
Combinatorial Benders Cuts for Assembly Line Balancing

Problems with Setups

Sener Akpinar∗1, Atabak Elmi2, and Tolga Bektaş3

1Dokuz Eylul University, Faculty of Engineering, Department of Industrial Engineering, Izmir, Turkey

2Gaziantep University, Faculty of Engineering, Department of Industrial Engineering, Gaziantep, Turkey

3Southampton Business School, Centre for Operational Research, Management Science and Information Systems

(CORMSIS), University of Southampton, Southampton, United Kingdom

April 6, 2016

Abstract

The classical assembly line balancing problem consists of assigning assembly work to workstations.

In the presence of setup times that depend on the sequence of tasks assigned to each workstation,

the problem becomes more complicated given that two interdependent problems, namely assignment

and sequencing, must be solved simultaneously. The hierarchical nature of these two problems also

suggest a natural decomposition of the problem. This paper adopts such an approach and describes

an exact algorithm based on Benders decomposition to solve both simple and mixed-model assembly

line balancing problems with setups. The algorithm is tested on a set of benchmark instances and

numerically compared against a mixed-integer linear programming formulation of the problem solved

using an off-the-shelf optimizer.

Keywords: Combinatorial optimization, type-I assembly line balancing problem,

sequence-dependent setup times, Benders decomposition, combinatorial Benders cuts

1 Introduction

Assembly lines (ALs) are special flow-based production systems. The design of such systems gives

rise to the assembly line balancing problem (ALBP), which consists of assigning assembly tasks to a

number of workstations in order to optimize a given objective. Early designs of assembly lines were

for a single product to be produced in high volumes with the corresponding problem known as the

simple assembly line balancing problem (SALBP). Single-model assembly lines did not prove efficient

for products with a high variety, required by a consumer-centric market, necessitating a high degree

of flexibility in the manufacturing system [29]. To address this need, and bearing in mind the high

investment and maintenance cost of assembly lines, manufacturers started to produce a single model of

∗Corresponding author’s Email: sener.akpinar@deu.edu.tr; Tel: +90 232 301 76 32

1

product with different features or several models on a single assembly line. These developments gave

rise to mixed-model assembly lines with the corresponding design problem named as the mixed-model

assembly line balancing problem (MMALBP).

AL design problems come in two flavors: (Type-I): design of a new assembly line for which the

demand is known or assumed to be easily forecasted, and (Type-II): redesign of an existing assembly

line to accommodate any changes in the assembly process or in the product range. Type-I (resp. Type-

II) problems deal with the assignment of tasks to workstations with the aim of minimizing the number

of workstations (resp. the cycle time) for a predetermined cycle time (resp. predetermined number of

workstations) by respecting the precedence relations of the tasks involved in the assembly. The rest of

this paper is concerned with Type-I problems, for which reason we will not explicitly spell out the type

unless otherwise stated.

The MMALBP is NP-hard [9], complex, and CPU time-consuming to solve to optimality [5] (see

[6] for a recent survey on solution approaches on ALBPs). The computational difficulty of solving the

MMALBP with setups to optimality using a commercial software was shown in [2].

In order to optimally solve the MMALBP with setups in an efficient manner, we describe, in this paper,

a Benders decomposition algorithm that exploits the two subproblems, in particular assignment of tasks

to workstations and sequencing of tasks within each workstation. We reformulate the original problem as

a master assignment problem with an exponential number of feasibility constraints, following which we

search for infeasible assignments using the sequencing problem as a slave problem, and forbid any such

assignments through infeasibility cuts in the master problem until an optimal solution is identified. The

proposed algorithm is numerically shown to be much faster than an off-the-shelf optimizer and is able to

solve larger-scale instances than the state-of-the art.

The remainder of the paper is organized as follows. A summary of the relevant literature on ALBPs

with setups is given in Section 2. A formal problem definition and formulations are presented in Section

3. The Benders decomposition algorithm is described in Section 4. Computational results are given in

Section 5. The paper concludes with some remarks in Section 6.

2 A Summary of Relevant Literature on ALBPs with Setups

Setup times considerations for assembly line balancing problems have first appeared in [4] and [21],

where the SALBP was extended to incorporate sequence dependent setup times between tasks, for which

the authors described a mathematical programming model of the problem and proposed several heuristics

including GRASP. Priority rules based solution procedures were developed in [17] to solve the problem,

however these procedures were not effective enough in solving large-size test problems with more than 100

tasks. Mixed-integer programming formulations of a similar problem were developed in [23] where the

authors stated that solving the problem with standard MIP solvers is not an effective solution method.

The problem was extended in [24] by introducing different backward and forward setups, for which the

authors developed a mixed-binary linear formulation and proposed some effective solution procedures.

Another mathematical formulation of the SALBP was proposed in [14], along with a combination of a

2

particle swarm optimization algorithm and variable neighbourhood search. A hybrid genetic algorithm

was proposed in [31] for a related problem. For the Type-II version of the problem, [25] described a

mathematical model similar to that in [4], and a simulated annealing (SA) algorithm. A mixed-integer

programming formulation for another version of the problem where setup times were considered for a two

sided assembly line was presented in [20], for which the authors proposed a heuristic. The mixed-model

version of the assembly line balancing problem with setups was studied in [18], and the variant with

sequence dependent setup times between tasks was studied in [2], and hybrid meta-heuristic algorithms,

including a combination of ant colony optimization and genetic algorithm and a multiple colony hybrid

bees algorithm were described in [1] and [3].

3 Problem Definition and Formulations

This section presents a formal definition of the main problem considered in this study, followed by a

mathematical programming formulation.

3.1 Formal problem description

Mixed-model assembly lines are used to either produce a single model of product with different

features or several models on a single assembly line. Each model comes with a specific set of precedence

relations between its tasks which can be combined into a precedence diagram for all models. Hence, the

combined precedence diagram has N tasks that must be assigned to a maximum of S workstations under

a capacity constraint defined by the cycle time C of the assembly line. The assignment is subject to a

precedence constraint defined by a parameter Pij derived from the combined precedence diagram that

equals 1 if task i must precede task j, and 0 otherwise. Each task i for model m has a processing time

Tim, and this may vary between the M models assembled on the line. The MMALBP consists of assigning

N tasks associated with M models to workstations so as to minimize the number of the workstations

used. The SALBP is a special case of the MMALBP where M = 1.

3.2 Mathematical programming formulations

This section presents two formulations, the first for the MMALBP, which then forms the basis for

the second model of the MMALBP with setups.

