
This is a post-peer-review version of an article published in  

European Journal of Operational Research, Volume 264, Issue 3, 1 February 2018, Pages 1005-1019 

The final authenticated version is available at: http://dx.doi.org/10.1016/j.ejor.2017.01.016 

Page numbers have been adjusted to the publisher’s version, whereby this postprint is fully quotable. In 

accordance with the specifications of the publisher Elsevier, the author's version is published under a 

Creative Commons Licence CC BY-NC-ND 4.0 

Improving biorefinery planning: Integration of spatial data using exact optimization 

nested in an evolutionary strategy 

Tim Schrödera, Lars-Peter Lauvena, Jutta Geldermanna 

a: Professur für Produktion und Logistik, Georg-August-Universität Göttingen, Göttingen, 

Germany 

Biorefineries can provide a product portfolio from renewable biomass similar to that of crude 

oil refineries. To operate biorefineries of any kind, however, the availability of biomass inputs 

is crucial and must be considered during planning. Here, we develop a planning approach that 

uses Geographic Information Systems (GIS) to account for spatially scattered biomass when 

optimizing a biorefinery's location, capacity, and configuration. To deal with the challenges of 

a non-smooth objective function arising from the geographic data, higher dimensionality, and 

strict constraints, the planning problem is repeatedly decomposed by nesting an exact 

nonlinear program (NLP) inside an evolutionary strategy (ES) heuristic, which handles the 

spatial data from the GIS. We demonstrate the functionality of the algorithm and show how 

including spatial data improves the planning process by optimizing a synthesis gas biorefinery 

using this new planning approach.  

1.1 Introduction 

The transition from traditional fossil-based economies to so-called bioeconomies is attracting 

increased scientific interest (Golembiewski et al., 2015; Staffas et al., 2013). In a bioeconomy, 

goods that were once produced from fossil resources are instead produced from biogenous 

sources (Langeveld and Sanders, 2010). Biorefineries support this transition by providing a 

product portfolio similar to that of crude oil refineries. To distinguish biorefineries from other, 

more established biomass conversion plants, the German federal government offers the 

following definition: “The biorefinery process chain consists essentially of the pre-treatment 

and preparation of biomass, as well as the separation of biomass components (primary 

refining) and the subsequent conversion and processing steps (secondary refining)."(Federal 

Government, 2012). All biorefineries thus consist of a primary refining section, which produces 

intermediates that are converted to final products in the secondary refining section.  

In the German bioeconomy strategy, five different biorefinery concepts with specific inputs are 

outlined: sugar and starch, lignocellulose, vegetable and algae lipids, synthesis gas, and 

biogas. Although technology for these five concepts exists, their realization on an industrial 

scale is hindered by a perceived lack of profitability. The economics of all biorefineries rely 

heavily on the availability of biomass inputs (Lin et al., 2015; Gold and Seuring, 2011). Thus, 
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the spatial allocation of available biomass must be considered when planning any biorefinery. 

Geographic Information Systems (GIS), when used in combination with suitable databases, 

allow a detailed representation of the spatial availability of biomass. The availability of biomass 

inputs is important for the decision of where to locate a biorefinery. 

However, two further aspects interrelated with the location must also be considered, which 

renders the problem non-trivial. The optimal plant capacity also depends strongly on the spatial 

allocation of biomass. Although large capacities reduce specific investments due to economies 

of scale, they require biomass to be transported further to reach the plant, increasing 

transportation costs disproportionately. These transportation costs depend once again on the 

spatial allocation of the inputs. Secondly, the configuration of the biorefinery cannot be 

decoupled from the capacity. Due to process-specific economies of scale, large refineries have 

a different optimal configuration than small ones. Therefore, the optimization of the 

configuration cannot be performed independently from the capacity optimization, which in turn 

is closely related to the location of the plant and the local biomass availability. 

These interdependencies call for an integrated optimization model for location, capacity, and 

configuration. Thus, the following question entails: How can GIS and detailed spatial data 

enhance the planning process of a biorefinery's location, capacity, and configuration? 

Toward this end, we provide an algorithm to simultaneously optimize the location, capacity, 

and configuration, using the example of a synthesis gas biorefinery while taking into 

consideration the spatial distribution of its biomass inputs. Because biorefineries depend 

primarily on biomass availability and have few additional restrictions, they are not limited to a 

small number of potential locations. Given that the required permits can be obtained, 

biorefineries could be built on or near most areas under investigation. 

This is especially true within Europe, with its generally well-developed infrastructure and high 

share of temperate landscapes. This enables us to search for an optimal biorefinery location 

in a continuous solution space, which legitimately elevates the importance of available biomass 

relative to other location factors. Nevertheless, larger patches that are unfeasible for 

biorefinery construction, such as densely populated or protected areas, large bodies of water 

or mountaintops, may still be excluded from the solution space. In any case, if a biorefinery is 

built, numerous further bureaucratic steps will have to be taken that will add stricter limitations 

to the location selection. 

Our paper is organized as follows: In Section 1.2, the existing literature concerned with 

comparable planning problems is laid out. In Section 1.3, the developed optimization algorithm 

and its components are introduced, before being applied to an exemplary case study in Section 

1.4. Results regarding the case study, as well as in terms of algorithm performance, are 

presented in Section 1.5 and discussed in Section 1.6 before we draw conclusions in Section 

1.7. 



1.2 Literature review 

Optimization models have been used repeatedly to address the planning problems associated 

with several kinds of biomass conversion plants and supply networks. Such problems are 

frequently formulated as mixed integer linear programs (MILP). Kim et al. (2011b), for example, 

used a MILP model to locate and size biomass conversion plants for maximum profit. In a 

second study, Kim et al. (2011a) added uncertainties to the model using a Monte Carlo 

simulation. Product portfolio and supply chain optimization for biorefineries was addressed by 

Mansoornejad et al. (2010), who developed a decision-making framework for designing a 

product/process portfolio and a supply chain. Bao et al. (2011) focused on biorefinery 

configuration in a network for optimizing biomass yield or economic potential. Walther et al. 

(2012) employed a MILP network approach to select the best locations and technologies from 

ten potential locations and eight different conversion plant technologies and sizes. 

Several authors have already used Geographical Information Systems (GIS) to account for 

spatial aspects in bioenergy-related contexts. Leduc et al. (2010) employed an MILP model to 

determine cost-optimal locations from a set of discrete locations for ethanol plants having to 

satisfy a given demand. The configuration of the plants is determined in advance, however, 

and therefore not subject to optimization. The same basic model was applied to optimize the 

location and capacity of wood gasification plants in Austria (Leduc et al., 2008). Comber et al. 

(2015) incorporated the spatial distribution of biomass in optimally locating community-scale 

anaerobic digesters within a defined area of Great Britain. Furthermore, GIS are routinely used 

to determine a region's biomass potential and assess (Kurka et al., 2012; Thomas et al., 2013) 

or optimize the location of plants using these biomasses for energy purposes (Kaundinya et 

al., 2013; Santibañez-Aguilar et al., 2014; Natarajan et al., 2014; Lin et al., 2013, 2015). Zhang 

et al. (2011) used a two-staged model that first determines potential facility locations and then 

minimizes biomass transportation costs to these locations.  

Although the aforementioned studies, as well as most mentioned in reviews by Melo et al. 

(2009) and Owen and Daskin (1998), mainly use linear or mixed-integer models, many of the 

phenomena that such models have been designed to resemble are actually nonlinear, non-

convex, and/or nonsmooth. Such characteristics would actually suggest the use of methods 

other than MILP. Corsano et al. (2011) include nonlinearities in their MINLP for a bioethanol 

plant supply chain network and plant configuration. An evolutionary algorithm approach was 

selected by Rentizelas and Tatsiopoulos (2010) to optimally locate a biorefinery in a 

continuous, two-dimensional solution space using genetic algorithms and sequential quadratic 

programming. Wang et al. (2015) combined GIS, mathematical optimization, life-cycle 

assessment and process engineering software to address the complexity of the biorefinery 

planning process. Lauven (2014) used nonlinear programming (NLP) to determine the optimal 

capacity and configuration of a synthesis gas biorefinery under the assumption of evenly 

distributed average biomass availability - an assumption that does not reflect the regional 

variability of biomass. Because transport costs for the biomass inputs constitute a large share 

of biorefinery operating costs, spatial availability does indeed affect a plant's profitability. 

