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a b s t r a c t 

Finding robust solutions of an optimization problem is an important issue in practice, and various con- 

cepts on how to define the robustness of a solution have been suggested. The idea of recoverable robust- 

ness requires that a solution can be recovered to a feasible one as soon as the realized scenario becomes 

known. The usual approach in the literature is to minimize the objective function value of the recovered 

solution in the nominal or in the worst case. 

As the recovery itself is also costly, there is a trade-off between the recovery costs and the solution value 

obtained; we study both, the recovery costs and the solution value in the worst case in a biobjective 

setting. 

To this end, we assume that the recovery costs can be described by a metric. We show that in this case 

the recovery robust problem can be reduced to a location problem. 

We show how weakly Pareto efficient solutions to this biobjective problem can be computed by minimiz- 

ing the recovery costs for a fixed worst-case objective function value and present approaches for the case 

of linear and quasiconvex problems for finite uncertainty sets. We furthermore derive cases in which the 

size of the uncertainty set can be reduced without changing the set of Pareto efficient solutions. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Robust optimization is a popular paradigm to handle opti-

ization problems contaminated with uncertain data, see, e.g.,

issi, Bazgan, and Vanderpooten (2009) ; Ben-Tal, Ghaoui, and Ne-

irovski (2009) and references therein. Starting from conservative

obustness models requiring that the robust solution is feasible for

ny of the possible scenarios, new concepts have been developed,

ee Goerigk and Schöbel (2016) for a recent survey. These concepts

llow to relax this conservatism and to control the price of robust-

ess , i.e., the loss of objective function value one has to pay in

rder to obtain a robust solution, see Bertsimas and Sim (2004) .

n many real-world problems these new robustness concepts have

een successfully applied. 

Motivated by two-stage stochastic programs, one class of such

ew models includes the so called recoverable robustness intro-

uced in Cicerone, D’Angelo, Stefano, Frigioni, and Navarra (2007) ;
� Partially supported by grants SCHO 1140/3-2 within the DFG programme Algo- 

ithm Engineering , and grant MTM2012-36163-C06-03. 
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iebchen, Lübbecke, Möhring, Stiller, and Zaroliagis (2009) and in-

ependently also used in Erera, Morales, and Savelsbergh (2009) .

ecoverable robustness is a two-stage approach that does not

equire the robust solution to be feasible for all scenarios. In-

tead, a recoverable-robust solution comes together with a recov-

ry strategy which is able to adapt the solution to make it feasi-

le for every scenario. Such a recovery strategy can be obtained

y modifying the values of the solution or by allowing another re-

ource or spending additional budget, as soon as it becomes known

hich scenario occurs. Unfortunately, a recoverable-robust solution

an only be determined efficiently for simple problems with spe-

ial assumptions on the uncertainties and on the recovery algo-

ithms (see Stiller, 2008 ), and the recoverable-robust counterpart

s known to be NP-hard even in simple cases ( Cicerone, D’Angelo,

tefano, Frigioni, & Navarra, 2009a ). 

Our contributions. In this paper we analyze the two main goals

n recoverable robustness: Obtaining a good objective function

alue in the worst case while minimizing the recovery costs. We

onsider the ε-constrained version as a geometric problem, which

llows to interpret robustness as a location planning problem, and

erive results on Pareto efficient solutions and how to compute
hem. 

http://dx.doi.org/10.1016/j.ejor.2017.02.014
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Overview. The remainder of the paper is structured as follows. 

In the next section we sketch classic and more recent robust-

ness concepts before we introduce the biobjective version of re-

coverable robustness in Section 3 . We then analyze how to solve

the scalarization of the recoverable-robust counterpart in Section 4 ,

and consider reduction approaches in Section 5 . After discussing

numerical experiments in Section 6 , we conclude with a summary

of results and an outlook to further research in Section 7 . 

2. Robustness concepts 

2.1. Uncertain optimization problems 

We consider optimization problems that can be written in the

form 

(P) minimize f (x ) 

s.t. F (x ) ≤ 0 

x ∈ X , 

where X ⊆ IR 

n is a closed set, F : IR 

n → IR 

m describes the m con-

straints and f : IR 

n → IR is the objective function to be minimized.

We assume f and F to be continuous. In practice, the constraints

and the objective may both depend on parameters which are in

many cases not exactly known. In order to accommodate such un-

certainties, the following class of problems is considered instead of

(P). 

Notation 1. An uncertain optimization problem is given as a param-

eterized family of optimization problems 

P (ξ ) minimize f (x, ξ ) 

s.t. F (x, ξ ) ≤ 0 

x ∈ X , 

where F (·, ξ ) : IR 

n → IR 

m and f (·, ξ ) : IR 

n → IR are continuous func-

tions for any fixed ξ ∈ U , U ⊆ IR 

M being the uncertainty set which

contains all possible scenarios ξ ∈ IR 

M which may occur (see also

Ben-Tal et al., 2009 ). 

A scenario ξ ∈ U fixes the parameters of f and F . It is often

known that all scenarios that may occur lie within a given uncer-

tainty set U , however, it is not known beforehand which of the

scenarios ξ ∈ U will be realized. We assume that U is a closed set

in IR 

M containing at least two elements (otherwise, no uncertainty

would affect the problem). Contrary to the setting of stochastic op-

timization problems, we do not assume a probability distribution

over the uncertainty set to be known. 

The set X contains constraints which do not depend on the

uncertain parameter ξ . These may be technological or physical

constraints on the variables (e.g., some variables represent non-

negative magnitudes, or there are precedence constraints between

two events), or may refer to modeling constraints (e.g., some vari-

ables are Boolean, and thus they can only take the values 0 and

1). 

In short, the uncertain optimization problem corresponding to

P( ξ ) is denoted as 

( P( ξ ) , ξ ∈ U ) . (1)

We denote 

F(ξ ) = { x ∈ X : F (x, ξ ) ≤ 0 } 
as the feasible set of scenario ξ ∈ U and 

f ∗(ξ ) = min { f (x, ξ ) : F (x, ξ ) ≤ 0 , x ∈ X } 
as the optimal objective function value for scenario ξ (which might

be ∞ if it does not exist). Note that F(ξ ) is closed in IR 

n 
, as we
ssumed X to be closed, and F ( ·, ξ ) to be continuous. In the fol-

owing we demonstrate the usage of ξ ∈ IR 

M for the case of linear

ptimization. In the simplest case, ξ coincides with the uncertain

arameters of the given optimization problem. 

xample 1. Consider a linear program minimize { c t x : Ax ≤ b, x ∈
R 

n } with a coefficient matrix A ∈ IR 

m,n 
, a right-hand side vector

 ∈ IR 

m and a cost vector c ∈ IR 

n . If A , b , and c are treated as un-

ertain parameters, we write 

 (A, b, c) minimize f (x, (A, b, c)) = c t x 

s.t. F (x, (A, b, c)) = Ax − b ≤ 0 

x ∈ X = IR 

n 
, 

.e., ξ = (A, b, c) ∈ IR 

M with M = n · m + n + m 

However, in (1) we allow a more general setting, namely that

he unknown parameters A , b , c may depend on (other) uncertain

arameters ξ ∈ IR 

M . For example, there might be M = 1 parameter

∈ IR which determines all values of A , b , c . As an example imagine

hat the temperature determines the properties of different mate-

ials. In such a case we would have 

f (x, ξ ) : IR 

n × IR → IR , and 

F (x, ξ ) : IR 

n × IR → IR 

m 

, 

here f (x, ξ ) = c(ξ ) t x and F (x, ξ ) = A (ξ ) x − b(ξ ) . 

We now summarize several concepts to handle uncertain opti-

ization problems. 

.2. Strict robustness and less conservative concepts 

The first formally introduced robustness concept is called strict

obustness here. It has been first mentioned by Soyster (1973) and

hen formalized and analyzed by Ben-Tal, El Ghaoui, and Ne-

irovski in numerous publications, see Ben-Tal et al. (2009) for

n extensive collection of results. A solution x ∈ X to the uncer-

ain problem (1) is called strictly robust if it is feasible for all sce-

arios in U , i.e., if F ( x , ξ ) ≤ 0 for all ξ ∈ U . The set of strictly ro-

ust solutions with respect to the uncertainty set U is denoted by

R (U ) = 

⋂ 

ξ∈U F(ξ ) . The strictly robust counterpart of (1) is given

s 

C (U ) minimize sup ξ∈U f (x, ξ ) 

s.t. x ∈ SR (U ) 

he objective follows the pessimistic view of minimizing the worst

ase over all scenarios. 

Often the set of strictly robust solutions is empty, or all of the

trictly robust solutions lead to undesirable solutions (i.e., with

onsiderably worse objective values than a nominal solution would

chieve). Recent concepts of robustness hence try to overcome the

over-conservative” nature of the previous approach. In this pa-

er we deal with recoverable robustness which is described in

he next section. Other less conservative approaches include the

pproach of Bertsimas and Sim (2004) , reliability ( Ben-Tal & Ne-

irovski, 20 0 0 ), light robustness ( Fischetti & Monaci, 2009; Schö-

el, 2014 ), adjustable robustness ( Ben-Tal, Goryashko, Guslitzer, &

emirovski, 2004 ) (which will be used in Section 3.3 ), and com-

rehensive robustness ( Ben-Tal, Boyd, & Nemirovski, 2006 ). For a

ore detailed recent overview on different robustness concepts we

efer to Goerigk and Schöbel (2016) . 

. A biobjective approach to recoverable robustness 

Our paper extends the recently published concepts of recover-

ble robustness . As before, we consider a parameterized problem 
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Fig. 1. An instance of (Rec) not having any Pareto efficient solution for an uncer- 

tainty set U with only two scenarios. 
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 (ξ ) minimize f (x, ξ ) 

s.t. F (x, ξ ) ≤ 0 

x ∈ X 

he idea of recoverable robustness (see Liebchen et al., 2009 ) is

o allow that a solution can be recovered to a feasible one for ev-

ry possible scenario. There, a solution x ∈ X is called recoverable-

obust if there is a function y : U → X such that for any possible

cenario ξ ∈ U , the solution y (ξ ) ∈ F(ξ ) is not too different from

he original solution x . This includes on the one hand the costs

or changing the solution x to the solution y ( ξ ), and on the other

and the objective function value of y ( ξ ) compared to the objective

unction value of x . The solution y ( ξ ) is called the recovery solution

or scenario ξ . 

Examples include recoverable-robust models for linear pro-

ramming ( Stiller, 2008 ), shunting ( Cicerone et al., 2007 ),

imetabling ( Cicerone et al., 2009b ), platforming ( Caprara, Galli,

tiller, & Toth, 2014 ), the empty repositioning problem ( Erera et al.,

009 ), railway rolling stock planning ( Cacchiani et al., 2012 ) and

he knapsack problem ( Büsing, Koster, & Kutschka, 2011 ). An ex-

ensive investigation can be found in Stiller (2008) . Note that the

odel has the drawback that even for simple optimization prob-

ems an optimal recoverable-robust solution is usually hard to de-

ermine. 

