
Managing Limited Retail Space for Basic Products:

Space Sharing vs. Space Dedication

Wei Zhang

Faculty of Business and Economics, University of Hong Kong, Pokfulam Road, Hong Kong;

wzhang15@hku.hk

Kumar Rajaram

Anderson School of Management, University of California, Los Angeles, 110 Westwood Plaza,

Los Angeles, CA 90095, USA; kumar.rajaram@anderson.ucla.edu

Latest Revision: July, 2016

Abstract

In this paper, we study the problem of managing limited retail shelf or storage space for

basic products by considering two inventory management strategies: space dedication and

space sharing. When space is dedicated to each product, there is more flexibility in planning

as different products can be replenished independently. In contrast, when space is shared

across different products, there is potential for saving space; however, replenishment has to be

coordinated across products and this leads to additional costs due to the lack of flexibility in

replenishing each product individually. We model this problem as a non-linear mixed integer

program and develop an effective heuristic and an upper bound for each strategy. We introduce

three different but consistent criteria for the comparison. Through an extensive computational

study, we identify the most relevant factors that impact the relative benefit of space sharing

over space dedication. In addition, we show that space sharing with an optimal replenishment

scheduling program can on average reduce space consumption by 31%.

[key words: Basic Products; Inventory Strategy; Shelf-space Management; Scheduling; Non-

linear Integer Programming]

1

1 Introduction

Retailers usually carry a large assortment of products, and they face a even greater set

of potential choices for their assortments. According to the Food Marketing Institute, the

average number of items carried in a supermarket in 2012 is 42,686.1 On the other hand,

retailers are usually constrained by limited shelf or storage space. For retailers that carry

basic, long life-cycle products, limited space can lead to either a restricted assortment (and

thus limited revenue) or a large enough assortment with low inventory levels and rapid

replenishment. Hence, retailers need to manage their space by carefully making two types of

decisions. The first is determining the optimal assortment, given that a limited number of

products can be carried. The second relates to managing inventory levels and replenishment

schedules in order to utilize the space effectively. The assortment and inventory management

problems are closely related because they generate inputs of decision making for each other.

Assortment management determines the optimal product offerings and the demand rate for

each product; with the demand information, inventory management chooses the economic

ordering quantities and the optimal replenishment schedule, determining the economic cost

of offering each product, which in turn is used to choose the product assortment. Therefore,

it is necessary to consider these two sets of decisions simultaneously in making the best space

management decisions.

The retail space management problem is faced by several urban and suburban retailers

such as Walgreens, CVS, City Target, etc, by food chains such as Whole Foods, Safeway,

Ralphs, etc, and by other retail chains such as Office Depot, Staples, etc. Due to the

product strategies adopted by these retailers, they mostly sell large assortments of basic,

long life-cycle products with stable, predictable demand. Their locations often have high

property rent and thus limited shelf and storage space. Moreover, these retailers have stores

at different locations and they may have different assortments that vary over time, thus

making the retail space management problem a recurring and complicated task.

Retailers adopt two different strategies in allocating limited space to different products.

The first of these is to dedicate some space to each product, and the second is to allow

1Source: http://www.fmi.org/research-resources/supermarket-facts, accessed in December, 2013.

2

products to share the space. For example, retailers may allocate one or multiple fixed

columns of the shelf to each shampoo and hand soap (as shown on the left side of Figure 1).

We may also observe that different juices share the shelf space with location-flexible price tags

and thus the space allocated to a product depends on the inventory level (as shown on the

right side of Figure 1).2 Although space dedication may be required in practice due to several

reasons (for example, shelves are sometimes designed to hold bottles of particular shapes and

suppliers may contract with retailers for dedicated shelf space), in many other situations it is

not entirely clear when each strategy should be adopted given that a trade-off exists between

these two strategies. When space is dedicated to each product, inventory management

is easier because different products can be replenished independently. In contrast, when

space is shared across different products, replenishment has to be coordinated at the cost

of flexibility and optimality for individual products.3 However, space sharing can increase

space utilization and allow the same space to accommodate larger assortments with properly

scheduled replenishment (as illustrated by a simple example in Figure 2) or reduce space

requirements and their associated retail rents.