3.2.1 Basic formulation of the MMALBP

To model the MMALBP, we use a binary variable Yis that is equal to 1 if task i is assigned to a

workstation s, and 0 otherwise, and minimize the number of workstations used. Using these variables

the MMALBP can be formulated as the following binary programming model.

3

Minimize

S∑
s=1

sYNs (1)

subject to

S∑
s=1

Yis = 1 i ∈ {1, ..., N} (2)(
S∑
s=1

sYis −
S∑
s=1

sYjs

)
Pij ≤ 0 i, j ∈ {1, ..., N}; i 6= j (3)

N∑
i=1

YisTim ≤ C s ∈ {1, ..., S};m ∈ {1, ...,M}. (4)

The objective function (1) minimizes the number of used workstations. Constraints (2) ensure the

assignment of each task to exactly one workstation. Constraints (3) are used to guarantee the precedence

relations between tasks. Capacity constraints (4) ensure that the workload of each used workstation does

not exceed the cycle time.

3.2.2 An improved formulation for the MMALBP with setups

A mixed integer linear programming formulation of the MMALBP with setups (MMALBPS) was

proposed in [2] (see Appendix A) but this formulation suffered from a significant number of “big-M”type

constraints. In this section, we present an improved version of this formulation, which has a reduced

number of “big-M”type constraints. The existing model in [2] considers workstation parallelization and

zoning constraints, which we do not consider in this paper, but this does not detract from the applicability

of the new formulation. The assumptions and the notation of the model are given below, and in Table 1,

respectively.

• A set of similar models of a product are assembled on a straight line.

• The combined precedence diagram contains N tasks.

• A task can be assigned to exactly one workstation.

• Tasks common to several models must be performed on the same workstation.

• Processing time of a common task may be different among the different models.

• Task processing times and setup times between tasks are deterministic and known in advance.

4

Table 1: Model notation

Notation Definition

P
a
r
a
m
et
er
s

N Number of tasks

M Number of models simultaneously assembled on the line

S Maximum number of workstations

C Cycle time

Ti Processing time of task i ∈ {1, 2, ..., N} on model m ∈ {1, 2, ...,M}

Qim ∈ {0, 1} Equals 1 if processing time of task i ∈ {1, 2, ..., N} is positive for model m ∈ {1, 2, ...,M}, and

0 otherwise

Fijm Forward set-up time between task i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., N} on model m ∈

{1, 2, ...,M}

Bijmn Backward set-up time between task i ∈ {1, 2, ..., N} of model m ∈ {1, 2, ...,M} and task

j ∈ {1, 2, ..., N} of model n ∈ {1, 2, ...,M}

Pij ∈ {0, 1} Equals 1 if task i ∈ {1, 2, ..., N} must precede task j ∈ {1, 2, ..., N}, and 0 otherwise

D
ec
is
io
n
V
a
r
ia
bl
es

Yis ∈ {0, 1} Equals 1 if task i ∈ {1, 2, ..., N} is assigned to workstation s ∈ {1, 2, ..., S}, and 0 otherwise

As ∈ {0, 1} Equals 1 if station s ∈ {1, 2, ..., S} is active, and 0 otherwise

wijs ∈ {0, 1} Equals 1 if task i ∈ {1, 2, ..., N} precede task j ∈ {1, 2, ..., N} at workstation s ∈ {1, 2, ..., S},

and 0 otherwise

Xijms ∈ {0, 1} Equals 1 if task j ∈ {1, 2, ..., N} directly follows task i ∈ {1, 2, ..., N} on model m ∈ {1, 2, ...,M}

in the forward direction in workstation s ∈ {1, 2, ..., S}, and 0 otherwise

Zijmns ∈ {0, 1} Equals 1 if i ∈ {1, 2, ..., N} is the last task of model m ∈ {1, 2, ...,M} and j ∈ {1, 2, ..., N} is

the first task of model n ∈ {1, 2, ...,M} in workstation s ∈ {1, 2, ..., S}, and 0 otherwise

Minimize OBJ1 =

S∑
s=1

As (5)

subject to

S∑
s=1

Yis = 1 i ∈ {1, ..., N} (6)(
S∑
s=1

sYis −
S∑
s=1

sYjs

)
Pij ≤ 0 i, j ∈ {1, ..., N}; i 6= j (7)

N∑
i=1

YisTim +
N∑
j=1

(XjmsFijm + ZijmnsBijmn)

 ≤ C s ∈ {1, ..., S};m,n ∈ {1, ...,M} (8)

As ≥ Yis i ∈ {1, ..., N}; s ∈ {1, ..., S} (9)

As ≥ As+1 s ∈ {1, ..., S − 1} (10)

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns ≤ 3(1− Yis + Yjs)

i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (11)

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns ≤ 3(1 + Yis − Yjs)

i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (12)

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns ≤ 3(Yis + Yjs)

i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (13)

5

Pij (Yis + Yjs − 1) ≤ wijs i, j ∈ {1, ..., N} : i 6= j; s ∈ {1, ..., S} (14)

wiis = 0 i ∈ {1, ..., N}; s ∈ {1, ..., S} (15)

(wiks + wkjs − 1 ≤ wijs) i, j, k ∈ {1, ..., N} : i 6= j 6= k; s ∈ {1, ..., S} (16)∣∣∣∣∣∣
N∑
k=1

N∑
l=1

wkls −
N∑

j|j<i

j

∣∣∣∣∣∣ ≤ N
∣∣∣∣∣i−

N∑
p=1

Yps

∣∣∣∣∣ i ∈ {1, ..., N}; s ∈ {1, ..., S} (17)

N∑
j=1

S∑
s=1

Xijms ≤ 1 i ∈ {1, ..., N};m ∈ {1, ...,M} (18)

Xijms +Xjims ≤ 1 i, j ∈ {1, ..., N} : i 6= j;m ∈ {1, ...,M}; s ∈ {1, ..., S} (19)

S∑
s=1

Xiims = 0 i ∈ {1, ..., N};m ∈ {1, ...,M} (20)

N∑
i=1

N∑
j=1

Zijmns ≤ 1 m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (21)

Xijms ≤ 1− Zijmns i, j ∈ {1, ..., N} : i 6= j;m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (22)

(YisQim + YjsQjn − 1)−

(
N∑
k=1

(wiksQkm)

)
−

∣∣∣∣∣
N∑
l=1

(YlsQln)−
N∑
p=1

(wjpsQpn)− 1

∣∣∣∣∣ ≤ Zijmns
i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (23)

(YisQim + YjsQjm − 1)−

∣∣∣∣∣
N∑
k=1

(wiksQkm)−
N∑
l=1

(wjlsQlm)− 1

∣∣∣∣∣ ≤ Xijms

i, j ∈ {1, ..., N} : i 6= j;m ∈ {1, ...,M}; s ∈ {1, ..., S}. (24)

