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Abstract

We consider a production-inventory system facing stochastic product returns

that can either be disposed upon arrival or placed in a serviceable inventory,

where serviceable products can be disposed at any time. In an M/M/1 make-to-

stock queue setting, we establish that the optimal control policy is a threshold

policy with three policy parameters and we derive closed-form results for the

optimal thresholds and costs. For several situations, we establish that either the

disposal upon arrival (DUA) option or the disposal of serviceable products (SD)

option is sufficient to achieve optimality. We also present numerical examples

for which it is useful to have both disposal options. Moreover, we explore four

extensions for which the two options are complementary (limited secondary

market, manufacturing start-up cost, Markov modulated demand and positive

remanufacturing lead time).

Keywords: Inventory; Reverse logistics; Queuing; Markov decision process

1. Introduction

In this paper, we consider a hybrid system including two disposal options (see

Figure 1). These disposal options have the objective to avoid excess inventories.
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We assume that all returns can be remanufactured to an as good as new product,

however it would be straightforward to relax this assumption by introducing a

probability for a return to be remanufacturable.

Accept

Disposal Uppon
Arrival (DUA)

Returns

Demand

ManufacturingRaw materials Serviceable product
inventory

Serviceable 
Disposal (SD)

Figure 1: A make-to-stock system with two disposal options.

Excess inventories may appear for a variety of reasons. Return take-back

obligations may lead to overstock when the flow of returns is large compared to

the demand. Surplus of stock also may appear in case of volatility and random

shifts in demand, bullwhip effect or inadequate information and forecasting

systems (Angelus, 2011). Clearing mechanisms are also necessary when it is

too costly to switch off or reduce the production rate (Germs et al., 2016).

Disposal implies costs but may also generate revenues, for instance when the

excess inventory is sold to a secondary market (Angelus, 2011).

The first disposal option considered in this paper is dedicated to product re-

turns and will be referred to as the Disposal Upon Arrival (DUA) option. When

a return arrives, it can either be disposed upon arrival or remanufactured and

placed in the serviceable product inventory with newly manufactured products.

The second disposal option can be used for any serviceable product and will

be referred to as the Serviceable Disposal (SD) option. This second disposal

option can among others be found in the literature of clearing mechanisms and

secondary markets (see e.g. Germs et al. (2016); Angelus (2011)).

Our contributions. To the best of our knowledge, this paper presents the first

model that makes a distinction between the two disposal options presented above

(DUA and SD), when disposal is not related to the quality of products. The
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existing models with multiple disposal options are related to quality inspections

and not to inventory considerations. This paper also contributes to the literature

of make-to-stock queues by characterizing the optimal policy for an M/M/1

make-to-stock queue with returns that includes a disposal option (DUA or SD).

For the queuing model under consideration, we establish that the optimal

policy can be described by three policy parameters and we derive closed-form

results for the optimal thresholds and costs. We show that a single disposal

option (either DUA or SD) is sufficient to achieve optimality, except in a situa-

tion which is not realistic in practice. Finally, we explore four extensions where

the two options are complementary (limited secondary market, manufacturing

start-up cost, Markov modulated demand and positive remanufacturing lead

time).

2. Literature review

Our work is related to two streams of literature, one dealing with disposal

options in hybrid systems combining manufacturing and remanufacturing, the

other dealing with make-to-stock queues.

Disposal options in hybrid systems. There is a lot of literature available on

combined planning and control of manufacturing and remanufacturing. For

some recent extensive reviews, we refer the reader to Ilgin and Gupta (2010);

Akçalı and Çetinkaya (2011). Hereafter we focus on models that include disposal

options in hybrid systems.

In a periodic review setting, Simpson (1978) considers the coordination of

manufacturing, remanufacturing and disposal decisions. All returned items are

accepted and placed in a remanufacturable inventory, before being remanufac-

tured or disposed. For zero manufacturing and remanufacturing lead times,

Simpson proves that the optimal policy is a simple policy with a threshold level

for each decision. When lead times are positive, the optimal policy has not

yet been characterized but some special cases have been investigated. When

the lead times are equal, Inderfurth (1997) partially characterizes the optimal
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policy. He also provides some results when the manufacturing lead time ex-

ceeds the remanufacturing lead time by one period, and the accepted returns

are remanufactured directly without delay. DeCroix (2006) extends the results

of Simpson (1978) and Inderfurth (1997) for a multi-stage serial system where

returned items can enter at different stages. Li et al. (2010) generalize Simpson

(1978) by including start-up costs for manufacturing and disposal.

Several papers investigate heuristic policies to control the flow of returned

products. Aras et al. (2006) and van der Laan and Salomon (1997) consider a

policy that rejects returned products if the remanufacturable inventory exceeds

some threshold. In another paper, van der Laan and Salomon (1997) introduce

a threshold policy based on the inventory position (net serviceable inventory

plus products that are currently manufactured and remanufactured). For an

M/M/C/K repair shop, van der Laan et al. (1996) study a policy which rejects

returns if the number of items waiting for inspection or repair exceed some

threshold.

Despite the abundance of papers on reverse logistics, only very few papers

consider multiple disposal options. The four papers that we found all include at

least one disposal option related to the quality of the returns, not allowing their

reuse or remanufacturing. Inderfurth (2005) considers two disposal options: one

at arrival of a return and the other for accepted returns waiting to be reman-

ufactured, where the former is based on a check whether or not a return can

be remanufactured at all. Zikopoulos and Tagaras (2008) consider a one period

problem. Apart from being able to collect whatever number of returns desired,

there are three disposal options where two of them are related to the quality of

the returns. The quality of all returns is checked, based on which returns that

are not good enough are disposed. However, this test is not perfect. Of all ac-

cepted returns the actual condition becomes clear after disassembly, where the

returns that have been incorrectly accepted via the entrance test are disposed.