Figure 1: Examples of Space Dedication (Left) and Sharing (Right)

2Examples of space sharing abound in practice. For example, in grocery stores like Ralphs, the locations
of price tags for many products are adjusted based on where products are placed and inventory level. Target
stores sell basic garments such as T-shirts, shirts, socks, etc., with different brands sharing the same rack.
In addition, the storage space in the retail backroom is normally shared across products.

3If the schedule is not coordinated, it cannot be guaranteed that there is enough space when replenishment
arrives. This is shown in the left-hand-side of Figure 2.

3

Figure 2: Space Consumption and Replenishment Scheduling for Two Products

This paper compares space dedication with space sharing and identifies under what con-

ditions, which strategy would be more preferable to retailers. To do this, we develop an

optimization model to jointly determine the optimal assortment of products, their inventory

levels and replenishment schedule. Here, we embed an assortment planning problem and a

replenishment scheduling problem into a multi-product EOQ model.4 The resulting joint op-

timization problem is a non-linear mixed integer program, and we develop effective methods

to solve this problem. We use these methods to conduct an extensive computational study

that compares space sharing with space dedication and draw managerial insights.

This paper is organized as follows. We provide a brief literature review in Section 2.

In Section 3, we develop models for the retail space management problem under different

conditions. We analyze and solve the space sharing strategy by developing heuristics in

Section 4 and the space dedication strategy in Section 5. We present results from our

numerical study in Section 6 and summerize our work in Section 7. All proofs are provided

in the Appendix.

4While stochastic approaches such as the Newsboy model are used for fashion products that have high
demand uncertainties and relatively short life-cycles (e.g., Rajaram 2001 and Kök et al. 2006), deterministic
approaches such as the EOQ model are used for basic products that have low demand uncertainties and
relatively long life-cycles (Hadley and Whitin 1963).

4

2 Literature Review

The literature relevant to our paper can be classified into three broad areas: assortment

planning, space-constrained inventory management, and the joint problem of assortment

and inventory management under space constraints.

The assortment planning problem has been extensively studied. Kök et al. (2009) pro-

vides a comprehensive review and classifies the literature in assortment planning into four

streams: (1) product variety and product line design, (2) multi-item inventory models, (3)

shelf space allocation models, and (4) perception of variety. The literature in assorment

planning can be also categorized by the type of product: Fashion or Basic. Rajaram (2001)

studies assortment planning in the context of fasion retailing and applies a large-scale non-

linear integer programming model at a catalog retailer. Other papers in this stream either

employed consumer choice models (e.g., van Ryzin and Mahajan 1999; Gaur and Honhon

2006; Honhon et al. 2010), or used exogenous demand models (e.g., Smith and Agrawal

2000; Caro and Gallien 2007; Bernstein et al. 2011). There has also been considerable re-

search on assortment planning for basic products (e.g., Bultez and Naert 1988 and Bultez et

al. 1989; see a brief review in Rajaram, 2001). However, all these papers, on both fashion

and basic products, do not consider joint optimization of assortment planning and inventory

management under storage space constraints. In contrast, this paper develops a model that

jointly optimizes the selection of products, their inventory levels, and replenishment sched-

ules to increase the effective utilization of limited storage or shelf space that is shared among

products.

The literature for space-constrained inventory models for multi-items is based on Hadley

and Whitin (1963). However, work in this area does not consider replenishment scheduling

and assortment planning. Replenishment scheduling for a multi-product inventory system

has been studied by Geng and Vickson (1988), who considered a single-machine, multi-

product scheduling problem faced by an automobile factory. Their problem is to sequence

the production lots of N products in a common cycle to minimize the maximum storage

space required by the machine’s output level. While their research is for production, ours

is for retail, complicating our model in two ways. First, the product set in their problem

5

is given and fixed, but we have to optimize the assortment at the same time. Second,

for any product assortment, they optimize the production sequence, while we optimize the

replenishment time of each product, so that their decision space is finite, but ours could

be infinite. Recently, Yao and Chu (2008) study replenishment scheduling for a warehouse,

where the product set is fixed. Computation-intense techniques such as Fourier transforms

and genetic algorithms are used in their paper. In contrast, our methods for replenishment

scheduling are quite different and easier to implement.