.1. Model formulation 

Various goals may be followed when computing a recoverable-

obust solution: On the one hand, the new solution should be re-

overable to a good solution y (ξ ) ∈ F(ξ ) for every scenario ξ ∈ U .

n the other hand, also the costs of the recovery are important:

 new solution has to be implemented, and if x differs too much

rom y ( ξ ) this might be too costly. We assume that the recov-

ry costs can be measured by a metric d : IR 

n × IR 

n → IR . An ex-

mple for metric recovery costs can be found, e.g., for shunting

n Cacchiani et al. (2012) ; recovery costs defined by norms are

lso used frequently, e.g., in timetabling ( Liebchen et al., 2009 ), in

ecoverable-robust linear programming ( Stiller, 2008 ), or in vehi-

le scheduling problems ( Goerigk, Deghdak, & T’Kindt, 2015 ). Re-

ently, distance functions have also played a role in the devel-

pment of uncertainty sets for distributional robustness, see, e.g.,

en-Tal, Hertog, De Waegenaere, Melenberg, and Rennen (2013) ;

ertsimas, Gupta, and Kallus (2013) ; Carlsson, Behroozi, and Mihic

2015) . 

In our approach we use both objectives: quality of the recov-

red solution and recovery costs. The resulting biobjective model

or recoverable robustness can be formulated as follows: 

Rec) vec − minimize ( f (y ) , r (x, y ) ) 

= 

(
sup 

ξ∈U 
f (y (ξ ) , ξ ) , sup 

ξ∈U 
d(x, y (ξ )) 

)
s.t. F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U 

x ∈ X , y : U → X 

e look for a recoverable robust solution x together with a recov-

ry solution y (ξ ) ∈ F(ξ ) for every scenario ξ ∈ U . Note that if U is

nfinite, (Rec) is not a finite-dimensional problem. In the objective

unction we consider 

• the quality f ( y ( ξ ), ξ ) of the recovery solutions, which will fi-

nally be implemented, in the worst case, and 

• the costs of the recovery d ( x , y ( ξ )), i.e., changing x to y ( ξ ), again

in the worst case. 

As usual in multi-criteria optimization we are interested in

nding Pareto efficient solutions to this problem. Recall that a solu-

ion (x ∈ X , y : U → X ) is weakly Pareto efficient if there does not
xist another solution x ′ ∈ X , y ′ : U → X such that 

sup 

ξ∈U 
f (y ′ (ξ ) , ξ ) < sup 

ξ∈U 
f (y (ξ ) , ξ ) and 

up 

ξ∈U 
d(x ′ , y ′ (ξ )) < sup 

ξ∈U 
d(x, y (ξ )) . 

f there does not even exist a solution x ′ ∈ X, y ′ : U → X for which

ne of the two inequalities holds with equality, then ( x , y ) is called

areto efficient. 

otation 2. We call x recoverable-robust for (Rec) if there exists y :

 → X such that ( x , y ) is Pareto efficient for (Rec). y ( ξ ) is called

he recovery solution for scenario ξ . 

We are interested in finding recoverable-robust solutions x .

ote that (Rec) depends on the uncertainty set U . This dependence

s studied in Section 5 . 

In (Rec), the worst-case objective f does not depend on x . This

s because we assume that x is always modified to the appropriate

olution y ( ξ ) when the scenario is revealed. 

We remark, that even if x or y is fixed, the resulting problem

Rec) is still challenging. If x is given, we still have to solve a biob-

ective problem and choose y ( ξ ) either with a good objective func-

ion value in scenario ξ or with small recovery costs close to x . If

 is given, (Rec) reduces to a single-objective problem in which a

oint is searched which minimizes the maximum distance to all

oints y (ξ ) , ξ ∈ U . 

Our first result is negative: Pareto efficient solutions need not

xist even for a finite uncertainty set and bounded recovery costs

s the following example demonstrates. 

xample 2. Consider the uncertain program 

( ξ ) min f (x, ξ ) 

s.t. 1 ≤ ξx 1 x 2 

ξx 1 ≥ 0 

x 2 ≥ 0 , 

here U = {−1 , 1 } is the uncertainty set and X = IR 

2 . The feasible

ets of scenario ξ 1 = −1 and scenario ξ 2 = 1 are given by: 

(−1) = { (x 1 , x 2 ) ∈ IR 

2 : x 1 x 2 ≤ −1 , x 1 ≤ 0 , x 2 ≥ 0 } , 
F(1) = { (x 1 , x 2 ) ∈ IR 

2 : x 1 x 2 ≥ 1 , x 1 , x 2 ≥ 0 } . 
oth feasible sets are depicted in Fig. 1 . 

For the objective function f (x, ξ ) = | x 1 | and the recovery distance

(x, y ) = ‖ y − x ‖ 1 the problem does not have any Pareto efficient so-

ution. 

This can be seen as follows: Let x = (x 1 , x 2 ) , y 1 = (y 1 
1 
, y 1 

2 
) and

 

−1 = (y −1 
1 

, y −1 
2 

) be an arbitrary feasible solution to (Rec) where

 

1 and y −1 are the two recovery solutions for the scenarios ξ = 1
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Fig. 2. The sets G ε (ξ ) , ξ ∈ U together with an optimal solution x and recovery so- 

lutions y (ξ ) , ξ ∈ U . x minimizes the maximum distance to the sets G ε (ξ ) . 
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o  
and ξ = −1 . Let a := max { x 2 , y 1 2 
, y −1 

2 
} + 1 . Then the solution x̄ :=

(0 , a ) , ̄y 1 := ( 1 a , a ) and ȳ −1 := (− 1 
a , a ) is strictly better in both objec-

tive functions. To this end we use that y 1 
1 

≥ 1 

y 1 
2 

> 

1 
a and y −1 

1 
≤ − 1 

y −1 
2 

<

− 1 
a and compute 

f (y 1 , y −1 ) = max {| y 1 1 | , | y −1 
1 |} > max { ∣∣ 1 

a 

∣∣, ∣∣− 1 
a 

∣∣} = f ( ̄y 1 , ȳ −1 ) , 

r (x, y 1 , y −1 ) = max {‖ x − y 1 ‖ 1 , ‖ x − y −1 ‖ 1 } 
≥ max {| x 1 − y 1 1 | , | x 1 − y −1 

1 |} 
≥ | y 1 1 − y −1 

1 
| 

2 

> 

1 

a 
= max {‖ ̄x − ȳ 1 ‖ 1 , ‖ ̄x − ȳ −1 ‖ 1 } 

= r (x, ȳ 1 , ȳ −1 ) . 

It is known that all weakly Pareto efficient solutions are optimal

solutions of one of the two ε-constraint scalarizations which are

given by bounding one of the objective functions while minimizing

the other one. 

The first scalarization bounds the recovery costs and minimizes

the objective function value in the first place, i.e., 

( Rec class (δ)) minimize sup ξ∈U f (y (ξ ) , ξ ) 

s.t. d(x, y (ξ )) ≤ δ for all ξ ∈ U 

F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U 

x ∈ X , y : U → X . 

This problem has been introduced as recoverable robustness (see

Liebchen et al., 2009 ) and solved in several special cases, e.g., in

Büsing et al. (2011) ; Goerigk et al. (2015) ; Kasperski and Zielinski

(2015) . It is hence denoted as the classic scalarization approach. 

In this paper we look at the other scalarization in which we

minimize the recovery costs while requiring a minimal quality of

the recovery solutions: 

( Rec (ε)) minimize sup ξ∈U d(x, y (ξ )) 

s.t. f (y (ξ ) , ξ ) ≤ ε for all ξ ∈ U (2)

F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U (3)

x ∈ X , y : U → X 

Note that Constraints (2) and (3) of this second scalarization do not

depend on x . To determine feasibility of (Rec( ε)), we hence check

if for every ξ ∈ U there exists y ( ξ ) such that 

f (y (ξ ) , ξ ) ≤ ε and F (y (ξ ) , ξ ) ≤ 0 , 

i.e., if the sets 

G ε (ξ ) := { y ∈ X : F (y, ξ ) ≤ 0 and f (y, ξ ) ≤ ε} 
= F(ξ ) ∩ { y ∈ X : f (y, ξ ) ≤ ε} 

are not empty for all ξ ∈ U . For a fixed scenario ξ the set G ε (ξ )

contains all feasible recovery solutions y which have a sufficient

quality, i.e., it is the intersection of the feasible set with the level

set (for level ε) of the problem P ( ξ ). To extend a given x to a fea-

sible solution, we choose some y (ξ ) ∈ G ε (ξ ) which is closest to x

w.r.t the metric d . This is possible since G ε (ξ ) is closed: we define 

d(x, G ε (ξ )) = min 

y ∈G ε (ξ ) 
d(x, y ) , 

where the minimum exists whenever G ε (ξ ) � = ∅ . 
With d ( x , ∅ ) := ∞ , we can now rewrite (Rec( ε)) to an equivalent

problem in the (finitely many) x -variables only: 

( Rec ′ (ε)) minimize sup ξ∈U d(x, G ε (ξ )) (4)

s.t. x ∈ X , 

i.e., x is an optimal solution to (Rec’( ε)) if and only if ( x , y ) with

y (ξ ) ∈ argmin G ε (ξ ) d(x, y ) is optimal for (Rec( ε)). 
.2. Location-based interpretation of (Rec( ε)) 

In a classic location problem (known as the Weber problem or as

he Fermat-Torricelli problem , see e.g., Drezner, Klamroth, Schöbel, &

esolowsky (2002) ) we have given a set of points, called existing

acilities , and we look for a new point minimizing a measure of

istance to these given points. If the distance to the farthest point

s considered as the objective function, the problem is called center

ocation problem . We have already seen that for given y : U → X ,

ur biobjective problem (Rec) reduces to the problem of finding

 location x which minimizes the maximum distance to the set

 y (ξ ) : ξ ∈ U} , i.e., a classic center location problem. 