Naturally, a detailed consideration of spatial biomass availability increases the complexity of 

the problem. This increased complexity induces the need for heuristics, which are already 



being employed in bioenergy contexts. Reche-López et al. (2009) compare different 

metaheuristics, namely simulated annealing, a genetic algorithm, and particle swarm 

optimization, to determine the optimal placement of biomass power plants. The discrete 

problem is solved most efficiently by the algorithm presented in their paper, but a genetic 

algorithm also performs well. A similar study was published by Vera et al. (2010), who 

compared genetic algorithms, particle swarm optimization, and honey bee foraging in order to 

find the optimal location for a biomass power plant. Here, however, the configuration of the 

plant is not considered, and spatial assumptions are highly simplified, as, e.g., only rectangular 

biomass supply areas are allowed. Geraili et al. (2014) and Sharma et al. (2013) used 

metaheuristics, the process engineering software Aspen Plus, and MATLAB to optimize a 

biorefinery's configuration and capacity for its net present value. However, although Sharma 

et al. (2013) identify biomass transport as one of the main bottlenecks in biorefineries, they do 

not explicitly consider the spatial availability of biomass. Ba et al. (2016) offer a comprehensive 

overview of the decisions modeled and methods used in the performance evaluation of 

biomass supply chains. 

As is clear from our literature review, there has been considerable work done in this field. 

However, to the best of our knowledge, there is no published model that can plan a biorefinery's 

location, capacity, and configuration in a continuous solution space while also integrating GIS 

to consider the spatial availability of biomass at a high resolution. Table 1 provides a selection 

of publications mentioned in the literature review considering different combinations of 

biorefinery planning aspects addressed in our approach. The overview illustrates that an 

approach incorporating all the aspects dealt with in this paper is missing. 

Table 1: Selected literature concerned with partial aspects of biorefinery planning 

Publication Location Capacity Configuration GIS Continuous 

Corsano et al. (2011) ■ ■  ■ (■) 

Geraili et al. (2014), 
Sharma et al. (2013) 

 ■ ■  ■ 

Lauven (2014)  ■ ■  ■ 

Leduc et al. (2008), 
Leduc et al. (2010) 

■ ■  ■ (■) 

Lin et al. (2013), Lin 
et al. (2015) 

■  (■) ■  

Rentizelas and 
Tatsiopoulos (2010) 

■ ■  (■) ■ 

Walther et al. (2012) ■ ■ ■   

Wang et al. (2015)   ■ (■)  

1.3 Development of a biorefinery optimization model based 
on spatial data 

In this section, we first define the problem to be solved: maximizing the Return-on-Investment 

(ROI) of a biorefinery taking location, capacity, and configuration into account simultaneously. 



We then develop a method to solve the problem and go on to describe the materials and tools 

used to implement the method. The problem to be modeled in the following sections is to locate 

and scale a biorefinery with the general structure depicted in Figure 1. Biomass is transported 

from the surroundings to the plant location. At this location, the biomass is converted into 

marketable products in two refining stages: primary and secondary. 

 

Figure 1: Simplified Structure of the Synthesis Gas Biorefinery with Primary and Secondary Refining 

In primary refining, the biomass is gasified and converted to hydrogen and carbon monoxide, 

together referred to as synthesis gas. The synthesis gas then enters the Fischer-Tropsch-

Synthesis, where different hydrocarbons are formed on catalysts. A product stream, containing 

several raw products, exits primary refining. These raw products can then be separated from 

the product stream and upgraded into marketable products in secondary refining units. Thus, 

the capacity of the primary refining defines the overall capacity of the plant. Nevertheless, as 

the three cracking units do not produce any final products, but instead supply additional input 

for other secondary refining units, the sum of all secondary refining capacities (x1 to x14 in 

Figure 1) may be greater than that of the primary refining section (x0). Because all primary and 

secondary refining units have individual scaling exponents, different capacities may lead to 

distinct optimal configurations. 

1.3.1 A model that optimizes return-on-investment for a synthesis 

gas biorefinery in Germany 

In this section, we model the problem described above, that is, using GIS to incorporate the 

spatial availability of biomass into the integrated optimization of Return-on-Investment (ROI) 

for a synthesis gas biorefinery's location, capacity, and configuration. The ROI is regularly used 

as an indicator for an investment's profitability in the biorefinery context (Sen et al., 2012; 



Schaidle et al., 2011; Mansoornejad et al., 2010). We refrain from the use of more refined, 

dynamic methods for investment assessments. Indicators such as the net present value (NPV) 

or the internal rate of return (IRR) are more suitable for planning stages in which detailed 

assumptions about the investment and future price developments are available. This is not the 

case in the early planning phase in which the algorithm described here could be applied. 

Because the algorithm is used for rather conceptual calculations, we believe that the static ROI 

is sufficient to demonstrate the functionality of the algorithm. Nevertheless, it may be 

worthwhile to apply dynamic methods when concrete investment projects with profound 

prognoses on the various costs and market prices are available, as suggested by Chittenden 

and Derregia (2015). 

Sets 

G set containing all raw products g 

J set containing all biomass supply points j 

K set containing all primary refining units k 

L set containing all secondary refining units l 

M ⊂ L containing all secondary refining units l not producing any final product i ∈ I 

Parameters 

spl sales price of final product from secondary refining unit l ∈ (L \ M) [€ ∙ t-1] 

pcj  purchasing cost of biomass at supply point j [€ ∙ t-1] 

zj  energy content of biomass at supply point j [MWh] 

mj  mass of biomass at supply point j [t] 

ξj  longitude of biomass source j [m] 

φj  latitude of biomass source j [m] 

tf  fixed transport costs [€ ∙ t-1] 

tv  variable transport costs [€ ∙ km-1 ∙ t-1] 

β,γ parameters representing local infrastructure 

Ω conversion ratio input energy content to final product mass [MWh ∙ t-1] 

Θ factor for the determination of the investment outside battery limits 

Ψ cost escalation index 

f  capital charge rate [% ∙ a-1] 

e  share of electricity needed for plant operation [%] 

αk  base investment of primary upgrading unit k [€] 

δk  scaling exponent of primary upgrading unit k 

cg  share of raw product g ∈ G in the product stream coming from primary refining [%] 

αl  base investment of secondary upgrading unit l [€] 

δl  scaling exponent of secondary upgrading unit l 

rg,m  recycling stream from upgrading unit m ∈ M supplying raw product g ∈ G [%] 

Variables 



ξloc  longitude of the potential location [m] 

φloc  latitude of the potential location [m] 

x0  production capacity primary refining [t ∙ a-1] 

xl  production capacity of secondary refining unit l [t ∙ a-1] 

h’  number of biomass supply sources needed to satisfy the capacity 

1.3.1.1 Objective function: maximizing the ROI 

In general, the objective function to maximize a biorefinery's ROI is shown in Equation 1. In 

this section, we will present the objective function and describe the general form of the 

production system constraints. 

𝑚𝑎𝑥𝑅𝑂𝐼 =  
𝑟𝑒𝑣 − 𝑏𝑐 − 𝑜𝑐 − 𝑖𝑟𝑐

𝑖𝑛𝑣
 

(1) 

where 

rev  revenues from final product sales 

bc  biomass purchasing and biomass transportation costs 

oc  opportunity costs 

irc  investment related costs 

inv  total investment for the plant 

 

The first term in the numerator represents the revenues rev (Equation 2). The available quantity 

of the final products equals the capacity of the respective secondary refining unit xl ∀ l ∈ (L \ M). 

The sales prices spl for the final products are exogenous and fixed. 