Excessively remanufactured returns are disposed at the end of the single period

considered. Zikopoulos and Tagaras (2007) consider a one period problem with

three disposal options, where it is possible to buy as many returns as desired

4



from each of two different sources. Unlike in the above paper of the authors,

there is a (perfect) test on the quality of the collected returns, after which a

certain number of returns is remanufactured. If enough good returns have been

processed the remaining not yet remanufactured returns are disposed. Hereafter

actual demand becomes known. In case of excess remanufactured retruns, these

are disposed. So essentially all three types of disposal are completely predeter-

mined once it has been decided how many returns to collect from each of the

two sources. Ketzenberg (2009) allows two disposal options: one disposal op-

tion concerns disposal of returns at arrival and one disposal option for accepted

returns that are not remanufactured during a period because this is not deemed

to be useful. Note that the author decides on the two disposal quantities based

on actual demand where the production decision is made before actual demand

and arrival of returns is known.

Make-to-stock queues. In make-to-stock systems, goods can be produced and

stored in anticipation of demand. In real manufacturing systems, the production

facility can produce one item at a time, or at most a finite number of items at a

time. In such systems, the order lead times are load-dependent. Make-to-stock

systems with production modeled by servers will be referred to as make-to-

stock queues. An M/M/1 make-to-stock queue is a make-to-stock system with

one server, an exponentially distributed manufacture time and demand arriving

according to a Poisson process.

The expression make-to-stock queue was first introduced by Wein (1992)

who analyses an M/M/1 make-to-stock queue with backorders. However, the

use of queuing theory to study production/inventory systems is much older and

seems to have been suggested by (Morse, 1958) who investigates in his seminal

book the relationships between inventory control and queuing theory. Since

then, a vast literature has been dedicated to make-to-stock queues (see e.g.

de Véricourt et al. (2002); Gayon et al. (2009); Benjaafar et al. (2011)). The

books of Buzacott and Shanthikumar (1993) and Zipkin (2000) provide good

introductions to make-to-stock queues.
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More recently, several papers have included product returns in make-to-stock

queues. Vercraene and Gayon (2013) consider an M/M/1 make-to-stock queue

with product returns that can be directly be placed in the serviceable inventory.

They show that the optimal policy is a simple production threshold policy with

a closed form formula for the optimal base-stock level. Kim et al. (2013) and

Vercraene et al. (2014) includes a remanufacturing lead time modelled by ex-

ponentially distributed single server. They both show that the optimal policy

is characterized by two state-dependent base-stock thresholds for manufactur-

ing and remanufacturing and one state-dependent return acceptance threshold.

Vercraene et al. (2014) introduce several heuristic control rules and compare

them with the optimal policy. Fathi et al. (2015) includes a DUA option based

on a quality inspection of product returns. Returns are accepted if the reman-

ufacturing lead time is smaller than some threshold.

3. Make-to-stock queuing model with returns

In this section we introduce the make-to-stock queuing model with returns

and formulate the optimal control problem as a continuous-time Markov decision

problem.

Notations and assumptions. The system under consideration is illustrated in

Figure 2. We consider a single item production-inventory system where cus-

DUA

ce

M

Accept

ca

Demand
Poisson process

(rate    )

Manufacturing facility
Exponential processing time

(rate    )

Returns
Poisson process

(rate    )

SD

cd

cm h,b

Figure 2: Make-to-stock queuing model with returns

tomer demand and returned products arrive according to independent Poisson
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processes with rates λ and δ. A returned product can either be accepted upon

arrival with cost ca or rejected (= disposed upon arrival) with cost ce. The

net rejection cost cdua = ce − ca can be positive or negative. After acceptance,

returns can immediately be put in the serviceable stock (or after a negligible

delay). The serviceable inventory can also be replenished via a single manu-

facturing facility with an exponentially distributed lead time µ and a per unit

manufacturing cost cm ≥ 0. Serviceable products can be used to serve customer

demand but can also be disposed with a per unit disposal cost cd (positive or

negative). We assume that any number of serviceable products can be disposed

at any time. Unsatisfied demand is backlogged.

Let ρ = λ/(µ+ δ) and ρm = λ/µ. To ensure the stability of the system, we

assume that ρ < 1, i.e. that the demand rate is smaller than the sum of the

manufacturing and return rates.

The state of the system can be summarized by X(t), the net inventory

level at time t. The system incurs in state x a cost rate per unit of time

C(x) = h[x]+ + b[x]−, where h is the unit inventory holding cost per unit

of time, b is the unit backlog cost per unit of time, [x]+ = max{0, x}, and

[x]− = −min{0, x}.

Control policy π specifies at any time when to manufacture new products,

when to accept returns and when to dispose serviceable products. The expected

discounted cost over an infinite horizon for a policy π, with x the state of the

system at t = 0 and α > 0 the discount rate, is

vπ(x) = Eπx

[+∞∫
0
e−αtC(X(t))dt

]
+Eπx

 ∞∑
i=1

 e−αφa(i)ca + e−αφe(i)ce

+e−αφm(i)cm + e−αφd(i)cd

 .
where φa(i), φe(i), φm(i) and φd(i) respectively represent the ith event time

when either a return is accepted, a return is disposed upon arrival, a product is

manufactured or a serviceable product is disposed. Function vπ will be referred

to as the value function.