The joint assortment and inventory management under space constraints has also been

studied. Early work is represented by Corstjens and Doyle (1981), Borin et al. (1994), and

Urban (1998). Recently, Kök and Fisher (2007) study the problem with shelf-space con-

straints, one level substitution and a multi-nomial logit model. They develop an innovative

procedure for estimating parameters of substitution behavior and demand for products. They

solve the problem using an iterative optimization heuristic. Application of their methods to

a large super market chain suggests a 50% increase in profits. However, all these papers

implicitly assume space dedication and thus do not consider the replenishment scheduling

problem. In our work, we explicitly consider replenishment scheduling, thus enabling us to

compare space dedication and space sharing, and provide insights on how to make the choice

between these two inventory strategies.

To summarize, our paper makes the following contributions. First, we complement the

research stream of the assortment and inventory management problem for basic products

by considering replenishment scheduling and space sharing. Second, we propose an efficient

upper bound as well as effective heuristics to solve this complicated problem. Third, we

compare two commonly used inventory management strategies: space sharing and space

dedication, and show which choice would be better under which circumstance.

3 Model Formulation

We formulate the retail space management problem as a non-linear mixed integer program.

Let i ∈ P = {1, 2, . . . ,M} index the set of potential products and n ∈ G = {1, 2, . . . , N}

index the set of product groups. A product group can either mean the set of products of the

6

same brand or offered by the same distributor. We make the following assumptions.

First, we assume that a fixed level of safety stock can be used to cover the low levels of

demand uncertainty that may occur for basic products during the replenishment cycle time.

Given the cycle time and the demand variability, the safety stock for that period can be

calculated for a certain service level. Since we want to control the replenishment cycle time

Ti for each product, the required safety stock level for product i is φi = θi · Ti · si, where

θi := zSL · CVi with zSL being the z-value corresponding to the service level, and CVi is the

(time-invariant) coefficient of variation for the demand of product i. Further, as explained

below, si is the effective demand rate of product i.

Second, considering that inventory level is normally high and stock-outs are rare for

basic products, we focus on assortment-based product substitution and assume that stock-

out-based substitution can be ignored.

Third, we use an exogenous demand model, which is the most commonly used demand

model in the literature on inventory management for substitutable products (Kök et al.,

2009). In particular, each product in the set P has an orginal demand; if a product is

not offered, a fraction of the original demand for this product will be transferred to other

products that are included in the assortment. For the sake of tractability, we assume that the

fraction of demand that would be substituted by any other particular product is fixed and

independent of the assortment. Despite of this limitation, exogenous demand models have

their unique strength compared with other demand models such as the Multinomial Logit

Model. For example, exogenous demand models can use a substitution matrix to capture

many different substitution patterns. The interested reader is referred to Kök et al. (2009)

for a detailed discussion.

Next, we define the following parameters and variables.

Parameters:

di: the original (or default) demand rate of product i.

wij: the fraction of the demand for product j that will be transferred to product i given

that product j 6= i is not offered; wii = 1.

vi: the profit margin of product i.

7

hi: the unit holding cost rate of product i.

Kn: the replenishment setup cost each order for product group n, which is independent

of the number of products included in the order.

κi: the replenishment setup cost of product i.

θi: the safety stock coefficient of product i.

Decision variables:

yi: 0-1 variable that equals 1 if product i is included in the assortment, and 0 otherwise.

Qi: the average batch order quantity of product i.

Auxiliary variables:

xij: demand diverted from product j to product i.

si: the total effective demand rate of product i; si = yi

[
di +

∑
j 6=iwijdj (1− yj)

]
.

