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1CEMAT, Técnico Lisboa, Universidade de Lisboa
Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

July 27, 2021

Abstract

We derive the optimal investment decision in a project where both demand and investment
costs are stochastic processes, eventually subject to shocks. We extend the approach used in
[1], chapter 6.5, to deal with two sources of uncertainty, but assuming that the underlying
processes are no longer geometric Brownian diffusions but rather jump diffusion processes.
For the class of isoelastic functions that we address in this paper, it is still possible to derive
a closed expression for the value of the firm. We prove formally that the result we get is
indeed the solution of the optimization problem. Finally, we derived comparative statistics
for the investment threshold with respect to the relevant parameters.

1 Introduction

A real option is the right, but not the obligation, to undertake certain business initiatives, such
as deferring, abandoning, expanding, staging or contracting a capital investment project. Real
options have three characteristics: the decision may be postponed; there is uncertainty about
future rewards; the investment cost is irreversible. There are several types of real options and
different kinds of questions, but in all of them there is the issue regarding the optimal timing to
undertake the decision (for instance, investment, abandon or switching). Consult [1] for a survey
on real options analysis.

In this paper we propose a two-fold contribution to the state of the art of real options analysis.
On one hand we assume that the uncertainty involving the decision depends on two stochastic
processes: the demand and the investment cost. On the other hand we allow the dynamics of these
processes to be a combination of a diffusion part (with continuous sample path) with a jump part
(introducing discontinuities in the sample paths). So, the model presented here expands the usual
setting of options and adds new features, including the ability to model jumps in the demand
process, and including stochastic investment costs.
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Figure 1: Global Apple iPhone sales from 3rd quarter 2007 to 4th quarter 2014 (in million units)

In the early works in finance, regarding both finance options and investment decisions, the
underlying stochastic process modeling the uncertainty was frequently assumed to be a continuous
process, as a geometric Brownian motion (GBM, for short). There are many reasons for this, but
this is largely due to the fact that the normal distribution, as well as the continuous-time process
it generates have nice analytic properties [2].

Observations from real situations show that this assumption does not hold. The bar chart in
Figure 1 shows the global sales numbers of iPhones from the 3rd quarter of 2007 to the end of
2014, with data aggregated by quarters (source: Statista 2014). It is clear that in this case upward
jumps occur with a certain frequency, that may be related with the launching of new versions of
the iPhone.

Nowadays, with the world global market, there are exogenous events that may lead to a sudden
increase or decrease in the demand for a certain product. Clearly, these shocks will considerably
affect the decisions of the investors. Also the investment costs depend highly on other factors,
such as the oil, raw materials or labour prices. Therefore, when we assume the investment to be
constant and known, we are simplifying the model. This problem is even more important when
one considers large investments that take several years to be completed (e.g. construction of dams,
nuclear power plants, or high speed railways).

The example regarding the number of sales of iPhones shows the existence of jumps in the
demand process. In fact, empirical analysis shows there is a need to contemplate models that
can take into account discontinuous behavior for a quite wide range of situations. For example,
regarding investment decisions, in particular in the case of high-technology companies - where
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the fast advances in technology continue to challenge managerial decision-makers in terms of the
timing of investments [7] - there is a strong need to consider models that take into account sudden
decreases or increases in the demand level [3].

Morever, examples regarding jumps in the investment are also easy to find. The jumps may
represent uncertainties about the arrival and impact (on the underlying investment) of new in-
formation concerning technological innovation, competition, political risk, regulatory effects and
other sources [5, 8]. It is particularly important to consider jumps process in investment problems
related with R&D investments, as [4] suggest. Furthermore, when one is deciding about invest-
ments in energy, which are long-term investments, one should accommodate the impact of climate
change policies effect on carbon prices, as [9] points out in their report. For instance, the Horizon
2020 Energy Challenge is designed to support the transition to a secure, clean and efficient energy
system for Europe. So, if a company decides to undertake any kind of such investment during
this time period, probably will apply to special funds and thus the investment cost will likely be
smaller. After 2020, there are not yet rules about the European funding of such projects. There-
fore, not only the investment cost is random, but also will suffer a jump due to this new regulatory
regime (see http://ec.europa.eu/easme/en/energy for more details).

Following this reasoning, in this paper we assume that the decision regarding the investment
depends on two stochastic factors: one related with the demand process, that we will denote
by X = {Xt, t ≥ 0}, and another one related with the investment cost, I = {It, t ≥ 0}. We
allow that both processes may have discontinuous paths, due to the possibility of jumps driven by
external Poisson processes. Later we will introduce in more detail the mathematical model and
assumptions.

We also claim that we extend the approach provided in [1], in Chapter 6.5. In this book, the au-
thors consider that there are two sources of uncertainty (the revenue flow and the investment cost),
both following a GBM, with (possible) correlated Brownian motions. Then the authors propose a
change of variable that will turn this problem with two variables into a problem with one variable,
analytically solvable. Here we follow the same approach, but with two different features: first the
dynamics of the processes involved are no longer a GBM and, secondly, we prove analytically that
the solution we get is in fact exactly the solution of the original problem with two dimensions. In
order to prove this result we derive explicitly the quasi-variational inequalities emerging from the
principle of dynamic programming, obtaining the corresponding Hamilton-Jacobi-Bellman (HJB)
equation. Moreover, using a verification theorem, we prove that the proposed solution is indeed
the solution of the original problem [10, 6].