The objective is to find an optimal policy π∗ that minimizes the expected
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discounted cost over an infinite horizon. Let v? be the optimal value function

defined by

v?(x) = min
π
{vπ(x)} .

MDP formulation. The optimization problem can be formulated as a continuous

time Markov decision process (MDP); see Puterman (1994) for an introduction.

Let v?(x) be the optimal expected discounted cost over the time interval [0,∞)

when the level of serviceable stock at time 0 is x. Let w?(x) be the optimal

expected discounted cost over the time interval (0,∞), with no disposal decision

at time t = 0.

We uniformize the continuous-time MDP with rate η = λ + µ + δ and

transform it into a discrete time MDP (see Puterman (1994), chapter 9). Let

τ = η + α. Let vk(x) and wk(x) be value functions defined as follows, for all

integer x and k ≥ 0:

v0(x) = w0(x) = 0, (1)

wk(x) = T vk−1(x), (2)

vk(x) = Tdwk(x) (3)

where operators T and Td are defined by:

T f(x) = 1
τ

 C(x) + λTaf(x)

+µTmf(x) + δTrf(x)

 (4)

Tdf(x) = min
n∈{0,...,[x]+}

{f(x− n) + ncd}, (SD option) (5)

Taf(x) = f(x− 1), (demand arrival) (6)

Trf(x) = min{f(x) + ce, f(x+ 1) + ca}, (DUAoption) (7)

Tmf(x) = min{f(x), f(x+ 1) + cm}. (manufacturing) (8)

The optimal value functions v? and w? can be shown to be the limits of the

sequences of value functions (vk) and (wk) when k goes to infinity (see Puterman

(1994), chapter 6).
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We also define a relaxed problem which has exactly the same formulation

except that Td is replaced by

T̃df(x) = min
n∈N
{f(x− n) + ncd}. (9)

In the relaxed problem, we are allowed to dispose a serviceable product that

we don’t have by increasing the backlog. We will use the tilde symbol for the

relaxed problem: π̃?, ṽk, w̃k, etc. The non-relaxed problem will be referred to

as the original problem.

Let ∆ be the operator such that ∆f(x) = f(x+ 1)− f(x). A value function

f is convex if ∆f(x) is non-decreasing in x.

4. Characterization of the optimal policy

In this section, we first establish the structure of the optimal policy for

the relaxed problem. Then we show that the optimal policy for the relaxed

problem is a feasible and optimal solution for the original problem under a

weak assumption. Among others, we will prove that there exists an optimal

policy of the following form.

Definition 1 (Threshold policy). An (Sa, Sm, Sd) policy states

• to accept product returns if and only if x < Sa,

• to manufacture products if and only if x < Sm, and

• to dispose x− Sd serviceable products when x > Sd.

Relaxed problem. The following lemma establishes that operators T̃d and T

preserve convexity. The proof is given in Appendix A.

Lemma 1. If f is convex, then T̃df and T f are convex.

By Lemma 1, if ṽk−1 is convex, then w̃k = T ṽk−1 is convex and ṽk = T̃dw̃k is con-

vex. As ṽ0 = 0 is convex, we can conclude by induction that ṽ? = limk→∞ ṽk and
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w̃? = limk→∞ w̃k are convex. It follows that threshold policy π̃? = (S̃?a , S̃?m, S̃?d)

is optimal, with

S̃?a = min[x : ∆ṽ?(x) ≥ cdua] (returns acceptance) (10)

S̃?m = min[x : ∆ṽ?(x) ≥ −cm] (manufacturing) (11)

S̃?d = min[x : ∆ṽ?(x) ≥ cd] (disposal) (12)

Lemma 2 (Discounted cost optimal policy for the relaxed problem).

The optimal value function ṽ? is convex and the optimal policy is (Sa, Sm, Sd).

The recurrent region of the induced Markov chain is the set of states {x ∈ Z :

x ≤ S̃?} where S̃? = min(S̃?d ,max(S̃?a , S̃?m)). In what follows, we will show by

contradiction that S̃?d ≥ 0 and max(S̃?a , S̃?m) ≥ 0, under some mild assumptions

on the cost parameters.

Lemma 3. If b/α > −cd, then S̃?d ≥ 0.

Lemma 3 shows that we should not dispose products when there are backorders

if the disposal revenue per product −cd is smaller than the cost of backlogging

a product forever
(
b
α = b

∫ +∞
0 e−αt

)
. This result is proven by contradiction in

Appendix B. It implies that the optimal policy for the relaxed problem is feasible

and optimal for the original problem, under the assumption that b/α > −cd.

Lemma 4. If b/α > min(cm,−cdua) and S̃?d ≥ 0, then max(S̃?a , S̃?m) ≥ 0.

Lemma 4 shows that we should either manufacture or accept returns when

there are backorders if the cost for backlogging a unit forever is higher than the

manufacturing cost or the marginal acceptance cost. This result is also proven

by contradiction, see Appendix C.

Original problem. We can now state our main result which results from the

previous lemmas. When b/α > −cd, Lemma 3 implies that the optimal policy

for the relaxed problem π̃? = (S̃?a , S̃?m, S̃?d), is feasible and optimal for the original

problem. It will be denoted by π? = (S?a , S?m, S?d) in the rest of the paper.

