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Abstract

We present a specialized network simplex algorithm for the budget-constrained minimum cost flow
problem, which is an extension of the traditional minimum cost flow problem by a second kind of costs
associated with each edge, whose total value in a feasible flow is constrained by a given budget B.
We present a fully combinatorial description of the algorithm that is based on a novel incorporation
of two kinds of integral node potentials and three kinds of reduced costs. We prove optimality criteria
and combine two methods that are commonly used to avoid cycling in traditional network simplex
algorithms into new techniques that are applicable to our problem. With these techniques and our
definition of the reduced costs, we are able to prove a pseudo-polynomial running time of the overall
procedure, which can be further improved by incorporating Dantzig’s pivoting rule. Moreover, we
present computational results that compare our procedure with Gurobi [16].
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1. Introduction

In this paper, we present a specialized network
simplex algorithm for the budget-constrained min-
imum cost flow problem. This problem embod-
ies a natural extension of the traditional mini-
mum cost flow problem (cf., e.g., [2]) by a sec-
ond kind of costs, called usage fees, which are
linear in the flow on the corresponding edge and
bounded by a given budget B. This extension al-
lows us to solve many related problems such as the
budget-constrained maximum dynamic flow prob-
lem (since each dynamic flow can be represented
as a traditional minimum cost flow (cf. [14])) or
the application of the ε-constraint method to the
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bicriteria minimum cost flow problem (cf., e.g.,
[9]).

Since it was published by Dantzig [12] (orig-
inally designed for the transportation problem),
the network simplex algorithm for the traditional
minimum cost flow problem has been improved
progressively and is widely believed to be one
of the most efficient solution methods for the
minimum cost flow problem at present (cf. [2,
pp. 451–452], [22]). Simplex-type methods usu-
ally have to cope with the risk to “get stuck”
in an infinite loop with no progress – an effect
that is referred to as cycling. However, Cun-
ningham [10] introduced the notion of strongly
feasible bases that may be used to prevent cy-
cling. While the sequence of operations with no
progress may still be exponentially large, sev-
eral authors such as Cunningham [11] and Ahuja
et al. [4] provide measurements to keep the length
of such sequences polynomially bounded. At
present, the network simplex algorithm with the
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best time complexity is due to Orlin [26] in com-
bination with the dynamic tree data structure
due to Tarjan [29] and achieves a running time of
O(nm log nmin{lognC, m log n}). Recent experi-
mental results and overviews about algorithms for
solving the standard minimum cost flow problem
can be found in [2, 22, 27].

To the best of our knowledge, the budget-
constrained minimum cost flow problem was first
investigated by Glover et al. [15], who investi-
gated a network simplex algorithm for singly con-
strained transshipment problems. The authors
use the observation that the definition of a ba-
sis structure or spanning tree structure as it is
used in network simplex methods (cf., e.g., [2, p.
408]) can be extended to the case of the budget-
constrained minimum cost flow problem. This
fact was later also mentioned by Ahuja et al. [2,
p. 460], which led to the development of the
algorithm presented in this paper. Mathies and
Mevert [24] study a combination of a specialized
network simplex algorithm and the Lagrangian re-
laxation method applied to network flow problems
with multiple constraints. Spälti and Liebling [28]
show that the satellite placement problem con-
tains a special case of constrained network flow
problems and develop a specialized network sim-
plex algorithm.

Combinatorial algorithms for the model that
we use here were investigated in Holzhauser
et al. [18], where a strongly polynomial-time algo-
rithm based on the interpretation of the problem
as a bicriteria minimum cost flow problem was
derived. In Holzhauser et al. [17], the authors
further presented an efficient weakly polynomial-
time combinatorial algorithm that performs worse
only by a logarithmic factor than the best algo-
rithm for the traditional minimum cost flow prob-
lem as well as fully polynomial-time approxima-
tion schemes for the problem.

The special case of budget-constrained trans-
portation problems was studied by Klingman and
Russell [20, 21], who present specialized net-
work simplex methods for the problem. The re-
lated budget-constrained maximum flow problem
was first studied by Ahuja and Orlin [3], who
present a weakly polynomial-time algorithm for

the problem that is based on a capacity scal-
ing variant of the successive shortest path algo-
rithm. Çalışkan [6] later showed that this al-
gorithm may not return a feasible solution in a
specific special case and presented a corrected
version of the algorithm. The same author also
presented a double scaling algorithm, a network
simplex algorithm, and a cost scaling algorithm
for the budget-constrained maximum flow prob-
lem and evaluated their empirical performance
(cf. [5, 7, 8]). In particular, he could show that
the cost scaling variant outperforms the other two
scaling variants (including the capacity scaling
algorithm of Ahuja and Orlin [3]) and that the
network simplex algorithm clearly outperforms
all known algorithms for the problem (including
CPLEX applied to the LP formulation). Krumke
and Schwarz [23] study the problem of finding a
maximum flow in the case that the capacity of
each edge can be improved using a given budget.

The specialized network simplex algorithm
published by Çalışkan [7] was developed indepen-
dently of the work in this paper and uses similar
ideas to the presented ones. However, there are
theoretical gaps left that we close with this pa-
per. In particular, we present a fully combinato-
rial description of the algorithm and investigate
its theoretical running time with respect to the
more general minimum cost flow variant of the
problem. We prove optimality criteria that are
based on two different kinds of integral node po-
tentials and three kinds of reduced costs. More-
over, we provide comprehensive techniques to pre-
vent cycling that combine two common methods
used in the case of the network simplex algorithm
for the traditional minimum cost flow problem in
a novel way. These techniques and the integral-
ity of the node potentials are the key elements
needed to prove a (pseudo-polynomial) running
time of our procedure, which embodies the first
proven running time for a network simplex algo-
rithm both for the budget-constrained maximum
flow and minimum cost flow problem. As it will
be shown, this running time can be further im-
proved by incorporating Dantzig’s pivoting rule
for choosing the edge that enters the basis. Fi-
nally, we briefly discuss the empirical performance
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of our method and provide experimental results
that compare it both to the algorithm presented
by Çalışkan [7] and to the Gurobi Solver [16].