The objective function (5) of the IP model minimizes the total number of active workstations. Con-

straint set (6) assigns each task to exactly one workstation. Constraint set (7) guarantees that a task

can only be assigned to a workstation s if all of its predecessors are assigned to a workstation preceding s

on the line or to workstation s. The workload of a workstation, expressed by the summation of the task

processing times and the setup times, must not exceed a pre-determined cycle time for all models being

assembled in that workstation. This capacity restriction is provided by the constraint set (8). Constraint

set (9) allows the model to identify the active workstations. Constraints (10) ensure that the active

workstations are in an ordered sequence. Constraint sets (11), (12) and (13) order tasks and assign setup

operations between them if they are assigned to the same workstation. Any two tasks have to be ordered

within a workstation due to their precedence relations which is ensured by constraints (14). Constraint

set (15) prevents ordering a task with itself. The set of constraints (16) determines the proper orderings

within any three tasks, i.e., if task i has been performed before task k and task k has been performed

before task j, then task i would be performed before task j. The number of necessary performing orders

between tasks in any workstation is calculated by the constraint set (17). The set of constraints (18)

guarantees that each task in any workstation would have at most one immediate successor. It is possible

to do only one forward setup operation between any pair of tasks due to constraints (19) and there would

not be any forward setup operation between any task and itself due to constraints (20). Constraint set

6

(21) ensures that each workstation would have just one backward setup operation. If a backward setup

operation has been assigned between any tasks pair then there would not be any forward setup opera-

tion, which is modeled by constraints (22). Finally, constraints (23) and (24) determine the backward

and forward setup operations in any workstation, respectively. We note that the constraints (17), (23)

and (24) are semi-linear due to the absolute value. A way of linearising these constraints are given in

Appendix B. The formulation defined by (5)–(24) will be henceforth be referred to as IP.

4 A Benders Decomposition Algorithm

Benders Decomposition [7] is based on reformulating the original problem as a so-called master

problem (MP) that has an exponential number of cuts, which are initially relaxed and separated in an

iterative fashion using a so-called slave (or sub) problem. Benders Decomposition iterates between the

master and slave problems until an optimal solution is identified.

Benders Decomposition and its variants have been successfully used to solve combinatorial opti-

mization problems such as network design, mixed-integer linear programming, travelling salesman, strip

packing problem. The application of Benders Decomposition to solve ALBPs is scarce, and the only

studies we are aware of are [15] and [16], but they consider different problems to what we study here.

Given a mixed-integer linear program P : min{cT y+ dTx : Ay+Bx ≥ b, y ≥ 0, x ∈ X} the BDA first

fixes x̄ ∈ X, and then solves the slave problem SP : min{cT y : Ay ≥ b−Bx̄, y ≥ 0}, or alternatively the

dual slave problem SD : max{uT (b − Bx̄) : uTA ≤ c, u ≥ 0}. If SP has an optimal solution ū, then an

optimality cut in the form of z ≥ ūT (b−Bx) is constructed. If SP is unbounded, a feasibility cut in the

form of 0 ≥ ūT (b−Bx) is formed. Both are gradually and iteratively introduced into the MP . However,

the situation is different if SP is not a continuous problem, as is the case in our application.

In this work, we use the feasibility-seeking variant of the decomposition algorithm proposed by Benders

[7] to solve the model (5)–(24). As stated by Côté et al., [11], for a special case of P where c = 0, the

slave SP can be used as a feasibility check on the system {Ay + Bx̄ ≥ b, y ≥ 0}. In particular, if x̄ is

not a feasible solution for at least one variable xj causing infeasibility, then this variable must take a

different value from x̄j . This condition can be modelled using a linear constraint and added to the MP .

Some implementations look for the possible minimal subsets of variables that induce infeasibility in SP

and derive a cut from these subsets rather than adding a cut containing all the x variables [11]. Such

constraints are called combinatorial Benders cuts by [10], which do not require that SP is continuous.

Otherwise, if x̄ is a feasible solution for SP , then it is feasible and optimal for P .

We reformulate the MMALBPS by projecting variables wijs, Xijms and Zijmns out of formulation

(5)–(24) yielding the following master problem that only models the assignment problem of the assembly

lines.

MP (Initial): Objective function (5)

subject to

Constraints (6), (7), (4), (9) and (10).

Here the constraint set (10) is not necessary, but is used as it reduces the solution time of the model

7

significantly. The main reason is that it acts as symmetry-breaking constraint. A computational analysis

on the effect of this set of constraints will be given in Section 5.2.

The proposed algorithm is based on the observation that MMALBPS can be formulated by using two

sets of assignment (Yis and As) and one set of sequencing (wijs) variables. Two other sets of variables

(Xijms and Zijmns) are then used to determine the necessary setup operations between the tasks of

the models assembled on the same line. In other words, the model first assigns the tasks to the active

workstations and then determines the setup operations in each workstation by sequencing the tasks

assigned to the related workstation.

We start by solving the MP (Initial) to identify a solution (Ȳ , Ā) = {(Ȳ11, . . . , ȲNS), (Ā1, . . . , ĀS)},

which induces a slave problem to check for feasibility of (Ȳ , Ā). The slave problem SPs(Ȳ , Ā) decomposes

for each workstation s ∈ {1, ..., S} such that Ās ≥ 0, and is shown below.

Minimize OBJ2 =

N∑
i=1

ȲisTim +

N∑
j=1

(XjmsFijm + ZijmnsBijmn)

 (25)

subject to

Constraints (11)–(16) with Y = Ȳ and A = Ā

N∑
k=1

N∑
l=1

wkls =

N∑
j|j<

∑N
p=1 Ȳps

j i ∈ {1, ..., N} (26)

Constraints (18)–(24) with Y = Ȳ and A = Ā.

The SPs(Ȳ , Ā) is a sequencing problem, in particular it is a precedence constrained traveling salesman

problem [13] that is known to be NP-Hard. If SPs(Ȳ , Ā) returns a feasible solution for all the used

workstations, then an optimal solution of the original problem is obtained. Otherwise, the slave problem

returns an infeasibility for at least one of the workstations, for which the following group of feasibility

cuts is added to the master problem.

Cutsu ≡


N∑

i=1|Ȳis=1

Yiu ≤

(
N∑
i=1

Ȳis

)
− 1

 ∀u ∈ {1, ..., S} : SPs(Ȳ , Ā) is infeasible, (27)

where Cutsu is all the cuts that would be added to the MP originating from the infeasible slave problems

at each iteration. The group of feasibility cuts (27) relate to a set of tasks that are assigned to a

workstation in a given solution (Ȳ , Ā) and are infeasible with respect to the capacity constraint. The set

Cutsu contains S cuts, one for each workstation s ∈ {1, ..., S}, forbidding such tasks to be assigned to any

of these workstations. The algorithm iterates in a similar way, where the master problem MP (Initial),

augmented with infeasibility cuts at a given iteration, takes the following form.