Moreover v? = ṽ? and thus v? is convex.
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Theorem 1 (Discounted cost optimal policy). If b/α > −cd, then v? is

convex and the optimal policy is (Sa, Sm, Sd), with Sd ≥ 0. If we additionally

assume that b/α > min(−cdua, cm), then max(Sa, Sm) ≥ 0.

Threshold definitions (10)-(12) and convexity of the optimal value function im-

mediately imply the following corollary.

Corollary 1 (Threshold properties). If b/α > −cd, then the optimal thresh-

olds S?a, S?d , and S?m can be ordered as follows:

Case i) If cd ≤ −cm ≤ cdua, then S?d ≤ S?m ≤ S?a.

Case ii) If cd ≤ cdua ≤ −cm, then S?d ≤ S?a ≤ S?m.

Case iii) If cdua ≤ −cm ≤ cd, then S?a ≤ S?m ≤ S?d .

Case iv) If −cm ≤ cdua ≤ cd, then S?m ≤ S?a ≤ S?d .

Case v) If −cm ≤ cd ≤ cdua, then S?m ≤ S?d ≤ S?a.

Case vi) If cdua ≤ cd ≤ −cm, then S?a ≤ S?d ≤ S?m.

Figure 3 illustrates numerically the optimal policy for case iv. The values of

the optimal policy parameters are computed by a value iteration algorithm.

x

Accept returns and
manufacture

Accept returns and
do not manufacture

Dispose (x-Sd) products and
do not manufacture

5=Sd

2=Sa

-2=Sm

Reject returns and 
do not manufacture

Transient states

Recurrent states

0
1

3
4

6
7
8

-1

-3

Figure 3: Optimal policy when {α = 0.001, λ = µ = δ = ca = 1, h = b = ce = 2, cm = 15,

cd = 4}.
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We can additionnaly prove that in most situations either the DUA option

or the SD option is sufficient to achieve optimality. In cases iii and iv, the

inventory level will never exceed S?d , except at time 0 if the initial inventory is

larger than S?d . In these cases, the SD option will never be used except at time

0. In cases i, ii and v, the DUA option is useless, as the SD option can be used

at any time at a lower cost (cd ≤ cdua). Finally it is optimal to manufacture all

the time, when the revenue obtained via the SD option is higher than the cost

for manufacturing a product (cm + cd ≤ 0).

Theorem 2.

1. In cases i, ii and v (cd ≤ cdua), there exists an optimal policy that never

uses the DUA option.

2. In cases iii and iv (cd ≥ cdua and cm + cd ≥ 0), there exists an optimal

policy that never uses the SD option (except at time t = 0).

3. In cases i, ii and vi (cm + cd ≤ 0), there exists an optimal policy that

manufactures new products all the time.

Case vi is the only situation where it can be advisable to use both options

when t > 0, as illustrated in Figure 4. In the rest of the paper, NoDUA (resp.

NoSD) will denote the best policy that never uses the DUA option (resp. SD

option). In Figure 4, we clearly observe for this numerical example that the

optimal policy outperforms NoDUA and NoSD.

Note that in all cases, it might be advisable to use the SD option to dispose

products at time t = 0, as illustrated in Figure 5 which shows the effect of

the initial inventory X(0) on the policy costs. For this numerical example, the

optimal SD threshold S?d is equal to 8 and we observe that NoDispose is not

optimal when X(0) > S?d = 8.

Situations where cm + cd ≤ 0 are not very realistic, as we assume that we

can dispose an arbitrary number of products. It would mean that we can sell on

a secondary market an infinite number of newly manufactured products, with
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Figure 4: Effect of the disposal cost cd on the discounted cost when {δ = 0.5, µ = 1.05, λ = 1,

h = 1, b = 10 , cm = 5, ca = 4, ce = −10, α = 0.01, X(0) = 0}.

Figure 5: Effect of the initial quantity of products in stock on the discounted cost when

{δ = 0.5, µ = 1.05, λ = 1, h = 1, b = 2 , cm = 10, ca = 5, ce = 2, cd = 2, α = 0.1} (case iv).
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a positive marginal benefit. Hence we will focus on cases i, ii and vi in Section

5. Section 6 will investigate an extension of our model where the demand from

the secondary market is limited.

Average cost. Theorem 1 and its corollaries also hold for the average cost cri-

terion as the optimal average cost policy is the limit of the optimal discounted

cost policy, when the discount rate α goes to 0 (Weber and Stidham, 1987).

Hence the assumptions b/α > −cd and b/α > min(−cdua, cm) can be removed

from Theorem 1 for the average cost criterion. In addition, we can remove in

Theorem 2 the exception at time t = 0, as the transient behavior does not

matter in average cost.

Service time with general distribution. If we consider more general service time

distributions, the structure of the optimal policy is more complex and Theorem

1 does not hold anymore. When the service time is not exponential, the optimal

policy must take into account the time elapsed from the last production start.

For instance, if the manufacturing of a new product has just begun, a return

could be accepted while it would not have been accepted if the manufacturing

was close to end.

The proof of the first and third part of Theorem 2 did not use the exponential

assumption and hence extends to general service times. We conjecture that the

second part of Theorem 2 also extends to more general service times. In cases

iii and iv, the only reason to dispose a serviceable product would be due to

an increase in the work-in-process. As we can preempt manufacturing at not

cost, it would be then possible to preempt manufacturing instead of disposing

a serviceable product.