We now show that also the ε-constrained version (Rec( ε)) of

ecoverable robustness 

in 

x ∈X 
max 
ξ∈U 

d(x, G ε (ξ )) 

an be interpreted as the following location problem: The exist-

ng facilities are not points but the sets G ε (ξ ) , ξ ∈ U . (Rec( ε)) looks

or a new location in the metric space X , namely a point x ∈ X 

hich minimizes the maximum distance to the given sets. For a

nite uncertainty set U , such location problems have been studied

n Brimberg and Wesolowsky (20 0 0 , 20 02a) for the center objective

unction and in Brimberg and Wesolowsky (2002b) ; Nickel, Puerto,

nd Rodriguez-Chia (2003) for median or ordered median objective

unctions. We adapt the notation of location theory and call such a

oint (which then is an optimal solution to (Rec( ε)) a center with

espect to {G ε (ξ ) : ξ ∈ U} and the distance function d . In our fur-

her analysis we consider (Rec( ε)) from a location’s point of view.

o this end, let us denote the objective function of (Rec( ε)) by 

 ε (x, U ) = sup 

ξ∈U 
d(x, G ε (ξ )) 

nd let us call r ε (x, U ) the (recovery) radius of x with respect to ε
nd U . Let r ∗ε (U ) denote the best possible recovery radius over X (if

t exists). For a center location x ∗ we then have r ε (x ∗, U ) = r ∗ε (U ) .

ig. 2 illustrates this point of view: For six scenarios, we depicted

he sets G ε (ξi ) , i = 1 , . . . , 6 . We look for a point x which minimizes

he maximum distance to these sets. If x has been fixed, the recov-

ry solutions y i := y (ξ i ) , i = 1 , . . . , 6 can be chosen as projections

rom x on the sets G ε (ξ i ) . 

For specific shapes of the sets G ε (ξ ) , algorithms of location the-

ry may be used to find a solution x to ( Rec ( ε)) efficiently. For
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(

0  
xample, if the sets G ε (ξ ) are balls of equal radius, it is known that

he point x minimizing the maximum distance to the sets G ε (ξ ) is

he same as the point x minimizing the maximum distance to the

enter points of these sets. The latter is a classic point location

roblem which can be solved efficiently ( Megiddo, 1984 ), hence in

uch a case an optimal solution to (Rec( ε)) and therefore a weakly

areto efficient solution for (Rec) can be computed efficiently. 

Closely related are quadratic programming problems of the

ype 

 (ξ ) min 

{ 

l ∑ 

i =1 

n ∑ 

j=1 

(x j − ξi j ) 
2 , x ∈ IR 

n 

} 

ith uncertain parameters ξ = (ξi j ) i =1 , ... ,l, j=1 , ... ,n ∈ IR 

l,n 
, where the

evel sets of the optimization problem P( ξ k ) and hence the sets

 ε (ξ k ) for a specific scenario ξ k are balls around the centroid
¯k := 

1 
l 
( 
∑ l 

i =1 ξ
k 
i 1 

, . . . , 
∑ l 

i =1 ξ
k 
in 
) ∈ IR 

n of the row vectors of ξ k . 

.3. Relation of the biobjective model to other robustness concepts 

We first point out the relation between (Rec) and the con-

ept of strict robustness of Ben-Tal et al. (2009) . To this end recall

rom Section 2.2 that SR (U ) = { x ∈ X : F (x, ξ ) ≤ 0 for all ξ ∈ U} is

he set of strictly robust solutions and RC( U ) is the strictly robust

ounterpart of (P (ξ ) , ξ ∈ U ) . 

emma 1. Let an uncertain problem (P(ξ ) , ξ ∈ U ) be given. Then we

ave: 

1. If x̄ is an optimal solution to RC( U) then ( ̄x , ̄y ) with ȳ (ξ ) :=
x̄ for all ξ ∈ U is a lexicographically minimal solution to (Rec)

w.r.t ( r ( x , y ), f ( y )) . 

2. Let ( ̄x , ̄y ) be a lexicographically minimal solution to (Rec) w.r.t

( r ( x , y ), f ( y )) . Then SR (U ) � = ∅ if and only if r ( ̄x , ̄y ) = 0 and in this

case ( ̄x , ̄y ) is optimal to RC( U). 

roof. 

1. Let x̄ be an optimal solution to RC( U). Define ȳ (ξ ) := x̄ for all

ξ ∈ U . Then r ( ̄x , ̄y ) = 0 . Now assume ( ̄x , ̄y ) is not lexicograph-

ically minimal. Then there exists ( x ′ , y ′ ) with r (x ′ , y ′ ) = 0 and

f (y ′ ) < f ( ̄y ) . The first condition yields that d(x ′ , y ′ (ξ )) = 0 for

all ξ ∈ U , hence x ′ = y ′ (ξ ) for all ξ ∈ U , and x ′ ∈ SR (U ) . Us-

ing x ′ = y ′ (ξ ) , the second condition implies sup ξ∈U f (x ′ , ξ ) <

sup ξ∈U f ( ̄x , ξ ) , a contradiction to the optimality of x̄ for RC( U). 

2. Now let ( ̄x , ̄y ) be lexicographically minimal to (Rec). 
• Let r ( ̄x , ̄y ) = 0 . Then 0 = r ( ̄x , ̄y ) = sup ξ∈U d( ̄x , ̄y (ξ )) , i.e., x̄ =

ȳ (ξ ) for all ξ ∈ U . Hence x̄ ∈ F(ξ ) for all ξ ∈ U , i.e., x̄ ∈
SR (U ) . 

• On the other hand, if SR (U ) � = ∅ there exists x ∈ F(ξ ) for

all ξ ∈ U . We define y ( ξ ) := x for all ξ ∈ U and obtain

r (x, y ) = 0 . Since ( ̄x , ̄y ) is lexicographically minimal this im-

plies r ( ̄x , ̄y ) = 0 . 

Finally, if r ( ̄x , ̄y ) = 0 we already know that x̄ = ȳ (ξ ) for all

ξ ∈ U and x̄ ∈ SR (U ) , i.e., feasible for RC( U). The lexicographic

optimality then guarantees that x̄ is an optimal solution to

RC( U). �

Sorting the criteria in the objective function in the other order,

.e., minimizing first f ( y ) and then r ( x , y ) is not directly related to

ny known robustness concept. This lexicographically minimal so-

ution ( x , y ) realizes an optimal solution y ( ξ ) in every scenario, and

mong these optimal solutions minimizes the recovery costs. 

emma 2. Let ( x , y ) be a solution to (Rec) which is lexicographically

inimal w.r.t ( f ( y ), r ( x , y )) . Then f (y (ξ ) , ξ ) = f ∗(ξ ) for all ξ ∈ U . 

We now turn our attention to (Rec( ε)) and show that this

calarization can be interpreted as adjustable robustness as in Ben-
al et al. (2004) . Motivated by stochastic programming, the vari-

bles in this concept are decomposed into two sets: The values

or the here-and-now variables have to be found in the robust opti-

ization algorithm while the decision about the wait-and-see vari-

bles can wait until the actual scenario ξ ∈ U becomes known. For

n uncertain problem (P(ξ ) , ξ ∈ U ) , recall that (Rec( ε)) is given

s 

in 

x ∈X 
sup 

ξ∈U 
d(x, G ε (ξ )) . 

e can rewrite this problem in the following way: 

in 

z,x 
{ z : ∀ ξ ∈ U ∃ y ∈ G ε (ξ ) : d(x, y ) ≤ z } 

hich has the same structure as an adjustable robust problem. As

n example, for a problem with linear objective function f (x, ξ ) =
(ξ ) t x, linear constraints F (x, ξ ) = A (ξ ) x − b(ξ ) ≤ 0 , and ‖·‖ 1 as

ecovery norm, we may write 

min 

z ′ ,x 

{
n ∑ 

i =1 

z ′ i : ∀ ξ ∈ U ∃ y : c(ξ ) t y ≤ ε, A (ξ ) y ≤ b(ξ ) , 

− z ′ ≤ x − y ≤ z ′ 
}

. (5) 

ote that this is a problem without fixed recourse (i.e., coefficients

f second-stage variables are affected by uncertainty), such that

ost of the results in Ben-Tal et al. (2004) are not applicable.

owever, we are still able to apply their results on using heuris-

ic, affinely adjustable counterparts, and Theorem 2.1 from Ben-Tal

t al. (2004) : 

heorem 1. Let (P(ξ ) , ξ ∈ U ) be an uncertain linear optimization

roblem, and let the uncertainty be constraint-wise. Furthermore, let

here be a compact set C such that F(ξ ) ⊆ C for all ξ ∈ U . Then,

Rec( ε)) is equivalent to the following problem 

min 

z ′ ,x 

{
n ∑ 

i =1 

z ′ i : ∃ y ∀ ξ ∈ U : c(ξ ) t y ≤ ε, A (ξ ) y ≤ b(ξ ) , 

− z ′ ≤ x − y ≤ z ′ 
}

. (6) 

Note that problem (6) is a strictly robust problem, which is con-

iderably easier to solve than problem (5) . Furthermore, Ben-Tal

t al. (2004) show that there is a semidefinite program for ellip-

oidal uncertainty sets which is equivalent to problem (5) . 

Problem (Rec( ε)) can also be interpreted as a strictly robust

roblem in x (see (4) ). However, the function ξ �→ d(x, G ε ) has in

eneral not much properties such that most of the known results

annot be directly applied. Nevertheless, our geometric interpre-

ation gives rise to the results of the next section, in particular

ithin the biobjective setting. 

. Solving (Rec( ε )) 

In this section we investigate the new scalarization (Rec( ε)).

fter a more general analysis of this optimization problem in

ection 4.1 , we turn our attention to the case of a finite uncer-

ainty set in Section 4.2 where we consider problems with convex

nd with linear constraints. 

.1. Analysis of (Rec( ε)) 

Let us now describe some general properties of problem

Rec( ε)). Since d is a metric we know that 

 ≤ r ε (x, U ) ≤ + ∞ for all x ∈ IR 

n 
, (7)
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hence the optimal value of (Rec( ε)) is bounded by zero from below,

although it is + ∞ if all points x have infinite radius r ε (x, U ) . This

event may happen even when all sets G ε (ξ ) are non-empty. In-

deed, consider, for instance, X = IR , G ε (ξ ) = { ξ} for all ξ ∈ U = IR .

One has, however, that finiteness of r ε (x, U ) at one point x 0 and

one ε implies finiteness of r ε ′ (x, U ) for all x ∈ X and for all ε′ ≥ ε.

In that case we obtain Lipschitz-continuity of the radius, as shown

in the following result. 

Lemma 3. Let an uncertain optimization problem (P(ξ ) , ξ ∈ U ) be

given. Suppose there exists x 0 ∈ IR 

n such that r ε (x 0 , U ) < + ∞ . Then,

r ε (x, U ) < + ∞ for all x ∈ IR 

n and for all ε′ ≥ ε. In such a case,

the function IR 

n � x � −→ r ε ′ (x, U ) is Lipschitz-continuous with Lips-

chitz constant L = 1 for every ε′ ≥ ε. 