2. Notation and Definitions

In the budget-constrained minimum cost flow
problem (abbreviated as BCMCFPR in the fol-
lowing), we are given a directed multigraph G =
(V,E) with edge capacities ue ∈ N≥0, costs ce ∈ Z

(i.e., we allow integral costs with arbitrary sign),
and usage fees be ∈ N≥0 per unit of flow on the
edges e ∈ E, as well as a budget B ∈ N≥0.
The aim is to find a feasible flow x in G that
minimizes

∑

e∈E ce · xe subject to the budget-
constraint

∑

e∈E be · xe ≤ B. In particular, we do
not assume supplies and demands to exist, but
stick to an equivalent circulation based formula-
tion in which the excess is required to be zero at
each node in V . The problem BCMCFPR can be
stated as a linear program as follows:

min
∑

e∈E

ce · xe (1a)

s.t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 ∀v ∈ V, (1b)

∑

e∈E

be · xe ≤ B, (1c)

0 ≤ xe ≤ ue ∀e ∈ E. (1d)

Here, we denote by δ+(v) (δ−(v)) the set of out-
going (incoming) edges of some node v ∈ V . The
following assumption can be easily established by
adding artificial edges with large costs and usage
fees:

Assumption 1. The underlying graph G is
strongly connected.

One consequence of Assumption 1 is that we
can assume that n ∈ O(m) holds in the follow-
ing. Furthermore, note that, since the zero-flow
is always feasible and has objective value zero in
our model, the optimal objective value of each in-
stance of BCMCFPR is always non-positive. The
problem is a generalization of the problem variant
in which a desired flow value F is given since we

can “enforce” such a flow value by adding an edge
with negative costs of large absolute value and ca-
pacity F (cf. [18] for further details).
Consider a traditional minimum cost flow with

respect to the costs c that is computed by some
state-of-the-art algorithm, for example the en-
hanced capacity scaling algorithm by Orlin [25]
running in O(m log n · (m+ n log n)) time. If the
total usage fee of this flow fulfills

∑

e∈E be ·xe ≤ B,
we have clearly found an optimal solution to the
given instance of the budget-constrained mini-
mum cost flow problem and are done. We are
particularly interested in the converse case that
the budget is exceeded for this flow, which we
will assume in the following. Note that the usage
fee amounts to at least B + 1 in this case since
the computed traditional minimum cost flow is
integral without loss of generality (cf., e.g., [2, p.
449]) and since the usage fees are integral as well:

Assumption 2. There is a minimum cost flow x
with respect to the costs c that fulfills

∑

e∈E be ·
xe ≥ B + 1.

In the following, we give insights into the notion
of basis structures in the context of BCMCFPR.
In contrast to the network simplex algorithm for
the traditional minimum cost flow problem (cf. [2,
pp. 405–407]), we need to drop the assumption
that the subgraph that is induced by basic edges
is cycle free. Instead, the basis contains a cycle
with non-zero usage fees, as it will be shown in
detail in the following.
Consider an edge e ∈ E and a partition of

the remaining edges in E \ {e} into three sets L,
T , and U . Let the edges in T form a spanning-
tree of the underlying graph G. Since there is a
unique (undirected) path between any two nodes
in the subgraph induced by T , each edge e ∈
L ∪ U ∪ {e} closes a unique (undirected) cy-
cle C(e) together with the edges in T . In the
following, for each e ∈ L ∪ U ∪ {e}, let C+(e)
(C−(e)) denote the set of edges that are oriented
in the same (opposite) direction as e in C(e).
The costs and usage fees of this cycle are then
given by c(C(e)) :=

∑

e∈C+(e) ce−
∑

e∈C−(e) ce and

b(C(e)) :=
∑

e∈C+(e) be−
∑

e∈C−(e) be, respectively.
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In particular, note that the subgraph induced
by the edges in T ∪ {e} contains a cycle C(e).
We call such a tuple (L, T, U, e) a basis struc-
ture of the budget-constrained minimum cost flow
problem if b(C(e)) 6= 0. For a given basis struc-
ture (L, T, U, e), let x denote a flow that ful-
fills xe = 0 for each e ∈ L, xe = ue for each
e ∈ U , and b(x) :=

∑

e∈E be · xe = B while main-
taining flow conservation at each node v ∈ V .
We refer to x as the basic solution corresponding
to (L, T, U, e). We use the term basis structure
instead of just basis in the following in order to
emphasize that the tree and the edge e do not
uniquely determine the corresponding basic solu-
tion (cf. Ahuja et al. [2, Chapter 11]).
As shown in [7], the basic solution of each ba-

sis structure is uniquely defined and can be ob-
tained in O(m) time: In a first step, we let xe = 0
and determine the values of all edges in T as it is
done in the traditional network simplex method
(cf. [2, pp. 413–415]). In a second step, the flow
on the cycle C(e) is then increased (or decreased)
until b(x) = B. In the following, we refer to a
basis structure (L, T, U, e) as feasible if the cor-
responding basic solution x is a feasible flow. In
this case, we also refer to the flow x as a basic
feasible flow. The described procedure yields the
following corollary:

Corollary 1. For each feasible basis struc-
ture (L, T, U, e) and its corresponding basic fea-
sible flow x, it holds that x can be decomposed
into two flows xI and xC such that x = xI + xC ,
where xI is integral and xC is non-zero (and pos-
sibly fractional) only on the edges of C(e). �

Note that Corollary 1 holds independently of
whether the budget B is integral or not (this will
be important in Section 5).
As it is well known, we are able to restrict our

considerations to such feasible basis structures
and their corresponding basic feasible flows (cf.
[2, p. 460], [15]):

Theorem 1. For each instance of BCMCFPR,
there always exists an optimal flow that is basic
feasible. �

As in the traditional network simplex algo-
rithm, we associate node potentials with each
node v ∈ V in order to be able to check op-
timality quickly. However, since we are dealing
with two kinds of costs, we maintain two differ-
ent node potentials π and µ that are defined with
respect to the edge costs ce and the usage fees be,
respectively. In particular, we define πvr := 0 and
µvr := 0 for some arbitrary but fixed node vr ∈ V ,
which we select as the root of the spanning tree.
We choose the node potentials π and µ in a way
such that the reduced costs cπe := ce − πv + πw

and bµe := be − µv + µw are zero for each edge e =
(v, w) ∈ T . With this restriction, the node po-
tentials at each node v ∈ V are uniquely defined
and can be computed in O(n) time (cf. [2, pp.
411–412] for further details).