5. Optimal policy parameters

In this section, we derive additional results for the average cost problem

in cases iii, iv, and v. The other cases are not investigated as they are less

14



realistic. Note that in cases i and ii, the optimal policy reduces to a single

disposal parameter S?d =
⌊
ln h

h+b/ ln ρm
⌋
, see e.g. Veatch and Wein (1996).

The Markov chain induced by a threshold policy (Sa, Sm, Sd) is given in

Figure 6, which shows the recurrent states R = {x ∈ Z : x ≤ Sd and x ≤

max(Sa, Sm)}.

(a) Case iii: Sa ≤ Sm ≤ Sd

(b) Case iv: Sm ≤ Sa ≤ Sd

(c) Case v: Sm ≤ Sd ≤ Sa

Figure 6: Recurrent region of Markov chain induced by policy (Sa, Sm, Sd).

Case iii. In case iii, the optimal policy is such that S?a ≤ S?m ≤ S?d . Consider a

policy (Sa, Sm, Sd) with the same properties, i.e. Sa ≤ Sm ≤ Sd. The inventory

level does not exceed Sm in steady state and the SD option is never used.

Let q = Sm − Sa be the threshold difference and Nq = Sm −X. The index

q in Nq emphasizes that the probability distribution of Nq depends on q. The
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average cost of policy (Sa, Sm, Sd) can then be expressed as

C(Sa, Sm) =hE[X]+ + bE[X]−

+ cmµP (X < Sm) + δ[caP (X < Sa) + ceP (X ≥ Sa)],

=hE[Sm −Nq]+ + bE[Sm −Nq]−

+ cmµP (Nq > 0) + δ[caP (Nq > q) + ceP (Nq ≤ q)].

Since cmµP (Nq > 0) + δ[caP (Nq > q) + ceP (Nq ≤ q)] is independent of Sm
for a given q, minimizing C(Sa, Sm) is equivalent to finding the value of Sm that

minimizes

hE(Sm −Nq)+ + bE(Sm −Nq)−.

This problem is again a newsvendor problem where the base-stock level is Sm,

the demand is Nq, the shortage cost is b, and the holding cost is h.

Let Sm(q) and Sa(q) = Sm(q) − q and C(q) be respectively the optimal

thresholds and average cost when q is given. Then we have the classical newsven-

dor results (see e.g. Porteus (2002)):

Sm(q) = min
{
x|FNq (x) ≥ b

b+ h

}
, (13)

where FNq
is the cumulative distribution of Nq. As Nq follows a birth death

process, its distribution can be easily computed:

P (Nq = 0) =


(1− ρ)(1− ρm)

1− ρ− ρmq(ρm − ρ) if ρm 6= 1,

(1− ρ)
1 + q(1− ρ) if ρm = 1,

(14)

P (Nq = n) =

 ρm
n P (Nq = 0) if 0 ≤ n ≤ q,

ρn−qρm
qP (Nq = 0) if n ≥ q,

(15)

and

FNq
(x) =


∑x
n=0 P (Nq = n) if x ≤ q,∑q−1
n=0 P (Nq = n) +

∑x
n=q P (Nq = n) if x ≥ q,

=


1− ρmx+1

1− ρm
P (Nq = 0) if x ≤ q,[

1− ρmq
1− ρm

+ 1− ρx−q+1

1− ρ ρm
q

]
P (Nq = 0) if x ≥ q.

(16)
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We need to distinguish two cases. If FNq (q) ≥ b
h+b , then Sm(q) ≤ q and

Sa(q) ≤ 0. If FNq
(q) ≤ b

h+b , then Sm(q) ≥ q and Sa(q) ≥ 0. Equations (13),

(14) and (16) give the optimal acceptance threshold Sm(q), for a given difference

q = Sm − Sa ≥ 0:

Sm(q) =



 ln
(
hρq

h+ b

[
1 + (1− ρ)(1− ρmq)

ρmq(1− ρm)

])
ln(ρ)

 if FNq
(q) ≤ b

h+b ,

 ln
(

h

h+ b
+ b

h+ b

ρqm(ρm − ρ)
1− ρ

)
ln(ρm)

 if FNq
(q) ≥ b

h+b .

(17)

These results are consistent with those of Bradley (2005) who considers a dual-

source M/M/1 make-stock queue.

So, we have transformed a 3-variables optimization problem into the problem

of minimizing

C(q) = hE[Sm(q)−Nq]+ + bE[Sm(q)−Nq]−

+cmµP (Nq > 0) + δ[−cduaP (Nq > q) + ce],
(18)

where q is a non negative integer and Sm(q) is given by (17). We provide in

Appendix D a closed-form expression for C(q). In extensive numerical tests, we

have observed that C(q) is unimodal. However, C(q) is not always convex (see

Figure 7 for a counter example).

Cases iv and v. By symmetry with case iii, similar formulas for the optimal

base-stock levels can be derived for cases iv and v. For instance, cases iii and iv

have the same Markov chain if we simply exchange µ with δ and Sa with Sm.

6. Extensions where disposal options are complementary

We now present several extensions of our basic model where neither NoSD,

nor NoDUA is optimal. We remind that NoDUA (resp. NoSD) denotes the
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Figure 7: Effect of q on the average cost C(q) when {δ = 1, µ = 2, λ = 1.1, h = 1, b = 2,

cm = 10, ca = 8, ce = cd = −5, α = 0} (case iii).

best policy that never uses the DUA option (resp. SD option). Each extension

relaxes a single assumption.