𝑟𝑒𝑣 =  ∑ (𝑠𝑝𝑙 ∙ 𝑥𝑙)

𝑙𝜖(𝐿\𝑀)

 (2) 

The second term represents the biomass purchasing and transportation costs bc. Before these 

costs can be calculated, we need to determine how many biomass sources surrounding a 

potential plant at (ξloc; φloc) are required to exactly supply the biomass needed to fuel the 

capacity x0 of the plant. To this end, all biomass sources j ∈ J are sorted in ascending order 

according to their distances from this potential location. The energy contents zj of the sources 

j ∈ J are accumulated until they suffice to meet the total production capacity x0. The energy 

content zj better reflects the productivity of the input biomass than the mass mj would. To 

calculate the production capacity x0 given in tons of final product in line with zj, it has to be 

multiplied with a conversion factor representing the amount of MWh of biomass required to 

produce one ton of final product. Equation 3 delivers h’, the last biomass source required to 

supply the production capacity of the biorefinery. 

 

ℎ′ =  𝑎𝑟𝑔 min
ℎ∈𝐽

∑ 𝑧𝑗

ℎ

𝑗=1

|  ∑ 𝑧𝑗

ℎ

𝑗=1

≥ Ω ∙ 𝑥0 

(3) 

Once h’ is determined, it can be inserted into Equation 4 as the upper bound of the summation. 

Equation 4 determines the total biomass costs bc, which consist of the biomass purchasing 

and biomass transport costs. In order to calculate the variable transport costs tv for the 

biomass from any biomass supply point (ξj, φj) to the potential biorefinery location (ξloc, φloc), 



the distance on the road has to be approximated. To facilitate the calculation of the Euclidean 

distances, latitude and longitude are stated in meters.1 The established weighted lp norm 

based on Minkowski distances described in ReVelle and Eiselt (2005) and Brimberg et al. 

(2007) does not fit European infrastructures very well (Berens and Körling, 1985). Hence, 

coefficient β and exponent γ, as parameters representing the regional road infrastructure in 

the investigated area, are derived through a potential function regression, which delivers the 

highest coefficient of determination through a point cloud depicting the ratio between the 

distance on the road, as given by Google Maps and the Euclidean distance between two 

random points in the considered country or region. The fixed transport costs can be understood 

as handling costs when loading and unloading the biomass. They only depend on the mass mj 

of the biomass at source j ∈ J. 

The biomass purchasing costs bc are determined by multiplying the mass mj with the specific 

purchasing costs pcj of the biomass available at supply point j ∈ J. 

𝑏𝑐 =  ∑ (𝑚𝑗 (𝑡𝑣 ∙ 𝛽 ∙ √(ξ𝑙𝑜𝑐 − ξ𝑗)
2

+ (𝜑𝑙𝑜𝑐 − 𝜑𝑗)
2

) + 𝑡𝑓 + 𝑝𝑐𝑗)

ℎ′

𝑗=1

 

(4) 

The third term of the objective function represents the opportunity costs oc for the fixed share 

e of electricity that is not sold, but instead used to operate the plant (Equation 5). 

𝑜𝑐 =  𝑥0 ∙ 𝑒 ∙ 𝑠𝑝11 (5) 

The last term in the numerator in Equation 1 contains the investment-related costs irc for both 

the mandatory primary upgrading units K and the optional secondary upgrading units L. The 

potentially large number of configuration variables, which can be part of the optimal solution in 

a large range of potential capacities, makes a linearization of the problem cumbersome. 

Therefore, we do not attempt to linearize these economies of scale functions but attempt so 

solve the problem in its nonlinear form (Equation 6). The gross investment, the two sums at 

the end of Equation 6, is multiplied with a factor for the determination of additional investment 

outside battery limits (Θ) and a cost escalation index over time (Ψ) to receive the net 

investment. The net investment is then multiplied with the capital charge rate f to determine 

the annual investment related costs. 

The parameters for scale effects used in this work are adapted representations of the usual 

ratio of new over old capacity. The ratio expression is simplified by determining a base 

investment value for a capacity of one ton per year in a first step (Towler and Sinnott, 2013). 

This is done to subsequently omit the old capacity in the denominator, which then becomes 1 

as well. 

𝑖𝑟𝑐 =  𝑓 ∙ Θ ∙ Ψ ∙ (∑(𝑎𝑘 ∙ 𝑥0
𝛿𝑘)

𝑘∈𝐾

+ ∑(𝑎𝑙 ∙ 𝑥𝑙
𝛿𝑙)

𝑙∈𝐿

) 
(6) 

 
1 In simple terms, the coordinates are given in meters from the Greenwich meridian (ξ) and the equator 

(φ). However, due to the curvature of the earth, the raster has to be adapted to the investigated area, 
which distorts the distances to the Greenwich meridian and the equator, but keeps the distortions in the 
investigated area small. A suitable projection must be chosen in the GIS. 



Because ROI calculations, as described by Peters et al. (2003), require the division of the 

expected annual profit value by the investment inv, the denominator of Equation 1 is calculated 

analogously to the investment-related cost. 

 

1.3.1.2 Geography and capacity constraints 

A first set of simple constraints is concerned with the location and the capacity of the potential 

biorefinery. The coordinate tuple (ξloc, φloc) of the potential plant must be within the borders of 

the country (or region) the plant shall be located in. This constraint can be tested using GIS. 

(ξloc, φloc) ∈ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 (7) 

Furthermore, the production capacity x0 of the biorefinery cannot be negative. Nor can it 

exceed a value that consumes the total residual biomass available in the area under 

investigation (see Inequality 8). 

0 ≤ 𝑥0 ≤ ∑
𝑧𝑗

Ω
𝐽

 (8) 

1.3.1.3 Configuration constraints 

Ensuring that the constraints for the plant configuration are not violated is more complex than 

in the case of the geography and capacity constraints. The configuration constraints ensure 

adherence to mass balances during the refining stages of the production process. 

Methane (CH4) is part of the product stream from primary refining with a share of c1 and can 

be separated from this product stream in the secondary refining unit up to the capacity x1 

(Inequality 9). Additional potential input for this unit comes from the m ∈ M cracking processes. 

The return flow r1,m from these cracking units to unit l = 1 is expressed as a share of the total 

size of these cracking units being available for x1. Thus, the production capacity of marketable 

methane x1 must be less or equal to the share of the raw product (c1) multiplied with the total 

production capacity x0 plus the sum of the shares r1,m from the cracking units m ∈ M multiplied 

with the corresponding capacities xm ∀ m ∈ M. 

𝑥1 ≤ 𝑐1 ∙ 𝑥0 + ∑ (𝑟1,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (9) 

Analogously, the production capacity x2 of ethylene (C2H4) must be less or equal to its share 

c2 multiplied by the total capacity x0 plus the sum of recycling streams r2,m multiplied with the 

respective capacities xm ∀ m ∈ M (Inequality 10). 

𝑥2 ≤ 𝑐2 ∙ 𝑥0 + ∑ (𝑟2,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (10) 

Inequalities 11 and 12 deal with the usage of propylene (C3H6) and butenes (C4H8). There are 

two usage options for both these raw products to be transformed into marketable products. 

They can be purified in the units with the capacities x3 and x4. Alternatively, they can be used 

in the alkylation unit (capacity x5), where they would make up a certain share (40 percent of 

the final product mass) of alkylation input to produce high octane additives for petrol. 



𝑥3 + 0.4 ∙
𝑐4

𝑐3 + 𝑐4
∙ 𝑥5 ≤ 𝑐3 ∙ 𝑥0 + ∑ (𝑟3,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (11) 

𝑥4 + 0.4 ∙
𝑐4

𝑐3 + 𝑐4
∙ 𝑥5 ≤ 𝑐4 ∙ 𝑥0 + ∑ (𝑟4,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (12) 

The hydrocarbons with five to six carbon atoms (C5/C6) from primary refining or/and steam 

cracking have three usage options, represented by the capacities of alkylation (capacity x5, in 

which C5/C6 hydrocarbons are assumed to make up the remaining 60 percent of inputs), α-

olefin production (x6, base chemicals for polymerization reactions), and isomerization (x7, 

producing petrol) (Inequality 13). 