Note that the costs c(C) and usage fees b(c)
of any cycle C equal its reduced costs cπ(C) :=
∑

e∈C cπe and reduced usage fees bµ(C) :=
∑

e∈C bµe , respectively, since the node potentials
cancel out in a circular fashion (cf. [2, pp. 43–
44]). Consequently, since the reduced costs are
zero for each edge in T , it holds that c(C(e)) = cπe
and b(C(e)) = bµe for each cycle C(e) that is closed
by some edge e /∈ T .

For a given basis structure (L, T, U, e), we addi-
tionally assign a third kind of reduced costs dπ,µe

to each edge e ∈ E in order to be able to decide if
a basic feasible flow is optimal or to detect an edge
that is able to improve the objective function1:

dπ,µe := cπe − cπe ·
bµe
bµe
. (2)

Intuitively, the reduced costs dπ,µe describe the ef-
fect that an increase of the flow on C(e) by one
unit and a decrease of the flow on C(e) by b

µ

e

b
µ

e

units

has on the objective function value. This will be
shown in the following section. Note that dπ,µe = 0
for each e ∈ T ∪ {e} since cπe = 0 and bµe = 0 for

each e ∈ T and dπ,µe = cπe − cπe ·
b
µ

e

b
µ

e

= 0.

1Remember that b
µ

e
= b(C(e)) 6= 0 in any basis struc-

ture
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3. Network Simplex Pivots

Before we describe the network simplex pivot in
the case of BCMCFPR, it is useful to first recall
the basic outline of the corresponding procedure
in the case of the traditional network simplex al-
gorithm: For a given basis structure (L, T, U) that
consists of a set of edges L at their lower bound,
a spanning tree T , and a set of edges U at their
upper bound, assume that there is an edge e ∈ L
with negative reduced costs. Adding this entering
edge e to the spanning tree T closes a unique cy-
cle C(e) with negative costs. By sending flow on
C(e) in the direction of e, we can, thus, improve
the objective function value until, for some flow
value δ, some leaving edge e′ ∈ C(e) reaches its
lower or upper bound. By assigning this edge e′ to
L or U , respectively, we obtain a new basis struc-
ture. This operation (adding an edge to T , send-
ing flow on the cycle, removing one edge from the
cycle) is called a simplex pivot. One distinguishes
between a degenerate simplex pivot if δ = 0 and a
non-degenerate simplex pivot if δ > 0. Note that
the objective function value does not increase dur-
ing a simplex pivot, but only decreases strictly in
the case of a non-degenerate simplex pivot.
Now, for a given instance of BCMCFPR, let

(L, T, U, e) and x denote a feasible basis structure
and its basic feasible flow, respectively, and let π
and µ denote the corresponding node potentials.
Assume that there is an edge e ∈ L with negative
reduced costs dπ,µe < 0. We show that we do not
increase the objective function value if we add the
then called entering edge e to T (which closes a
new cycle C(e) together with the edges in T ) and
by sending suitable amounts of flow on both of
the cycles C(e) and C(e) until the flow value on
at least one leaving edge e′ ∈ T ∪ {e, e} becomes
equal to zero or ue′. In this case, we can obtain
a new basis structure (L′, T ′, U ′, e′) and continue
the procedure.
For some value δ ≥ 0, let x′ be the flow defined

as

x′ := x+ δ · χ(C(e))− δ ·
bµe
bµe

· χ(C(e)), (3)

where, for any cycle C with forward edges C+ and

backward edges C−, the flow χ(C) is defined as

(χ(C))e :=







1, if e ∈ C+,

−1, if e ∈ C−,

0, else.

The new flow x′ fulfills b(x′) = B, since

b(x′) = b(x) + δ · b(χ(C(e)))

− δ ·
bµe
bµe

· b(χ(C(e)))

= b(x) + δ · b(C(e))− δ ·
bµe
bµe

· b(C(e))

= b(x) + δ ·

(

bµe −
bµe
bµe

· bµe

)

= b(x) = B.

Moreover, it holds that

c(x′) = c(x) + δ · c(χ(C(e)))

− δ ·
bµe
bµe

· c(χ(C(e)))

= c(x) + δ · c(C(e))− δ ·
bµe
bµe

· c(C(e))

= c(x) + δ ·

(

cπe −
bµe
bµe

· cπe

)

= c(x) + δ
︸︷︷︸

≥0

· dπ,µe
︸︷︷︸

<0

≤ c(x).

By sending a small amount of δ ≥ 0 units of flow
on C(e) and − b

µ

e

b
µ

e

· δ units of flow on C(e), we do

not increase the objective value while maintaining
feasibility. In fact, if we can choose a positive
value for δ, the objective value strictly decreases.
Let θe′ := (χ(C(e)))e′ −

b
µ

e

b
µ

e

· (χ(C(e)))e′ denote

the effect that an augmentation of one unit of
flow on C(e) and − b

µ

e

b
µ

e

units of flow on C(e) has

on edge e′ ∈ E. Moreover, let δ be defined as
δ := mine′∈E δe′ with

δe′ :=







−x
e′

θ
e′

if θe′ < 0,
u
e′
−x

e′

θ
e′

if θe′ > 0,

+∞ else.

Hence, by sending δ units of flow on C(e) and
− b

µ

e

b
µ

e

units of flow on C(e), we maintain feasibility

of the flow. Moreover, by the definition of δ, there
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are several blocking edges e′ contained in C(e) or
C(e) (or both) that fulfill δe′ = δ. We choose
one of these blocking edges as the leaving edge e′,
which consequently fulfills x′

e′ = 0 or x′
e′ = ue′.

We distinguish three cases:

• If e′ = e, we can simply remove e from L
and assign it to U . The new basis struc-
ture (L′, T ′, U ′, e′) := (L \ {e}, T, U ∪ {e}, e)
is then feasible again.

• If e′ = e, we obtain a new basis struc-
ture by setting (L′, T ′, U ′, e′) := (L ∪
{e′} \ {e}, T, U, e) or (L′, T ′, U ′, e′) := (L \
{e}, T, U ∪ {e′}, e), depending on whether
x′
e′ = 0 or x′

e′ = ue′, respectively.

• Otherwise, we remove e from L and as-
sign it to T . Moreover, we remove e′ from
T and assign it to L or U , depending on
whether x′

e′ = 0 or x′
e′ = ue′, respec-

tively, which yields the new basis struc-
ture (L′, T ′, U ′, e′) := (L∪{e′}\{e}, T ∪{e}\
{e′}, U, e) or (L′, T ′, U ′, e′) := (L \ {e}, T ∪
{e} \ {e′}, U ∪ {e′}, e), respectively. Further-
more, for the case that e is no longer con-
tained in a cycle in T ′ ∪ {e}, we assign e to
T ′, remove e from T ′, and set e′ := e.