The remainder of the paper is organized as follows. In Section 2 we present the framework
rationale and the valuation model, and in Section 3 we formalize the problem as an optimal
stopping one, we present our approach and provide the optimal solution. In Section 4 we derive
results regarding the behavior of the investment threshold as a function of the most relevant
parameters and, finally, Section 5 concludes the work, presenting also some recommendations for
future extensions.
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2 The model

In this section we introduce the mathematical model along with the assumptions that we use
in order to derive the investment policy. For that, we start by presenting the dynamics of the
stochastic processes involved, namely, the demand and the investment expenditures processes.
We also introduce the valuation model we use to derive the optimal investment problem that we
address in this paper.

2.1 The processes dynamics

We assume that there are two sources of uncertainty, that we will denote by X and I, representing
the demand and the investment, respectively. Moreover, we consider that both have continuous
sample paths almost everywhere but occasionally jumps may occur, causing a discontinuity in the
path.

Generally speaking, let Y = {Yt : t ≥ 0} denote a jump-diffusion process, which has two types
of changes: the ”normal” vibration, which is represented by a GBM, with continuous sample
paths, and the ”abnormal”, modeled by a jump process, which introduce discontinuities.

The jumps occur in random times and are driven by an homogeneous Poisson process, hereby
denoted by {Nt, t ≥ 0}, with rate λ. Moreover, the percentages of the jumps are themselves random

variables, that we denote by {Ui}i∈N
i.i.d.∼ U , i.e., although they may be of different magnitude,

they all obey the same probability law and are independent from each others. We let Ui > −1,
allowing for positive and for negative jumps.

Thus we may express Yt as follows:

Yt = y0 exp

[(
µ− σ2

2
− λm

)
t+ σWt

] Nt∏
i=1

(1 + Ui) , (1)

where y0 is the initial value of the process, i.e., Y0 = y0, µ and σ > 0 represent, respectively,
the drift and the volatility of the continuous part of the process and {Wt, t ≥ 0} is a Brownian
motion process. Furthermore, the processes {Wt, t ≥ 0} and {Nt, t ≥ 0} are independent and are
also both independent of the sequence of random variables {Ui}i∈N. We use the convention that if
Nt = 0 for some t ≥ 0, then the product in equation (1) is equal to 1. Note that considering the
parameters associated with the jumps equal to zero, we obtain the usual GBM.

As both the Brownian motion and the Poisson processes are Markovian, it follows that Y is
also Markovian. It is also stationary and its kth order moments are provided in the next lemma
(see Appendix (6.1) for the proof).

Lemma 1. For Y = {Yt : t ≥ 0}, with Yt defined as in (1), t, s ≥ 0 and k ∈ N,

IE
[
Y k
t+s

∣∣Yt] = Y k
t exp

{[(
µ+ (k − 1)

σ2

2
− λm

)
k + λ

(
IE
[
(1 + U)k

]
− 1
)]

s

}
,

where IE [ .|Yt] denotes the conditional expectation given the value of the process Y at time t.
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Returning to the investment problem: in the sequel we assume that both processes X and I
follow jump-diffusion processes, such that

Xt = x0 exp

[(
µX −

σ2
X

2
− λXmX

)
t+ σXW

X
t

] NX
t∏

i=1

(
1 + UX

i

)
and

It = i0 exp

[(
µI −

σ2
I

2
− λImI

)
t+ σIW

I
t

] NI
t∏

i=1

(
1 + U I

i

)
.

We use an index X or I for each parameter to distinguish between the two processes. Finally, we
assume that the both processes are independent from each other.

Next we introduce the valuation model, that defines the production function for the problem
that we propose to address.

2.2 The valuation model

In this paper we propose to solve the question of when to invest in a new project, when both the
demand and the investment are stochastic and subject to shocks. Furthermore, we assume that
the investment may take some time to really starts to pay back, and therefore there may be a gap
of n time units between the decision and the effectiveness of the investment.

We also assume that the profit of the firm depends on the stochastic process of the demand,
and we use the following notation: V0 (V1) is the profit of the firm before (after) the investment.
We consider an isoelastic function:

Vj(Xt) = κjX
θ
t ,

for j ∈ {0, 1}, with κ1 > κ0 > 0 and θ > 0. So the investment in the new project only changes
the model coefficients, κ0 and κ1, and not the elasticity parameter, θ. Furthermore,

D(Xt) = (κ1 − κ0)Xθ
t (2)

is the profit’s difference before and after the investment.

Denoting the risk-neutral discount rate by ρ, then the value of the firm if the investment is
decided at time τ is given by:∫ τ+n

0

V0(Xt)e
−ρtdt+

∫ +∞

τ+n

V1(Xt)e
−ρtdt− Iτe−ρτ ,

as long as τ < +∞.

The goal of the firm is to maximize its expected value, with respect to the time to decide to
invest, that is, the firm seeks to maximize the following expected value

IE

[∫ τ+n

0

V0(Xt)e
−ρtdt+

{∫ +∞

τ+n

V1(Xt)e
−ρtdt− Iτe−ρτ

}
χ{τ<+∞}

∣∣∣∣ (X0 = x0, I0 = i0)

]
= IE(x0,i0)

[∫ τ+n

0

V0(Xt)e
−ρtdt+

{∫ +∞

τ+n

V1(Xt)e
−ρtdt− Iτe−ρτ

}
χ{τ<+∞}

]
,
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where in the rest of the paper IE(x0,i0) denotes the expectation conditional on (X0, I0) = (x0, i0);
moreover χ{A} represents the indicator function of the set A and τ is a stopping time for the
filtration generated by the bidimensional process (X, I).

Using (2) and simple manipulations, we can re-write the previous expectation as

IE(x0,i0)

[∫ +∞

0

V0(Xt)e
−ρtdt

]
+ IE(x0,i0)

[{∫ +∞

τ+n

D(Xt)e
−ρtdt− Iτe−ρτ

}
χ{τ<+∞}

]
.