𝑥6 + 𝑥7 + 0.6 ∙ 𝑥5 ≤ 𝑐5 ∙ 𝑥0 + ∑ (𝑟5,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (13) 

The hydrocarbons in the gasoline range (with 7-16 carbon atoms, Inequality 14) can either be 

supplied to the naphtha upgrading unit with capacity x8, which produces petrol, or to the steam 

cracking unit with capacity x12, where long hydrocarbon chains are cracked into shorter ones. 

Cracking processes therefore produce additional input for the refining options for shorter 

hydrocarbon chains, i.e. upgrading processes in Inequalities 9 to 13. 

𝑥8 + 𝑥12 ≤ 𝑐6 ∙ 𝑥0 + ∑ (𝑟6,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (14) 

Inequality 15 follows the same principle as Inequality 14 for hydrocarbons suitable for diesel 

fuel, which range from 17-35 carbon atoms. Diesel-range hydrocarbons, with a share of c7 of 

the raw product stream, can either be upgraded to diesel (capacity x9) or serve as additional 

input for the other secondary refining units after undergoing distillate cracking (capacity x13). 

𝑥9 + 𝑥13 ≤ 𝑐7 ∙ 𝑥0 + ∑ (𝑟7,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (15) 

In analogy to the previous groups of substances, all hydrocarbons with 36 or more carbon 

atoms, with a share of c8 of the raw product stream, can either be purified into marketable 

waxes with a capacity of x10 or undergo a specific cracking process with capacity x14 (Inequality 

16). 

𝑥10 + 𝑥14 ≤ 𝑐8 ∙ 𝑥0 + ∑ (𝑟8,𝑚 ∙ 𝑥𝑚)

𝑚∈𝑀

 (16) 

The turbine (capacity x11) acts as a balancing process for the overall system (Equation 17). 

Because the constraints (9) to (16) are inequalities, it is possible that less than the total amount 

of raw materials from primary refining is used in the secondary refining units l ∈ (L\(M ∪ {11})) 

to produce final products. Thus, x11 acts as a reservoir, collecting the slack from the other 

upgrading units and ensuring the validity of the mass balances. As a result, all the input 

entering secondary refining is converted to some kind of final product. 

𝑥0 = ∑ (𝑥𝑙)

𝑙∈(𝐿\𝑀)

 (17) 

The second turbine constraint (Inequality 18) ensures that it is large enough to supply the 

energy needed for the biorefinery production processes. Thus, e defines the minimal share of 



the total products produced, that must to be converted into electricity in the turbine to keep the 

biorefinery independent of external electricity supply. 

𝑥11 ≥ 𝑒 ∙ 𝑥0 (18) 

Inequalities 19 to 20 pose further restrictions to the alkylation unit with capacity x5. An alkylation 

unit's capacity is limited by the available quantities of the two inputs, 40% C3 and C4 

hydrocarbons on the one hand and 60% C6 hydrocarbons on the other hand. Furthermore, as 

the latter statement implies, not the complete C5/C6 product stream is applicable in this 

process, but only C6 hydrocarbons which can be aromatized. The share of these specific 

molecules is assumed to be 25% of the total C5/C6 stream. 

𝑥5 ≤
𝑥0 ∙ 𝑐3 + ∑ (𝑥𝑚 ∙ 𝑟3,𝑚) + 𝑥0 ∙ 𝑐4 + ∑ (𝑥𝑚 ∙ 𝑟4,𝑚)𝑚∈𝑀𝑚∈𝑀

0.4
 

(19) 

𝑥5 ≤ 0.25 ∙
𝑥0 ∙ 𝑐5 + ∑ (𝑥𝑚 ∙ 𝑟5,𝑚)𝑚∈𝑀

0.6
 

(20) 

Inequality 21 accounts for the fact that only olefins with a double bond in the α position, α-

olefins, are available for α-olefin separation. A share of 60% of the total C5/C6 product stream 

is assumed to be α-olefins, which limits the capacity x6 of the α-olefin separation unit to 60% 

of the total amount of C5/C6 available. However, due to uncertainty whether there is a 

worthwhile quantity of α-olefins in the output streams of the cracking processes, recycling 

streams from cracking processes m ∈ M are not considered as applicable for the α-olefin 

separation. 

𝑥6 ≤ 0.6 ∙ 𝑐5 ∙ 𝑥0 (21) 

1.3.2 Evolutionary strategies for solving non-smooth optimization 

problems 

The objective functions for many real-life problems exhibit difficult characteristics, such as a 

large number of solutions in the solution space, a noisy objective function landscape, and strict 

constraints to the solution space (Michalewicz and Fogel, 2000). The biorefinery optimization 

problem at hand exhibits all these characteristics at the same time. The objective function is 

noisy due to the locally varying biomass availability. Such non-smooth, noisy, or “rough" 

(Rechenberg, 1994) objective functions are usually solved using heuristics rather than exact 

optimization algorithms. A first group of heuristics, evolutionary algorithms (EA), was 

introduced in the 1960s for large optimization problems (Horng et al., 2012). EA are well suited 

to solve large and difficult problems in a continuous solution space (Mahdavi et al., 2015). All 

EA are based on the mechanisms of natural selection, as described by Charles Darwin in 1859. 

Evolutionary strategies (ES), a subgroup of EA, were introduced by Rechenberg (1973). ES 

work directly with real or integer variables instead of using their binary representations, which 

makes them suitable for optimization problems with real or large integer numbers. As other 

GAs, ES operate with a population of λ individuals, feasible solutions, from which the μ fittest 

solutions, with the highest objective function values are selected to reproduce λ new children 

in the next generation.  



Vesterstrom and Thomsen (2004) show that Darwinian “real-valued Genetic Algorithms" 

perform better than other meta-heuristics on noisy objective functions. The algorithm described 

in their article works with two mechanisms: exogenously-given annealing allows fine tuning in 

the local search in later stages of the algorithm through decreasing of the mutation step length, 

while arithmetic crossover generates offspring through weighted arithmetic averages of the 

parents' variable values (Thomsen, 2003). Both mechanisms, the adaption of the mutation step 

length and the arithmetic crossover correspond to ES. Since both these mechanisms 

correspond to ES, the “real-valued Genetic Algorithm" can be classified as an ES with external 

step-length adaption. Thus, ES seem to be well suited for the optimization of noisy objective 

functions, as given in Equation 1 in Section 1.3.1. 

Julstrom (1999) shows that simple Darwinian EA are more effective than most hybrid EA 

considered in their paper. Only a Lamarckian2 approach can perform slightly better than the 

basic Darwinian approach. This Lamarckian approach uses the exact optimization of a 

subproblem in order to simplify the overall problem, which leads to the best results. 

However, when all variables are handled in the ES, the algorithm does not converge towards 

good solutions, but often settles for corner solutions, even if better starting solutions are 

provided. This happens because an important prerequisite for ES is missing: the existence of 

a superior order within the non-smooth objective function landscape. ES can hardly optimize 

functions that lack an overall, global structure (Muñoz et al., 2015). Even if such a superior 

order exists in all of the dimensions separately, this requirement can cause trouble when the 

dimensionality of a problem increases. The overall structure is lost in the interferences of the 

larger number of dimensions of the objective function (Chu et al., 2011; Omidvar et al., 2015). 

Moreover, the configuration constraints (mass balances) in our case study on biorefineries are 

strict, which further complicates the problem (Michalewicz and Fogel, 2000). Consequently, 

ES alone cannot reliably solve the problem at hand. 

1.3.3 Combining ES and NLP for the integrated optimization of a 

biorefinery 

Usually, complex problems that cannot be solved efficiently are decomposed in order to make 

them solvable. Unfortunately, the location, capacity, and configuration variables of a biorefinery 

are interdependent. Thus, the problem cannot be fully decomposed into smaller sub-problems 

over the complete run of the ES (Sayed et al., 2015). However, it is indeed possible to 

repeatedly decompose and recompose the problem in each iteration and for each of the λ 

individuals. 