8

MP (Cutset): Minimize OBJ3 =

S∑
s=1

As (28)

subject to

S∑
s=1

Yis = 1 i ∈ {1, ..., N} (29)(
S∑
s=1

sYis −
S∑
s=1

sYjs

)
Pij ≤ 0 i, j ∈ {1, ..., N} (30)

N∑
i=1

(YisTim) ≤ C s ∈ {1, ..., S};m ∈ {1, ...,M} (31)

As ≥ Yis i ∈ {1, ..., N}; s ∈ {1, ..., S} (32)

As ≥ As+1 s ∈ {1, ..., S − 1} (33)

Cutc ∈ Cutset c ∈ {1, ..., |Cutset|}, (34)

where Cutset is the set of all feasibility cuts. A pseudo-code of the proposed Benders Decomposition

Algorithm (BDA) is given in Algorithm 1.

Algorithm 1 Benders Decomposition Algorithm (BDA) for the MMALBPS

1: [MP] : Master Problem; Cutset: Set of generated feasibility cuts; AS: Number of Active Stations;

counter and control: User defined variables

2: Initialization: Cutset = ∅, control← 0

3: Start

4: While (control == 0)

5: counter ← 0

6: AS ← 0

7: Solve MP (Cutset). Let the solution be (Ȳ , Ā)

8: For s ∈ {1, ..., S}

9: If (Ās == 1)

10: AS ← AS + 1

11: Solve
[
SPs(Ȳ , Ā)

]
. Let the optimal value be OBJSPs

2

12: If (OBJSPs
2 > C)

13: Cutset← Cutset ∪ {Cutsu}

14: Else

15: counter ← counter + 1

16: End For

17: If (counter == AS)

18: Report AS as the objective function value of the optimal solution of the original problem

19: control← 1

20: End While

21: End

9

In [10], the authors suggest the use of minimal infeasible subsystems (MIS) in generating combinatorial

Benders cuts, which are identified using a linear and continuous slave problem. However, the slave problem

we use in this paper is an integer program, to which the approach described in [10] to find a MIS does

not necessarily apply. For a given solution to our slave problem SPs(Ȳ , Ā) that yields an infeasible

solution (Ȳ , Ā), it is possible to identify a MIS by solving another integer programming formulation. The

formulation would be similar to that of a prize-collecting and precedence constrained traveling salesman

problem, obtained by relaxing the assignment constraints (6) in SPs(Ȳ , Ā) to ensure that at least one

task from within an infeasible set is chosen, and by introducing a new set of constraints which ensures

that the selected tasks are infeasible with respect to the capacity constraint. However, this would require

solving another NP-Hard problem at each iteration and slow down the algorithm. Given the satisfactory

computational results reported in Section 5, we chose not to implement the MIS strategy.

5 Computational Study

This section presents a computational study, in three parts, to assess the performance of the proposed

algorithm. In the first part, we describe the way in which the instances are generated. The second part

analyses the effect of the symmetry-breaking constraint set (10) on the computational run time of the

algorithm. The third part presents results to numerically compare the IP and the BDA on the instances.

5.1 Instance generation

There is no standard set of benchmark instances with setup times available in the assembly line

balancing literature. For that reason, we construct a set of test instances partly based on the literature,

as shown in Table 2, for which the operation and setup times were randomly generated in the same way

as in [2] and [3]. For instances numbered 7–24 and 28–30 the precedence diagrams were taken from the

existing literature. The precedence diagrams for the other test instances numbered 1–6, 25–27 and 31–57

were taken from http://alb.mansci.de/. The main characteristics of the test instances are presented in

Table 2 where N , OS, M , and C denote the number of tasks in the precedence diagram, the order strength

of the precedence diagrams, the number of models, and cycle time of the assembly line, respectively. The

OS is a measure based on the structure of the precedence diagram and indicative of the computational

time required by the solution algorithms as stated by Otto et al. [19]. The higher the OS value, the

algorithm requires less time to solve the problem to optimality. The test instances that we used in this

current paper have OS values vary between 22 and 84. As Table 2 shows, a total of 57 instances were

considered in this study with up to three models. We will use the numbering shown in the last three

columns of this table to refer to a particular instance in the rest of this section. All tests presented in

this section have been conducted on a personal computer running on a Core(TM) i7-2640 CPU with 2.80

GHz speed. All models and subproblems have been solved using GUROBI 6.0. A time limit of one hour

has been imposed on each run of the algorithm and the model.

10

Table 2: Main characteristic of the test problems

Instance No

Problem Name\Source N OS C Single Model (M=1) Two Models (M=2) Three Models (M=3)

Bowman 8 75.00 10 1 20 39

Jackson 11 58.18 10 2 21 40

Ponnambalam et al. [22] 12 69.70 10 3 22 41

Simaria and Vilarinho [26] 14 54.95 10 4 23 42

Buckhin et al. [8] 15 49.52 10 5 24 43

Goncalves and Almeida [12] 16 59.17 10 6 25 44

Su and Lu [27] 17 32.35 10 7 26 45

Thomopoulos [28] 19 25.73 10 8 27 46

Mitchell 21 70.95 10 9 28 47

Vilarinho and Simaria [30] 25 61.00 10 10 29 48

Heskiaoff 28 22.49 10 11 30 49

Buxey 29 50.74 10 12 31 50

Sawyer 30 44.83 10 13 32 51

Lutz1 32 83.47 10 14 33 52

Gunther 35 59.50 10 15 34 53

Kilbridge 45 44.55 10 16 35 54

Hahn 53 83.82 10 17 36 55

Warnecke 58 59.10 10 18 37 56

Tonge 70 59.42 10 19 38 57

5.2 Analysis on the effect of the symmetry-breaking constraint set

As stated above, the constraint set (10) is not an inequality that is not necessary to define the set of

integer solutions to the problem, but was introduced as a valid inequality to be able to reduce the CPU

time of the algorithm. To numerically confirm whether this is the case, some experiments are conducted

by running the MP (Initial) with and without the constraint set (10) on a subset of the test instances.

The results are given in Table 3. The feasible solutions given in the third and seventh columns of Table 3

are the objective values of the best solution found by MP (Initial) after one hour. The gap values given

in the fourth and eighth columns of Table 3 are the percentage differences between the best solutions

found by MP (Initial) and the lower bound value calculated by the solver for the problem.