Proof. Take x ∈ IR 

n and ξ ∈ U . Let y ∈ G ε (ξ ) such that

d(x 0 , G ε (ξ )) = d(x 0 , y ) . We have that 

d(x, G ε (ξ )) ≤d(x, y ) ≤d(x, x 0 ) + d(x 0 , y ) = d(x, x 0 ) + d(x 0 , G ε (ξ )) 

Hence, 

max 
ξ∈U 

d(x, G ε (ξ )) ≤ d(x, x 0 ) + max 
ξ∈U 

d(x 0 , G ε (ξ )) < + ∞ , 

and therefore, r ε (x, U ) is finite everywhere. Since r ε ′ (x, U ) ≤
r ε (c, U ) for all ε′ ≥ ε we also have finiteness if we increase ε. 

We now show that r ε (·, U ) is also Lipschitz-continuous. Let δ >

0, and let x, x ′ ∈ IR 

n 
. Take ξ ∗ such that 

δ + d(x, G ε (ξ ∗)) ≥ r ε (x, U ) . 

Since G ε (ξ ∗) is closed, take also y ′ ∈ G ε (ξ ∗) such that

d(x ′ , G ε (ξ ∗)) = d(x ′ , y ′ ) . 
Then, 

r ε (x, U ) − r ε (x ′ , U ) ≤ δ + d(x, G ε (ξ ∗)) − d(x ′ , G ε (ξ ∗)) 

≤ δ + d(x, y ′ ) − d(x ′ , y ′ ) 
≤ δ + d(x, x ′ ) . 

Since this inequality holds for any δ > 0, we obtain

r ε (x, U ) − r ε (x ′ , U ) ≤ d(x, x ′ ) , hence the function r(·, U ) is

Lipschitz-continuous with Lipschitz constant 1. �

In what follows we assume finiteness of the optimal value of

(Rec( ε)), and thus Lipschitz-continuity of r ε (·, U ) . Hence, (Rec( ε))

may be solved by using standard Lipschitz optimization methods

( Sergeyev & Kvasov, 2010 ). 

For a given x ∈ IR 

n let us call ξ ∈ U a worst-case scenario with

respect to x (and U) if 

d(x, G ε (ξ )) = r ε (x, U ) 

and let W C ε (x, U ) be the set of all worst-case scenarios, i.e., scenar-

ios ξ ∈ U yielding the maximal recovery distance for the solution

x . Under certain assumptions, any optimal solution x ∗ to (Rec( ε))

has a set W C ε (x ∗, U ) with at least two elements, as shown in the

following result. 

Lemma 4. Let an uncertain optimization problem (P(ξ ) , ξ ∈ U ) be

given. Suppose that U is finite (with at least two elements) and X =
IR 

n . Fix some ε and assume that (Rec( ε)) attains its optimum at some

x ∗ ∈ IR 

n 
. Then, | W C ε (x ∗, U ) | ≥ 2 . 

Proof. Finiteness of U implies that the maximum of d(x ∗, G ε (ξ ))

must be attained at some ξ . Hence, | W C ε (x ∗, U ) | ≥ 1 . 

In the case that r ε (x ∗, U ) = 0 , we have that W C ε (x ∗, U ) = U .

Thus, let r ε (x ∗, U ) > 0 . 

In the case that W C ε (x ∗, U ) = { ξ ∗} for only one scenario ξ ∗ ∈ U ,

we can construct a contradiction by finding a different x with a

better radius: Take y ∗ ∈ G ε (ξ ∗) such that d(x ∗, y ∗) = d(x ∗, G ε (ξ ∗)) ,
and, for λ ∈ [0, 1], define x λ as 

x = (1 − λ) x ∗ + λy ∗. 
λ
ince, by assumption, W C ε (x ∗, U ) = { ξ ∗} and U is finite, there ex-

sts δ > 0 such that 

(x ∗, G ε (ξ )) < d(x ∗, G ε (ξ ∗)) − δ ∀ ξ ∈ U , ξ � = ξ ∗. 

et us show that, for λ close to zero, x λ has a strictly better objec-

ive value than x ∗, which would be a contradiction. First we have 

(x λ, G ε (ξ ∗)) ≤ d(x λ, y ∗) 

= (1 − λ) ‖ x ∗ − y ∗‖ = (1 − λ) d(x ∗, G ε (ξ ∗)) 

< d(x ∗, G ε (ξ ∗)) for λ > 0 . 

or the remaining scenarios ξ � = ξ ∗, 

(x λ, G ε (ξ )) ≤ inf 
y ∈G ε (ξ ) 

{‖ x λ − x ∗‖ + ‖ x ∗ − y ‖ 

}
= inf 

y ∈G ε (ξ ) 

{
λ‖ x ∗ − y ∗‖ + ‖ x ∗ − y ‖ 

}
= λ‖ x ∗ − y ∗‖ + d(x ∗, G ε (ξ )) 

< λ‖ x ∗ − y ∗‖ + d(x ∗, G ε (ξ ∗)) − δ

< d(x ∗, G ε (ξ ∗)) for λ < 

δ

‖ x ∗ − y ∗‖ 

. 

ence, for 0 < λ < 

δ
‖ x ∗−y ∗‖ , we would have that 

ax 
ξ∈U 

d(x λ, G ε (ξ )) < d(x ∗, G ε (ξ ∗)) = max 
ξ∈U 

d(x ∗, G ε (ξ )) , 

ontradicting the optimality of x ∗. �

If the finiteness assumption of Lemma 4 is dropped, not much

an be said about the cardinality of W C ε (x, U ) , since this set can

e empty or a singleton: 

xample 3. Let U = {−1 , 1 } × [1 , ∞ ) , and let F (x, (ξ1 , ξ2 )) = (x −
1 )(ξ2 x − ξ1 ξ2 + ξ1 ) . Let f (x ) = const and choose ε > const . It is

asily seen that 

 ε (−1 , ξ2 ) = F(−1 , ξ2 ) = 

[ 
−1 , −1 + 

1 

ξ2 

] 
G ε (1 , ξ2 ) = F(1 , ξ2 ) = 

[ 
1 − 1 

ξ2 

, 1 

] 
(8)

or x = 0 , r ε (x, U ) = 1 , but there is no ξ ∈ U with d(x, G ε (ξ )) = 1 .

n other words, W C ε (0 , U ) = ∅ . 

.2. Solving (Rec( ε)) for a finite uncertainty set U

In this section we assume that U is finite, U = { ξ 1 , . . . , ξN } . This

implifies the analysis, since we can explicitly search for a solution

 

k = y (ξ k ) for every scenario ξ k ∈ U . Using the y k as variables we

ay formulate (Rec( ε)) as 

min r 

s.t. F (y k , ξ k ) ≤ 0 for all k = 1 , . . . , N 

f (y k , ξ k ) ≤ ε for all k = 1 , . . . , N 

d(x, y k ) ≤ r for all k = 1 , . . . , N 

x ∈ X , r ∈ IR 

y k ∈ X for all k = 1 , . . . , N. 

(9)

We can write (Rec( ε)) equivalently as 

in 

x ∈X 
max 
1 ≤k ≤N 

d(x, G ε (ξ k )) . 

ssuming that the distance used is the Euclidean d 2 ( ·, ·), the func-

ion x � −→ max k d 2 (x, G ε (ξ k )) is known to be d.c. for closed sets G ε 
 Horst & Thoai, 1999 ), i.e., it can be written as a difference of two

onvex functions, and then the powerful tools of d.c. programming

ay be used to find a globally optimal solution if (Rec( ε)) is low-

imensional ( Blanquero, Carrizosa, & Hansen, 2009 ), or to design

euristics for more general cases ( An & Tao, 2005 ). 
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.2.1. Convex programming problems 

We start with optimization problems P( ξ ) that have convex sets

 ε (ξ ) for all ξ ∈ U . This is the case if the functions F and f of P( ξ )

re quasiconvex for all fixed scenarios ξ , and X is convex. We fur-

hermore assume that d is convex, which is the case, e.g., when d

as been derived from a norm, i.e. d(x, y ) = ‖ y − x ‖ for some norm

·‖ . 
Let us fix ξ . Then the function IR 

n � x � −→ d(x, F(ξ )) describes

he distance between a point and a convex set and is hence con-

ex. We conclude that also r ε (x, U ) is convex, being the maximum

f a finite set of convex functions. 

emma 5. Consider an uncertain optimization problem (P(ξ ) , ξ ∈ U )

ith quasiconvex objective function f ( ·, ξ ) and quasiconvex constraints

 ( ·, ξ ) for any fixed ξ . Let X ⊆ IR 

n be convex, U be a finite set and d

e convex. Then problem (Rec( ε)) is a convex optimization problem. 

In order to solve (Rec( ε)) one can hence apply algorithms suit-

ble for convex programming, e.g., subgradient or bundle methods

 Hiriart-Urruty & Lemaréchal, 1993; Sun & Yuan, 2006 ). In partic-

lar, if (Rec( ε)) is unconstrained in x , a necessary and sufficient

ondition for a point x ∗ to be an optimal solution is 

 ∈ ∂(r ε (x ∗, U )) , 

.e., if 0 is contained in the subdifferential of r ε (·, U ) at the point

 

∗. By construction of r ε (·, U ) , we obtain 

 ∈ conv { ∂d(x ∗, G ε (ξ )) : ξ ∈ W C ε (x ∗, U ) } 
here W C ε (x ∗, U ) is the set of worst-case scenarios (see Hiriart-

rruty & Lemaréchal, 1993 ), and ∂d(x ∗, G ε (ξ )) is the subdifferen-

ial of d(·, G ε (ξ )) at x ∗. 

Now, ∂d(x ∗, G ε (ξ )) can be written in terms of the subdifferen-

ial of the distance used, see Carrizosa and Fliege (2002) , where

lso easy representations for polyhedral norms or the Euclidean

orm are presented. Although we do not know much a priori about

he number of worst-case scenarios, we do not need to investigate

ll possible subsets but may restrict our search to sets which do

ot have more than n + 1 elements as is shown in our next result.

his may be helpful in problems with a large number of scenarios

ut low dimension n for the decisions. 

heorem 2. Let U be finite with cardinality of at least n + 1 . Let

 = IR 

n . Suppose (Rec( ε)) attains its optimum at some x ∗, and that

or each ξ the functions F ( ·, ξ ) and f ( ·, ξ ) are quasiconvex. Let d be

onvex. Then there exists a subset U ⊆ U of scenarios with 2 ≤ | U | ≤
 + 1 such that 

 

∗
ε (U ) = r ε (x ∗, U ) = r ε (x ∗, U ) = r ∗ε ( U ) . 

roof. Let x ∗ be optimal for (Rec( ε)). The result is trivial if

 ε (x ∗, U ) = 0 : take any collection of n + 1 scenarios. Hence, we may

ssume r ε (x ∗, U ) > 0 , which implies that x ∗ does not belong to all

ets G ε (ξ ) . 