As the first part of the expression does not depend on the time τ to invest, then the goal is to
maximize the following functional:

Jτ (x0, i0) = IE(x0,i0)

[{∫ +∞

τ+n

D(Xt)e
−ρtdt− Iτe−ρτ

}
χ{τ<+∞}

]
,

which represents the value of the option when the firm exercises it at time τ , with τ < +∞, given
that the initial state is (x0, i0). Following [6], we call Jτ the performance criterion.

Note that in order to have τ < +∞, one needs to assume that IE(x0,i0)
[∫ +∞

0
V0(Xt)e

−ρtdt
]
<

+∞, which happens if and only if
h > 0,

where

h = ρ−
(
µX + (θ − 1)

σ2
X

2
− λXmX

)
θ − λX

(
IE
[
(1 + UX)θ

]
− 1
)

(3)

since

IE(x0,i0)

[∫ +∞

0

V0(Xt)e
−ρtdt

]
= κ0x

θ
0

∫ +∞

0

e−htdt.

From now on, we will be assuming such restriction in the parameters, to avoid trivialities. Next
we state and prove a result related with the strong Markov property of the involved processes,
that we will use subsequently in the optimization problem.

Proposition 1. The performance criterion can be re-written as follows:

Jτ (x, i) = E(x,i)
[
e−ρτg(Xτ , Iτ )χ{τ<+∞}

]
,

with
g(x, i) = (κ1 − κ0)Axθ − i

and

A =
e−hn

h
. (4)

Proof. Applying a change of variable in the performance criterion, we obtain

Jτ (x, i) = IE(x,i)

[
e−ρτ

{∫ +∞

0

D(Xτ+t+n)e−ρ(t+n)dt− Iτ
}
χ{τ<+∞}

]
.
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Then, using conditional expectation and the strong Markov property, we get

Jτ (x, i) = E(x,i)

[
e−ρτ

{
IE

[∫ +∞

0

D(Xτ+t+n)e−ρ(t+n)dt

∣∣∣∣ (Xτ , Iτ )

]
− Iτ

}
χ{τ<+∞}

]
.

By Fubini’s theorem and the independence between X and I, it follows that:

IE

[∫ +∞

0

D(Xτ+t+n)e−ρ(t+n)dt

∣∣∣∣ (Xτ , Iτ )

]
=

∫ +∞

0

IE [D(Xτ+t+n)|Xτ ] e
−ρ(t+n)dt. (5)

From Lemma 1 and from simple calculations, we have:

IE [D(Xτ+t+n)|Xτ ] = (κ1 − κ0)Xθ
τ e

(ρ−h)(t+n). (6)

Plugging (6) on (5) results in:

IE

[∫ +∞

0

D(Xτ+t+n)e−ρ(t+n)dt

∣∣∣∣ (Xτ , Iτ )

]
= (κ1 − κ0)Xθ

τ

e−hn

h
.

Therefore, in view of the definition of Jτ and A, we get the pretended result.

3 The optimal stopping time problem

The goal of the firm is to find the optimal time to invest in this new project, i.e., for every x > 0
and i > 0, we want to find V (x, i) and τ ? ∈ T such that:

V (x, i) = sup
τ∈T

Jτ (x, i) = Jτ
?

(x, i), (x, i) ∈ R+ × R+

where T is the set of all stopping times adapted to the filtration generated by the bidimensional
stochastic process (X, I). The function V is called the value function, which represents the optimal
value of the firm, and the stopping time τ ? is called an optimal stopping time.

Using standard calculations from optimal stopping theory (see [6]), we derive the following
HJB equation for this problem:

min {ρV (x, i)− LV (x, i), V (x, i)− g(x, i)} = 0, ∀ (x, i) ∈ R+ × R+, (7)

where L denotes the infinitesimal generator of the process (X, I), which in view of [6], it is equal
to

LV (x, i) =
σ2
X

2
x2∂

2V (x, i)

∂x2
+
σ2
I

2
i2
∂2V (x, i)

∂i2
+ (µX − λXmX)x

∂V (x, i)

∂x
+ (µI − λImI) i

∂V (x, i)

∂i
+λX

[
IEUX

(
V (x(1 + UX), i)

)
− V (x, i)

]
+ λI

[
IEUI

(
V (x, i(1 + U I))

)
− V (x, i)

]
.

Note that in this equation we used the notation IEUX and IEUI to emphasize the meaning of such
expected values; for instance IEUI means that we are computing the expected value with respect
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to the random variable U I . Whenever the meaning is clear from the context, we will simplify the
notation and will use just IE instead.

The HJB equation represents the two possible decisions that the firm has. The first term of the
equation corresponds to the decision to continue with the actual project and therefore postpone
the investment decision. The second term corresponds to the decision to invest and hence the end
of the decision problem. Thus

C =
{

(x, i) ∈ R+ × R+ : V (x, i) > g(x, i)
}

is the set of values of demand and investment cost such it is optimal to continue with the actual
project and, for that reason, is usually known as continuation region, whereas in the stopping
region, S, the value of the firm is exactly the gain if one decides to exercise the option. The sets
C and S are complementary on R+ × R+. We define

τ ? = inf {t ≥ 0 : (Xt, It) /∈ C} ,

which is the first time the state variables corresponding to the demand and the investment cost
are outside the continuation region. Note that (7) means that

ρV (x, i)− LV (x, i) ≥ 0 ∧ V (x, i) ≥ g(x, i), ∀ (x, i) ∈ R+ × R+.