In any case, we maintain a spanning tree T and
ensure that e closes a cycle with the edges in T .
As in the traditional network simplex algorithm,
we refer to such a step as a simplex pivot. This
pivot step is called degenerate if δ = 0 and non-
degenerate else. In the former case, we refer to
those edges with δe = 0 as degenerate edges. Note
that the objective function strictly decreases only
in the case of a non-degenerate simplex pivot.
The case that there is an edge e ∈ U with dπ,µe >

0 is similar to the above case. By decreasing the
flow on C(e) by δ units and increasing the flow on
C(e) by b

µ

e

b
µ

e

units, i.e., by setting

x′ := x− δ · χ(C(e)) + δ ·
bµe
bµe

· χ(C(e)), (4)

we maintain feasibility and improve the objective
function for the case that δ > 0.

In the above discussion, we have assumed that
(L, T, U, e) is a (feasible) basis structure, which
includes that bµe 6= 0, i.e., that the usage fee of the
cycle C(e) is non-zero. As it turns out, the usage
fee of C(e) remains non-zero after a simplex pivot
as long as it was non-zero before the step, as it is
shown in the following lemma:

Lemma 1. Assume that (L, T, U, e) is a feasi-
ble basis structure and let π and µ denote the
corresponding node potentials. Then the tu-
ple (L′, T ′, U ′, e′) that results from a simplex pivot
is a feasible basis structure again.

Proof. Let e denote the entering edge in the
simplex pivot that leads to the new basis struc-
ture (L′, T ′, U ′, e′). As it was shown above, the
flow that is induced by this new basis structure is
feasible, again. Now assume for the sake of con-
tradiction that bµ

′

e′
= 0.

First, consider the case that the two cycles C(e)
and C(e) are edge-disjoint. Clearly, since either
one of the edges in C(e) or one of the edges in C(e)
becomes the leaving edge, one of the two cycles
remains in T ′ ∪ {e′}. Since b(C(e)) = bµe 6= 0 by
assumption, it must hold that b(C(e)) = bµe = 0.
However, in this case, the flow on the cycle C(e)
does not change according to equations (3) and
(4), i.e., the leaving edge must be contained in
C(e) and the cycle C(e) remains in T ′∪{e′}, which

contradicts the assumption that bµ
′

e′
= 0.

Now assume that the two cycles C(e) and C(e)
are not edge-disjoint. It is easy to see, that there
is exactly one (undirected) simple path P0 that is
contained in both C(e) and C(e) and that, conse-
quently, contains neither e nor e (cf. [7]). The
leaving edge e′ must then be contained in P0,
which can be seen as follows: For the case that
bµe 6= 0, none of the two cycles C(e) and C(e)
can still be contained in T ′ ∪ {e′} (otherwise, it

would again hold that bµ
′

e′
6= 0), i.e., the leaving

edge must be a common edge of the two cycles,
which lies on P0. Else, if bµe = 0, the leaving
edge e′ must be contained in C(e) since the flow
does not change on C(e) as shown above. If e′

was not contained in C(e) as well, the cycle C(e)
would continue to exist in T ′∪{e′}, which, again,
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contradicts the assumption that bµ
′

e′
= 0. Hence,

we obtain that e′ ∈ P0. Let v and w denote the
end nodes of P0 and let P (e) and P (e) denote the
unique paths that connect w with v in C(e) \ P0

and C(e) \ P0, respectively. For some fixed orien-
tation of P (e) and P (e), the new cycle C(e′) is the
concatenation of P (e) and the reversal of P (e) (cf.

Figure 1). Since bµ
′

e′
= 0 by assumption, it holds

that b(P (e)) = b(P (e)), which implies that

bµe = b(C(e)) = b(P (e)) + b(P0)

= b(P (e)) + b(P0) = b(C(e)) = bµe .

However, according to equations (3) and (4), this
implies that the flow on xe′ remains unchanged,
which contradicts the assumption that e′ is the
leaving edge. �

v

w

P0C(e) C(e)

P (e) P (e)

Figure 1: The situation if the two cycles C(e) and C(e)
are not edge-disjoint. Since the leaving edge e′ lies on the
path P0, the resulting cycle (thick) is the concatenation of
P (e) and P (e).

4. Optimality Conditions

The above discussion shows that, whenever we
encounter an edge e ∈ L with dπ,µe < 0 or an
edge e ∈ U with dπ,µe > 0, we can perform a
simplex pivot and improve the objective func-
tion value (in the case that the pivot is non-
degenerate). Conversely, as it turns out, when-
ever there are no such edges in a feasible basis
structure, the corresponding feasible basic flow
is an optimal solution to the given instance of
BCMCFPR. In order to prove this result, we
need the following lemma:

Lemma 2. Let (π, µ) denote the node potentials
corresponding to the basis structure (L, T, U, e).
Any flow x with b(x) = B is optimal if and only

if it is optimal with respect to the objective func-
tion dπ,µ(x) :=

∑

e∈E dπ,µe · xe.

Proof. Using equation (2) and the fact that
∑

e∈E cπe · xe =
∑

e∈E ce · xe and
∑

e∈E bµe · xe =
∑

e∈E be · xe (cf., e.g., [2, pp. 43–44]), we get that
the flow x fulfills the following property:

∑

e∈E

dπ,µe · xe =
∑

e∈E

(

cπe − cπe ·
bµe
bµe

)

· xe

=
∑

e∈E

cπe · xe −
cπe
bµe

·
∑

e∈E

bµe · xe

=
∑

e∈E

ce · xe −
cπe
bµe

·
∑

e∈E

be · xe

=
∑

e∈E

ce · xe −
cπe
bµe

· B. (5)

Note that the value −
cπ
e

b
µ

e

· B only depends on

the basis structure and is independent from the
flow x. Hence, for any feasible flow x with b(x) =
B, the objective function values dπ,µ(x) and c(x)
only differ by a constant additive value, which
shows the claim. �

Theorem 2. For a feasible basis struc-
ture (L, T, U, e) and the corresponding node
potentials π and µ, assume that the reduced
costs dπ,µ fulfill the following conditions:

dπ,µe ≥ 0 for all e ∈ L, (6a)

dπ,µe = 0 for all e ∈ T ∪ {e}, (6b)

dπ,µe ≤ 0 for all e ∈ U. (6c)

Then the corresponding basic feasible flow x∗ is
optimal.