By Lemma 4 , | W C ε (x ∗, U ) | ≥ 2 . If | W C ε (x ∗, U ) | ≤ n + 1 , then we

re done. Otherwise, | W C ε (x ∗, U ) | > n + 1 , we have by the optimal-

ty of x ∗ and convexity of the functions d(·, G ε (ξ )) , that 

 ∈ conv { ∂d(x ∗, G ε (ξ )) : ξ ∈ W C ε (x ∗, U ) } 
y Carathéodory’s theorem, W C ε (x ∗, U ) contains a subset U , 1 ≤
 U | ≤ n + 1 such that 0 ∈ conv 

{
∂d(x ∗, G ε (ξ )) : ξ ∈ U 

}
. Such U 

learly satisfies the conditions stated. �

.2.2. Problems with linear constraints and polyhedral norms as 

ecovery costs 

As in the section before, we assume a finite uncertainty set U =
 ξ 1 , . . . , ξN } . Let us now consider the case that all sets G ε (ξ k ) , k =
 , . . . , N are polyhedral sets. More precisely, we consider problems

f type 

( ξ ) min f (x, ξ ) := c(ξ ) t x 

s.t. F (x, ξ ) := A (ξ ) x − b(ξ ) ≤ 0 

x ∈ X 

ith a finite uncertainty set U = { ξ 1 , . . . , ξN } , linear constraints

 ( ξ ) x ≤ b ( ξ ) for every ξ ∈ U , a linear objective function c ( ξ ) t x and

 polyhedron X . 

Furthermore, let us assume that the distance d is induced by

 block norm ‖·‖ , i.e., a norm whose unit ball is a polytope,

ee Ward, Wendell, and Richard (1985) ; Witzgall (1964) . The most

rominent examples for block norms are the Manhattan ( d 1 ) and

he maximum ( d ∞ 

) norm, which both may be suitable to represent

ecovery costs: In the case that the recovery costs are obtained by

dding single costs of each component, the Manhattan norm is the

ight choice. The maximum norm may represent the recovery time

n the case that a facility has to be moved along each coordinate

or a schedule has to be updated by a separate worker in every

omponent) and the longest time determines the time for the com-

lete update. 

We also remark that it is possible to approximate any given

orm arbitrarily close by block norms, since the class of block

orms is a dense subset of all norms, see Ward et al. (1985) . Thus,

he restriction to the class of block norms may not be a real re-

triction in a practical setting. 

The goal of this section is to show that under the assumptions

bove, (Rec( ε)) is a linear program. 

We start with some notation. Given a norm ‖·‖ , let 

 = { x ∈ IR 

n : ‖ x ‖ ≤ 1 } 
enote its unit ball. Recall that the unit ball of a block norm ‖·‖

s a full-dimensional convex polytope which is symmetric with re-

pect to the origin. Since such a polytope has a finite number S

f extreme points, we may denote in the following the extreme

oints of B as 

xt (B ) = { e i : 1 ≤ i ≤ S} . 
ince B is symmetric with respect to the origin, S ∈ IN is always

n even number and for any e i ∈ Ext( B ) there exists another e j ∈
xt( B ) such that e i = −e j . Its dual (or polar) norm defined as ‖ x ‖ 0 
= max { x t y : ‖ y ‖ ≤ 1} has the unit ball 

 

0 = { x ∈ IR 

n : x t y ≤ 1 for all y ∈ B } . 
t is known that B 0 is again a polyhedral norm with extreme

oints 

xt (B 

0 ) = { e 0 i : 1 ≤ i ≤ S 0 } , 
here S 0 is the number of facets of B (see, e.g., Rockafellar, 1970 ). 

The following property is crucial for the linear programming

ormulation of (Rec( ε)). It shows that it is sufficient to consider

nly the extreme points Ext( B ) of either the unit ball B of the block

orm, or of the unit ball B 0 of its polar norm in order to compute

 x ‖ for any point x ∈ IR 

n . 

emma 6 ( Ward et al. (1985) ) . Let Ext (B ) = { e i : 1 ≤ i ≤ S} be the

xtreme points of a block norm ‖·‖ with unit ball B and let Ext (B 0 ) =
 e 0 

i 
: 1 ≤ i ≤ S 0 } be the extreme points of its polar norm with unit ball

 

0 . Then ‖·‖ has the following two characterizations: 

 x ‖ = min 

{ 

S ∑ 

i =1 

βi : x = 

S ∑ 

i =1 

βi e i , βi ≥ 0 ∀ i = 1 , . . . , S 

} 

nd 

 x ‖ = max 
i =1 , ... ,S 0 

x t e 0 i . 
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Lemma 6 implies that we can compute ‖ x − y ‖ for any pair

x, y ∈ IR 

n by linear programming. Thus, our assumptions on the sets

G ε (ξ k ) and Lemma 6 give rise to the following linear formulations

of (Rec( ε)), if X is a polyhedron: 

min r 

s.t. A (ξ k ) y k ≤ b(ξ k ) for all k = 1 , . . . , N (10)

c(ξ k ) t y k ≤ ε for all k = 1 , . . . , N (11)

y k − x = 

S ∑ 

i =1 

βk 
i e i for all k = 1 , . . . , N (12)

S ∑ 

i =1 

βk 
i ≤ r for all k = 1 , . . . , N (13)

x, y k ∈ X for all k = 1 , . . . , N (14)

r, βk 
i ≥ 0 for all k = 1 , . . . , N, i = 1 , . . . , S (15)

Note that constraints (10) and (11) are just the definition of the

sets G ε (ξ k ) . Furthermore, (12) and (13) together ensure that ‖ x −
y k ‖ ≤ r for all k = 1 , . . . , N. Hence, the linear program is equivalent

to the formulation (9) for a finite set of scenarios each of them

having a polyhedron as feasible set and if a block norm is used as

distance measure. In this case we have hence shown that (Rec( ε))

can be formulated as a linear program. In order to use the second

characterization of block norms in Lemma 6 we replace (12) and

(13) by (
e 0 i 

)t 
(y k − x ) ≤ r for all k = 1 , . . . , N, i = 1 , . . . , S 0 (16)

to ensure that the value of ‖ x − y k ‖ is correctly computed. We

summarize our findings in the following result. 

Theorem 3. Consider an uncertain linear optimization problem

(P(ξ ) , ξ ∈ U ) Let U = { ξ k : k = 1 , . . . , N} be a finite set and let d be

induced by a block norm. Let X ⊆ IR 

n be a polyhedron. Then (Rec( ε))

can be solved by linear programming. 

If the number of constraints defining X , and either the number

of extreme points of B or the number of facets of B depend at most

polynomially on the dimension n , then (Rec( ε)) can be solved in poly-

nomial time. 

We note that block norms may be generalized to the broader

class of polyhedral gauges where the symmetry assumption on the

unit ball is dropped (see e.g., Nickel & Puerto, 2009 ). Nevertheless

it is readily shown that Lemma 6 applies to polyhedral gauges as

well. Hence, it follows that Theorem 3 also holds for distance func-

tions derived from polyhedral gauges. 

4.2.3. Problems with hyperplanes as feasible sets 

We consider a special case in which (Rec( ε)) can be rewritten

as a linear program, even though the distance measure does not

need to be derived from a block norm, namely if the sets G ε (ξ ) are

all hyperplanes or halfspaces. Before we show the resulting linear

program for this case, we consider some situations in which this

happens: 

Example 4. Let d be a distance derived from a norm, and let X =
IR 

n . 
1. For feasibility problems of type 

P (a, b) min const 

s.t. F (x, (a, b)) := a t x − b = 0 

with U = { (a 1 , b 1 ) , . . . , (a N , b N ) } , a 1 , . . . , a N � = 0 we obtain

G ε (a k , b k ) = { x : a k t x − b k = 0 } for all ε > const . 

2. The same holds for problems 

P (ξ ) min { f (x, ξ ) : x ∈ F(ξ ) } for ξ ∈ U 

if F(ξ ) is a hyperplane for each ξ ∈ U and ε > f ( x , ξ ) for all

x ∈ F(ξ ) . 

3. For unconstrained uncertain linear optimization of the form 

P (ξ ) min { c(ξ ) t x : x ∈ IR 

n } 
the resulting sets G ε (ξ k ) = { x : c(ξ ) t x ≤ ε} are halfspaces. 

Let us first consider the case of hyperplanes: For ξ k = (a k , b k ) ,

et G ε (ξ ) = H a k ,b k = { x ∈ IR 

n : a k 
t 
x = b k } be a hyperplane. Then

Rec( ε)) is given by 

in r 

s.t. d(x, H a k ,b k ) ≤ r for all k = 1 , . . . , N 

x ∈ IR 

n 
, r ∈ IR , 

ecall the point-to-hyperplane distance ( Plastria & Carrizosa,

001 ) 

(x, H a,b ) = 

| a t x − b| 
‖ a ‖ 

◦ , 

here ‖·‖ ° denotes the dual norm to ‖·‖ . As the values of ‖ a k ‖ °
an be precomputed and the absolute value linearized, we gain a

inear program 

in r 

s.t. − r ≤ a k 
t 
x − b 

‖ a k ‖ 

◦ ≤ r for all k = 1 , . . . , N (17)

x ∈ IR 

n 
, r ∈ IR . 

For halfspaces G ε (ξ k ) = H 

+ 
a k ,b k 

= { x ∈ IR 

n : a k 
t 
x ≤ b k } instead of

yperplanes, the distance is given by 

(x, H 

+ 
a,b 

) = 

| a t x − b| + 
‖ a ‖ 

◦ , 

here | a t x − b| + = max { a t x − b, 0 } , resulting in the linear pro-

ram 

in r 

s.t. 
a k 

t 
x − b 

‖ a k ‖ 

◦ ≤ r for all k = 1 , . . . , N (18)

r ≥ 0 

x ∈ IR 

n 
, r ∈ IR . 

heorem 4. Consider an uncertain optimization problem with finite

ncertainty set and sets G ε (ξ ) that are hyperplanes or halfspaces. Let

 = IR 

n and let d be derived from a norm ‖·‖ . Then (Rec( ε)) can be

ormulated as linear program (see (17) and (18) ) and be solved in

olynomial time, provided that the dual norm of ‖·‖ can be evaluated

n polynomial time. 

. Reduction approaches 

In this section we analyze recoverable-robust solutions for dif-

erent uncertainty sets U , and hence write Rec( U), f U and r U to

mphasize the uncertainty set that is considered: 



E. Carrizosa et al. / European Journal of Operational Research 261 (2017) 421–435 429 

R

R  

t  

 

(  

s  

f  

R

L  

t

 

t

P

y

T

r  

m  

t

 

 

 

 

 

 

 

 

 

 

 

 

r  

(

L  

U  

s

P  

f

y

T  

F  

a

f

F

r

 

l  

m  

n

 

s  

c  

p  

a

 

o

U

 

t  

e  

e  

t  

i

 

t  

s  

P  

U

E  

l

P

w

U

L  

 

i  

a  

o

 

t  

m

r

w  

n

 

f

T  

t  

c  

j  

L

 

ec( U) minimize ( f U (y ) , r U (x, y ) ) 

= 

(
sup 

ξ∈U 
f (y (ξ ) , ξ ) , sup 

ξ∈U 
d(x, y (ξ )) 

)
s.t. F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U 

x ∈ X , y : U → X 

ecall that a solution x is recoverable-robust with respect to U if

here exists y : U → X such that ( x , y ) is Pareto-efficient for Rec( U).