Moreover,
V (x, i) ≥ g(x, i) ∧ ρV (x, i)− LV (x, i) = 0, ∀ (x, i) ∈ C

whereas
V (x, i) = g(x, i) ∧ ρg(x, i)− Lg(x, i) ≥ 0, ∀ (x, i) ∈ S.

The solution of the HJB equation, V , must satisfy the following initial condition,

V (0+, i) = 0, ∀i ∈ R+, (8)

which reflects the fact that the value of the firm will be zero if the demand is also zero. Furthermore,
the following value-matching and smooth-pasting conditions should also hold

V (x, i) = g(x, i) and ∇V (x, i) = ∇g(x, i) (9)

for (x, i) ∈ ∂C, where ∂C denotes the boundary of C, which we call critical boundary, and ∇ is the
gradient function. In this particular case, with two sources of uncertainty, the critical boundary
is a threshold curve separating the two regions.

So in order to solve the investment problem, we need to find the solution to the following
partial differential equation:

ρV (x, i)− LV (x, i) = 0 (10)

in the continuation region and, simultaneously, to identify the continuation C and stopping S
regions.

Both questions are challenging: on one hand the solution to (10) cannot be found explicitly,
and on the other hand we need to guess the form of the continuation region and prove that the
solution proposed for the HJB equation satisfies the verification theorem. Hereafter, we propose
an alternative way to solve this problem, that circumvent the difficulties posed by the fact that
we have two sources of uncertainty.
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3.1 Splitting the state space

In this section we start by guessing the shape of the continuation region and latter we will prove
indeed that our guess is the correct one, using the verification theorem.

Our guess about the continuation region comes from intuitive arguments: high demand and
low investment cost should encourage the firm to invest, whereas in case of low demand and high
investment cost it should be optimal to continue, i.e., postpone the investment decision. See Figure
2 for the general plot of both regions.

x

i

S

C

Figure 2: Space of process (X, I), C (continuation region) and S (stopping region).

But we need to define precisely the boundary of C and for that we use the conditions derived from
the HJB equation. We consider the set

U =
{

(x, i) ∈ R+ × R+ : ρg(x, i)− Lg(x, i) < 0
}

which, taking into account the expression of L (the infinitesimal generator) and the g function,
can be equivalently expressed (after some simple calculations) as

U =

{
(x, i) ∈ R+ × R+ :

xθ

i
<

ρ− µI
(κ1 − κ0)Ah

}
.

By Propositions 3.3 and 3.4 of [6], we know that U ⊆ C. Further, if U = ∅ then V (x, i) =
g(x, i), ∀ (x, i) ∈ R+ × R+ and τ ? = 0. This case would mean that it is optimal to invest right
away. So we need to check under which conditions this trivial situation does not hold. We have

ρ−µI
(κ1−κ0)Ah

≤ 0 if and only if ρ−µI ≤ 0, as the denominator is positive; as xθ

i
> 0, this would imply

that U = ∅ and τ ? = 0. Therefore, if µI ≥ ρ the firm should invest right away, which is coherent
with a financial interpretation: if the drift of the investment cost is higher than the discount rate,
the rational decision is to invest as soon as possible. To avoid such case, we assume that this does
not hold, i.e.,

ρ > µI . (11)
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Next we guess that the boundaries of U and C have the same shape, and therefore C may be
written as follows:

C =

{
(x, i) ∈ R+ × R+ : 0 <

xθ

i
< q?

}
,

where q? is a trigger value that satisfies

q? ≥ ρ− µI
(κ1 − κ0)Ah

. (12)

In Figure 3 the thick line represents the boundary of the set U and the other dashed lines are
some possible boundaries of the continuation region, C (as U ⊆ C, which would be the case).

x

i
U

Figure 3: Set U (bold line) and some possible boundaries of the continuation region, C.

3.2 Reducing to one source of uncertainty

It follows from the last section that the decision between continuing and stopping depends on the
demand level and investment cost only through a function of the two of them:

q =
xθ

i
.

Then the g function present in the performance criteria can also be written in terms of this new
variable, as g(x, i) = il(q), with

l(q) = (κ1 − κ0)Aq − 1 (13)

and, in view of (13), we propose that

V (x, i) = if (q) ,

where f is an appropriate function, that we need to derive still.

In chapter 6.5 of [1] is discussed a problem with two sources of uncertainty following a GBM.
Using economical arguments, they propose a transformation of the two state variables into a
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one state variable, and thus reducing the problem to one dimension, that can be solved using a
standard approach.

In the problem that we address we don’t use any kind of economical arguments but we rely on
the definition of the set U . Furthermore, the state variables that we consider in this paper follow
a jump-diffusion process, and thus the dynamics is more general than the one proposed by [1].
Therefore, we may see our result as a generalization of the results provided by [1].

Following the approach proposed in the previous section, we write the original HJB equation
now for the case of just one variable:

min {ρf(q)− LQf(q), f(q)− l(q)} = 0, ∀ q ∈ R+, (14)

where the infinitesimal generator of the unidimensional process Q =
{
Qt =

Xθ
t

It
, t ≥ 0

}
is

LQf(q) =
1

2

(
θ2σ2

X + σ2
I

)
q2f ′′(q) +

[(
µX + (θ − 1)

σ2
X

2
− λXmX

)
θ − (µI − λImI)

]
qf ′(q)

+ [(µI − λImI)− (λX + λI)] f(q)

+λXIE
[
f
(
q
(
1 + UX

)θ)]
+ λIIE

[
(1 + U I)f

(
q
(
1 + U I

)−1
)]
, (15)

where this equation comes from L definition, the relationship between V and f , and simple but
tedious computations.