By investigating the individual terms of our objective function in the biorefinery decision 

problem, the initial reason for the application of a heuristic - the non-smoothness of the 

 
2 In the early 19th century, the French biologist Jean-Baptiste de Lamarck developed an evolutionary 
concept in which the offspring could inherit experiences made by the parental generation instead of only 
the genes, as later correctly postulated by Charles Darwin. This concept is transferred to the genetic 
algorithm by interposing a local search capable of altering the decision variables before the next genetic 
iteration starts (Julstrom, 1999). 



objective function - can be limited to the term given in Equation 4, the calculation of biomass-

related costs. The variables in this term, ξloc, φloc and x0, are closely related to the spatially 

distributed biomass supply points. A small alteration in location or capacity can lead to different, 

additional, or fewer biomass supply points being used, which in turn leads to noise in the 

objective function. The remainder of the objective function, however, is smooth. Within the 

solution space, this part of the objective function, which contains most variables, is continuous 

and differentiable and thus suited for exact optimization. 

This procedure enables us to reduce the number of decision variables handled in the ES to 

the three variables causing noise: ξloc, φloc and x0. These variables can be handled in the ES 

very well and show sufficient superior structure. 

The remaining variables x1-x14 relating to the configuration of the biorefinery can be determined 

using exact nonlinear optimization. Hence, the overall optimization is repeatedly decomposed: 

a top-level ES and a nonlinear program nested inside the ES. The ES handles and fixes 

variable values for ξloc, φloc and x0 for a single individual solution; the corresponding costs for 

purchasing and transporting the required quantity of biomass to the potential location are 

calculated using Equation 4. These costs and the capacity of the whole plant are subsequently 

passed on to an exact mathematical program, where they are treated as parameters framing 

the optimization of the biorefinery's configuration. This overall procedure of the algorithm is 

depicted in Figure 2, where the exact NLP block is inserted into a standard ES procedure. 

 

Figure 2: ES Procedure with embedded NLP for integrated optimization of a synthesis gas biorefinery 

The more complex constraints representing the mass balances in the biorefinery case study 

can now be handled completely by the exact optimization algorithm, which is more suitable for 

dealing with such tight restrictions than the ES. The task of this nonlinear model is now to find 

the optimal configuration for a preliminarily located and scaled plant at (ξ’loc, φ’loc) with a total 



capacity of x’0. Note that the objective function of this sub-problem is similar to the overall 

objective function (Equation 1). Temporarily fixing (ξ’loc, φ’loc) and x’0 in the objective function 

and all constraints also results in fixed biomass-related costs bc’. 

𝑚𝑎𝑥𝑅𝑂𝐼

=  
∑ (𝑠𝑝𝑙 ∙ 𝑥𝑙)𝑙𝜖(𝐿\𝑀) − 𝑏𝑐′ − 𝑥′

0 ∙ 𝑒 ∙ 𝑠𝑝11 − 𝑓 ∙ Θ ∙ Ψ ∙ (∑ (𝐼𝑘 ∙ 𝑥′0
𝛿𝑘)𝑘∈𝐾 + ∑ (𝑎𝑙 ∙ 𝑥𝑙

𝛿𝑙)𝑙∈𝐿 )

Θ ∙ Ψ ∙ (∑ (𝑎𝑘 ∙ 𝑥′0
𝛿𝑘)𝑘∈𝐾 + ∑ (𝑎𝑙 ∙ 𝑥𝑙

𝛿𝑙)𝑙∈𝐿 )
 

(22) 

The resulting NLP can then be solved. The ES retrieves the resulting optimal values unit xl ∀ l 

∈ L and the respective objective function value. This process is performed for all λ individuals. 

The λ solutions are sorted according to their objective function values. The μ individuals with 

the highest fitness become the new parental generation. The selected individuals are stored 

for subsequent analysis. The ES loop starts anew until the maximum number of generations 

is reached or until there is no substantial improvement in the objective function value. Test 

runs show that calculating 100 generations suffices for algorithm convergence and supplies a 

homogeneous group of individuals. 

1.3.4 Implementation of the optimization approach 

We use several tools to implement the algorithm described above. The superior ES is 

implemented in Python script and run via PowerShell. Since the ES governs the overall 

procedure, it must also invoke the other tools used in the process. Both the General Algebraic 

Modeling System (GAMS), which is used for modeling the NLP, and ArcGIS, which is used for 

the geographic operation, have Python application programming interfaces (APIs) for such 

purposes. 

GAMS is a mathematical modeling environment provided by the GAMS Development 

Corporation. It enables clear model formulation and utilization of several different solvers. The 

Branch and Reduce Optimization Navigator (BARON) is used to solve the NLP described 

above (Tawarmalani and Sahinidis, 2005; Sahinidis, 2014). 

For the geographic operations, we use the popular and commercially available geographic 

information system ArcGIS, by ESRI Inc. This software contains a large number of geographic 

tools for processing spatial data. All the tools usually accessed via the graphical user interface 

can also be accessed directly via the Python API. This allows spatial operations to be 

performed within the ES. Moreover, ArcGIS is also needed to prepare the geographic input 

data required for the spatial representation of the biomass input, as described in Section 5.4.1. 

1.3.5 Altering location and capacity variables in the ES 

Both after initializing the algorithm and after selecting the best solutions found in each iteration, 

the location and capacity variables are altered in the recombination and mutation step of the 

ES. The recombination, or crossover, procedure is performed by calculating the weighted 

averages of two randomly chosen parental variable values. This intermediary recombination 

method incorporates a factor that randomly assigns weights between -0.25 and 1.25 that add 

up to 1 for both the parental variables xparent1 and xparent2. The possible assignment of values 



outside the zero-to-one range ensures that the children's parameters do not inevitably 

converge, and that the average distance of the parental values remains stable (Pohlheim, 

1999). The mutation incorporates one strategy variable for each decision variable. These 

strategy variables influence the expected step length of the mutation, i.e., the expected 

difference between the decision variable value before and after the mutation. In the course of 

the algorithm, this strategy variable adapts to allow for good coverage of the solution space in 

the early stages of the algorithm and a precise approach to the local optimum in the later 

stages. Thus, these strategy variables act as scaling factors for a standard normal random 

number, which is then added to the decision variable. After both the recombination and the 

mutation, the location tuple and capacity are tested for feasibility. In the case of infeasibility, 

the corresponding step is repeated 25 times. If no feasible solution can be found in 25 attempts, 

the location/capacity of the first parent is used as the child's variable value. Furthermore, so 

called comma-selection is applied, which means that each individual can only survive one 

generation (Rechenberg, 1994). 

1.4 Numerical application of the algorithm to an exemplary 
case study in Germany  

To test the influence of spatial data on biorefinery planning, we use the algorithm to locate, 

scale, and configure a synthesis gas biorefinery in Germany. While eventual convergence 

toward the global optimum can be guaranteed and proven for some adaptive random search 

algorithms, this guarantee does not exist for ES (Regis, 2010). By analyzing both the final 

optimization results and the investigated solutions during the optimization process, we aim to 

assess whether the algorithm converges reliably towards good solutions. To do this, the values 

in the sets for products (G), biomass supply points (J), primary (K) and secondary (L) refining 

units must first be specified. Table 2 shows the raw products g ∈ G from the primary refining 

units and their corresponding mass shares cg in the product stream, which is preliminarily 

separated into several streams in a distillation unit (Dry, 2004).  

Table 2: Raw primary refining product set G with corresponding shares cg (Dry, 2004) 

Index Raw Product g ∈ G Share cg 

1 CH4 8.4% 

2 C2H4 4.2% 

3 C3H6 11.6% 

4 C4H8 9.5% 

5 C5/C6 16.8% 

6 C7-C16 21.1% 

7 C17-C35 16.7% 

8 C>35 5.3% 

9 C2H6 3.2% 

10 C3H8 2.1% 

11 C4H10 1.1% 

Table 3 shows the secondary refining units l ∈ L with their respective base investments al and 

scaling exponents δl (Kreutz et al., 2008; Peters et al., 2003; Tijmensen et al., 2002; Towler 



and Sinnott, 2013). Furthermore, the two columns on the right show which final products are 

produced by each of the secondary upgrading units l ∈ L, as well as their corresponding sales 

prices spl in Euros per ton.  