Proof. Let dπ,µ and x∗ be defined as above and
let x denote some arbitrary feasible flow. As
shown in Lemma 2, minimizing c(x) =

∑

e∈E ce·xe

is equivalent to minimizing dπ,µ(x) =
∑

e∈E dπ,µe ·

7



xe. Since we have

dπ,µ(x) =
∑

e∈E

dπ,µe · xe

=
∑

e∈L

dπ,µe · xe +
∑

e∈T∪{e}

dπ,µe · xe

+
∑

e∈U

dπ,µe · xe

=
∑

e∈L

dπ,µe
︸︷︷︸

≥0

· xe
︸︷︷︸

≥0

+
∑

e∈U

dπ,µe
︸︷︷︸

≤0

· xe
︸︷︷︸

≤ue

≥
∑

e∈U

dπ,µe · ue = dπ,µ(x∗),

this shows that x∗ is optimal. �

5. Termination and Running Time

As shown above, we only make progress with
respect to the objective function value if the corre-
sponding simplex pivot is non-degenerate. How-
ever, like in the case of the traditional simplex
method and the traditional network simplex al-
gorithm (cf., e.g., [2, 13]), it may be possible to
end in an infinite loop of degenerate pivots if no
further steps are undertaken. In the case of the
traditional network simplex algorithm, there are
two common methods to prevent cycling of the
procedure: One can either use a perturbed prob-
lem, in which the right-hand side vector of the
LP formulation is suitably transformed, or use
the concept of strongly feasible basis structures in
combination with a special leaving edge rule (cf.
[1]). In this section, we show that a combination
of both approaches leads to a finite network sim-
plex algorithm with pseudo-polynomial running
time for BCMCFPR.
In the following, we consider what we call

the transformed problem of the given instance of
BCMCFPR, in which we replace the (previously
integral) budget B by B′ := B + 1

2
. In doing so,

we maintain feasibility of the problem: Accord-
ing to Assumption 2, the minimum cost flow x
that we obtain by some minimum cost flow algo-
rithm fulfills b(x) ≥ B + 1. However, this implies
that we can scale down x to a feasible flow x′

with b(x′) = B′, so we can restrict our considera-
tions to the transformed problem. As it turns out,

each basic feasible flow of the transformed prob-
lem fulfills a useful property that will be essential
throughout this section:

Lemma 3. For each basis structure (L, T, U, e)
of the transformed problem and its corresponding
basic feasible flow x, it holds that xe /∈ N≥0 for all
e ∈ C(e).

Proof. According to Corollary 1, the flow x
can be decomposed into an integral flow xI and
a flow xC that is positive only on C(e). Since
be ∈ N≥0 for each e ∈ E, it holds that

∑

e∈E be ·
xI
e ∈ N≥0, so b(x) = B′ = B + 1

2
implies that

∑

e∈C(e) be ·x
C
e = k+ 1

2
for some integer k. Since xC

is positive only on C(e), it holds that xC
e = λ for

each e ∈ C+(e) and xC
e = −λ for each e ∈ C−(e)

with λ =
k+ 1

2

b(C(e))
/∈ N≥0, which shows the claim. �

We now show that we can restrict our consid-
erations solely to the transformed problem since
an optimal basic solution that is obtained by an
application of the network simplex algorithm to
the transformed problem also yields an optimal
basic solution of the original problem:

Lemma 4. An optimal basic solution of the
transformed problem can be turned into an op-
timal basic solution of the original problem in
O(n) time.

Proof. Let (L, T, U, e) denote a basis structure
that implies an optimal solution x∗ of the trans-
formed problem. According to Lemma 3, the
flow x∗

e on each edge e ∈ C(e) fulfills x∗
e /∈ N≥0. In

particular, this implies that x∗
e ∈ (0, ue) for each

e ∈ C(e), so we can increase or reduce the flow on
the cycle by a small amount without violating any
flow bounds. Since x∗

e ∈ N≥0 for each e /∈ C(e)
according to Corollary 1 and since be ∈ N≥0 for
each e ∈ E, it must hold that we can increase
or reduce the flow on C(e) by δ units such that
δ · b(C(e)) = −1

2
, i.e., such that we obtain a feasi-

ble flow for the original problem. Moreover, note
that dπ,µe = 0 for each e ∈ C(e), i.e., the flow still
fulfills the optimality conditions from Lemma 2.
Since the flow values on the edges in L∪U remain

8



unchanged, the resulting flow is the basic solution
corresponding to the basis structure (L, T, U, e)
for the original problem, which shows the claim.
�

As noted above, one method to prevent cycling
of the traditional network simplex algorithm is to
use the concept of strongly feasible basis struc-
tures, which are feasible basis structures in which
every edge in L is directed to the root node and
every edge in U heads away from the root node
(cf. [2, p. 422]). As shown by Ahuja et al. [1], an
equivalent definition is that, in the corresponding
basic feasible flow, it is possible to send a positive
amount of additional flow from every node v ∈ V
to the root node via tree edges. For BCMCFPR,
it turns out that a strongly feasible basis structure
remains strongly feasible after a simplex pivot if
the leaving edge is chosen appropriately, just as
in the case of the traditional network simplex al-
gorithm:

Lemma 5. Let (L, T, U, e) denote a strongly fea-
sible basis structure of the transformed problem.
The leaving edge e′ can be chosen such that the
basis structure (L′, T ′, U ′, e′) that results from a
simplex pivot is again strongly feasible.

