∆wk
concerns element k, we have that

KP∆wk
\{k} = KP\{k}, (24)

KP∆wk
[c−w′

k]\{k} = KP[c−w′
k]\{k}. (25)

This means that the Recursion (23) is equivalent to

z(KP∆wk
) = max

{

z(KP\{k}), z(KP[c−w′
k]\{k})+ pk

}

. (26)

In Case ii), where x∗k = 0, then the solution x∗ is unchanged under perturbation if and only if

z(KP\{k})≥ z(KP[c−w′
k]\{k})+ pk, (27)
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and since x∗k = 0 we have z(KP\{k}) = z(KP) and hence (27) is equivalent to

z(KP[c−w′
k]\{k})≤ z(KP)− pk, (28)

which holds exactly for c−w′
k ≤W .

In Case i), where x∗k = 1, then the solution x∗ is unchanged under perturbation if and only if

z(KP[c−w′
k]\{k}) = z(KP[c−wk]\{k}). (29)

We have that z(KP[c−wk]\{k}) = z(KP)− pk so

z(KP[c−w′
k]\{k}) = z(KP)− pk, (30)

which holds exactly for c−w′
k ≤W ≤ wk + r. ⊓⊔

An illustrative example of Theorems 1 and 2 can be seen in Appendix A.

4.1 Profit Tolerance Limits by Solving One KP

Theorem 3 Let KP be a knapsack instance with optimal solution x∗ and let KP∆pk
be the instance

where pk is substituted with p′k = pk +∆pk. The value of P in Theorem 1 can be calculated as:

i) if x∗k = 1 then P = z(KP\{k})− z∗+ pk

ii) if x∗k = 0 then P = z∗− z(KP[c−wk]\{k})

Proof: We have P = z(KP \ {k})− z(KP[c−wk] \ {k}). If x∗k = 1 then z(KP[c−wk] \ {k}) =
z∗− pk. If x∗k = 0 then z(KP\{k}) = z∗. ⊓⊔

The theorem shows that we only need to solve one knapsack problem to calculate P.

4.2 Weight Tolerance Limits by Solving One KP

Notice that for a given limit z′ we have

max
0≤d≤c

{

d

∣

∣

∣
z(KP[d])≤ z′

}

= min
0≤d≤c+1

{

d

∣

∣

∣
z(KP[d])≥ z′+1

}

−1 = y(WKP[z′+1])−1. (31)

This means that we may calculate the tolerance limits in Theorem 2 as follows:

Theorem 4 Let KP be a knapsack instance with optimal solution x∗ and let KP∆wk
be the in-

stance where wk is substituted with w′
k = wk +∆wk. The value of W in Theorem 2 can be calcu-

lated as

W = y(WKP[z∗− pk +1]\{k})−1.

Proof: Since z(KP) = z∗ it follows from Equation (31) that

W = max
0≤d≤c

{

d

∣

∣

∣
z(KP[d]\{k})≤ z∗− pk

}

= y(WKP[z∗− pk +1]\{k})−1.

⊓⊔

10



4.3 Algorithm to Determine Tolerance Intervals

Theorems 1, 2, 3 and 4 provide us with the following tolerance limits for a given item k.

Algorithm 1 Assume that x∗ is an optimal solution to KP with solution value z∗ and residual

capacity r. The tolerance limits for items k = 1,2, . . . ,n can then be calculated as:

if x∗k = 1 then

{

αpk
= z(KP[c]\{k})− z∗+ pk βpk

= ∞
αwk

= c− y(WKP[z∗− pk +1]\{k})+1 βwk
= wk + r

if x∗k = 0 then

{

αpk
= 0 βpk

= z∗− z(KP[c−wk]\{k})
αwk

= c− y(WKP[z∗− pk +1]\{k})+1 βwk
= ∞

If αpk
< 0 we set αpk

= 0, and if αwk
< 0 we set αwk

= 0 to ensure nonnegative coefficients.