The main goal of this section is to reduce the set U to a smaller

maybe even finite) set U ′ ⊆ U , such that the set of recovery-robust

olutions does not change. This is the case if we can extend any

easible solution ( x , y ′ ) for Rec( U ′ ) to a feasible solution ( x , y ) for

ec( U) without changing the objective function values. 

emma 7. Let U ′ ⊆ U . If for all feasible solutions ( x , y ′ ) of Rec( U ′ )
here exists y : U → X such that 

• ( x , y ) is feasible for Rec( U), i.e., F ( y ( ξ ), ξ ) ≤ 0 for all ξ ∈ U , and 
• f U (y ) = f U ′ (y ′ ) and r U (x, y ) = r U ′ (x, y ′ ) 

then Rec( U) and Rec( U ′ ) have the same recoverable-robust solu-

ions. 

roof. Let ( x , y ) be feasible for Rec( U). Define 

 |U ′ : U 

′ → X through y |U ′ (ξ ) := y (ξ ) for all ξ ∈ U 

′ 

hen ( x , y ′ ) is feasible for Rec( U ′ ) and f U ′ (y ′ ) ≤ f U (y ) , r U ′ (x, y ′ ) ≤
 U (x, y ) . Together with the assumption of this lemma Pareto opti-

ality follows since a solution can be improved by switching be-

ween Rec( U) and Rec( U ′ ): 

• Let x be recoverable-robust w.r.t U . Then there exists y : U → X 

such that ( x , y ) is Pareto efficient for Rec( U). Define y ′ := y |U ′ .
Then ( x , y ′ ) is Pareto-efficient for Rec( U ′ ): Assume that ( ̃  x , ̃  y ′ )
dominates ( x , y ′ ). Due to the assumption of this lemma there

exists ( ̃  x , ̃  y ) which is feasible for Rec( U) and f U ( ̃  y ) = f U ′ ( ̃  y ′ ) and

r U ( ̃  x , ̃  y ) = r U ′ ( ̃  x , ̃  y ′ ) , i.e., ( ̃  x , ̃  y ) then dominates ( x , y ), a contra-

diction. 
• Let x be recoverable-robust w.r.t U ′ . Then there exists y ′ : U ′ →

X such that ( x , y ′ ) is Pareto-efficient for Rec( U ′ ). Choose y

according to the assumption of this lemma. Then ( x , y ) is

Pareto-efficient for Rec( U): Assume that ( ̃  x , ̃  y ) dominates ( x ,

y ). Then ( ̃  x , ̃  y |U ′ ) is feasible for Rec( U ′ ) and f U ′ ( ̃  y |U ′ ) ≤ f U ( ̃  y )

and r U ′ ( ̃  x , ̃  y |U ′ ) ≤ r U ( ̃  x , ̃  y ) , i.e., ( ̃  x , ̃  y |U ′ ) then dominates ( x , y ′ ),
a contradiction. �

We now use Lemma 7 to reduce the set of scenarios U . Our first

esult is similar to the reduction rules for set covering problems

 Toregas, Swain, ReVelle, & Bergman, 1971 ). 

emma 8. If P( ξ 2 ) is a relaxation of P( ξ 1 ) for two scenarios ξ 1 , ξ 2 ∈
 , then Rec( U ) and Rec( U \ { ξ 2 } ) have the same recoverable robust

olutions, i.e., scenario ξ 2 may be ignored. 

roof. We check the condition of Lemma 7 : Let ( x , y ′ ) be feasible

or Rec( U \ { ξ 2 } ). Define 

 : U → X through y (ξ ) := 

{
y ′ (ξ ) if ξ ∈ U \ { ξ 2 } 
y ′ (ξ 1 ) if ξ = ξ 2 

hen ( x , y ) is feasible since F ( y ( ξ ), ξ ) ≤ 0 for all ξ ∈ U \ { ξ 2 } and

 (y (ξ 2 ) , ξ 2 ) = F (y (ξ 1 ) , ξ 2 ) ≤ 0 since F ( y ( ξ 1 ), ξ 1 ) ≤ 0 and P( ξ 2 ) is

 relaxation of P( ξ 1 ). Furthermore, f (y (ξ 2 ) , ξ 2 ) = f (y (ξ 1 ) , ξ 2 ) ≤
f (y (ξ 1 ) , ξ 1 ) implies 

 U (y ) = sup 

ξ∈U 
f (y (ξ ) , ξ ) = sup 

ξ∈U\{ ξ 2 } 
f (y (ξ ) , ξ ) 

= sup 

ξ∈U\{ ξ 2 } 
f (y ′ (ξ ) , ξ ) = f U\{ ξ 2 } (y ′ ) . 
s

inally, y (ξ 1 ) = y (ξ 2 ) , hence 

 U (x, y ) = sup 

ξ∈U 
d(x, y (ξ )) = sup 

ξ∈U\{ ξ 2 } 
d(x, y (ξ )) 

= sup 

ξ∈U\{ ξ 2 } 
d(x, y ′ (ξ )) = r U\{ ξ 2 } (x, y ′ ) . 

�

Note that depending on the definition of the optimization prob-

em and the uncertainty set U , often large classes of scenarios

ay be dropped. This is in particular the case if the sets F(ξ ) are

ested. 

In the following we are interested in identifying a kind of core

et U ′ ⊆ U containing a finite number of scenarios which are suffi-

ient to consider in order to solve the recoverable-robust counter-

art. More precisely, we look for a finite set U ′ such that Rec( U )

nd Rec( U ′ ) have the same recoverable-robust solutions. 

In the following we consider a polytope U with a finite number

f extreme points ξ 1 , . . . , ξN , i.e., let 

 = con v (U 

′ ) where U 

′ = { ξ 1 , . . . , ξN } . 
Then many robustness concepts have (under mild conditions)

he following property: Instead of investigating all ξ ∈ U , it is

nough to investigate the extreme points ξ 1 , . . . , ξN of U . For

xample, for the strictly robust counterpart RC (U ) of an uncer-

ain optimization problem ( P (ξ ) , ξ ∈ U = con v { ξ 1 , . . . , ξN } ), RC (U )

s equivalent to RC ({ ξ 1 , . . . , ξN } ) , if F ( x , ·) is convex for all x ∈ X . 

Unfortunately, a similar result for the recoverable-robust coun-

erpart does not hold. This means that the set of Pareto efficient

olutions of Rec( U ′ ) does in general not coincide with the set of

areto efficient solutions of Rec( U) with respect to the larger set

 = con v (U ′ ) as demonstrated in the following example. 

xample 5. Consider the following uncertain optimization prob-

em: 

( a 1 , a 2 , b) min f (x 1 , x 2 ) = const 

s.t. a 1 x 1 + a 2 x 2 − b = 0 

x 1 , x 2 ∈ IR , 

here 

 = con v (U 

′ ) with U 

′ = { (1 , 0 , 0) , (0 , 1 , 0) , (1 , 1 , 2) } . 
et the recovery distance be the Euclidean distance. Then x ∗ =

(2 −
√ 

2 , 2 −
√ 

2 ) , the midpoint of the incircle of the triangle that

s given by the intersections of the respective feasible solutions, is

 Pareto efficient solution of Rec( U ′ ) , as it is the unique minimizer

f the recovery distance (see Fig. 3 (a)). 

On the other hand, this solution is not Pareto efficient when

he convex hull of U ′ is taken into consideration. Indeed, by ele-

entary geometry, one finds that 

(x ∗, U ) = 

√ 

2 · (2 −
√ 

2 ) ≈ 0 . 828 , 

r( ̄x , U ) = 

1 √ 

2 

≈ 0 . 707 , 

here x̄ = ( 1 2 , 
1 
2 ) (see Fig. 3 (b)). Therefore, solving Rec( U ′ ) does

ot give the set of Pareto efficient solutions for Rec( U ) . 

However, assuming more problem structure, we can give the

ollowing result. 

heorem 5. Consider an uncertain optimization problem with uncer-

ainty set U = con v (U ′ ) with U ′ := { ξ 1 , . . . , ξN } . Let F consist of m

onstraints with F i : IR 

n × U → IR , i = 1 , . . . , m and f : IR 

n × U → IR be

ointly quasiconvex in the arguments ( y , ξ ) . Let d ( x , ·) be quasiconvex.

et X be convex. 

Then Rec( U) and Rec( U ′ ) have the same set of recoverable-robust

olutions. 
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(a) Optimal solution w.r.t. U ′ . (b) Optimal solution w.r.t. U .

Fig. 3. Rec( U ′ ) and Rec( U ) may have different optimal solutions. 
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Proof. Let ( x , y ′ ) be feasible for Rec( U ′ ). We first define y : U → X .

Let ξ ∈ U . Then there exist λi , i = 1 , . . . , N such that ξ =∑ N 
i =1 λi ξ

i with 

∑ N 
i =1 λi = 1 and λi ≥ 0. We set y (ξ ) :=∑ N 

i =1 λi y 
′ (ξ i ) . Note that this implies y (ξ i ) = y ′ (ξ i ) for all i =

1 , . . . , N. We now check the conditions of Lemma 7 . 

For every constraint k = 1 , . . . , m the joint quasiconvexity im-

plies that 

F k (y (ξ ) , ξ ) = F k 

( 

N ∑ 

i =1 

λi y (ξ
i ) , 

N ∑ 

i =1 

λi ξ
i 

) 

≤ max 
i =1 , ... ,N 

F k (y (ξ i ) , ξ i ) ≤ 0 ∀ k = 1 , . . . , m, 

where the last inequality holds since y (ξ i ) = y ′ (ξ i ) and ( x , y ′ ) is

feasible for Rec( U ′ ). We hence have that ( x , y ) is feasible for Rec( U).

Analogously, joint quasiconvexity of f implies f (y (ξ ) , ξ ) ≤
max i =1 , ... ,N f (y (ξ i ) , ξ i ) for all ξ ∈ U , hence 

f U (y ) = sup 

ξ∈U 
f (y (ξ ) , ξ ) = max 

ξ∈U ′ 
f (y (ξ ) , ξ ) 

= max 
ξ∈U ′ 

f (y ′ (ξ ) , ξ ) = f U ′ (y ′ ) . 