Proof. Let e = (v, w) denote the entering edge
(we assume that e ∈ L; the case that e ∈ U works
analogously) and let E ′ ⊆ T ∪ {e} denote the set
of blocking edges that determine the value of δ
in the simplex pivot. Note that the graph that is
induced by T ∪ {e, e} contains up to three sim-
ple cycles, one of which must carry a fractional
amount of flow after the simplex pivot according
to Lemma 3. Hence, since the cycle that car-
ries a fractional amount of flow cannot contain
a blocking edge, there are three cases to distin-
guish: It either holds that E ′ ⊆ C(e) \ C(e) or
that E ′ ⊆ C(e) \ C(e) or that E ′ ⊆ C(e) ∩ C(e)
(cf. Figure 2). We distinguish these three cases
in the following. Note that, as in the proof of
Lemma 1, we get that C(e)∩C(e) corresponds to
a single simple path P0 consisting of edges in T .
First assume that E ′ ⊆ C(e) \ C(e). In this

case, it holds that e′ = e and the cycle C(e) con-
tinues to exist in T ′ ∪ {e′}. Hence, the flow on

P0C(e) C(e)

E′ ⊆ C(e) \ C(e)P0C(e) C(e)

E′ ⊆ C(e) \ C(e)P0C(e) C(e)

E′ ⊆ C(e) ∩ C(e)P0C(e) C(e)

Figure 2: The graph induced by T ∪ {e, e} (top) and the
three possible cases for the set E′ of blocking edges (bot-
tom). In each of these cases, the set E′ is contained in the
solid black segment.

all edges in C(e) remains fractional and we are
still able to send a positive amount of flow from
any node in C(e) to the apex2 of C(e). The rest
of the proof of this case is analogous to the one
for the traditional network simplex algorithm (cf.,
e.g., [2, pp. 424–425] and Figure 3): We choose
the leaving edge e′ = (v′, w′) to be the last edge in
E ′ that occurs when traversing the cycle C(e) in
the direction of e, starting at the apex z of C(e).
For the sake of notational simplicity, assume that
e′ ∈ C+(e) (the case that e′ ∈ C−(e) works analo-
gously). Clearly, if v is any node on the path from
w′ to z (in the direction of the cycle), we can still
send a positive amount of flow from v to z since
there are no blocking edges on this path accord-
ing to the choice of e′. On the other hand, for the
case that the simplex pivot is non-degenerate, we
send a positive amount of flow on the path from
z to v′ (which may be reduced by the flow on the

2The apex of a cycle C(e) with e = (v, w) is the first
common node of the two unique paths in T from v to the
root and from w to the root.

9



cycle C(e) on the edges in C(e)∩C(e), but which
will not be reduced to zero since C(e) contains no
blocking edges). Hence, we can send a positive
amount of flow back from every node v on the
path from v′ to z in T ′ ∪ {e′} = T ∪ {e, e} \ {e′}.
For the case that the simplex pivot is degenerate,
it must hold that all blocking edges E ′ lie on the
path from z to v since (L, T, U, e) is strongly fea-
sible and we can, thus, send a positive amount of
flow to z on every edge on the path from w to
z. However, in the degenerate case, we do not
change the flow on the edges on the path from z
to v′ and can, thus, still send a positive amount of
flow from v′ to z. Note that the flow on every edge
in E \ (C(e) ∪ C(e)) does not change, so we can
send a positive amount of flow from every node
in V to the root node r after the simplex pivot
(possibly via the edges in C(e) \ {e′}). Hence, we
maintain a strongly feasible basis structure in this
case.

z

v′

w′

v w

e′

e

Figure 3: A cycle C(e) that is induced by the entering
edge e = (v, w) ∈ L with dπ,µ

e
< 0. After sending flow on

C(e), the leaving edge e′ is the last blocking edge when
traversing C(e) in the direction of e starting from the
apex z.

The second case, in which E ′ ⊆ C(e) \ C(e),
works similar to the previous case. Note that we
now get that e′ = e since the cycle C(e) vanishes.
We choose the leaving edge to be the last blocking
edge that occurs when traversing the cycle C(e)
in the direction in that we send the flow in the
simplex pivot, starting at the apex of C(e). Note
that the simplex pivot must be non-degenerate in
this case since the blocking edges lie on C(e) and

every edge on C(e) carries a fractional amount of
flow before the simplex pivot.

It remains to show that we maintain a strongly
feasible basis structure in the case that E ′ ⊆ P0 =
C(e)∩C(e) (cf. Figure 4). As in the previous case,
the simplex pivot is non-degenerate since all edges
in C(e) carry a fractional amount of flow before
the simplex pivot. Thus, the algorithm sends a
positive amount of flow δ along C(e) and δ :=

− b(C(e))
b(C(e))

·δ = − b
µ

e

b
µ

e

·δ units of flow along C(e). Since

no edge in C(e)\C(e) and C(e)\C(e) is a blocking
edge and we send flow on both cycles, neither of
these edges is at its lower or upper bound after
the simplex pivot (this also follows from the fact
that the new cycle in T ′ ∪ {e′} = T ∪ {e, e} \ {e}
consists of the edges in (C(e) \ C(e)) ∪ (C(e) \
C(e)) and, thus, carries a fractional amount of
flow, cf. the gray paths in Figure 4). Moreover,
since E ′ ⊆ P0 (and E ′ 6= ∅), we must have δ 6=
δ. Thus, there is a unique direction in which the
flow is sent on P0 (from z to w in Figure 4). We
choose the leaving edge e′ = (v′, w′) to be the
last blocking edge that occurs on any of the two
cycles when traversing the corresponding cycle in
the direction of this flow, starting from the apex
of the cycle. We can then send flow from w′ to the
apexes of both cycles (since there are no further
blocking edges on the corresponding subpath of P0

and since the flow on the new cycle is fractional)
and from v′ to the apexes (since we have sent a
positive amount of flow to v′ on the corresponding
subpath of P0 and since the flow on the new cycle
is fractional). Hence, using the same arguments as
in the previous two cases, we get that we can send
a positive amount of flow from each node v ∈ V
to the root node, which concludes the proof. �

Lemma 5 builds the foundation for the follow-
ing theorem, which shows that the network sim-
plex algorithm for BCMCFPR does not cycle
when using strongly feasible basis structures:

Theorem 3. The network simplex algorithm ap-
plied to the transformed problem terminates
within a finite number of simplex pivots when us-
ing strongly feasible basis structures. Moreover,
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z

z

vw

wv

v′

w′

e

e

e′

Figure 4: The case that E′ ⊆ P0 = C(e) ∩ C(e). The
leaving edge e′ is chosen to be the last edge on P0 when
traversing any of the two cycles C(e) and C(e) in the di-
rection of the flow change on P0.