A possible implementation of the above algorithm is for each k = 1,2, . . . ,n to remove item

k from the problem and solve the remaining problem by use of Recursion (4) in time O(nc).
Finding all profit tolerance limits can hence be done in O(n2c). A similar approach is used for

the weight tolerance limits.

5 Faster Tolerance Analysis

In the previous section we saw that the tolerance limits can be found in O(nc) time for each item.

This is better than the naı̈ve algorithm presented in Section 3.

In this section we show how the time complexity can be further decreased by reusing parts

of the dynamic programming table, leading to an amortized running time of O(c logn) per item.

Moreover, we show how tolerance limits can be found by solving n ordinary 0-1 knapsack prob-

lems. Finally we show how approximate tolerance limits can be found in polynomial time by use

of various upper bounds.

5.1 Overlapping Subproblems

If we use dynamic programming to find tolerance intervals for all items, large parts of the dy-

namic programming table will be the same. Indeed, our solution approach only demands that

one item k is removed from the problem.

This can be exploited in a tree structure as illustrated in Fig. 1. The considered instance has 8

items, and hence we need to run dynamic programming where each of the 8 items in turn has been

removed. This is shown in the last row of the figure, where each set on the form {1,2,3,4,5,6,7}
shows the order in which the items are considered in the dynamic programming Recursion (4).

Higher up in the tree, we show the items which have been considered in Recursion (4). The item

numbers in bold are the new items added from the above level.

In each row i of the tree we add n/2i items to each of 2i subproblems, and there are ⌈log2 n⌉
rows. Addition of one item by use of Recursion (4) takes O(c) computation. This means that

each row can be evaluated in O(nc). Hence, the overall running time is O(nc logn), since we

have O(logn) rows. The amortized time complexity for each item now becomes O(c logn).

11



{}

{1,2,3,4} {5,6,7,8}

{1,2,3,4,5,6} {1,2,3,4,7,8} {5,6,7,8,1,2} {5,6,7,8,3,4}

{1,2,3,4,5,6,7} {1,2,3,4,5,6,8} {1,2,3,4,7,8,5} {1,2,3,4,7,8,6} {5,6,7,8,1,2,3} {5,6,7,8,1,2,4} {5,6,7,8,3,4,1} {5,6,7,8,3,4,2}

Figure 1: Tree structure which makes use of overlapping subproblems to solve n related dynamic programming

problems. In each set, the item numbers in bold refers to new items.

5.2 Efficient Algorithms for Subproblems

Although the proof of Theorems 1 and 2 made use of dynamic programming, we are not limited

to use this paradigm. Indeed we just need to solve the problems

z(KP[c]\{k}), z(KP[c−wk]\{k}), y(WKP[z∗− pk]\{k}). (32)

We can use any state-of-the-art algorithm for solving these subproblems, e.g., the algorithms

presented in [15, 19]. Although these algorithms have a worst-case complexity O(nc), they are

much faster in practice.

5.3 Upper Bounds

Instead of solving Subproblems (32) to optimality we may use any upper bound on the solution

value to obtain valid (but not necessarily optimal) tolerance limits. Let U (KP) be an upper

bound on z(KP) and let L (WKP) be a lower bound on y(WKP). Then we have

Algorithm 2 Approximate tolerance limits can be found as

if x∗k = 1 then

{

αpk
= U (KP[c]\{k})− z∗+ pk βpk

= ∞
αwk

= c−L (WKP[z∗− pk +1]\{k})+1 βwk
= wk + r

if x∗k = 0 then

{

αpk
= 0 βpk

= z∗−U (KP[c−wk]\{k})
αwk

= c−L (WKP[z∗− pk +1]\{k})+1 βwk
= ∞

If the upper/lower bounds are sufficiently loose the above equations may return αpk
> pk or

βpk
< pk. In the first case we set αpk

= pk, and in the second case we set βpk
= wk.