The total effective demand rate for product i can be rewritten as si =
∑

j wijdjxij, where

xij is a continuous variable, such that xij = yi (1− yj) for j 6= i and xij = yi for j = i. This

form will be used in the models decribed below. Let y := (y1, ..., yM)′, Q := (Q1, ..., QM)′,

and s := (s1, ..., sM)′ be the vectors of assortment decisions, order quantities, and effective

demand, respectively; let x := {xij} be a matrix.

We consider two types of replenishment mechanisms that occur in practice. The first is

independent replenishments in which there are no group-specific replenishment setup costs

for ordering a product from a group. This occurs when the retailers use different distrib-

utors for their products and the associated transaction costs are subsumed in the product

replenishment setup costs κi for ∀i. In the second type, which we refer to as combined replen-

ishments, there is an additional fixed replenishment setup cost Kn incurred by the retailer

when any product in group n is ordered. This could include the fixed cost of a truck used

for delivery for a distributor who supplies a particular product group. Thus, the retailer can

benefit by combining multiple products of the same group in an order. However, incorporat-

ing the decision on which subset of products to combine in an order significantly complicates

the analysis. Therefore, in the following, we investigate this problem in three steps. First, we

discuss the uncapacitated problem, which has no storage space constraints, with independent

replenishments. Next, we study the capacitated problem with storage space constraints and

8

independent replenishments. Finally, we tackle the full version: the capacitated problem

with combined replenishments.

3.1 Uncapacitated Problem with Independent Replenishments

The objective of the uncapacitated problem is to maximize the total profit averaged over

time without storage space constraints. With independent replenishents (i.e., Kn = 0 for ∀

n ∈ G), this can be formulated as:

(UP) max
y,Q,s,x

∑
i∈P

[
visi − hi

(
Qi

2
+ θi ·Qi

)
− κisi

Qi

]
(1)

s.t. si =
∑
j

wijdjxij ∀i, (2)

xij ≤ yi ∀i, j, (3)

xij ≤ 1− yj ∀i 6= j, (4)

yi ∈ {0, 1} ∀i, (5)

Qi ≥ 0, xij ≥ 0 ∀i, j. (6)

Objective (1) equals the sum of the average gross profit net of the average holding cost

and the average replenishment setup cost for each product. To simplify further, we write

Hi := hi ·
(

1
2

+ θi
)

so that the second term in the objective becomes HiQi. Constraint (2)

defines the effective demand rate of a product as the sum of substituted demand streams from

all products. Constraints (3) and (4) enforce the condition that demand is diverted from j to

i only if product i is stocked and j is not stocked. Note that (3) and (4) are derived by first

representing xij = yi for j = i and xij = yi (1− yj) for j 6= i by two inequality constraints for

each, then dropping constraints, xij ≥ yi and xij ≥ yi · (1− yj),5 and finally writing xij ≤ yi

and xij ≤ 1 − yj to jointly represent xij ≤ yi · (1− yj). Constraint (5) and (6) enforce the

range of the variables. Oberve that UP is a mixed-integer, non-linear optimization problem.

For any assortment choice and consequently s ∈ RM
+ , it is easy to solve for Q ∈ RM

+ , since

5Given UP is a maximization problem and (by assumption) the profit margin is high enough so that
vi >

Ki

Qi
, it is always optimal to increase si if we ignore the constraints; Thus, given that wijdj > 0, it is

always optimal to increase xij without constraints. Hence, xij ≤ yi · (1− yj) and xij ≤ yi will be binding
and be equivalent to the equality constraints, so that xij ≥ yi · (1− yj) and xij ≥ yi can be dropped.

9

it reduces to the EOQ problems with Q∗i =
√

κisi
Hi

. The following lemma establishes the

convexity of the objective function given Q∗i =
√

κisi
Hi

and simplifies the optimization over s.

Lemma 1. The objective function (1) is convex in s given Qi =
√

κisi
Hi

for ∀i.