The corresponding continuation and stopping regions (hereby denoted by CQ and SQ, respec-
tively) can now be written as depending only on q:

CQ =
{
q ∈ R+ : 0 < q < q?

}
and SQ =

{
q ∈ R+ : q ≥ q?

}
,

and thus q? is the boundary between the continuation and the stopping regions, as it is usually the
case in a problem with one state variable. We note that now we are in a standard case problem
of investment with just one state variable (see, for instance, chapter 5 of [1]) but with a different
dynamics than the usual one (the process Q is not a GBM).

Moreover, the following conditions should hold

f(0+) = 0, f(q?) = l(q?) and f ′(q) = l′(q)|q=q? . (16)

Next, using derivations familiar to the standard case, we are able to derive the analytical solution
to equation (14).

Proposition 2. The solution of the HJB Equation (14) verifying the conditions (16), hereby
denoted by f , is given by

f(q) =

{
1

r0−1

(
q
q?

)r0
0 < q < q?

(κ1 − κ0)Aq − 1 q ≥ q?
(17)

where
q? =

r0

(κ1 − κ0)A (r0 − 1)
(18)
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and r0 is the positive root of the function j:

j(r) =

[
σ2
X

2
θ2 +

σ2
I

2

]
r2 +

[(
µX −

σ2
X

2
− λXmX

)
θ −

(
µI −

σ2
I

2
− λImI

)]
r

+ (µI − λImI)− (λX + λI)− ρ+ λXIE
[
(1 + UX)rθ

]
+ λIIE

[
(1 + U I)1−r] . (19)

Proof. For the case q ≥ q? (corresponding to the stopping region), the value function is equal to l,
the investment cost, defined on (13), and thus the result is trivially proved. We then must prove
the result for the continuation region, for which q < q?.

In this case, we propose that the solution of the HJB in the continuation region is of the form
ζ(q) = bqr0 , where b and r0 are to be derived. As ζ(0) = 0 (from the condition (16)), it follows
that r0 needs to be positive.

Furthermore, in view of the definition of LQ (15), if we apply it to the proposed function ζ, it
follows that:

ρζ(q)− LQζ(q) = −bqr0j(r0),

where j is defined on (19). Therefore, in the continuation region

ρζ(q)− LQζ(q) = 0⇔ j(r0) = 0,

meaning that r0 is a positive root of j. Next we show that j has one and only one positive root
and thus r0 is unique. The second order derivative of j is equal to

j′′(r) = σ2
Xθ

2 + σ2
I + λXθ

2IE
[[

ln(1 + UX)
]2

(1 + UX)rθ
]

+ λIIE
[[

ln(1 + U I)
]2

(1 + U I)1−r
]
.

Given that the volatilities and the elasticity are positive, UX > −1 a.s. and U I > −1 a.s., it follows
that j′′(r) > 0, ∀r ∈ R. Thus, j is a strictly convex function. Further, limr→+∞j(r) = +∞ and
j(0) = µI − ρ < 0 (by assumption (11)), which means that j(0) < 0. Then, since j is continuous,
it has an unique positive root.

It remains to derive b. For that we use conditions presented in (16), and straightforward
calculations lead to:

b =
1

r0 − 1

(
1

q?

)r0
,

where q? must be given by (18). In order to ensure that this leads to an admissible solution for q?

(as q? must be positive), one must have r0 > 1.

The remainder of the proof is to check that (17) is the solution of the HJB Equation (14). For
that we need

i) To prove that in the continuation region f(q) ≥ l(q). In the continuation region f(q) =
1

r0−1

(
q
q?

)r0
. So, we define the function

ϕ(q) =
1

r0 − 1

(
1

q?

)r0
qr0 − (κ1 − κ0)Aq + 1

12



with derivatives

ϕ′(q) =
r0

r0 − 1

(
1

q?

)r0
qr0−1 − (κ1 − κ0)A and ϕ′′(q) = r0

(
1

q?

)r0
qr0−2.

Since ϕ′′(q) > 0, ϕ is a strictly convex function. As ϕ′(q) = 0 ⇔ q = q?, then q? is the
unique minimum of the function ϕ with ϕ (q?) = 0.

Summarizing, the function ϕ is continuous and strictly convex, has an unique minimum at
q? and ϕ (q?) = 0, then ϕ(q) ≥ 0,∀q ∈ R+. Therefore, f(q) ≥ l(q), for ∀q ∈ R.

ii) To prove that in the stopping region ρf(q)− LQf(q) ≥ 0.

In the stopping region f(q) = l(q), then

ρf(q)− LQf(q) = (κ1 − κ0)Ahq + (µI − ρ) .

Given that q ≥ q? and using the inequality (12), we conclude that

ρζ(q)− LQζ(q) ≥ (κ1 − κ0)Ahq? + (µI − ρ) ≥ (κ1 − κ0)Ah
ρ− µI

(κ1 − κ0)Ah
+ µI − ρ = 0.

Therefore, we conclude that the function f is indeed the solution of the HJB Equation (14).

We have already seen that in order to avoid the trivial case of investment right away, one must
have ρ > µI . Moreover, from the previous proof of the proposition, one must also assume that
r0 > 1, which implies that j(1) < 0, condition equivalent to h > σ2

I , where h is defined in (3).

Assumption 3.1. We assume that the following conditions on the parameters hold:

ρ > µI and h > σ2
I .

3.3 Original problem

In this section we prove that the solution of the original problem can be obtained from the solution
of the modified one.