12



Proof: To see the correctness of the above, observe that if U (KP[c]\{k})≥ z(KP[c]\{k}) then

U (KP[c]\{k})− z∗+ pk ≥ z(KP[c]\{k})− z∗+ pk = αpk
.

Moreover, if U (KP[c−wk]\{k})≥ z(KP[c−wk]\{k}) then

z∗−U (KP[c−wk]\{k})≤ z∗− z(KP[c−wk]\{k}) = βpk
.

For the weight tolerance intervals we have that if L (WKP[z∗− pk + 1] \ {k}) ≤ y(WKP[z∗−
pk +1]\{k}) then

c−L (WKP[z∗− pk +1]\{k})+1 ≥ c− y(WKP[z∗− pk +1]\{k})+1 = αwk
.

Together with Algorithm 1 we get the stated. ⊓⊔

Proposition 1 If we use the Dantzig Bound in Algorithm 2 we get approximate tolerance limits

in amortized time O(logn) per item.

Proof: We first sort the items according to nonincreasing profit-to-weight ratio in time O(n logn),

and then we calculate the accumulated weight sums w j = ∑
j
i=1 wi and profit sums p j = ∑

j
i=1 pi

in overall linear time. For each item k we can then calculate a bound on KP\{k} by using binary

search to find the split item s as the item satisfying ws−1 ≤ c < ws, and then calculate the Dantzig

Bound as ps−1 +(c−ws−1)ps/ws. ⊓⊔

Proposition 2 If we use the Dembo-Hammer upper bound [5] in Algorithm 2 we may find ap-

proximate tolerance limits in time O(1) per item.

The Dembo-Hammer upper bound is defined as follows: Let z∗LP be the Dantzig upper bound

given by (2), and ps and ws be the profit and weight of the corresponding split item s. For any

perturbation ∆w, the Dembo-Hammer bound is then

U (KP[c+∆w]) = z∗LP +∆w
ps

ws

. (33)

Notice, that the same split item s is used for all capacities, and all sub-instances of KP, making

it possible to calculate the bound in O(1) once s has been found. This leads to the following

algorithm

Algorithm 3 Let z∗LP, ps and ws be defined as above in (33). The tolerance limits are then given

as

if x∗k = 1 then

{

αpk
= pk + z∗LP − z∗ βpk

= ∞
αwk

= c+1− zw∗
LP − (pk −1)ws/ps βwk

= wk + c− zw∗
LP − (pk)ws/ps

if x∗k = 0 then

{

αpk
= 0 βpk

= z∗− z∗LP −wk ps/ws

αwk
= c+1− zw∗

LP − (pk −1)ws/ps βwk
= ∞

13



Proof: We have

U (KP[c]\{k}) = z∗LP,

U (KP[c−wk]\{k}) = z∗LP −wk ps/ws,

L (WKP[z∗− pk +1]\{k}) = zw∗
LP − (pk −1)ws/ps,

L (WKP[z∗− pk]\{k}) = zw∗
LP − (pk)ws/ps.

Inserting the bounds in Algorithm 2 we get the stated. ⊓⊔

Since the Dantzig bound is tighter than the Dembo-Hammer bound we get tighter tolerance limits

by using the first-mentioned bound. The time-complexity of the Dantzig bound is, however,

larger.

6 Experimental Results

The object of this section is to compare the approximate method proposed by Hifi et al. [11]

with the new exact method proposed in this paper with respect to quality and computing times.

In addition we discuss the tradeoffs between the approximate method compared to the exact

method.

The code used for the tests in this paper has been implemented in C/C++ and run using gcc

on a Intel Xeon 5365 QuadCore running at 2.66 GHz. The reported running times are for a single

core.