Table 3: Properties of upgrading processes and final products with prices  

Ind. l Secondary Refining 

Unit l ∈ L 

Base Invest 

al 

Scaling Exp 

δl 

Product Prices  

spl 

1 Methane Upgrading 227 0.7 Methane 350 

2 C2-Separation 48,098 0.6 Ethylene 1,604 

3 C3-Separation 45,816 0.6 Propylene 1,574 

4 C4-Separation 16,931 0.6 Butene 1,168 

5 Alkylation 39,727 0.67 High Oct. Add. 1,310 

6 α-Olefin separation 194,007 0.6 α-Olefins 1,321 

7 Isomerization 2,975 0.62 
Gasoline 1,182 

8 Naphtha Upgrading 12,862 0.625 

9 Distillate Upgrading 5,293 0.55 Diesel 1,161 

10 Wax Upgrading 21,124 0.6 Wax 1,896 

11 Turbine 2,516 0.75 Electricity 185 

12 Naphtha Cracking 1,784 0.55 
No final products produced by 

these processes (M ⊂ L) 
13 Distillate Cracking 1,784 0.55 

14 Wax Cracking 16,821 0.55 

Kreutz et al., 2008; Peters et al., 2003; Tijmensen et al., 2002; Towler and Sinnott, 2013 

Table 4 shows the recycling streams from the secondary upgrading units m ∈ M, which provide 

additional raw products g ∈ G for subsequent use in the secondary upgrading units l ∈ L. The 

remaining parts of the recycling streams are used in the turbine (x11).  

Table 4: Secondary refining units m ∈ M producing additional raw products g ∈ G 

 
r1,m r2,m r3,m r4,m r5,m r6,m r7,m r8,m ∑ 𝑟𝑔,𝑚

11

𝑔=9
 

rg,1 0.149 0.357 0.179 0.042 0.062 0.144 0 0 0.067 

rg,2 0.080 0.190 0.140 0.110 0 0.200 0.270 0 0.010 

rg,3 0 0 0 0 0 0.300 0.650 0 0.050 

1.4.1 Preparing the input data 

The data processed in ArcGIS, which reflects the spatial allocation of the biomass, comes from 

the Corine Land Cover (CLC) 2006 (Umweltbundesamt, 2009) dataset. This dataset 

categorizes the surface of 38 European countries into 44 land cover classes. The most 

accurate representation is attained by the vector dataset, which contains shapefiles with 

seamlessly interlocking polygons for all 44 land-cover categories. CLC 2006 depicts the land 

covers as they were in 2006, which should be sufficiently accurate to demonstrate the 

approach. 



 

Figure 3: Potential biomass supply area for a biorefinery in Germany 

To apply the algorithm and calculate objective function values, the raw CLC 2006 data must 

undergo several editing steps in the GIS. The aim here is to develop a set J that contains all 

biomass sources within and around the German borders (see Figure 3) as vectors including 

their location, type, and quantity. Generally, there are two contradicting goals to pursue when 

editing the input data. On the one hand, the data should be aggregated to reduce the volume 

of data to be handled in the algorithm and shorten run time. On the other hand, the spatial 

distribution of the biomass must be accurate enough to justify the additional calculation efforts 

compared to highly aggregated discrete models. As described in the following eleven steps, 

this is achieved by first aggregating the data, where possible, and subsequently maintaining 

accuracy through selective separation of regions that are too highly aggregated. 

1. The potential area supplying biomass is identified and extracted from the database. 

Especially when working with extensive databases, such as the CLC 2006 database, this step 

is important to eliminate data points lying outside the biomass supply area shown in Figure 3. 

2. Land-cover categories that do not deliver any input for the process are excluded from the 

database. 

3. Land-cover categories delivering the same sort of biomass are merged into one umbrella 

category 

4. For each remaining category, we test whether there are any polygons larger than the desired 

maximum size. All polygons larger than the desired maximum size (here, 100km2) are isolated. 

5. The isolated polygons from each land-cover category are cut into smaller areas, using a so-

called fishnet feature class consisting of 10x10 km squares; thus, the maximum possible size 

after this step is 100km2. 



6. The cut areas from step 5 are merged back with polygons that were originally < 100km2. 

7. The ArcGIS Feature to Point tool is used to calculate the centroid for each polygon in each 

land-cover category; the properties of the corresponding polygons, namely their area and type 

of land cover, are also stored. 

8. The centroid's coordinates are determined and stored for each landcover category. 

9. The information gathered for the points are exported into separate csv files for each land-

cover category, containing each point's longitude ξj, latitude φj, type of land cover, and area. 

10. All csv files are merged into one csv file containing all relevant biomass supply points and 

associated information. 

11. The mass and energy of the biomass available at each biomass supply point is calculated 

using the specific yields given in Table 5. 

The information in the resulting csv file is a crucial input for the algorithm: Each line in the file 

represents one j ∈ J and has the following components: mass of biomass mj, its energy content 

zj, price pcj and location {ξj,φj}. 

Table 5: Availability of residual biomass per hectare  

Biomass Coverage 
Yield  

(t/ha) 

Energy content 

(MWh/t) 

Purchasing cost pcj 

(€/t) 

Residual wood Forest 1.0 4.3 70 

Straw Agriculture 5.0 4.0 35 

Landscaping materials Miscellaneous 1.5 5.5 40 

Biowaste City 3.5 0.9 360 

Maintenance material Parks and sport areas 6.0 1.4 200 

Hay Meadows 1.5 5.0 165 

Leaves Wine,fruit & olive trees 4.0 4.3 40 

FNR, 2007; Fricke and Bahr, 2010; Hakala et al., 2009; IBS, 2015; Kaltschmitt, 2009; DBFZ, 2014; Zeller et al., 
2012 

In the course of these preparatory steps, the original 44 land cover categories are reduced to 

21 that produce biomass, and these are condensed into seven categories defined by the seven 

kinds of residual biomass they yield (see Table 5). These land covers comprise the bulk of the 

dry land, an area of approximately 949,000km2, represented by a total of 245,437 biomass 

supply points. Agricultural areas make up almost 45%, forests account for almost 33% of this 

area, meadows add 11% and urban areas another 6%. The remainder consists of scrub- and 

heathland, parks and sports facilities, as well as wine and fruit plantations. 

1.4.2 Initializing the algorithm 

As Figure 2 shows, before the ES/NLP loop can start, one must initialize the algorithm and 

generate starting solutions. First, the supply sources are imported from the csv file, which was 

prepared as previously described. Random valid solutions are then generated for the decision 

variables. ξloc and φloc are constructed using the CreateRandomPoints tool from ArcGIS, which 

creates random points inside any polygon, in this case, within the borders of Germany. The 



starting capacity is randomly chosen between 1,000 MWh and 1,129 TWh of biomass input 

per year, which corresponds to an annual product output in tons of 31.25 ≤ x0 ≤ 35,281,250. 

Setting the lower bound to a value > 0 forces the algorithm to search for the least deficient 

biorefinery, in the case of a negative ROI, instead of simply setting x0 = 0, resulting in an ROI 

of zero. The starting values of the strategy variables (σ) required for the ES are defined 

deterministically. For the location variables, they are set at σξloc = σφloc = 50,000[m]. This 

indicates that the expected step length for the longitude and latitude variables is 50km when 

initializing the algorithm. The capacity strategy variable is set to σx0= 8,000,000 TWh of input 

biomass. The ES is self-adapting, lowering the expected step length in later stages to approach 

(local) optima accurately. μ = 15 starting solutions (individuals) of the form given in Equation 

23 are created and subsequently passed on to the recombination step to generate λ = 100 

children. Values of μ = 15 and λ = 100 are close to the recommended radio of μ/λ = 1/7 and 

are generally viewed as a well working standard setting in ES (Eiben and Smith,2015). 

individual = (ξloc, φloc, x0, σξloc, σφloc, σx0). 