Corollary 1. The solution of the HJB Equation (7) verifying the initial condition (8) and the
boundary conditions (9), hereby denoted by V , is given by

V (x, i) =

{[
(κ1−κ0)Axθ

r0

]r0 (
r0−1
i

)r0−1
0 < xθ

i
< q?

(κ1 − κ0)Axθ − i xθ

i
≥ q?

(20)

for (x, i) ∈ R+ × R+, where q? is defined on (18) and r0 is the positive root of the function j,
defined on (19).

13



Proof. Considering the relations of the functions g and f with the function V , it follows that the
function V proposed in Equation (20) is the obvious candidate to be the solution of the HJB
Equation (7). So next we prove that indeed this is the case. In the following we use some results
already presented in proof of Proposition 2.

Let (x, i) ∈ R+ × R+ and q = xθ

i
. Using some basic calculations one proves that LQV (x, i) =

iLQf(q) and ρV (x, i)−LV (x, i) = i [ρf(q)− LQf(q)]. Since i is positive, the signal of ρV (x, i)−
LV (x, i) is exactly the signal of ρf(q) − LQf(q). By construction, ρf(q) − LQf(q) = 0 in the
continuation region and ρf(q) − Lf(q) ≥ 0 in the stopping region. Therefore, we just need to
prove that in the continuation region V (x, i) − g(x, i) ≥ 0. This follows immediately because
V (x, i)− g(x, i) = i [f(q)− l(q)], i is positive and we previously proved that f(q) ≥ l(q).

Finally, from the initial and boundary conditions of the transformed problem (16), V (0+, i) =

if(0+) = 0 and for (x?, i?) ∈ ∂C, i.e., x?θ

i?
= q?, we obtain the boundary conditions of the original

problem (9).

4 Comparative statics

In this section we study the behavior of the investment threshold as a function of the most relevant
parameters, in particular the volatilities σX and σI , the intensity rates of the jumps, λX and λI ,
and the magnitude of the jumps, mX and mI . In order to have analytical results, we assume that
the magnitude of the jumps (both in the demand as in the investment) are deterministic and equal
to mX and mI , respectively1.

Before we proceed with the mathematical derivations, we comment on the meaning of having
q? monotonic with respect to a specific parameter, as we are dealing with a boundary in a two
dimensions space. For example, assuming that q? increases with some parameter y, this would
mean that q?(y1) < q?(y2), for y1 < y2 (leaving out the other parameters). Consider then the
corresponding continuation regions:

C1 =

{
(x, i) ∈ R+ × R+ : 0 <

xθ

i
< q?1

}
and

C2 =

{
(x, i) ∈ R+ × R+ : 0 <

xθ

i
< q?2

}
,

with q?1 = q?(y1) and q?2 = q?(y2). In Figure 4 we can observe the graphic representation of the
boundaries which divide the stopping and the continuation regions, for each case, and, as expected,
we would have C1 ⊂ C2. It follows from the splitting of the space into continuation and stopping,
that you in this illustration, we would stop earlier for smaller values of the parameter.

1Numerical results suggest that the distribution of the jumps is not very relevant in terms of its effect on the
investment thresholds.
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x

i
∂C1 ∂C2

Figure 4: The full (respectively, dashed) line is the boundary of the C1 (respectively, C2) set.

In the previous sections we consider j only as a function of r. As in this section we study
the behavior of j with respect to the parameters of both processes involved, we change slightly
the notation, in order to emphasize the dependency of j in such parameters. Therefore, we
define the vectors φX = (µX , σX , λX ,mX), φI = (µI , σI , λI ,mI) , ς = (θ, ρ,φX) and finally
% = (θ, ρ,φX ,φI), that we use in the following definition:

j(r,%) =

[
σ2
X

2
θ2 +

σ2
I

2

]
r2 +

[(
µX −

σ2
X

2
− λXmX

)
θ −

(
µI −

σ2
I

2
− λImI

)]
r

+ (µI − λImI)− (λX + λI)− ρ+ λX(1 +mX)θr + λI(1 +mI)
1−r.

Furthermore, we let r0(%) denote the positive root of j and we change accordingly the definition
of h as follows:

h(ς) = ρ−
(
µX + (θ − 1)

σ2
X

2
− λXmX

)
θ − λX

(
(1 +mX)θ − 1

)
and finally

q?(%) =
1

(κ1 − κ0)A(ς)

r0(%)

r0(%)− 1
,

with A(ς) defined on (4).

We start by proving the following lemma:

Lemma 4.1. The investment threshold changes with the parameters according to the following
relation:

dq?(%)

dy
=

1

∆(κ1 − κ0)A(ς)(r0(%)− 1)2
×


∆r0(%)(r0(%)−1)(nh(ς)+1)

h(ς)
∂h(ς)
∂y

+ ∂j(r,%)
∂y

∣∣∣
r=r0

if y ∈ φX

∂j(r,%)
∂y

∣∣∣
r=r0

if y ∈ φI

with ∆ = ∂j(r,%)
∂r

∣∣∣
r=r0

. Furthermore, as ∆ > 0, then the sign of the derivative of q? depends only

on the derivatives of h and j with respect to the study parameter.
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Proof. As

dq?(%)

dy
=

1

(κ1 − κ0)A(ς)(r0(%)− 1)2
×

{
r0(%)(r0(%)−1)(nh(ς)+1)

h(ς)
∂h(ς)
∂y
− ∂r0(%)

∂y
if y ∈ φX

−∂r0(%)
∂y

if y ∈ φI

the result follows from the implicit derivative relation dr0(%)
dy

= −
∂j(r,%)
∂y

∂j(r,%)
∂r

∣∣∣∣
r=r0

.