11

Table 3: Analysis on the Effect of the Symmetry-Breaking Constraint Set

Instance No

Without Constraint Set (10) With Constraint Set (10)

Opt. Value Feasible Sol.
Gap CPU

Opt. Value Feasible Sol.
Gap CPU

(%) (seconds) (%) (seconds)

5 7 - 0 6.58 7 - 0 0.15

11 16 - 0 80.78 16 - 0 16.25

17 - 30 10.6 3600.00 30 - 0 162.98

24 7 - 0 0.35 7 - 0 0.07

30 - 14 8.06 3600.00 14 - 0 2.34

36 - 32 15.6 3600.00 32 - 0 66.92

43 10 - 0 0.06 10 - 0 0.05

49 13 - 0 1.28 13 - 0 1.16

55 - 34 22.7 3600.00 34 - 0 157.28

Average CPU Time 1609.89 45.24

As can be seen from Table 3, the constraint set (10) has a significant effect on reducing the CPU

time as the problem size gets larger. For some cases the MP (Initial) cannot identify an optimal solution

without the constraint set (10), however the incumbent solution found by the MP (Initial) is the same

as the optimum solution. These results confirm the effectiveness of the constraint set (10) on the CPU

time, and for this reason they will be included in the tests in remainder of this section.

5.3 Performance evaluation of the proposed Benders decomposition algo-

rithm

This part of the computational analysis concerns the performance evaluation of the BDA and the

IP on the test bed of instances listed in Table 2 in terms of solution time. The BDA is coded in visual

studio C# 2012 and allowed to run for a maximum of one hour for comparison purposes. The results

are presented separately in Tables 4, 5 and 6 for the single, two and three-model instances, respectively,

for both the IP and the BDA. The columns of the tables are self-explanatory. The tables also report

the average solution time for those instances that were solved to optimality by both methods in the row

named Average, and the number of such instances over the total of 19 instances in row named Ratio.

Additionally, the tables contains the average solution times (AvgCPU) for SP and MP , and the number

of added feasibility cuts (NFC) for each instance.

12

Table 4: Computational results for single model problems

Instance No

IP BDA

Optimum Value
CPU

Optimum Value
CPU AvgCPU (seconds)

NFC
(seconds) (seconds) SP MP

1 7 0.21 7 0.11 0.001 0.103 0

2 7 5.19 7 0.49 0.001 0.237 22

3 8 3.07 8 0.42 0.001 0.202 12

4 10 11.35 10 0.64 0.001 0.150 56

5 7 181.42 7 0.66 0.001 0.157 75

6 9 30.96 9 0.79 0.001 0.386 16

7 13 358.45 13 1.37 0.001 0.672 17

8 13 481.62 13 11.04 0.001 3.666 38

9 14 46.22 14 0.26 0.001 0.246 0

Average 124.28 1.75

10

Out of Memory

13 3.06 0.001 0.752 150

11 17 7.32 0.001 3.643 140

12 16 14.65 0.001 3.646 290

13 20 565.51 0.001 141.358 120

14 19 25.15 0.001 12.556 64

15 25 7.92 0.001 1.955 105

16 29 435.51 0.001 87.073 405

17 31 875.63 0.001 218.877 318

18 34 2431.86 0.001 243.152 1334

19 36* 3600.00 - - -

Ratio 9/19 18/19

*Best value found by master model after 1 hour

As can be seen from Table 4, BDA is able to solve 18 out 19 instances to optimality for the single

model instances within an hour of computation time, while the IP is only able to solve nine. There is

only one instance, for which the BDA could not identify an optimum solution, and for which we instead

report the value of the best solution for this problem after one hour. The average computational time

for instances 1–9 is 124.28 seconds for the IP and 1.75 seconds for the BDA.

13

Table 5: Computational results for two model problems

Instance No

IP BDA

Optimum Value
CPU

Optimum Value
CPU AvgCPU (seconds)

NFC
(seconds) (seconds) SP MP

20 7 0.68 7 0.17 0.001 0.050 16

21 8 6.04 8 0.14 0.001 0.132 0

22 7 3.78 7 0.11 0.001 0.103 0

23 8 112.56 8 0.13 0.001 0.122 0

24 7 201.98 7 0.44 0.001 0.213 30

25 9 83.20 9 2.18 0.001 1.081 32

26 9 1194.13 9 0.32 0.001 0.098 51

27 12 183.50 12 1.03 0.001 0.194 114

28 12 513.61 12 0.25 0.001 0.238 0

Average 255.50 0.53

29

Out of Memory

16 1.11 0.001 0.539 25

30 14 26.38 0.001 5.262 336

31 13 19.52 0.001 2.427 232

32 20 10.18 0.001 3.373 120

33 18 5.42 0.001 2.692 96

34 17 38.99 0.001 6.481 280

35 27 256.51 0.001 28.474 675

36 34 430.83 0.001 71.771 795

37 31 1145.80 0.001 163.655 928

38 39* 3600.00 - - -

Ratio 9/19 18/19

*Best value found by master model after 1 hour

Similar to the previous table, Table 5 shows that the BDA is able to identify optimal solutions for 18

out of 19 instances, while the IP is able to only solve nine problems to optimality. The faster solution

times of the BDA can also be seen from Table 5, in particular it highly outperforms the IP with an

average solution time of 0.53 seconds, as compared with that of the latter which is 255.50 seconds.

14

Table 6: Computational results for three model problems

Instance No

IP BDA

Optimum Value
CPU

Optimum Value
CPU AvgCPU (seconds)

NFC
(seconds) (seconds) SP MP

39 5 2.05 5 0.08 0.001 0.075 0

40 8 31.53 8 0.25 0.001 0.242 11

41 7 32.82 7 0.13 0.001 0.123 0

42 11 67.66 11 0.31 0.001 0.144 28

43 10 513.65 10 0.18 0.001 0.170 0

44 12 255.89 12 0.81 0.001 0.393 16

45 11 1153.99 11 2.86 0.001 0.942 51

46 14 736.79 14 0.24 0.001 0.226 0

Average 349.30 0.61

47

Out of Memory

10 0.71 0.001 0.108 189

48 17 2.40 0.001 2.383 0

49 13 9.24 0.001 1.835 252

50 18 76.23 0.001 25.392 58

51 20 7.96 0.001 2.633 120

52 24 40.44 0.001 40.416 0

53 22 204.79 0.001 102.373 35

54 21 446.22 0.001 49.559 900

55 34 300.59 0.001 150.261 212

56 31* 3600.00 - - -

57 39* 3600.00 - - -

Ratio 8/19 17/19

*Best value found by master model after 1 hour

For three model instances, the BDA is able to yield optimal solutions for 17 out 19 instances, while

IP is able to solve eight problems to optimality, as shown in Table 6. Here we conclude that the BDA is

superior to the IP in terms of solution time, since the average solution computational time for instances

39–46 is 349.30 seconds for the latter and 0.61 seconds for the former.