the number of consecutive degenerate simplex piv-
ots is bounded by O(n3CB).3

Proof. Let (L, T, U, e) denote a basis structure
and x denote its corresponding basic feasible flow.
Consider a degenerate simplex pivot that occurs
when adding the entering edge e = (v, w) to
T ∪{e} and choosing the leaving edge e′ = (v′, w′)
according to the leaving edge rules given in the
proof of Lemma 5, which leads to a new basis
structure (L′, T ′, U ′, e′). Since the flow on C(e)
is fractional according to Lemma 3, none of the
edges on the cycle C(e) can be degenerate. Thus,
it holds that e′ = e and that the cycle C(e) con-
tinues to exist in T ′ ∪ {e′}. Moreover, as in the
proof of Lemma 5, the leaving edge e′ must lie
on the path in T from the apex z of C(e) to v
since the basis structure is strongly feasible (cf.
Figure 3). As in the traditional network simplex
algorithm, after the simplex pivot, the node po-
tentials πv and µv are increased (decreased) by cπe
and bµe , respectively, for all nodes v on the path
from w′ to v in T if e ∈ L (e ∈ U), while the
remaining node potentials remain unchanged (cf.,
e.g., [2, p. 425]). Thus, for each v on this path,

3In the following, we denote by C, U, and B the max-
imum absolute values of edge costs, capacities, and usage
fees, respectively.

the new node potentials π′
v and µ′

v fulfill

π′
v +

cπe
bµe

· µ′
v

= (πv + cπe ) +
cπe
bµe

· (µv + bµe )

=

(

πv +
cπe
bµe

· µv

)

+

(

cπe +
cπe
bµe

· bµe

)

=

(

πv +
cπe
bµe

· µv

)

+ dπ,µe

< πv +
cπe
bµe

· µv

for the case that e ∈ L. Otherwise, if e ∈ U , we
get that

π′
v +

cπe
bµe

· µ′
v

= (πv − cπe ) +
cπe
bµe

· (µv − bµe )

=

(

πv +
cπe
bµe

· µv

)

−

(

cπe +
cπe
bµe

· bµe

)

=

(

πv +
cπe
bµe

· µv

)

− dπ,µe

< πv +
cπe
bµe

· µv.

Hence, the value
∑

v∈V πv +
cπ
e

b
µ

e

· µv decreases

strictly after each degenerate simplex pivot. How-
ever, the values πv are integers in {−nC, . . . , nC},
while the values µv lie in {−nB, . . . , nB} for
each v ∈ V (cf. [2, p. 425]). Thus, since there
are only O(n2CB) combinations of integral values
for πv and µv for each node v ∈ V , the algo-
rithm performs a non-degenerate pivot after at
most O(n3CB) degenerate simplex pivots and the
claim follows. �

While the leaving edge rules as described above
guarantee finiteness of the procedure, we can re-
duce the number of non-degenerate simplex pivots
by applying Dantzig’s pivoting rule (cf., e.g., [1]),
i.e., by choosing the entering edge to be the one
with the largest violation of its optimality condi-
tions:
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Lemma 6. The network simplex algorithm ap-
plied to the transformed problem performs
O(nmUB log(mCUB)) non-degenerate simplex
pivots in total when using Dantzig’s pivoting rule.

Proof. The proof of the lemma is similar to the
one for the traditional network simplex algorithm
given in [1]. Let xk denote the basic feasible flow
that is obtained after the k-th non-degenerate
step of the algorithm and let c(xk) denote its ob-
jective function value. Moreover, let (L, T, U, e)
denote the corresponding basis structure. Accord-
ing to Corollary 1, each flow xk can be decom-
posed into an integral flow xI and a fractional
flow xC on the cycle C(e). In particular, since xk

satisfies b(xk) = B′ = B + 1
2
and xC is a flow

on the cycle C(e), it holds that xC
e = p

b(C(e))
for

p := (B + 1
2
)−

∑

e∈E be · x
I
e, so the flow on every

edge in xk is an integral multiple of 1
2·b(C(e))

. Thus,

it holds that |xk
e − xk+1

e | is either zero or at least
1

2nB
for each edge e ∈ E. Moreover, note that the

minimum absolute value of the reduced costs of
any edge e that violates its optimality condition
can be bounded as follows:

|dπ,µe | =

∣
∣
∣
∣
cπe −

bµe
bµe

· cπe

∣
∣
∣
∣
=

∣
∣
∣
∣

cπe · b
µ
e − bµe · c

π
e

bµe

∣
∣
∣
∣

≥
1

b(C(e))
≥

1

nB
.

Since the objective function value of any flow is
bounded from below by −mCU, we, thus, get that
the maximum number of non-degenerate simplex
pivots without using Dantzig’s pivoting rule is
bounded by O(mCU · 2nB · nB) = O(n2mCUB

2).
Let ∆ := max{−mine∈L d

π,µ
e ,maxe∈U dπ,µe } de-

note the maximum violation of the optimality
conditions of any edge in L ∪ U and let e denote
the corresponding edge that is chosen based on
Dantzig’s pivoting rule. Since sending one unit
of flow over C(e) reduces the objective function
value by ∆, we get that

c(xk)− c(xk+1) ≥
∆

2nB
(7)

Moreover, if x∗ denotes an optimal solution to the
problem, we get according to equation (5) in the

proof of Lemma 2 that

c(xk)− c(x∗)

= dπ,µ(xk)− dπ,µ(x∗)

=
∑

e∈E

dπ,µe · (xk
e − x∗

e)

=
∑

e∈L

dπ,µe · (−x∗
e) +

∑

e∈U

dπ,µe · (ue − x∗
e) (8)

≤ m∆U. (9)

Combining equations (7) and (9), we, thus, get
that

c(xk)− c(xk+1) ≥
c(xk)− c(x∗)

2nmUB
,

i.e., after each non-degenerate simplex pivot, the
gap to the optimal solution with respect to the
objective function value is reduced by a factor
of at least 1

2nmUB
. Ahuja et al. [2, p. 67] show

that, if H is the maximum number of improv-
ing steps of any algorithm and if this algorithm
reduces the gap to the optimal solution by a frac-
tion of at least α in each step, then the maxi-
mum number of steps is bounded by O( 1

α
logH).

Thus, since H ∈ O(n2mCUB
2) in our case as

shown above, we get that the maximum number
of non-degenerate simplex pivots using Dantzig’s
pivoting rule is in O(2nmUB log(n2mCUB

2)) =
O(nmUB log(mCUB)). �

In Lemma 5, it was shown that we can obtain a
strongly feasible basis structure again when per-
forming a simplex pivot on a strongly feasible ba-
sis structure. However, it remains open how to
determine an initial strongly feasible basis struc-
ture. This will be shown in the following lemma:

Lemma 7. An initial strongly feasible basis
structure (L, T, U, e) for BCMCFPR and the cor-
responding basic feasible solution x can be deter-
mined in O(m) time.