In the sequel we will use the following naming convention: Let Naı̈ve be the naı̈ve algorithm

using Equations (9)–(10) and (12)–(13). Let ExactDP be the algorithm based on dynamic pro-

gramming described in Section 5.1 which makes use of overlapping subproblems. Let ExactKP

be the algorithm based on solving a number of knapsack and weight knapsack problems as de-

scribed in Algorithm 1. Let ApproxLP be Algorithm 2 using the Dantzig upper bound for

calculating the tolerance limits, and let ApproxDH be Algorithm 2 using the Dembo-Hammer

upper bound for calculating the tolerance limits. In both Naı̈ve and ExactKPwe use the highly

efficient Combo algorithm [15] for solving the individual knapsack problems to optimality.

6.1 Instance from the Literature

In this section we compare ExactDP with ApproxLP on the twenty item example presented in

Hifi et al. [11], page 257 with capacity c equal to 420. The results have been slightly corrected

as the original table contained a typo [9].

Table 3 shows the correct data for this example. The optimal solution value z∗ = 709. The

profit tolerance limits in Columns 5 and 6 are the approximate limits computed by ApproxLP

described in Section 5.3 while Columns 7 and 8 show the exact intervals as computed by ExactDP.

Columns 9 and 10 report the deviation between the two methods. A 100% deviation corresponds

to the case, where ApproxLP found a trivial tolerance limit equal to the original profit, while

ExactDP found a nontrivial tolerance limit.
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Table 3: Example proposed by Hifi et al. [11] showing the profit and weight tolerance limits. The knapsack

has capacity c = 420. For the profits, Columns 5 and 6 show the limits computed with ApproxLP. Columns

7 and 8 show the exact limits as computed by ExactDP. Columns 9 and 10 report the deviation in percent as

devα = 100(αpk
−α ′

pk
)/(pk −α ′

pk
) and an equivalent equation for devβ . For the weights, Columns 11 to 16 show

the respective values.

Profit tolerance limits Weight tolerance limits

Item Parameters Solution ApproxLP ExactDP Deviation in % ApproxLP ExactDP Deviation in %

k pk wk x∗k αpk
βpk

α ′
pk

β ′
pk

devα devβ αwk
βwk

α ′
wk

β ′
wk

devα devβ

1 80 4 1 17 ∞ 3 ∞ 18.2 0.0 4 16 2 16 100.0 0.0

2 28 3 1 16 ∞ 3 ∞ 52.0 0.0 3 15 1 15 100.0 0.0

3 54 15 1 28 ∞ 6 ∞ 45.8 0.0 15 27 13 27 100.0 0.0

4 81 25 1 37 ∞ 33 ∞ 8.3 0.0 25 37 23 37 100.0 0.0

5 31 12 1 25 ∞ 3 ∞ 78.6 0.0 12 24 10 24 100.0 0.0

6 30 17 1 30 ∞ 6 ∞ 100.0 0.0 17 29 10 29 100.0 0.0

7 39 24 1 36 ∞ 33 ∞ 50.0 0.0 24 36 22 36 100.0 0.0

8 41 27 1 39 ∞ 33 ∞ 75.0 0.0 27 39 25 39 100.0 0.0

9 68 51 1 61 ∞ 44 ∞ 70.0 0.0 51 63 49 63 100.0 0.0

10 83 65 1 74 ∞ 74 ∞ 0.0 0.0 65 77 63 77 100.0 0.0

11 33 30 1 33 ∞ 33 ∞ 0.0 0.0 30 42 28 42 100.0 0.0

12 100 91 1 92 ∞ 80 ∞ 60.0 0.0 91 103 89 103 100.0 0.0

13 74 76 0 0 74 0 74 0.0 0.0 76 ∞ 74 ∞ 100.0 0.0

14 41 44 1 41 ∞ 41 ∞ 0.0 0.0 44 56 35 56 100.0 0.0

15 47 70 0 0 57 0 67 0.0 50.0 61 ∞ 57 ∞ 30.8 0.0

16 38 69 0 0 56 0 67 0.0 37.9 52 ∞ 43 ∞ 34.6 0.0

17 32 86 0 0 74 0 74 0.0 0.0 46 ∞ 30 ∞ 28.6 0.0

18 16 62 0 0 48 0 67 0.0 37.3 30 ∞ 13 ∞ 34.7 0.0

19 6 29 0 0 15 0 30 0.0 62.5 20 ∞ 13 ∞ 43.8 0.0

20 8 40 0 0 26 0 33 0.0 28.0 22 ∞ 13 ∞ 33.3 0.0

As for the weight tolerance limits, the respective values are reported in Columns 11 to 16. It