Limited secondary market

In this extension, we assume that the SD option concerns a secondary market

with a demand that occurs according to a Poisson process with rate λ′. When

the serviceable inventory is not empty, a demand from the secondary market

can be served with cost cd (revenue −cd) or rejected. When the serviceable

inventory is empty, a demand from the secondary market is lost.

The MDP formulation of Section 4 must be adapted as follows. Redefine τ

as α+ λ+ µ+ δ + λ′. Let (vk) the sequence of value functions defined as

vk(x) = 1
τ

 C(x) + λTavk−1(x) + µTmvk−1(x)

+δTrvk−1(x) + λ′T ′dvk−1(x)


with

T ′df(x) =

min{f(x), f(x− 1) + cd} if x > 0,

f(x) otherwise,
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and operators Ta, Tm, Tr defined as in Section 3

Using the same arguments as in Section 4 we can prove that when b/α > −cd,

operators Ta, Tm, Tr, T
′
d preserve convexity (Koole, 1998), implying that the

optimal value function is convex.

It follows that the optimal policy is a modified (Sa, Sm, Sd) policy (see Def-

inition 1) where a demand from the secondary market is satisfied if and only if

x > Sd. Part 2 of Theorem 2 still holds, with the same arguments. However

parts 1 and 3 of Theorem 2 do not hold when considering a limited secondary

market, as illustrated in what follows.

Figure 8 plots the effect of λ′ on the average cost of three policies (optimal,

NoSD and NoDUA), with cost parameters corresponding to case i of Corol-

lary 1. When λ′ goes to infinity, the secondary market becomes unlimited and

NoDUA is optimal, as shown in Theorem 2, part 1. When λ′ < 0.8, we observe

that NoDUA is not optimal, as returned products can not be disposed quickly

enough to the secondary market. When λ′ goes to 0, the SD option becomes

useless, as the demand from the secondary market vanishes.

We also observe that the DUA and SD options are complementary for inter-

mediate values of λ′. On the one hand, the DUA option is preferable to dispose

returned products directly without waiting for the secondary market demand.

On the other hand, the SD option is useful to dispose some products with higher

margin.

Start-up cost

In this second extension, we include a start-up cost K when the manufactur-

ing facility starts manufacturing. The MDP formulation is detailed in Appendix

E. To the best of our knowledge, the problem of characterizing the optimal pol-

icy is still open in the simpler case of an M/M/1 make-to-stock queue without

returns.

In Figure 9, we observe that the two disposal options are complementary

when K ≥ 200. On the one hand, NoDUA is not optimal as it is less costly

to dispose a return upon arrival (cdua = −2.5 < cd = 4). On the other hand,
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Figure 8: Effect of the disposal option rate λ′ on the average cost when {λ = 1, µ = 1.05,

δ = 0.8, h = 1, b = 2, cm = 6, ca = 4, ce = 1, cd = −7, α = 0} (case i).

when K is large enough, the optimal policy prefers to manufacture all the time

and dispose products using the SD option, rather than stop and restart the

manufacturing facility at a large start-up cost.

We obtain similar results (not reported) if we include a start-up time expo-

nentially distributed with rate β when the manufacturing facility starts manu-

facturing. For large values of 1/β, it is preferable to manufacture all the time

and to dispose some manufactured products.

Markov modulated demand

In this extension, we consider a Markov modulated demand. The MDP

formulation is detailed in Appendix E. The demand rate λe depends on an ex-

ogenous state variable e which evolves according to the continuous-time Markov

chain represented in Figure 10.

Figure 11 illustrates the effect of the switching rate γ1 = γ2 on the average

costs. We observe that the SD and DUA options are complementary when the

switching rate is small enough. When the demand rate is high (λ2 = 2), the

optimal policy builds stock in order to avoid backlog costs. When the demand
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Figure 9: Effect of the start-up cost K on the average cost when {λ = 1, µ = 1.05, δ = 0.7,

h = 1, b = 5, cm = 8, ca = cd = 4, ce = 1.5, α = 0}.

Figure 10: Time varying demand rate.
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rate switches to λ1 = 0, it is profitable to dispose some products by using the

SD option. The DUA option is always useful, as it is less costly to dispose a

return upon arrival than later using the SD option (cdua = 0 < cd = 6).

Figure 11: Effect of the switching rate γi on the average cost when {λ1 = 0, λ2 = 2, µ = 1.5,

δ = 0.8, h = 1, b = 5, cm = 10, ca = ce = 4, cd = 6, α = 0}.

Non-zero remanufaturing lead time

In this last extension, accepted returns are remanufactured one by one by

a separate controllable remanufacturing facility (see Figure 12). The remanu-

facturing lead-time is exponentially distributed with rate µr and we denote by

ρr = δ/µr the load of the remanufacturing facility when no returns are disposed

before remanufacturing.

The acceptance cost for one accepted return is c′a (e.g. representing handling,

administration cost) and the cost related to the actual remanufacturing of one

return is cr. Products in the remanufacturable inventory incur a unit holding

cost hr per unit of time. After remanufacturing, products are placed in the

serviceable inventory with unit holding cost h per unit of time.

When hr ≥ h, it is optimal to remanufacture as soon as possible (push

policy). Otherwise, the optimal control of the remanufacturing facility is more
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Figure 12: System with non-zero remanufacturing lead time and two disposal options.

complex and depends on the state of the two inventory levels.