As can be seen from Tables 4, 5 and 6, the proposed algorithm is able to solve the instances with

up to 58 tasks for the single model and two model instances, and up to 53 tasks for the three model

case. The computational times show the efficiency of the BDA, in particular that the optimal solutions

were identified for 42 out of 57 instances in less than one minute. The algorithm solved 53 instances to

optimality within the pre-defined maximum computational time of one hour. For the other four instances

numbered 19, 38, 56 and 57, the algorithm was not able to find optimal solutions within one hour. As

far as the OS measure is concerned, the efficiency of the BDA is particularly evident in solving instances

with lower OS values to optimality in short time scales.

On the other hand, the IP found optimal solutions for the single and two model instances with up

to 21 tasks, and for three model instances with up to 19 tasks. This is also indicative of the improved

computational capability of the IP over the previous mathematical model proposed in [2], which was only

able to optimality solve for problems with up to 12 tasks for two and three model cases.

15

6 Conclusions

In this paper, we described a Benders decomposition algorithm for single and mixed-model Type-I

assembly line balancing problems with setups. First, we improved a previously proposed mixed-integer

programming formulation for the MMALBP by reducing the number of bigM constraints used. The

model contains the assignment subproblem of the assembly lines and the sequencing subproblem related

to the sequence dependent setup times between tasks. By exploiting this structure we devised a Benders

decomposition algorithm, which solves the assignment subproblem as a master problem and the sequenc-

ing subproblem as a slave problem in order to generate combinatorial Benders cuts. The performance

of the proposed algorithm was tested on a set of literature-based benchmark instances and the results

are compared against a mixed-integer linear programming formulation of the problem solved using an

off-the-shelf optimizer. The results confirm the superior performance of the proposed algorithm in terms

of computational time.

Acknowledgement

This research project was partially supported by the Scientific and Technological Research Council

of Turkey (TÜBİTAK). While writing this paper, Dr. Sener Akpinar was a visiting researcher at the

Southampton Business School at the University of Southampton.

References

[1] S. Akpinar, G. M. Bayhan, and A. Baykasoglu. Hybridizing ant colony optimization via genetic

algorithm for mixed-model assembly line balancing problem with sequence dependent setup times

between tasks. Applied Soft Computing, 13(1):574–589, 2013.

[2] S. Akpinar and A. Baykasoglu. Modeling and solving mixed-model assembly line balancing problem

with setups. Part I: A mixed integer linear programming model. Journal of Manufacturing Systems,

33(1):177–187, 2014.

[3] S. Akpinar and A. Baykasoglu. Modeling and solving mixed-model assembly line balancing problem

with setups. Part II: A multiple colony hybrid bees algorithm. Journal of Manufacturing Systems,

33(4):445–461, 2014.

[4] C. Andres, C. Miralles, and R. Pastor. Balancing and scheduling tasks in assembly lines with

sequence-dependent setup times. European Journal of Operational Research, 187(3):1212–1223, 2008.

[5] O. Battäıa and A. Dolgui. Reduction approaches for a generalized line balancing problem. Computers

& Operations Research, 39(10):2337–2345, 2012.

[6] O. Battäıa and A. Dolgui. A taxonomy of line balancing problems and their solution approaches.

International Journal of Production Economics, 142(2):259–277, 2013.

16

[7] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-

merische Mathematik, 4(1):238–252, 1962.

[8] J. Bukchin, E. M. Dar-El, and J. Rubinovitz. Mixed model assembly line design in a make-to-order

environment. Computers & Industrial Engineering, 41(4):405–421, 2002.

[9] Y. Bukchin and I. Rabinowitch. A branch-and-bound based solution approach for the mixed-model

assembly line-balancing problem for minimizing stations and task duplication costs. European Jour-

nal of Operational Research, 174(1):492–508, 2006.

[10] G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer linear programming.

Operations Research, 54(4):756–766, 2006.

[11] J.-F. Côté, M. Dell’Amico, and M. Iori. Combinatorial Benders’ cuts for the strip packing problem.

Operations Research, 62(3):643–661, 2014.

[12] J. F. Gonçalves and J. R. De Almeida. A hybrid genetic algorithm for assembly line balancing.

Journal of Heuristics, 8(6):629–642, 2002.

[13] L. Gouveia and P. Pesneau. On extended formulations for the precedence constrained asymmetric

traveling salesman problem. Networks, 48(2):77–89, 2006.

[14] N. Hamta, S. F. Ghomi, F. Jolai, and M. A. Shirazi. A hybrid PSO algorithm for a multi-objective

assembly line balancing problem with flexible operation times, sequence-dependent setup times and

learning effect. International Journal of Production Economics, 141(1):99–111, 2013.

[15] Ö. Hazır and A. Dolgui. Assembly line balancing under uncertainty: Robust optimization models

and exact solution method. Computers & Industrial Engineering, 65(2):261–267, 2013.

[16] Ö. Hazır and A. Dolgui. A decomposition based solution algorithm for u-type assembly line balancing

with interval data. Computers & Operations Research, 59:126–131, 2015.

[17] L. Martino and R. Pastor. Heuristic procedures for solving the general assembly line balancing

problem with setups. International Journal of Production Research, 48(6):1787–1804, 2010.

[18] E. Nazarian, J. Ko, and H. Wang. Design of multi-product manufacturing lines with the consideration

of product change dependent inter-task times, reduced changeover and machine flexibility. Journal

of Manufacturing Systems, 29(1):35–46, 2010.

[19] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution algorithms

on the example of salbpgen for assembly line balancing. European Journal of Operational Research,

228(1):33–45, 2013.

[20] U. Özcan and B. Toklu. Balancing two-sided assembly lines with sequence-dependent setup times.

International Journal of Production Research, 48(18):5363–5383, 2010.

17

[21] R. Pastor, C. Andrés, and C. Miralles. Corrigendum to “balancing and scheduling tasks in assembly

lines with sequence-dependent setup”[european journal of operational research 187 (2008) 1212–

1223]. European Journal of Operational Research, 201(1):336, 2010.

[22] S. Ponnambalam, P. Aravindan, and G. M. Naidu. A comparative evaluation of assembly line

balancing heuristics. The International Journal of Advanced Manufacturing Technology, 15(8):577–

586, 1999.