is interesting to see that the lower limit using ApproxLP very frequently just returns the original

weight wk. For the upper limits, both ApproxLP and ExactDP return the same value, since

both equations only depend on the residual capacity r.

6.2 Large Instances

In this section we compare the various algorithms on large instances to examine the tradeoffs be-

tween quality and computation time. We consider four categories of randomly generated knap-

sack instances, which have been constructed to reflect special properties that may influence the

solution process. The four instance groups are: uncorrelated, weakly correlated, strongly cor-

related and subset sum instances [16]. In all four groups the weights are randomly chosen as

integers from a discrete uniform distribution [1,R]. The profits are then expressed as a func-

tion of the weights, yielding the specific properties of each group: Uncorrelated instances; The

parameters p j and w j are randomly chosen as integers in [1,R]. Weakly correlated instances;

Each weight w j is chosen as a random integer in [1,R] and each profit p j is chosen as a random

integer in [w j −R/10,w j +R/10] such that p j ≥ 1. Strongly correlated instances; The weights

w j are distributed as integers in [1,R] and p j = w j +R/10. Subset sum instances; The weights

are randomly distributed integers in [1,R] and p j = w j. Notice, that the profits and weights are
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Table 4: Total running times in milliseconds on a Dell Optiflex 9020 with i7-4790 Processor (3.6 GHz). The

reported times are for finding all tolerance limits, include solution of the original instance. Average values of

N = 10 instances.
Algorithm n uncorrelated weakly corr. str. corr. subset-sum

Naı̈ve 5 34 13 11 9

10 74 30 15 7

20 186 72 46 19

50 662 323 4656 38

100 1791 976 72383 70

200 6390 3251 212511 155

500 32919 26010 3774158 342

1000 165496 88267 19899575 634

ExactKP 5 0 0 0 0

10 0 0 0 0

20 0 0 1 19

50 1 2 30 43

100 2 4 75 72

200 7 13 153 124

500 26 88 613 311

1000 108 275 1074 642

ApproxLP 5 0 0 0 0

10 0 0 0 0

20 0 0 0 0

50 0 0 2 1

100 0 1 2 1

200 1 1 0 2

500 4 4 6 1

1000 14 16 15 9

ApproxDH 5 0 0 0 0

10 0 0 0 0

20 0 0 0 0

50 0 0 1 0

100 0 0 1 0

200 0 0 0 1

500 0 0 0 1

1000 0 0 0 0

perturbed independently, hence the instances are not subset sum instances after perturbation.

To generate knapsack instances with the four properties, we use a knapsack generator de-

scribed in Pisinger [20]. For each group we generate instances, whose sizes n vary between 5

and 1,000. For each size n we generate N = 10 instances. The capacity is c = ∑w j/2.

We evaluate the performance of the presented algorithms on instances with relatively large

profits and weights, using R = 10,000. For small values of R the tolerance limits frequently

become trivial.

Preliminary experiments showed that the dynamic programming algorithm ExactDP with

complexity O(nc logn) was not competitive with ExactKP in time O(n2c), and ran out of space

for large values of c. Hence we do not report running times for ExactDP.

Table 4 first compares the running times of the various approaches. The running times are

for finding all tolerance limits, and includes the solution of the original instance. It is seen

that the naı̈ve approach Naı̈ve is very time-consuming using several minutes for large-sized

uncorrelated instances, and growing to several hours for large-sized strongly correlated instances.