It remains to prove that ∆ > 0. As a function of r only, j is continuous and strictly convex,
with limr→+∞j(r) = +∞, j(0) < 0 and j(1) < 0, as we have already stated. Since r0 is its positive
root, in view of the properties of j, it follows that it must be increasing in a neighborhood of r0,
and thus ∆ > 0.

In the following sections, we study the sign of each derivative, whenever possible. Our goal is
to inspect if the trigger value, q?, increases or decreases with each parameter in φX and φI .

4.1 Comparative statics for the parameters regarding the demand

In this section we state and prove the results concerning the behavior of q? as a function of the
demand parameters. Before the main proposition of this subsection, we present and prove a
Lemma that provide us the admissible values for the parameters.

Lemma 4.2. In view of the Assumption 3.1, the following restrictions on the demand parameters
hold. The drift is upper bounded, i.e.,

µX <
1

θ

[
ρ−

(
(θ − 1)

σ2
X

2
− λXmX

)
θ − λX

(
(1 +mX)θ − 1

)
− σ2

I

]
.

The domain of the volatility parameter depends on θ. If 0 < θ < 1, σX is lower bounded, σX > B,
otherwise is upper bounded, 0 < σX < B, where

B =

√
max

{
0,

2

θ(θ − 1)

[
ρ− (µX − λXmX) θ − λX

(
(1 +mX)θ − 1

)
− σ2

I

]}
.

Relatively to the rate of the jumps, the domain also depends on θ. If 0 < θ < 1, λX is lower
bounded, λX > C, otherwise is upper bounded, 0 < λX < C, where

C = max

0,
ρ−

(
µX + (θ − 1)

σ2
X

2

)
θ − σ2

I

(1 +mX)θ − (θmX + 1)

 .

Regarding the jump sizes, we have the following: let ξ1 and ξ2 be the negative and positive solutions
of the equation

(1 + x)θ − (θx+ 1) =
ρ−

(
µX + (θ − 1)

σ2
X

2

)
θ − σ2

I

λX
, (21)
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respectively, when there are solutions. Moreover, let

D =
ρ−

(
µX + (θ − 1)

σ2
X

2

)
θ − σ2

I

λX
. (22)

For 0 < θ < 1,

• if D ≤ θ − 1 then mX > ξ2;

• if θ − 1 < D < 0 then mX ∈ (−1, ξ1) ∪ (ξ2,+∞);

• if D ≥ 0 then mX > −1.

For θ > 1,

• if 0 < D < θ − 1 then mX ∈ (ξ1, ξ2);

• if D ≥ θ − 1 then mX ∈ (−1, ξ2) 2,

and if θ = 1 and D > 0, then mX > −1.

Proof. The sets of admissible values for the parameters µX and σX come from straightforward
manipulation of the second restriction of Assumption 3.1.

The results regarding the jumps parameters (λX and mX) rely on the properties of the function

Υα(x) = Υα,2(x)−Υα,1(x), (23)

with Υα,1(x) = αx + 1 and Υα,2(x) = (1 + x)α, with x > −1 and α > 0. The graph of the
function Υα,1 is a tangent line of the graph of the function Υα,2 on the point (0, 1). Also, as
Υ′′α,2(x) = α(α − 1)(1 + x)α−2, the function Υα,2 is convex if α > 1 and it is concave otherwise.
Then, for x > −1, Υα,2(x) > Υα,1(x) if α > 1 and Υα,1(x) ≥ Υα,2(x) if 0 < α ≤ 1. Then it follows
that Υα(x) > 0 if α > 1 and Υα(x) ≤ 0 if 0 < α ≤ 1.

With respect to λX , in view of the restriction h > σ2
I ,

λXΥθ(mX) < ρ−
(
µX + (θ − 1)

σ2
X

2

)
θ − σ2

I

and therefore the restriction on this parameter follows.

Proceeding with the analysis with respect to the jump size, mX , we start by noting that
Υα(−1) = α − 1, Υα(0) = 0 and limx→∞Υα(x) = +∞χ{α>1} −∞χ{α<1}. From these properties
we know the shape of the function Υα for each α. The restriction h > σ2

I is equivalent to have
Υθ(mX) < D and therefore standard study of functions lead us to the results presented in the
Lemma.

2The case D ≤ 0 is equivalent to h ≤ σ2
I , and therefore Assumption 3.1 does not hold.
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Now we are in position to state the main properties of q? as a function of the demand param-
eters. From Lemma 4.1, we can only get results about the behavior of q? as a function of the

parameters if ∂h(ς)
∂y

and ∂j(r,%)
∂y

∣∣∣
r=r0

have the same sign. Therefore we are not able to present a

comprehensive study of q? for all values of θ.

Proposition 3. For 1
r0(%)

≤ θ ≤ 1, the investment threshold q?:

• increases with the demand volatility, σX and jump intensity, λX ;

• is not monotonic with respect to the magnitude of the jumps in the demand, mX . In fact,

– if D ≤ θ − 1 , then q? increases for mX > ξ2;

– if θ − 1 < D ≤ 0, then q? decreases for mX ∈ (−1, ξ1) and increases for mX > ξ2;

– if D > 0, then q? decreases for mX ∈ (−1, 0) and increases for mX > 0,

where D is defined on (22) and ξ1 and ξ2 are,respectively, the negative and positive solutions
of the Equation (21), when there are solutions.

Proof. The proof for σX is straightforward knowing the derivatives

∂h(ς)

∂σX
= −θ(θ − 1)σX and

∂j(r,%)

∂σX

∣∣∣∣
r=r0

= θr0(%)(θr0(%)− 1)σX .