[23] A. Scholl, N. Boysen, and M. Fliedner. The sequence-dependent assembly line balancing problem.

OR Spectrum, 30(3):579–609, 2008.

[24] A. Scholl, N. Boysen, and M. Fliedner. The assembly line balancing and scheduling problem with

sequence-dependent setup times: problem extension, model formulation and efficient heuristics. OR

Spectrum, 35(1):291–320, 2013.

[25] S. Seyed-Alagheband, S. F. Ghomi, and M. Zandieh. A simulated annealing algorithm for balancing

the assembly line type II problem with sequence-dependent setup times between tasks. International

Journal of Production Research, 49(3):805–825, 2011.

[26] A. S. Simaria and P. M. Vilarinho. 2-antbal: An ant colony optimisation algorithm for balancing

two-sided assembly lines. Computers & Industrial Engineering, 56(2):489–506, 2009.

[27] P. Su and Y. Lu. Combining genetic algorithm and simulation for the mixed-model assembly line

balancing problem. In Natural Computation, 2007. ICNC 2007. Third International Conference on,

volume 4, pages 314–318. IEEE, 2007.

[28] N. T. Thomopoulos. Mixed model line balancing with smoothed station assignments. Management

Science, 16(9):593–603, 1970.

[29] N. T. Thomopoulos. Assembly line planning and control. Switzerland. Springer, 2014.

[30] P. M. Vilarinho and A. S. Simaria. A two-stage heuristic method for balancing mixed-model assembly

lines with parallel workstations. International Journal of Production Research, 40(6):1405–1420,

2002.

[31] A. Yolmeh and F. Kianfar. An efficient hybrid genetic algorithm to solve assembly line balancing

problem with sequence-dependent setup times. Computers & Industrial Engineering, 62(4):936–945,

2012.

18

Appendix A The MILP Model Proposed in [2]

Table A.1: Model notation and their definitions

Notation Definition

I
n
d
ic
es

N Total number of tasks

M Total number of models simultaneously assembled at the line

WS Maximum number of workstations

i Set of tasks; i ∈ {1, 2, ..., N}

s Set of stations; s ∈ {1, 2, ...,WS}

m,n Set of models; m,n ∈ {1, 2, ...,M}

P
a
r
a
m
et
er
s

C Cycle time

maxp Maximum number of replicas for a workstation (Set as 2)

α A pre-defined proportion (α%) of the cycle time

bigM A very large number

Ti Processing time of task i on model m

TTim ∈ {0, 1} Equals 1 if processing time of task i is greater than zero for model m and 0 otherwise

FSTijm Forward set-up time between task i and j on model m

BSTijmn Backward set-up time between task i of model n and task j of model m

PRij ∈ {0, 1} Equals 1 if task i must precede task j and 0 otherwise

ZPij ∈ {0, 1} Equals 1 if task i and task j must be assigned to the same workstation and 0 otherwise

ZNij ∈ {0, 1} Equals 1 if task i and task j must be assigned to different workstations and 0 otherwise

D
ec
is
io
n
V
a
r
ia
bl
es

Yis ∈ {0, 1} Equals 1 if task i is assigned to workstation s and 0 otherwise

As ∈ {0, 1} Equals 1 if station s is active, 0 otherwise

Rsm ∈ {0, 1} Equals 1 if workstation s is duplicated due to modelm and 0 otherwise

Rs ∈ {0, 1} Equals 1 if workstation s is duplicated and 0 otherwise

wijs ∈ {0, 1} Equals 1 if task i precede task j at workstation s and 0 otherwise

FSijms ∈ {0, 1} Equals 1 if task j directly follows task i on model m in the forward direction in workstation

s and 0 otherwise

BSijmns ∈ {0, 1} Equals 1 if i is the last task of model n and j is the first task of model m in workstation s

and 0 otherwise

NWS Total number of workstations including replicas

Minimize NWS =

WS∑
s=1

(Rs +As) (A.1)

subject to

WS∑
s=1

Yis = 1 i ∈ {1, ..., N} (A.2)

19

bigM(1− YisPRij) +

WS∑
t|t≥s

Yjt ≥ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.3)

Yjs + bigM(1− (YisZPij)) ≥ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.4)

Yjs − bigM(1− (YisZNij)) ≥ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.5)

Rsm − bigM
N∑

i|(Tim>αC)

Yis ≤ 0 s ∈ {1, ...,WS};m ∈ {1, ...,M} (A.6)

Rsm ≥ Yis i ∈ {1, ..., N}|Tim > αC; s ∈ {1, ...,WS};m ∈ {1, ...,M} (A.7)

Rs − bigM
M∑
m=1

Rsm ≤ 0 s ∈ {1, ...,WS} (A.8)

Rs ≥ Rsm s ∈ {1, ...,WS};m ∈ {1, ...,M} (A.9)

wiis = 0 i ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.10)

wijs + wjis + bigM(2− Yis − Yjs) ≥ 1 i, j ∈ {1, ..., N}|i 6= j; s ∈ {1, ...,WS} (A.11)

wijs + wjis − bigM(2− Yis − Yjs) ≤ 1 i, j ∈ {1, ..., N}|i 6= j; s ∈ {1, ...,WS} (A.12)

wijs + bigM(3− Yis − Yjs − PRij) ≥ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.13)

wijs + bigM(2− wiks − wkjs) ≥ 1 i, j, k ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.14)

N∑
i=1

N∑
j=1

wijs =

N∑
i|(i<

∑N
k=1 Yks)

i s ∈ {1, ...,WS} (A.15)

FSijms +BSijmns − bigM(TTimTTjn) ≤ 0 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.16)

FSijms − bigM(1−BSijmns) ≤ 0 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.17)

N∑
j=1

WS∑
s=1

FSijms ≤ 1 i ∈ {1, ..., N};m ∈ {1, ...,M} (A.18)

FSijms + FSjims ≤ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m ∈ {1, ...,M} (A.19)

WS∑
s=1

FSiims = 0 i ∈ {1, ..., N};m ∈ {1, ...,M} (A.20)

FSijms + bigM(4− Yis − Yjs − TTim − TTjm) + bigM

∣∣∣∣∣
N∑
k=1

(wiksTTkm)−
N∑
l=1

(wjlsTTlm)− 1

∣∣∣∣∣ ≥ 1

i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m ∈ {1, ...,M} (A.21)

wijs + wjis + FSijms + FSjims +BSijmns +BSjimns − bigM(1− Yis + Yjs) ≤ 0

i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.22)

wijs + wjis + FSijms + FSjims +BSijmns +BSjimns − bigM(1 + Yis − Yjs) ≤ 0

i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.23)

wijs + wjis + FSijms + FSjims +BSijmns +BSjimns − bigM(Yis + Yjs) ≤ 0

i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.24)