On the contrary, the improved exact algorithm ExactKP finds all the tolerance limits in a less

than a second. The approximate algorithm ApproxLP using the Dantzig upper bound is very
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Table 5: Average value of Spk
(left) and average value of Swk

(right).
avg. Spk

Algorithm n uncorrelated weakly corr. str. corr. subset-sum

ExactKP 5 3937.6 1133.9 1287.6 1115.3

10 2885.1 696.2 427.6 55.4

20 3238.5 612.7 321.4 0.0

50 3394.2 493.5 210.7 0.0

100 3175.8 492.1 349.6 0.0

200 3176.6 512.1 607.5 0.0

500 3107.4 501.1 216.8 0.0

1000 3104.4 506.1 437.0 0.0

ApproxLP 5 1710.3 6.5 16.1 0.0

10 1529.6 117.6 40.3 0.0

20 2016.4 152.4 59.4 0.0

50 2603.2 270.0 53.2 0.0

100 2711.3 353.7 98.9 0.0

200 2898.8 410.2 205.6 0.0

500 2979.6 460.5 51.3 0.0

1000 3026.4 476.9 129.1 0.0

ApproxDH 5 177.6 5.9 0.0 0.0

10 271.5 67.1 3.5 0.0

20 690.4 80.3 2.3 0.0

50 749.4 128.1 3.2 0.0

100 757.2 156.4 4.0 0.0

200 845.9 189.5 18.3 0.0

500 865.2 220.6 1.1 0.0

1000 868.5 232.3 6.6 0.0

avg. Swk

uncorrelated weakly corr. str. corr. subset-sum

2991.1 1361.7 850.2 751.0

2418.5 640.6 255.2 43.0

2044.7 413.5 73.9 0.0

1746.0 282.4 28.1 0.0

1407.0 254.3 23.7 0.0

1285.8 254.3 98.9 0.0

1248.7 247.2 8.1 0.0

1210.1 252.7 38.8 0.0

1797.7 528.2 242.1 169.6

1583.8 175.2 82.6 7.7

1439.7 177.8 17.5 0.0

1116.8 157.6 5.0 0.0

1118.2 179.7 4.1 0.0

1137.7 202.4 18.4 0.0

1173.1 226.0 1.0 0.0

1169.3 235.7 5.9 0.0

288.1 95.2 4.1 24.4

353.4 81.5 3.0 0.0

806.9 90.7 2.0 0.0

982.7 132.2 2.8 0.0

976.0 157.9 3.6 0.0

1073.3 190.6 16.1 0.0

1137.1 220.8 1.0 0.0

1155.5 232.5 5.8 0.0

Table 6: Number of items where Spk
> 0 (left) and number of items where Swk

> 0 (right).
Spk

> 0

Algorithm n uncorrelated weakly corr. str. corr. subset-sum

ExactKP 5 5 5 5 5

10 10 10 10 10

20 20 20 19 0

50 50 50 22 0

100 100 100 47 0

200 200 200 133 0

500 500 499 117 0

1000 1000 999 444 0

ApproxLP 5 3 0 0 0

10 6 4 2 0

20 16 10 5 0

50 44 34 10 0

100 91 83 35 0

200 188 180 121 0

500 485 475 108 0

1000 977 974 437 0

ApproxDH 5 0 0 0 0

10 1 2 0 0

20 6 5 0 0

50 15 16 1 0

100 32 39 3 0

200 69 87 26 0

500 178 232 7 0

1000 360 483 62 0

Swk
> 0

uncorrelated weakly corr. str. corr. subset-sum

5 5 5 5

10 10 10 10

20 20 20 0

50 50 8 0

100 100 14 0

200 200 60 0

500 500 9 0

1000 950 65 0

4 3 3 2

8 7 6 5

18 16 11 0

47 42 5 0

96 91 10 0

194 189 55 0

491 462 8 0

989 886 62 0

0 0 0 0

1 2 0 0

6 5 0 0

16 17 1 0

33 40 3 0

69 87 26 0

178 232 7 0

360 483 62 0
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fast, using no more than 0.02 seconds for all large-scaled instances. The fastest algorithm is the

ApproxDH which only spends a few milliseconds to find the tolerance limits.