Continuing with λX , we calculate the derivatives

∂h(ς)

∂λX
= θmX + 1− (1 +mX)θ = −Υθ(mX)

∂j(r,%)

∂λX

∣∣∣∣
r=r0

= (1 +mX)θr0(%) − (θr0(%)mX + 1) = Υθr0(%)(mX),

with Υα given by (23). Taking into account the properties of such function, we conclude the result
for λX .

Finally, for mX we also calculate the derivatives

∂h(ς)

∂mX

= θλX
[
1− (1 +mX)θ−1

]
= θλXΦθ(mX)

∂j(r,%)

∂mX

∣∣∣∣
r=r0

= −θr0(%)λX
[
1− (1 +mX)θr0(%)−1

]
= −θr0(%)λXΦθr0(%)(mX)

where
Φα(x) = 1− (1 + x)α, (24)

with x > −1 and α > 0. As Φ′α(x) = −α(1 + x)α−1, Φα is decreasing if α > 0, constant and equal
to zero if α = 0, and increasing if α < 0. Moreover, as Φα(0) = 0, then:
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• if α > 0, Φα is positive when −1 < x < 0 and is negative for x > 0;

• if α < 0, Φα is negative when −1 < x < 0 and positive for x > 0.

Given these results, the proof regarding mX is concluded.

Remark 4.3. Numerical examples show us that the investment threshold q? is not monotonic with
respect to the demand’s drift, µX . We cannot have analytical results for the behavior of q? with

respect to µX as the signs of the involved derivatives are opposite: ∂h(ς)
∂µX

= −θ and ∂j(r,%)
∂µX

∣∣∣
r=r0

=

θr0(%).

4.2 Comparative statics for the parameters regarding the investment

Now we state and prove the results concerning the behavior of q? as a function of the investment
parameters. In view of Lemma 4.1, we just need to assess the sign of the derivative of j with
respect to each one of the parameters.

Proposition 4. For values of investment parameters such that Assumption 3.1 holds, the invest-
ment threshold q?

• decreases with the investment drift µI ;

• increases with the investment volatility, σI and jumps intensity, λI ;

• is not monotonic with respect to the magnitude of the jumps in the intensity; it decreases
when mI ∈ (−1, 0) and increases when mI > 0.

Proof. The proof for µI and σI is trivial. In order to pove the result for λI , we study the behavior
of the function Θ:

Θ(r) =
∂j(r,%)

∂λI
= mI(r − 1) + (1 +mI)

1−r − 1.

We compute the second derivative,

Θ′′(r) = [ln(1 +mI)]
2 (1 +mI)

1−r > 0,

whence Θ is a strictly convex function. Furthermore, Θ(0) = Θ(1) = 0, which lead us to conclude

that Θ(r) > 0, for r > 1. Therefore, ∂j(r,%)
∂λI

∣∣∣
r=r0

= Θ(r0(%)) > 0, and the result follows.

Finally, in order to study the behavior of q? with respect to mI , we need to assess the sign of
the following derivative:

∂j(r,%)

∂mI

∣∣∣∣
r=r0

= λI(r0(%)− 1)
[
1− (1 +mI)

−r0(%)
]
.

Taking into account the Φα function defined on (24), we notice that ∂j(r,%)
∂mI

∣∣∣
r=r0

= λI(r0(%) −
1)Φ−r0(%)(mX). As r0(%) > 1 and in view of the properties of function Φα, the result follows.
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5 Conclusion

In this paper we proposed a new way to derive analytically the solution to a decision problem
with two uncertainties, both following jump-diffusion processes. This method relies on a change
of variable that reduces the problem from a two dimensions problem to a one dimension, which
we can solve analytically.

Moreover, we also presented an extensive comparative statics. From such analysis, we have
concluded that the behavior of the investment threshold with respect to demand and investment
parameters is similar, i.e., the impact of changing one parameter in the demand process is qual-
itatively the same as changing the same parameter in the investment process. This result holds
for all except for the drift: the investment threshold is monotonic with respect to the investment
drift but this does not hold for the demand drift.

For some parameters, the result is as expected, and similar to the one derived in earlier works
(like the behavior of the investment threshold with the volatility of both the demand and the
investment), whereas in other cases the results are not so straightforward. For instance, the
impact of the jump sizes of the demand depend on some analytical condition whose economical
interpretation is far from being obvious.

Our method may be extended for more general profit functions. In our research agenda we
plan to study properties of the functions such that the approach proposed in this paper will still
be valid and useful.

6 Proofs

6.1 Proof of Lemma 1

Proof. Applying expectation and re-writting Yt+s, we have

IE
[
Y k
t+s

∣∣Yt] = Y k
t exp

[(
µ− σ2

2
− λm

)
ks

]
IE

[
exp [σk (Wt+s −Wt)]

Nt+s∏
i=Nt+1

(1 + Ui)
k

∣∣∣∣∣Yt
]
.

Using the fact that the Brownian motion and the Poisson process have independent and stationary
increments, and that the processes are independent, we obtain

IE
[
Y k
t+s

∣∣Yt] = Y k
t exp

[(
µ− σ2

2
− λm

)
ks

]
IE [exp (σkWs)] IE

[
Ns∏
i=1

(1 + Ui)
k

]
. (25)

As {Ui}i∈N
i.i.d.∼ U , then using the probability generating function of a Poisson distribution and

the tower property of the conditional expectation, we conclude that

IE

[
Ns∏
i=1

(1 + Ui)
k

]
= exp

[
λs
(

IE
[
(1 + U)k

]
− 1
)]
. (26)
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The result follows using the moment generating function of the Normal distribution, and replacing
(26) in (25).
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