20

N∑
i=1

N∑
j=1

BSijmns ≤ 1 s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.25)

BSijmns + bigM(4− Yis − Yjs − TTin − TTjm) + bigM

(
N∑
t=1

(witsTTtn)

)
+

bigM

∣∣∣∣∣
N∑
l=1

(YlsTTlm)−
N∑
k=1

(wjksTTjm)− 1

∣∣∣∣∣ ≥ 1

i, j ∈ {1, ..., N}; s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.26)

N∑
i=1

YisTim +

N∑
j=1

(FSijmsFSTijm +BSijmnsBSTijmn)

 ≤ C(1 +Rs(maxp− 1))

s ∈ {1, ...,WS};m,n ∈ {1, ...,M} (A.27)

As + bigM(1− Yis) ≥ 1 i, j ∈ {1, ..., N}; s ∈ {1, ...,WS} (A.28)

As − bigM
N∑
i=1

Yis ≤ 0 s ∈ {1, ...,WS} (A.29)∣∣∣∣∣
(

u∑
s=1

As

)
− u

∣∣∣∣∣− bigM(1−Au) ≤ 0 u ∈ {1, ...,WS}. (A.30)

The objective function (A.1) minimizes the total number of activated workstations included replicas.

Constraint set (A.2) ensures the assignment of each task to exactly one workstation. Constraint set (A.3)

guarantees the precedence relations among tasks. Constraint sets (A.4) and (A.5) are used to force and

forbid the assignment of different tasks into the same workstation, respectively. Constraint sets (A.6),

(A.7), (A.8) and (A.9) parallel a workstation if it performs a task with processing time larger than a

certain proportion (α%) of the cycle time for at least one the models. Constraint sets (A.10), (A.11),

(A.12), (A.13) (A.14) and (A.15) are used to determine tasks processing orders within each workstation.

Constraint set (A.16), (A.17), (A.18), (A.19), (A.20) (A.21), (A.22), (A.23), (A.24), (A.25) and (A.26)

used to determine the necessary setup operations between tasks within each workstation. Constraint

set (A.27) ensures that the workload of a workstation does not exceed the pre-defined cycle time for all

models being assembled on the line. Constraint sets (A.28), (A.29) and (A.30) used to determine the

activated workstations.

21

Appendix B Linearization of the Semi-Linear Constraints

The absolute value function is a semi-linear function used in constraint sets (17), (23) and (24) into

two different forms. Table B.1 provides these forms and the transformation of absolute value function for

these forms that we used in the proposed mathematical model.

Table B.1: Forms of converting absolute value constraints into linear constraints

Constraints Forms
Form (1) Form (2)

x−BigM |a− b| ≤ 0 |x− y| − bigM |a− b| ≤ 0

Transformed to

x− bigM(p+ q) ≤ 0 (p′ + q′)−BigM(p+ q) ≤ 0

a− b− p+ q = 0 x− y − p′ + q′ = 0

p− bigM(e) ≤ 0 a− b− p+ q = 0

q − bigM(1− e) ≤ 0

x, y, a, b, p, q, p′, q′ ≥ 0; e ∈ 0, 1; bigM : Sufficiently large value

Considering these two transformation methods, additional variables as stated in Table B.2 are required

to linearize the constraint sets (17), (23) and (24).

Table B.2: Auxiliary variables

Auxiliary binary variables q, p, g

Auxiliary non-negative variables g+, g−, p+, p−, z+, z−, g+, g−

∣∣∣∣∣∣
N∑
k=1

N∑
l=1

wkls −
N∑

j|j<i

j

∣∣∣∣∣∣ ≤ N
∣∣∣∣∣i−

N∑
p=1

Yps

∣∣∣∣∣ i ∈ {1, ..., N}; s ∈ {1, ..., S}. (13)

The constraint set (13) is replaced with the following three constraint sets (13-B1), (13-B2) and

(13-B3), since it has the form (2) as stated in Table B.1.

z+
is + z−is ≤ N(g+

is + g−is) i ∈ {1, ..., N}; s ∈ {1, ..., S} (13-B1)

N∑
k=1

N∑
l=1

wkls −
N∑

j|j<i

j = z+
is + z−is i ∈ {1, ..., N}; s ∈ {1, ..., S} (13-B2)

N∑
p=1

Yps − i = g+
is + g−is i ∈ {1, ..., N}; s ∈ {1, ..., S}. (13-B3)

(YisQim + YjsQjn − 1)−

(
N∑
k=1

(wiksQkm)

)
−

∣∣∣∣∣
N∑
l=1

(YlsQln)−
N∑
p=1

(wjpsQpn)− 1

∣∣∣∣∣ ≤ Zijmns
i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S}. (19)

The constraint set (19) is replaced with the following four constraint sets (19-B1), (19-B2), (19-B3)

22

and (19-B4), since it has the form (1) as stated in Table B.1 .

q+
ims − bigMqims ≤ 0 i ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S} (19-B1)

q−ims − bigM(1− qims) ≤ 0 i ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S} (19-B2)

(YisQim + YjsQjn − 1)−

(
N∑
k=1

(wiksQkm)

)
− q+

jns − q
−
jns ≤ Zijmns

i, j ∈ {1, ..., N};m,n ∈ {1, ...,M}; s ∈ {1, ..., S} (19-B3)

N∑
l=1

(YlsQln)−
N∑
p=1

(wjpsQpn)− 1 = q+
jns − q

−
jns

j ∈ {1, ..., N};n ∈ {1, ...,M}; s ∈ {1, ..., S}. (19-B4)

(YisQim + YjsQjm − 1)−

∣∣∣∣∣
N∑
k=1

(wiksQkm)−
N∑
l=1

(wjlsQlm)− 1

∣∣∣∣∣ ≤ Xijms

i, j ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S}. (20)

The constraint set (20) is replaced with the following four constraint sets (20-B1), (20-B2), (20-B3)

and (20-B4), since it has the form (1) as stated in Table B.1.

p+
ijms − bigMpijms ≤ 0 i, j ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S} (20-B1)

p−ijms − bigM(1− p−ijms) ≤ 0 i, j ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S} (20-B2)

(YisQim + YjsQjm − 1)− p+
ijms − p

−
ijms ≤ Xijms

i, j ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S} (20-B3)

N∑
k=1

(wiksQkm)−
N∑
l=1

(wjlsQlm) = p+
ijms − p

−
ijms

i, j ∈ {1, ..., N};m ∈ {1, ...,M}; s ∈ {1, ..., S}. (20-B4)

23