The size of a tolerance interval for pk and wk is Spk
= (βpk

−αpk
) and Swk

= (βwk
−αwk

),
respectively. Table 5 reports the average value of Spk

and Swk
. It is seen that the tolerance

limits decrease for increasing correlation. For the most correlated instances, the subset-sum

instances, the tolerance limits are zero except for very small instances. The range of the tolerance

intervals for the weights are significantly smaller then the tolerance intervals for the profits. For

the strongly correlated instances, the average lower tolerance limits are less then 2% on average.

Comparing the values of the tolerance limits in Table 5, it is seen that ApproxLP using the

Dantzig upper bound is close to the exact tolerance limits for large-sized uncorrelated, weakly

correlated and subset-sum instances. However, for small-sized instances the use of the Dantzig

upper bound significantly decreases the tolerance limits. The ApproxDH algorithm using the

Dembo-Hammer upper bound finds considerably smaller tolerance limits than the previous ap-

proaches for the profits, and hence is hardly of any use. However for the weights ApproxDH

finds comparable tolerance limits.

Finally, Table 6 reports the number of items with non-zero tolerance limits. It is seen that

for the uncorrelated and weakly correlated instances nearly all items have a non-trivial exact

tolerance limit for the profits and the weights. For the strongly correlated instance around half of

the items have a non-zero tolerance limit for the profits, and considerably fewer for the weights.

For the subset-sum instance, non-trivial tolerance limits are found only for small instances. This

may be due to the fact that for larger instances numerous solutions exist with objective value

equal to the capacity c, and hence a small increase in the profit or weight of an item will change

the solution.

7 Conclusion

Tolerance analysis makes it possible to test the robustness of a model, and to fix model input that

has no effect on the output. Knapsack problems frequently occur as subproblems in more com-

plex combinatorial algorithms, e.g., as pricing problem (Vanderbeck [23]) or for cut separation

(Balas [2], Fukasawa and Goycoolea [6]). Knowing the tolerance limits can perhaps be used to

derive tighter cuts, and it can save time in solving pricing problems when the parameters only

have been changed within the tolerance limits.

We have presented an algorithm for finding the exact tolerance limits in amortized time

O(c logn) for each item. Moreover we have showed that the tolerance limits can be found by

solving a single knapsack problem, making it possible to use all current knapsack solvers and

upper bound algorithms for calculating the limits.

Notice, that although we used dynamic programming (or actually a recursive formulation) to

prove the theorems, the found tolerance limits are independent of dynamic programming. This

means that the theorems, with a few modifications, also hold if the profits and weights are rational

numbers.

The computation experiments show that the exact algorithm ExactKP is performing very

well, making it possible to find all tolerance limits in roughly one second for large-sized in-
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stances. If faster solution times are needed, one may use the ApproxLP algorithm for larger

instances (say, n > 100) and ExactKP for the smaller instances. This combination results in

very fast running times, and a good quality of the tolerance limits.

Future work should focus on how the presented results can be generalized to other problems

that can be solved in pseudo-polynomial time. It should be possible to use similar arguments

from dynamic programming to analyze the tolerance limits.
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Appendix A - Illustration of the Main Theorems

Fig. 2 shows two knapsack instances and the corresponding dynamic programming tables z j(d).
Both instances have n = 4 and c = 7. We want to find the tolerance limits for the last item k = 4.

In the left instance we find z = 8,r = 0 hence P = 3,W = 6. Since x∗4 = 0, Theorems 1 and 2

give us the tolerance limits 0 ≤ p′4 ≤ 3 and 1 ≤ w′
4.

We could also reach these limits from the dynamic programming. For p′4 we note that z4 =
max{z3(c),z3(c−w4)+ p′4}= max{8,5+ p′4}, where the first term is chosen as long as p′4 ≤ 3.