1.4.3 Calculating the NLP and selecting the best solutions 

The specific costs for biomass provision are given in Table 5. The transportation costs are set 

at tv = 0.25 €/tkm and tf = 3.69 €/t, averages from (Jenkins and Sutherland, 2014; Kerdoncuff, 

2008). To estimate road distances traveled, the point cloud depicted in Figure 4 was derived 

by repeatedly comparing the Euclidean distance and the road distance as given by Google 

Maps. The potential regression through these points yields values of β = 1.6611 and γ = 0.959. 

These parameters account for the tendency that the discrepancy between Euclidean and road 

distance is larger for shorter distances, as Figure 4 shows. 

 

Figure 4: Relation Between Euclidean Distance and Distance on the Road 

Given the fixed capacity x0, the calculated biomass costs (bc’) associated with this capacity, 

and the location (ξ’loc; φ’loc), the NLP can now be solved. To account for plant cost escalation 



from the time the investment data was published to the current level of prices in Germany, we 

use the Chemie Technik index with Ψ = 1.3. Furthermore, since each plant construction is also 

associated with numerous cost items linked indirectly to the construction (outside battery limits, 

OSBL; e.g., overhead, utilities), an OSBL-factor for these investments is set to Θ ≈ 1.37 (Peters 

et al., 2003). Because the plant is assumed to supply its own electricity, we also consider the 

percentage of synthesis products needed to cover this demand: e = 5.11% (Bechtel, 1998). As 

in similar natural gas-based plants, the capital charge rate is set to f = 25% (Derouane, 2005).  

1.5 Results 

To assess the algorithm's performance, we present our results for the synthesis gas biorefinery 

location, capacity, and configuration found with the aforementioned assumptions using GIS 

data for Germany. Figure 5 shows the convergence paths of the best objective function value 

of 50 algorithm applications. The algorithm's computation time is 3-3.5 hours on an Intel Core 

i5-3750 CPU with 3.4 GHz, 8 GB RAM, and Windows 7. It decreases to about 2.5 hours on an 

i7-4710 CPU with 3.4 GHz, 8 GB RAM, and Windows 8.1/10. Two tasks take up most of the 

calculation time. First, placing the biomass sources in ascending order according to their 

distances from the potential location is time-consuming. This task is performed using Python's 

sort-function for lists. Second, solving the NLP for the configuration variables in GAMS with 

the BARON solver. Although the half-second solution time does not seem long, it becomes a 

factor due to the number of calculations (λ = 100 for each of the 100 iterations). 

 

Figure 5: Development of the best objective function value in each generation in 50 runs. 

1.5.1 Base scenario 

In 50 runs, the algorithm converged toward three different solutions. All three show a positive 

objective function value, that is, an ROI greater than the requirement already included in the 

capital charge rate f (see Figure 5). The best solution (ROI = 2.75%) is located approximately 

150 km east of Hamburg, in southern Mecklenburg-Western-Pomerania. Here, the capacity of 

1,570,944 tons of final products per year corresponds to an annual biomass input of 50.3 

million MWh. This solution is represented in Figure 6 by the center of the black northernmost 

circle, whose points indicate biomass sources. For this solution, 7,921 sources of residual 



biomass from within a radius of 108 km supply the biorefinery with sufficient biomass. Two 

other solutions were also frequently returned as the best solution found in the 50 algorithm 

runs (see Table 6).  

Table 6: ES-handled variable values for the best solutions found 

Variable Best solution Second best Third best 

ROI 2.75% 2.63% 1.93% 

ξloc 711,790.98 709,214.12 679,825.33 

φloc 5,924,268.51 5,935,243.28 5,745,186.10 

x0 1,572,931.78 1,823,079.30 2,450,441.80 

The second-best solution (ROI = 2.63%) has an identical configuration and is located only 10 

km further north. It has a higher capacity of about 58.3 million MWh biomass input per year (x0 

= 1,823,079 tons). The third best solution, located near Halle/Saale in central Germany (see 

the southern location on the left in Figure 6) already shows a pronounced drop in ROI to 1.93%. 

Its capacity of 79 million MWh biomass input per year (x0 = 2,450,448 tons) is about 50% larger 

than those of the other solutions.  

 

Figure 6: Best locations, required biomass sources (left) and selected upgrading units(right), all at 

maximum size for both locations. 

This third solution apparently has a large convergence area, causing the algorithm to 

occasionally “get stuck" in this local optimum. In all three solutions, the relatively high chemical 

prices lead to a configuration focused on chemicals (see Table 7). 

However, neither the expensive alkylation process (capacity x5) nor fuel upgrading of naphtha 

or diesel hydrocarbons (capacities x8 and x9) is selected by the model. Instead, the model opts 

for the installation of the cracking processes to increase the production of chemicals such as 

ethylene, propylene and butenes. The only chemical separation not chosen is the α-olefin 

separation unit (capacity x6), apparently because the high investment (see Table 13) cannot 

be justified by the expected increase in product value. 

  



Table 7: Scenario and Sensitivity Analyses 

Parameter New value ROI ξloc φloc Input cap. Config. 

Base - 2.8% 711 km 5924 km 50.3 𝑇𝑊ℎ
𝑎⁄  chem. 

tv 0.2 €/tkm 4.8% 821 km 5882 km 155.6 𝑇𝑊ℎ
𝑎⁄  chem. 

tv 0.2 €/tkm 0.1% 712 km 5924 km 50.3 𝑇𝑊ℎ
𝑎⁄  chem. 

f 20% 7.7% 711 km 5924 km 50.3 𝑇𝑊ℎ
𝑎⁄  chem. 

f 30% -2.2% 711 km 5924 km 50.3 𝑇𝑊ℎ
𝑎⁄  chem. 

straw av. 3.75 t/ha -1.1% 712 km 5924 km 39.8 𝑇𝑊ℎ
𝑎⁄  chem. 

straw av. 2.5 t/ha -6.2% 716 km 5930 km 25.7 𝑇𝑊ℎ
𝑎⁄  chem. 

sp2,3,4,6 sp2,3,4,6 ∙0.95 1.3% 712 km 5924 km 50.3 𝑇𝑊ℎ
𝑎⁄  fuels 

|J| |J|∙1 3⁄  -15.6% 695 km 5921 km 19.7 𝑇𝑊ℎ
𝑎⁄  chem. 

As mentioned above, the algorithm does occasionally settle into evidently local optima (see 

Figure 5). This problem can be redressed by applying the algorithm several times to assess 

how reliably the algorithm obtains the same solution. This is, in fact, the standard procedure 

when applying heuristics (e.g. Kumar et al. (2014)). With the current ES parameters, the 

algorithm seems to deliver the second-best solution more frequently than the best solution. 

This outcome may be attributed to a larger catchment area for the second-best solution. As 

shown above, the area in which the best solution is better than the second best solution is very 

narrow.  

To evaluate the quality of the solutions, we first develop a lower bound for the problem by fixing 

the configuration to one similar to that of Kreutz et al. (2008). The focus here is on fuels, as is 

often proposed in the literature (Kerdoncuff, 2008; Kreutz et al., 2008; Walther et al., 2012). 

With this fixed configuration, we optimize the location and capacity of the plant. Subsequently, 

we optimize the configuration for the location and capacity found. This procedure results in an 

ROI of -0.95%, well below the ROI of 2.75% of our integrated approach. This shows that for 

the investigated biorefinery, the simultaneous optimization of location, capacity, and 

configuration yields better results than a sequential optimization of the decision variables.  