Finally, for the recovery distance d we assumed quasicon-

vexity in its second argument which implies d(x, y (ξ )) ≤
max i =1 , ... ,N d(x, y (ξ i )) , hence 

r U (x, y ) = sup 

ξ∈U 
d(x, y (ξ )) = max 

ξ∈U ′ 
d(x, y (ξ )) 

= max 
ξ∈U ′ 

d(x, y ′ (ξ )) = r U ′ (x, y ′ ) . 

�

An important particular case of Theorem 5 is the case in

which 

F (x, ξ ) = G (x ) − b(ξ ) 

for a convex G and concave b (i.e., the uncertainty is in the right-

hand side), since F is then jointly quasiconvex in ( x , ξ ). 

Corollary 1. Let (P(ξ ) , ξ ∈ U ) be an uncertain optimization prob-

lem with uncertainty set U = con v (U ′ ) with U ′ := { ξ 1 , . . . , ξN } . Let

F (x, ξ ) = G (x ) − b(ξ ) with a convex function G : IR 

n → IR 

m and a

concave function b(ξ ) : IR 

M → IR 

m . Let f ( x , ξ ) be jointly quasiconvex,

X be convex, and let d ( x , ·) be quasiconvex. Then Rec( U ) and Rec( U ′ )
have the same recoverable-robust solutions. 
We remark that G must not depend on the scenario ξ .

xample 5 shows that Corollary 1 is not even true for a linear

unction F (x, ξ ) = A (ξ ) x − b(ξ ) : If the matrix A is dependent on

, we cannot conclude that Rec( U ) and Rec( U ′ ) have the same

ecoverable-robust solutions. 

Note that Corollary 1 applies in particular for the special case

here b(ξ ) = ξ , i.e., for uncertain convex optimization problems

f the type 

(b) min 

x ∈ IR n 
{ f (x ) : G (x ) ≤ b} . (19)

n particular we know for P( b ) that the center with respect to

ome finite set U ′ solves the uncertain problem with respect to

 = con v (U ′ ) . 
This means we can use the finite set U ′ instead of U when solv-

ng (Rec) if the conditions of the previous theorem apply. This is

ummarized next. 

orollary 2. Let (P(ξ ) , ξ ∈ U ) be an uncertain optimization problem

ith uncertainty set U = con v (U ′ ) with U ′ := { ξ 1 , . . . , ξN } and with

onstraints F (x, ξ ) = G (x ) − b(ξ ) with a convex function G : IR 

n →
R 

m and a concave function b(ξ ) : IR 

M → IR 

m . Let X ⊆ IR 

n be convex,

et f be jointly convex, and let d ( x , ·) be convex. Then (Rec) can be

ormulated as the following convex biobjective program: 

min (r, z) 

s.t. G (y k ) ≤ b(ξ k ) for all k = 1 , . . . , N 

d(x, y k ) ≤ r for all k = 1 , . . . , N 

f (y k , ξ k ) ≤ z for all k = 1 , . . . , N 

x, y k ∈ X for all k = 1 , . . . , N 

r, z ∈ IR 

(20)

Combining this corollary with Theorem 3 from Section 4.2.2 , we

btain the following result: The recoverable-robust counterpart of

n optimization problem with convex uncertainty which is only in

ts right-hand side and with polyhedral uncertainty set can be for-

ulated as a linear program if a block norm is used to measure the

ecovery costs. In particular, the recoverable-robust counterpart of

uch a linear program under polyhedral uncertainty sets and block

orms as distance functions remains a linear program. 

heorem 6. Let (P(ξ ) , ξ ∈ U ) be an uncertain linear program with

oncave uncertainty only in the right-hand side, and U = con v (U ′ )
ith U ′ := { ξ 1 , . . . , ξN } . Let d be derived from a block norm. Then,

Rec) can be formulated as a linear biobjective program. 
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If the terms defining X and either the number of extreme points

r the number of facets of the unit ball of the block norm depend at

ost polynomially on the dimension n , then the problem (Rec( ε)) be

olved in polynomial time. 

roof. According to Theorem 1 we can replace U by the finite set

 

′ in the recoverable-robust counterpart, i.e., we consider Rec( U ′ )
nstead of Rec( U). We are hence left with a problem for which the

ssumptions of Theorem 3 are satisfied yielding a formulation as

inear program. �

Note that many practical applications satisfy the conditions of

heorem 6 . Among these are scheduling and timetabling problems

here the uncertainty is the length of the single tasks to be com-

leted and hence in the common linear formulations in the right-

and side. We refer to Goerigk and Schöbel (2010) for applications

n timetabling, to Herroelen and Leus (2005) for project scheduling,

o Erera et al. (2009) for container repositioning, and to Bouman,

an den Akker, and Hoogeveen (2011) for knapsack problems. 

. Numerical experiments 

In the following, we consider two computational experiments:

he first experiment is concerned with computation times on

andomly generated portfolio optimization instances. We analyze

he difference between our scalarization (Rec( ε)) and the “classic”

calarization (Rec class ( δ)) to calculate the Pareto front. In the sec-

nd experiment, we use real-world stock exchange data and ana-

yze the performance of the biobjective model. 

Note that both recovery distance and worst-case performance

re relevant quality measures in portfolio optimization. On the one

and, a good worst-case performance ensures that the solution

ill perform well over all scenarios. On the other hand, however,

he small recovery distance adds an element of stability to the op-

imization, as it can be used to avoid solutions where only few

tocks are bought. This stability then translates to additional ro-

ustness over time. 

.1. Experiment 1: computation times 

.1.1. Problem setting 

We consider a portfolio problem of the form 

ax 

n ∑ 

i =1 

p i x i 

s.t. 

n ∑ 

i =1 

x i = 1 

x ≥ 0 

here variable x i denotes the amount of investment in opportunity

 ∈ { 1 , . . . , n } with profit p i . We assume that profits are uncertain

nd stem from a finite uncertainty set U = { p 1 , . . . , p N } ⊆ IR 

n 
+ . The

iobjective recoverable-robust model we would like to solve is the

ollowing: 

( max z, min d) 

.t. z ≤
n ∑ 

i =1 

p k i x 
k 
i ∀ k = 1 , . . . , N 

n ∑ 

i =1 

x i = 1 

n ∑ 

i =1 

x k i = 1 k = 1 , . . . , N 
n ∑ 

i =1 

(x i − x k i ) 
2 ≤ d ∀ k = 1 , . . . , N 

x, x k ≥ 0 

n this setting, we would like to fix some choice of investment x

ow, but can modify it, once the scenario becomes known. Our aim

s to maximize the resulting worst-case profit, and also to mini-

ize the modifications to our investment, which we measure by

sing the Euclidean distance. 

We compare the two ε-constraint approaches, where either a

xed budget on d is given (Rec class ( δ)), or a budget on z is given

Rec( ε)). 

Moreover, we consider the following iterative projection method

s another solution approach to (Rec( ε)) It is based on the method

f alternating projections. Say we have some candidate solution x

vailable. For every scenario k , we want to find a solution x k that

s as close to x as possible, and also respects a desired profit bound

 . The resulting problems are independent for every k . For a fixed

 , it can be formulated as the following quadratic program: 

in 

n ∑ 

i =1 

(x k i − x i ) 
2 

s.t. 

n ∑ 

i =1 

x k i = 1 

n ∑ 

i =1 

p k i x 
k 
i ≥ P 

x k ≥ 0 

aving calculated all points x k , we then proceed to find a new so-

ution x ′ that is as close to all points x k as possible: 

in d 

s.t. 

n ∑ 

i =1 

x ′ i = 1 

n ∑ 

i =1 

(x ′ i − x k i ) 
2 ≤ d ∀ k = 1 , . . . , N 

x ′ ≥ 0 

e then repeat the calculation of closest points, until the change

n objective value is sufficiently small. In this setting, the projec-

ion method is known to converge to an optimal solution (see, e.g.,

attorro, 2010; Goerigk, 2012 ) 

.1.2. Instances and computational setting 

We consider instances with n = 5 , 10 , 15 , 20 , 25 , 30 and N =
 , 10 , 15 , 20 , 25 , 30 , where we generate 100 instances for each set-

ing of n and N (i.e., a total of 6 · 6 · 100 = 3600 instances were

enerated). An instance is generated by sampling uniformly ran-

omly values for p k 
i 

in the range { 1 , . . . , 100 } . 
For each instance, we first calculate the two lexicographic solu-

ions with respect to recovery distance and profit. Then the follow-

ng problems were solved: 

• We solve the classic scalarization, (Rec class ( δ)), i.e., (Rec) with

bounds on the recovery distance, where the bounds are calcu-

lated by choosing 50 equidistant points within the relevant re-

gion given by the lexicographic solutions. This approach is de-

noted as Rec-P. 
• For solving the new scalarization, i.e., (Rec( ε)), we used three

different approaches: 

- Using also 50 equidistant bounds on the profit, we solve

recoverable-robust problems (Rec( ε)) directly. This approach

is denoted as Rec-D. 
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Table 1 

Average computation times in s to calculate Pareto solutions. 

n N Rec-P Rec-D Rec-It Rec-M 

5 5 0 .29 0 .32 1 .70 0 .48 

10 0 .48 0 .56 2 .56 0 .77 

15 0 .74 0 .91 3 .43 1 .16 

20 0 .99 1 .15 3 .78 1 .40 

25 1 .26 1 .49 4 .14 1 .75 

30 1 .55 1 .86 5 .30 2 .18 

10 5 0 .57 0 .62 3 .31 0 .74 

10 1 .45 1 .53 6 .22 1 .67 

15 2 .70 2 .59 8 .60 2 .79 

20 4 .42 4 .11 13 .15 4 .33 

25 3 .70 4 .12 17 .95 4 .99 

30 4 .47 5 .04 21 .36 6 .38 

15 5 0 .85 0 .96 5 .08 1 .04 

10 2 .85 2 .97 8 .62 2 .84 

15 5 .46 5 .13 14 .82 4 .94 

20 10 .85 9 .16 25 .65 8 .80 

25 18 .08 14 .56 32 .12 13 .31 

30 10 .37 20 .83 46 .30 19 .07 

20 5 1 .19 1 .25 6 .74 1 .33 

10 4 .86 5 .08 13 .60 4 .50 

15 11 .23 10 .03 25 .10 8 .91 

20 20 .48 13 .22 34 .78 12 .27 

25 30 .02 22 .81 49 .34 19 .98 

30 44 .38 36 .88 65 .80 31 .45 

25 5 1 .57 1 .51 8 .08 1 .59 

10 5 .06 4 .22 19 .55 4 .23 

15 10 .58 8 .62 29 .81 8 .35 

20 19 .04 15 .10 46 .93 14 .19 

25 35 .82 28 .18 75 .60 26 .09 

30 53 .97 42 .80 102 .47 38 .49 

30 5 2 .02 1 .83 9 .77 1 .84 

10 6 .27 4 .98 25 .59 5 .16 

15 13 .44 10 .29 45 .68 10 .32 

20 24 .04 18 .31 71 .05 18 .44 

25 39 .49 29 .53 101 .90 28 .90 

30 68 .43 51 .67 145 .12 47 .77 
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- In the same setting as for Rec-D, we use the iterative projec-

tion algorithm instead of solving the recovery problem di-

rectly with Cplex. This is denoted as Rec-It. 