For w′
4 we note that z4 = max{z3(c),z3(c−w′

4)+ p4} = max{8,z3(c−w′
4)+1}, where the

first term is chosen as long as z3(c−w′
4) ≤ 7, which by inspection in z3(d) can be seen to hold

for c−w′
4 ≤ 6.

In the right instance we find z = 11,r = 3 and P = 3,W = 5. Since x∗4 = 1, Theorems 1 and

2 give us the tolerance limits p′4 ≥ 3 and 2 ≤ w′
4 ≤ 5.

Using dynamic programming we note for p′4 that z4 =max{z3(c),z3(c−w4)+p′4}=max{8,5+
p′4}, where the second term is chosen as long as p′4 ≥ 3.

For w′
4 we note that z4 = max{z3(c),z3(c−w′

4)+ p4} = max{8,z3(c−w′
4)+6}, where the

second term is chosen as long as z3(c−w′
4)≥ 2. However, this is not sufficient to ensure that the

current optimal solution x∗ = (1,0,0,1) remains optimal, since choosing e.g., c−w′
4 = 6 (i.e.,

w′
4 = 1) will result in an optimal solution x∗ = (0,1,0,1) with value z = 13. As observed in the

proof of Theorem 2, the current optimal solution x∗ = (1,0,0,1) remains optimal if and only if

z3(c−w′
4) = z3(c−w4) = 5, which by inspection in z3(d) can be seen to hold for 2 ≤ c−w′

4 ≤ 5.

j 1 2 3 4

p j 5 7 3 1

w j 2 6 5 2

j 1 2 3 4

p j 5 7 3 6

w j 2 6 5 2

d\ j 0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 0 5 5 5 5

3 0 5 5 5 5

4 0 5 5 5 6

5 0 5 5 5 6

6 0 5 7 7 7

7 0 5 7 8 8

d\ j 0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 0 5 5 5 6

3 0 5 5 5 6

4 0 5 5 5 11

5 0 5 5 5 11

6 0 5 7 7 11

7 0 5 7 8 11

Figure 2: Two knapsack instances and the corresponding dynamic programming tables z j(d). In

both instances n = 4 and c = 7. The two instances only differ with respect to p4. In the left

instance, z∗ = 8 and x∗ = (1,0,1,0). In the right instance, z∗ = 11 and x∗ = (1,0,0,1).
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Appendix B - Special Cases

In this section we consider some special cases in which the tolerance intervals can be identified

easily as shown by Hifi et al. [11]). First, we need some definitions: We define the residual

capacity r ≥ 0 of a KP as

r = c− y(WKP[z∗]), (34)

where z∗ is the optimal solution value to KP. If several solutions to KP have the same solution

value z∗ the residual capacity r is the largest possible free space among all optimal solutions.

Lemma 1 (Theorem 2.1 in Hifi et al. [11]) If x∗ is an optimal solution for KP, and (∆pk ≥ 0 and

x∗k = 1) or (∆pk ≤ 0 and x∗k = 0), then x∗ is an optimal solution for KP∆pk
.

Lemma 1 states that x∗ remains optimal for KP∆pk
if x∗k = 1 and pk increases, or if x∗k = 0 and pk

decreases. The tolerance limits are hence upward (downward) unlimited in these cases as long

as the profit pk +∆pk remains nonnegative (since we have defined the KP as having nonnegative

profits.)

Lemma 2 (Theorem 3.1 in Hifi et al. [11]) If x∗ is an optimal solution for KP, and (0 ≤ ∆wk ≤ r

and x∗k = 1) or (∆wk ≥ 0 and x∗k = 0), then x∗ is an optimal solution for KP∆wk
.

Lemma 2 states that x∗ remains optimal for KP∆wk
if x∗k = 0 and the weight is increased. Moreover

if x∗k = 1 and the weight is increased up to the residual capacity, the solution x∗ remains optimal.
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