1.5.2 Sensitivity and scenario analysis 

A sensitivity analysis of the best solution provides insights into the algorithm's ability to find 

narrow local optima. Toward this end, the location and capacity variables are independently 

altered from the best solution found. Subsequently, these new variable values are supplied to 

the NLP, which calculates the corresponding configuration and objective function value. All 

other things being equal, a change of 0.01% in the capacity domain reduces the objective 

function value to below that of the second-best solution. The objective function value is also 

sensitive to changes in the location variables. The algorithm must find an area of about 1 km2 

out of 357,376 km2 within German borders, with a 0.02% range of the capacity domain in order 

to find a solution with a higher objective function value than the second-best solution. This 

illustrates the roughness of the objective function landscape. Finding the small convergence 

area for this solution several times thus appears to verify the soundness of the method. 



To assess how sensitive the optimal solution is to a change in parameters, we analyzed eight 

altered scenarios (also see Figure 7 and Table 7 for results). Each scenario was calculated 

ten times to obtain sufficiently robust results. The availability of straw, the most significant 

biomass input in the original case study, was decreased to 75% and 50% of the original specific 

yield of 5 t per hectare. While the best locations found for both scenarios were only a few 

kilometers from the optimal location found originally, the achievable ROI decreased to -1.1% 

and -6.2%, respectively. The reduction of straw availability by 25% reduces the optimal 

capacity by 21.5%, while a 50% lower straw availability leads to a capacity reduction of 48.9%. 

The configuration remains the same, with a focus on chemicals production. In some of the 

algorithm runs with the lowest straw availability, another solution in southeastern Germany 

was also found, but with a distinctly lower ROI of -7.4%  

The availability of residual biomass assumed in the original calculation was comparatively high, 

due to the assumption that all accruing biomass was available for the biorefinery. To reflect 

that demand from other biomass conversion plants may also compete for the same biomass, 

we randomly excluded two thirds of the biomass sources. This means that we randomly 

deleted two thirds of the 245,347 biomass supply points resulting from the input preparation 

steps described in Section 1.4.1. Thus, the number of biomass supply points in set J is reduced 

from said 245,347 to 81,782, also cutting the total available biomass roughly down to one third. 

The location found by the algorithm again remained stable, about 20 kilometers west of the 

original location, and had a comparable maximum transportation distance for the input 

biomass. The overall capacity x0 of the plant was thus distinctly lower (about 20 TWh/yr of 

biomass input) and the plant ROI dropped to -15.6%. Repeated runs with new randomly 

selected 81,782 biomass supply points showed very similar results. 

 

Figure 7: Graphic representation of selected scenario analyses 

 When we altered the variable transportation costs by 0.05 €/tkm to 0.3 €/tkm and 0.2 €/tkm, 

the configuration remained focused on chemicals and the location remained in the same 

region. The plant capacity, however, changed significantly (see Figure 7).  

To investigate the effect of lower chemical prices, we reduced the selling prices spl for the bulk 

chemicals ethylene, propylene, butene and C5/C6-α-olefins by 5%. The result was a noticeable 

change in the configuration: The separation units for lower olefins (capacities x2-x4) were 



significantly smaller, since no cracking units (capacities x12-x14) were installed. Instead, more 

fuel was upgraded (capacities x8-x9). 

As Figure 7 and Table 9 show, the algorithm does indeed react to parameter changes as one 

would expect: the lower availability of straw does influence the capacity and profitability of the 

plant; lower variable transportation costs do lead to a much larger capacity with a larger supply 

area; and different product prices do lead to an adapted configuration. Nevertheless, for most 

of these scenarios, the location remains almost the same. Only large deviations in the capacity 

also seem to also alter the location of the plant. 

1.6 Discussion 

The results of this case study must be evaluated both from a theoretical and a practical point 

of view. While an algorithm with the ability to find narrow local optima for the objective function 

can be said to perform well from an OR point of view, the assessment of its results may differ 

from a practical business point of view. For example, a planner may choose a more robust 

solution with a slightly lower objective function value if the sensitivity of that solution is lower 

than that of the supposedly best solution. Because no real-life business case will ever be 

completely consistent with the assumptions made during the planning of a biorefinery, 

choosing a solution less sensitive to changes in parameter values may in fact be the better 

business decision.  

Some of the locations identified by the algorithm, particularly the global optimum close to the 

Baltic Sea, the third best solution near Halle/Saale and the site closer to the Oder river are 

close to sites that either house existing bioenergy plants, such as the Bioenergiepark Güstrow, 

Germanys largest biomethane plant and a biorefinery at the Leuna chemical site, or have been 

considered for a BtL addition to the local mineral oil refinery in Schwedt/Oder. Under the 

assumption that straw is the primary input material, the findings of the algorithm therefore 

appear meaningful.  

The reliability of the entire algorithm depends significantly on the reliability of the solver for the 

exact optimization of the biorefinery configuration. The BARON solver reliably solved the 

problem in all tests of our particular problem. The downside of the BARON solver is its relatively 

long run time. Other solvers, namely CONOPT, the Sparse Nonlinear OPTimizer (SNOPT), 

the Modular In-core Nonlinear Optimization System (MINOS), and the Nonlinear Interior point 

Trust Region Optimization (KNITRO), provide results more quickly, but do not always solve 

the problem to its global optimum. The approach could be improved once the performance of 

available nonlinear solvers makes it possible to reliably optimize more complex objective 

functions, such as net present value calculations, in manageable durations. 

The presented combination of exact optimization algorithms, heuristics, and GIS shows that 

the development of information systems makes it possible to include an increasing number of 

aspects into the planning process and to address more complex problems using decision 

support models. The use and combination of extensive data stored in numerous established 

and novel databases is possible due to the steadily improving performance of computer 

hardware.  



With even more potent hardware, it would also be possible to use actual road distances 

between the residual biomass collection points and the biorefinery. In this case, the 

approximation metric used in determining biomass related costs (bc) in Section 1.4.3 would 

have to be replaced with a shortest path algorithm performed on a street network spatial 

dataset. Although implementation with ArcGIS would be possible, the calculation time of the 

overall algorithm would severely increase (Brimberg et al., 2007; Hidaka and Okano, 2003). In 

the case study we introduced, the road distance would have to be calculated from each of the 

λ = 100 potential locations to (at least a significant share of) the 245,437 biomass sources we 

considered in each of the 100 generations. This amounts to about 2.5 billion shortest path 

calculations. Even if we only calculate the road distance to the 8,000 nearest biomass sources, 

80 million shortest path calculations would be required. 

1.7 Conclusion and outlook 

We have presented an approach to integrate high-resolution data on the spatial availability of 

biomass inputs into the planning of a biorefinery using a combination of GIS, ES, and exact 

nonlinear optimization. For the case study investigated, the algorithm reliably converges and 

delivers good solutions to a problem that has not been previously considered in a comparable 

combination of extent, complexity, and resolution.  

Although we validated our algorithm using a biorefinery application in Germany, it would be 

easy to adapt it to other geographical areas, given that appropriate land cover data is available. 

Because the CLC 2006 database we applied is available for all of Europe, application in 

European countries is clearly possible; data for other regions, such as Canada or the USA, is 

also available. However, the biomass yields and peculiarities of different available biomasses 

would have to be adapted. Another conceivable refinement may be to exclude certain areas 

from the biomass input dataset, e.g. when otherwise utilization of the considered biomass is 

established, or to add regionally differentiated biomass yields due to weather or soil conditions.  

The algorithm's modular structure makes it possible to implement other biorefinery types by 

modeling their configuration in GAMS, while keeping the remainder of the algorithm in the ES 

essentially the same. Thus, depending on the biomass available in the investigated area, a 

compatible biorefinery for this biomass can be investigated easily, if a mathematical 

formulation of the biorefinery production processes is available.  

An aspect which has been neglected so far is the uncertain availability of biomass supply 

(Wiedenmann and Geldermann, 2015; Borodin et al., 2016). However, the algorithm presented 

in this paper is suitable for the inclusion of stochastic availability, due to the large number of 

assessments of the objective function. Narrow solutions, such as the best solution found and 

presented in the Results section, are less likely to appear when stochastic biomass availability 

is incorporated into the algorithm. 

Finally, the presented approach may also be applicable for other multiproduct production 

systems that are highly dependent on the spatial availability of inputs, such as agricultural food 

production or industrial wood processing plants. 
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