- Finally, as preliminary experiments showed that Rec-It is es-

pecially fast if the bound on the profit P is large, we used a

mixed approach that uses Rec-D for the 2/3 smallest bounds

on P , and Rec-It for the 1/3 largest bounds on P . This is de-

noted as Rec-M. 

We used Cplex v.12.6 to solve the resulting quadratic pro-

grams. The experiments were conducted on a computer with a 16-

core Intel Xeon E5-2670 processor, running at 2.60 gigahertz with

20 megabytes cache, and Ubuntu 12.04. Processes were pinned to

one core. 

6.1.3. Results 

We show the average computation times for the biobjective

portfolio problem in Table 1 . 

The best average computation time per row is printed in bold.

Note that Rec-It requires higher computation times than any other

approach; however, in combination with Rec-D (i.e., Rec-M), it

is highly competitive. While Rec-P performs well for smaller in-

stances, Rec-D and Rec-M perform best for larger instances. 

There are some surprises in Table 1 , which are not due to out-

liers. For Rec-P and n = 10 , one can see that solving N = 20 takes

longer than solving N = 25 . The same holds for n = 15 , N = 25 and

N = 30 . Also, for N = 15 , we find that Rec-P is faster for n = 25

than for n = 20 (the same holds for Rec-D). This behavior disap-

pears for large n and N . 

Summarizing, our experimental results show that switch-

ing perspective from the classic recoverable-robust approach
Rec class ( δ)) that maximizes the profit subject to some fixed recov-

ry distance to the (Rec( ε)) approach we suggest, in which the dis-

ance is minimized subject to some bound on the profit, results in

mproved computation times. These computation times are further

mproved by applying methods from location theory, that can al-

ow the (Rec( ε)) version to be solved more efficiently. 

.2. Experiment 2: performance on real-world instance 

.2.1. Setting 

In this experiment we analyze the performance of the biobjec-

ive model on a real-world portfolio instance. We use data of the

&P 100 stock market index consisting of 100 companies that are

mongst the largest and most established at the US market ex-

hange. Our dataset consists of daily values of all stocks for the

ime period 1/4/2010 – 31/12/2015. These 2100 days are divided

nto 70 periods of 30 days each. 

As a starting portfolio, a unit of wealth is equally distributed

ver all available stock options. After each 30 day period, the port-

olio can be changed. When the portfolio is recomputed, we use

he last 30 days as one scenario each. Using historical data as sce-

arios in such a way is considered a simple yet reasonable way to

enerate meaningful scenarios, see Guastaroba, Mansini, and Sper-

nza (2009) .We remark that better scenario sets may be generated

y forecasting methods. 

As recovery distance, we use the median with respect to the

anhattan norm, and also include the current portfolio in the

omputation of the distance. We test different weight values w ∈
0 , 1] between the two objectives from (Rec), namely recovery dis-

ance r ( x , y ) (in the portfolio case min d ) and worst-case perfor-

ance f ( y ) (in the portfolio case max z ). 

Note that for the special case w = 0 , the equidistributed start-

ng solution is kept over all periods (i.e., it is an index tracker

und). For the special case w = 1 , we use a lexicographic post-

ptimization to ensure that we find an efficient solution (i.e., each

cenario is solved separately, and then the median of all solutions

ith additional portfolio value constraint is computed). 

Additionally, we compute a worst-case solution on the same

cenario set for comparison; i.e., a single portfolio that maximizes

he worst-case performance over the observations of the past 30

ays. We denote this solution as “WC” in the following. Note that

C protects only against these past scenarios, but future develop-

ents may be different. Furthermore, the worst-case solution may

ot be “robust” in the sense that it spreads the portfolio over many

ptions, but it may instead use few options that seem to perform

ell in the worst case. 

The purpose of this experiment is to compare the performance

nd qualitative properties of the approach (Rec) for various objec-

ive function weights and also with the worst-case approach. Our

im is not to solve the portfolio problem more efficiently than in

he current literature, for which more advanced scenario genera-

ion procedures and optimization models can be found in the lit-

rature, e.g., Prigent (2007) . 

.2.2. Results 

We present the key findings in Fig. 4 . 

The average value of the portfolio over the 2100 day pe-

iod for different weights w is shown in Fig. 4 (c). The horizon-

al blue line indicates the average value of WC. While the aver-

ge portfolio value fluctuates over w, there is a slight trend that

igher weights (i.e., models where the worst-case performance is

eighted higher) perform better on average. For w = 1 , the solu-

ion shows very different performance than for any other value of

 . Also, note that nearly all approaches perform better than the

imple index tracking solution w = 0 . 
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Fig. 4. Results of Experiment 2. 
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The average value is complemented by Fig. 4 (d), which shows

he value of the portfolio at the end of the 2100 day period. It can

e seen that even though some weight values did not perform well

n average, they did give a high value in the end, which is often

etter than WC. 

This behavior can be explained by Fig. 4 (a) and (b), where the

verage size of the portfolio (i.e., the average number of stocks i

or which x i > 0) and the portfolio value over time for a sample of

eight values is shown, respectively. 

As can be seen in Fig. 4 (b), the weight w and the size of the

ortfolio are clearly correlated. The maximum average portfolio

ize is 95, as not all stocks options that are included in this in-

tance were already part of the S&P index at the starting time of

he considered time period. The more important the worst-case

erformance becomes, the less stock options are being used. This

ives the potential of high gains, but at the same time, also makes

he solution more vulnerable. In this sense, also WC is not “robust”.

In Fig. 4 (b), the effect of this vulnerability can be seen shortly

efore the end of the 2100 day period. Both the solution for w = 1

nd WC decrease dramatically in value, as one of the few stock op-

ions that were being used decreased in value. This did not happen

or w = 0 . 47 , which spread the wealth over a more diverse set of

ptions. As the uncertainty set cannot make accurate future pre-

ictions, this adds another layer of security to the portfolio. The

olution with respect to w = 0 , for example, shows little fluctua-

ion, but is in this sense too conservative to increase in value as

he other approaches. 

Overall, we find that using both recovery distance and worst-

ase performance in a biobjective setting can help improving the

ortfolio value in this real-world example, in particular, the re-

ulting portfolios performed better as the equidistributed starting

olution which corresponds to an index tracker fund. Both WC and
he lexicographic approach that solves each scenario separately,

nd then takes the median over all solutions, turn out to use only

ew of the available stock options. If a scenario occurs that is not

art of the uncertainty set (as it is likely in this setting), such a

estricted choice can lead to a bad performance overall. By using

 weighted sum between both objectives, a good compromise can

e found between over-specialization and over-spreading of the

ortfolio. 

. Summary and conclusion 

In this paper, we introduced a location-analysis based point of

iew to the problem of finding recoverable-robust solutions to un-

ertain optimization problems. Table 2 summarizes the results we

btained. 

The following variation of (Rec) should be mentioned: In many

ases it might not be appropriate to just look at the worst-case ob-

ective function of the recovered solutions, because there might be

ne very bad scenario which is the only relevant one. Pareto effi-

ient solutions would hence neglect the objective function values

f all other scenarios. 

This might lead to another goal, namely to be as close as pos-

ible to an optimal solution in all scenarios instead of only looking

t a few scenarios which will be very bad anyway. This leads to

he following problem in which we bound the difference between

he objective value of the recovered solution and the best possible

bjective function value in the worst case: 

( ̂  Rec ) minimize 

(
ˆ f (y ) , r (x, y ) 

)
= 

(
sup 

ξ∈U 
f (y (ξ ) , ξ ) − f ∗(ξ ) , sup 

ξ∈U 
d(x, y (ξ )) 

)
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Table 2 

Summary of properties of (Rec) and (Rec( ε)) depending on the optimization problem P( ξ ), the uncertainty set U, the type of uncertainty, and the recovery costs. 

Uncertainty Constraints Uncertainty Rec. costs Deterministic Results 

set U F ( ·, ξ ) F ( x , ·) d constraints X

Finite Quasiconvex Arbitrary Convex Convex and closed - (Rec( ε)) convex problem ( Lemma 5 ) 

X = IR n - Reduction to (Rec( ̄U ) for smaller sets Ū ( Theorem 2 ) 

Finite Linear Arbitrary Block norm Polyhedron - (Rec( ε)) linear problem ( Theorem 3 ) 

Polyhedron Jointly quasiconvex Convex Closed - Pareto solution w.r.t. extreme points of U is Pareto ( Theorem 5 ) 

Polyhedron Convex Quasiconvex, right-hand Convex Closed - solution w.r.t extreme points of U is Pareto ( Corollary 1 ) 

side Convex and closed - (Rec( ε)) convex problem ( Corollary 2 ) 

Polyhedron Linear Quasiconvex, right-hand side Block norm Polyhedron - (Rec( ε)) linear problem ( Theorem 6 ) 
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s.t. F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U 

x ∈ X , y : U → X 

The new objective function 

ˆ f in ( ̂  Rec ) can be interpreted as a

minmax-regret approach as described in Kouvelis and Yu (1997) .

Again, we can look at the scalarizations of this problem. Instead of

(Rec( ε))we receive 

( ̂  Rec (ε)) minimize sup ξ∈U d(x, y (ξ )) 

s.t. f (y (ξ ) , ξ ) − f ∗(ξ ) ≤ ε for all ξ ∈ U 

F (y (ξ ) , ξ ) ≤ 0 for all ξ ∈ U 

x ∈ X , y : U → X 

In case that f ∗( ξ ) is known for all ξ ∈ U , ( ̂  Rec (ε) ) admits similar

properties as (Rec( ε)). 

Note that the lexicographic solution of ( ̂  Rec (ε) ) with respect

to ( ̂ f , r ) requires to find optimal solutions for each scenario ξ ∈
U which can be reached with minimal recovery costs. It can be

found by solving ( ̂  Rec (0)) . This is exactly the robustness approach

recovery-to-optimality which has been described in Goerigk and

Schöbel (2014) , see Goerigk and Schöbel (2010 , 2011) for scenario-

based approaches for its solution. On the other hand, the lexico-

graphic solution of ( ̂  Rec (ε) ) with respect to ( r , ̂  f ) is related to min-

max regret robustness. 

Ongoing research includes the analysis of other special cases of

(Rec) as well as its application to other types of problems e.g. from

traffic planning or evacuation. We also work on generalizations to

multi-objective uncertain optimization problems as already done

for several minmax robustness concepts ( Ehrgott, Ide, & Schöbel,

2014 ). 
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