Proof. For two arbitrary nodes v, w ∈ V in
the given graph G = (V,E), we insert an arti-
ficial edge e0 = (v, w) with costs ce0 := 1, ca-
pacity ue0 := 1, and usage fees be0 := B. More-
over, we insert a second artificial edge e′0 = (w, v)
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with costs ce′
0
:= 1, capacity ue′

0
:= 1, and us-

age fees be′
0
:= B + 1. The initial basic feasible

solution x is defined by xe0 := 0.5, xe′
0
:= 0.5,

and xe := 0 for each e ∈ E such that b(x) =
0.5 · (2B +1) = B′. The spanning tree T consists
of e0 as well as a spanning tree of the nodes in
V \ {v} that is a directed in-tree4 with root w.
Note that such an in-tree exists according to As-
sumption 1 and can be found, e.g., by a depth-first
search in O(m) time. Moreover, note that we can
send a positive amount of flow from every node in
V to v by using the unique path in the in-tree in
combination with e0. Hence, we obtain a strongly
feasible basis structure by setting e := e′0, choos-
ing T as defined above, and setting U := ∅ and
L := E \ T . Note that the new edges do not in-
fluence the optimal solution value since e0 and e′0
will have zero flow in any optimal solution. �

We are now ready to prove the main result of
the paper:

Theorem 4. The network simplex algorithm for
BCMCFPR can be implemented to run in
O(n4m2CUB

2 · log(mCUB)) time.

Proof. According to Lemma 7, we can deter-
mine an initial basis structure and the corre-
sponding basic feasible solution in O(m) time.
It is easy to see that a single simplex pivot as
described above can be implemented to run in
O(m) time, including the overhead to determine
the entering edge and the leaving edge accord-
ing to Dantzig’s pivoting rule and the above leav-
ing edge rules. Moreover, the maximum num-
ber of non-degenerate simplex pivots is given by
O(nmUB log(mCUB)) as shown in Lemma 6. In
the worst case, each of these non-degenerate sim-
plex pivots is followed by a sequence of O(n3BC)
degenerate pivots according to Theorem 3, which
leads to an overall running time of

O(m · n3
BC · nmUB log(mCUB))

= O(n4m2
CUB

2 log(mCUB)),

which shows the claim. �

4An in-tree is a tree in which all edges are directed
towards the root node.

6. Computational Results

In order to evaluate the empirical performance
of the presented algorithm, we implemented it
in C++ and compiled it for Windows 7 64bit
with Microsoft Visual Studio Community 2015
with all available optimization options. The tests
were performed on an Intel Core i5 processor
at 2.53 GHz with one core and 4GB of RAM.
We implemented the presented algorithm using
Dantzig’s pivoting rule and evaluated its perfor-
mance against Gurobi 6.5.1 64bit [16]. As in [7],
the underlying networks were constructed with
NETGEN [19]. For densities d ∈ {8, 16, 32} and
node sets of size n ∈ {2i : i ∈ {8, . . . , 15}},
we generated test instances with n nodes and
m := n · d edges and computed the mean exe-
cution times over ten instances each.

As a validation check, we first adapted the ap-
proach of Çalışkan [7] by using an in-tree contain-
ing the shortest paths from each node v ∈ V \ {t}
to some sink t with respect to the usage fees be as
the starting solution (cf. Lemma 7) and by apply-
ing the algorithm to the maximum flow variant of
the problem. For this subproblem, we observed
similar running times as stated in [7], beating
Gurobi by factors of up to 368. These remark-
able running times result from the fact that the
procedure only performs a very little number of
iterations. One possible explanation is that an
optimal solution to the budget-constrained maxi-
mum flow problem can be obtained by repeatedly
augmenting flow on shortest paths with relation
to the usage fees be in the residual network (cf.
[3]), which can be done within a few number of
iterations due to the chosen starting solution.

However, when applied to the minimum cost
flow variant of the problem, the running times be-
came significantly worse. We compared the pre-
sented network simplex algorithm with the dual,
primal, and barrier solvers provided with Gurobi.
As it is shown in Table 1, the dual solver was
the fastest among all three solvers in most in-
stances. For small instances, our specialized net-
work simplex algorithm could beat all solvers, but
performed less competitive in larger instances and
was slower than the dual solver by a factor of up

13



to 4.29. Nevertheless, our network simplex algo-
rithm was faster than Gurobi’s barrier solver in
all cases and faster than the primal solver for in-
stances with density 8 and 16. Independent of
the achieved running times, one major advantage
of the presented algorithm is that it only con-
sumed 58MB of memory even in the largest in-
stance while Gurobi’s dual solver needed up to
2.71GB RAM and did not solve the problem when
compiled at 32bit (while using a 32bit version of
Gurobi) since only 2GB of memory can be ad-
dressed.
While the number of non-degenerate pivots of

the network simplex method was still low, the per-
centage of degenerate pivots amounted to a frac-
tion of up to 98.9%. Using a more sophisticated
starting solution based on a scaled (traditional)
minimum cost flow that is turned into a basic fea-
sible flow (cf. Theorem 1), the relative amount of
degenerate pivots could be reduced to 17% but
the progress in each non-degenerate iteration be-
came worse.

7. Conclusion and Future Work

In this paper, we developed a specialized net-
work simplex method for the budget-constrained
minimum cost flow problem. In particular, we
proved optimality criteria for the problem based
on a novel incorporation of two kinds of integral
node potentials and three kinds of reduced costs
and presented a fully combinatorial description
of the procedure. Moreover, we combined two
common techniques that are used to prevent cy-
cling in the traditional network simplex algorithm
into a rule for the leaving edge that prevents cy-
cling. Finally, we could show that Dantzig’s piv-
oting rule can be used in order to reduce the num-
ber of non-degenerate pivots significantly, which
in combination with a pseudo-polynomial number
of successive degenerate pivots leads to a pseudo-
polynomial time bound for the overall procedure.
It remains open for future research if the practi-

cal performance of the procedure can be improved
by using a more sophisticated starting solution
similar to the case of the maximum flow variant of
the problem. One key issue in this respect seems

to develop new rules for the choice of the entering
and the leaving edge, which reduce the number
of degenerate iterations. Thus, at the time be-
ing, the results of this paper can be viewed more
as a theoretical contribution, which establishes a
pseudo-polynomial running time and closes open
issues left, e.g., in [7].
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[7] Çalışkan, C., 2011. A specialized network simplex al-
gorithm for the constrained maximum flow problem.
European Journal of Operational Research 210 (2),
137–147.
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