Figure 13 shows the effect of µr on the average costs. On the one hand,

we observe that NoDUA performs very badly when µr is close to λ, due to

a congestion in front of the remanufacturing facility. Note that the average

remanufacturing inventory is bounded below by ρr/(1 − ρr) when ρr < 1 and

is infinite otherwise. On the other hand, we observe that NoSD is not optimal

for larger values of µr, as the SD option is cheaper (cd = 1 < ce − c′a − cr =

28). Finally, we observe that the DUA and SD options are complementary for

intermediate values of µr.

When accepted returns have to wait for remanufacturing, the state of the

system may meanwhile change such that it may no longer be optimal to reman-

ufacture all accepted returns. Therefore, in addition to the DUA and the SD

options, we may also consider a Remanufacturable Disposal (RD) option which

allows to dispose at any time a remanufacturable product before being reman-

ufactured. The RD option is more general than the DUA option as it allows to

dispose a remanufacturable product at any time. However, we have observed

in a number of numerical experiments that the DUA option performs almost as

well as the RD option.
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Figure 13: Effect of remanufacturing rate µr on the average cost when {λ = 1, δ = 0.8, h = 1,

hr = 0.95, b = 3, µ = 10, cm = 10, c′
a = 1, cr = 1 ce = 30, cd = 1, α = 0}.

7. Conclusion

In this paper, we showed in a queuing framework that the DUA and SD

options can be complementary (or not) for a variety of situations.

For an M/M/1 make-to-stock queue with product returns, we proved that

the optimal policy is a threshold policy with three policy parameters that can

be ordered with respect to manufacturing and disposal costs. We also derived

closed-form results for the optimal thresholds and costs. We established that in

most situations either the SD option or the DUA option is sufficient to achieve

optimality. For two situations (secondary market with a high profit margin,

discounted cost with a large initial inventory level), we provided numerical ex-

amples where both options are complementary.

Next, we explored numerically four extensions by considering a limited sec-

ondary market, a manufacturing start-up cost, a Markov modulated demand

and a positive remanufacturing lead time. For these extensions, we showed that

there are situations where the two disposal options are complementary.
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As avenues for future research, it would be interesting to investigate the

structure of the optimal policies for the extensions considered in the numerical

experiments. It would also be of interest to test our insights via case studies in

practice.

Appendix A. Proof of Lemma 1

Let f be a convex value function. Convexity implies that ∆f(x) ≥ cd if and

only if x ≥ S := min[x : ∆f(x) ≥ cd]. Thus T̃d can be rewritten as

T̃df(x) =

 f(S) + (x− S)cd, if x ≥ S,

f(x), if x ≤ S.

It follows that

∆T̃df(x) = T̃df(x+ 1)− T̃df(x),

=

 cd if x ≥ S,

∆f(x) < cd if x < S.

We conclude that ∆T̃df(x) is non-decreasing in x. Hence T̃df is convex and

operator T̃d preserves convexity.

It is also well known that operators Ta, Tm, and Tr preserves convexity

(Koole, 1998). Hence operator T , as a convex combination of Ta, Tm and Tr,

also preserves convexity.

Appendix B. Proof of Lemma 3

Assume that b/α + cd > 0. We shall prove by contradiction that S̃?d ≥ 0.

Assume that S̃?d < 0. We will show that the optimal policy π̃? = (S̃?a , S̃?m, S̃?d)

has a strictly larger cost than policy φ = (S̃?a + 1, S̃?m + 1, S̃?d + 1). Let ṽ?(x)

and ṽφ(x) be the expected discounted costs respectively under policy π̃? and φ,

when the initial state is x.
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Let X̃?(t) and X̃φ(t) be the inventory levels at time t under respectively

policy π̃? and φ. If X̃φ(0) = S̃?d + 1 and X̃?(0) = S̃?d , then we have X̃φ(t) =

X̃?(t) + 1 for all t ≥ 0. It implies that

ṽ?(S̃?d) = ṽφ(S̃?d + 1) + b/α. (B.1)

As S̃?d = min[x : ṽ?(x+ 1)− ṽ?(x) ≥ cd], we have the inequality

ṽ?(S̃?d + 1) ≥ ṽ?(S̃?d) + cd. (B.2)

(B.1), (B.2) and assumption b/α+ cd > 0 give together:

ṽ?(S̃?d + 1) ≥ ṽφ(S̃?d + 1) + b/α+ cd,

> ṽφ(S̃?d + 1).

This is contradicting. Hence, the initial assumption S̃?d < 0 is false. We conclude

that S̃?d ≥ 0.

Appendix C. Proof of Lemma 4

Assume that S̃?d ≥ 0 and b/α > min(−cdua, cm). We adopt the same nota-

tions as in Appendix B. We distinguish two cases.

Case 1: min(−cdua, cm) = cm

In this case, S̃?m ≥ S̃?a . We shall prove by contradiction that S̃?m ≥ 0. Assume

that S̃?m < 0. As we have also assumed that S̃?d ≥ 0, the recurrent region is the

set of states {x : x ≤ S̃?m}.

If X̃φ(0) = S̃?m + 1 and X̃?(0) = S̃?m, then X̃φ(t) = X̃?(t) + 1 for all t ≥ 0.

It implies that

ṽ?(S̃?m) = ṽφ(S̃?m + 1) + b/α, (C.1)

As S̃?m = min[x : ṽ?(x+ 1)− ṽ?(x) ≥ −cm], we have the inequality

ṽ?(S̃?m + 1) ≥ ṽ?(S̃?m) + cm. (C.2)
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(C.1), (C.2) and assumption b/α > min(−cdua, cm) = cm give together:

ṽ?(S̃?m + 1) ≥ ṽφ(S̃?m + 1) + b/α− cm,

> ṽφ(S̃?m + 1).

This in contradiction with the optimality of policy π̃?. Hence, the assumption

S̃?m < 0 is false and we conclude that S̃?m ≥ 0.

Case 2: min(−cdua, cm) = −cdua

In this case, we have S̃?a ≥ S̃?m. The proof is exactly the same as in case 1

by replacing S̃?m by S̃?a and cm by −cdua. We obtain that S̃?a ≥ 0.

In the end, max(S̃?a , S̃?m) ≥ 0.

Appendix D. Average cost

This section provides a closed-form expression for the average cost C(q) in

case iii. Similar results can be obtained in other cases.

To simplify notations, let Pn,q = P (Nq = n). Closed-form expressions for

Pn,q come from (14) and (15). From (18), we have

C(q) = hE[Sm(q)−Nq]+ + bE[Sm −Nq]− + cmµP (Nq > 0) + δ[−cduaP (Nq > q) + ce],

= h
(
Sm(q)

∑Sm(q)
n=0 Pn,q −

∑Sm(q)
n=0 nPn,q

)
+b
(∑∞

n=Sm(q) nPn,q − Sm(q)
∑∞
n=Sm(q) Pn,q

)
+cmµ [1− P0,q] + δ

[
−cduaρ−qρmqP0,q

∑∞
n=q+1 ρ

n + ce

]
.

If Sm(q) ≥ q, then

C(q) = P0,q


h
[
Sm(q)

∑q−1
n=0 ρm

n −
∑q−1
n=0 nρm

n
]

+hρ−qρmq
[
Sm(q)

∑Sm(q)
n=q ρn −

∑Sm(q)
n=q nρn

]
+bρ−qρmq

[ ∑∞
n=Sm(q) nρ

n − Sm(q)
∑∞
n=Sm(q) ρ

n
]

−cmµ− δcduaρ−qρmq
∑∞
n=q+1 ρ

n


+cmµ+ δce.
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If Sm(q) ≤ 0, then

C(q) = P0,q


h
[
Sm(q)

∑Sm(q)
n=0 ρm

n −
∑Sm(q)
n=0 nρm

n
]

+b
[ ∑q−1

n=Sm(q) nρm
n − Sm(q)

∑q−1
n=Sm(q) nρm

n
]

+bρ−qρmq
[ ∑∞

n=q nρ
n − Sm(q)

∑∞
n=q ρ

n
]

−cmµ− δcduaρ−qρmq
∑∞
n=q+1 ρ

n


+cmµ+ δce.

The sums in C(q) can be computed with the following formulas

b∑
a

ρx = ρa − ρb+1

1− ρ ,

b∑
a

xρx = ρ

(1− ρ)2 (bρb+1 − (b+ 1)ρb − (a− 1)ρa + aρa−1).

Appendix E. Extensions

In the following, the sequences of value functions vk and wk converge to the

optimal value functions v? and w?.

Start-up cost

• x = (x1, x2) ∈ Z× {0, 1}, e1 = (1, 0), e2 = (0, 1)

• Tdf(x) = minn∈{0,...,x+
1 }
{f(x− ne1) + ncd},

• Taf(x) = f(x− e1),

• Trf(x) = min{f(x) + ce, f(x + e1) + ca},

• T′mf(x) =

f(x) if x2 = 0,

f(x + e1) + cm if x2 = 1,

• TKf(x) =

min{f(x), f(x + e2) +K} if x2 = 0,

min{f(x), f(x− e2) if x2 = 1,

• τ = α+ λ+ µ+ δ
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MDP formulation:

vk(x) = Tdwk(x),

wk(x) = 1
τ

 C(x) + λTKTavk−1(x)

+µTKT′mvk−1(x) + δTKTrvk−1(x)

 .
Markov modulated demand

• Tmf(x) = min{f(x), f(x + e1) + cm},

• Tswitchf(x) =

γ1f(x + e2) + γ2f(x) if x2 = 0,

γ1f(x) + γ2f(x− e2) if x2 = 1,

• Tvarf(x) =

λ1f(x− e1) + λ2f(x) if x2 = 0,

λ1f(x) + λ2f(x− e1) if x2 = 1,

• τ = α+ λ1 + λ2 + µ+ δ + γ1 + γ2

MDP formulation:

vk(x) = Tdwk(x),

wk(x) = 1
τ

 C(x) + µTmvk−1(x) + Tvarvk−1(x)

+δTrvk−1(x) + Tswitchvk−1(x)

 .
Non-zero remanufacturing lead time

• Tdisf(x) = minn1,n2∈{0,...,x+
1 }×{0,...,x

+
2 }
{f(x−n1e1−n2e1)+n1ce+n2cd},

• Tarrf(x) = f(x− e2),

• Tretf(x) = min{f(x) + ce, f(x + e1)},

• Tmanf(x) = min{f(x), f(x + e2) + cm},

• Tremf(x) =

min{f(x), f(x + e2) + ca} if x1 > 0,

f(x) otherwise.

• τ = α+ λ+ µ+ µr + δ
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MDP formulation:

vk(x) = Tdiswk(x)

wk(x) = 1
τ

 C(x) + λTarrvk−1(x) + µTmanvk−1(x)

+µrTremvk−1(x) + δTretvk−1(x)


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