We use Lemma 1 to establish proposition 1, which simplifies the computation of UP .

Proposition 1. The integrality constraints in the uncapacitated problem can be dropped

without affecting the optimal solution.

In light of Proposition 1, we replace (5) with

yi ∈ [0, 1] ∀i. (7)

Thus, the UP is a simpler non-linear optimization problem which is amenable to solution

using standard methods. This is useful for the heuristics used to solve the capacitated

problem described next. Furthermore, Lemma 1 and Proposition 1 will be used to simplify

the solution methods for the space sharing and space dedication strategies in Section 4 and

Section 5, respectively.

3.2 Capacitated Problem with Independent Replenishments

In this section, we add in the constraint of limited storage or shelf space for inventory.

If space is not dedicated but shared by all the products in the assortment, replenishment

schedules of different products should be coordinated to ensure that there is sufficient space

when the replenishment arrives.6 Hence, for the space sharing strategy, we use a common

replenishment cycle in which all the products are replenished exactly once in a determined

sequence during the cycle. A common cycle approach is often used in practice because

of the ease of implementation, especially for products of the same category (e.g., sodas,

6Consider two products, X and Y , for which each unit consumes one unit of space and the demand rates
are 1 unit per day for both products. For simplicity, assume that the buffer space required for both products
are zero. A total space of size 10 can sustain a replenishment cycle of 6 days for both products: The first
product is replenished at day 1 and the second is at day 4, as shown on the right side of Figure 2. However,
a space of size 10 cannot sustain a 6-day cycle for product X and a 5-day cycle for product Y , because the
replenishment dates will coincide and space constraint of 10 units will be violated.

10

cereals, soaps, ballpens, etc). Later, we will allow different replenishment cycles for the

space dedication strategy. The following additional notations are introduced.

Model parameters:

C: total available space;

ci: space consumption for a unit of product i.

Decision variables:

T : the common replenishment cycle time;

τi: the order arrival time of product i in a cycle;

tij: the time between the replenishement of product i and product j; define tij = (τj − τi)·

I {τi ≤ τj}+ (T + τj − τi) · I {τi > τj} if i < j and tij = (τj − τi) · I {τi < τj}+ (T + τj − τi) ·

I {τi ≥ τj} if i ≥ j, where I is the indicator function; define matrix t := {tij}.

The replenishment schedule is then determined by τ := {τi : i ∈ P}. For the capacitated

problem, the space constraint must be satisfied. Since we consider basic products that typi-

cally exhibit low demand variability, we assume the fluctuations in demand and consequently

space consumption can be covered by a fixed buffer space, which can be calculated using

the approach outlined previously. Hence, in the following analysis, we focus on the expected

values. Let Ii(t) denote the average inventory level of product i at time t. Then, we need to

ensure the following space constraint is satisfied:

∑
i

ciIi(t) ≤ C, ∀t ∈ [0, T]. (8)

In principle, we can discretize time t and define a time unit as a day or an hour. However,

if the required time unit is small in comparison to T , this would lead to a large number of

constraints, resulting in a complicated integer program. To simplify the analysis, note that

the highest inventory level occurs at the delivery time, i.e. at τi for some i ∈ P . Hence, we

only need to check the space constraint at M time spots, where replenishements occur. The

following proposition uses this idea and simplifies (8).

11

Proposition 2. The space constraint (8) is equivalent to

∑
j

cjsj (tij + T · θj) ≤ C, ∀i ∈ P . (9)

For the feasibility of t, we know from the definition that

tij + tji = T, ∀i 6= j. (10)

However, tij + tji = T determines the relative location of τi and τj in the cycle without

considering the delivery time of other products. In order to guarantee the uniqueness of τi

for ∀i, we introduce a “triangle” relationship: for ∀i 6= j 6= k, once tij and tik are fixed and

τi is known, the relative location of τj and τk should be determined. If τj < τk, we have

tij − tik = −tjk; otherwise, we have tij − tik = tkj. Therefore, tij − tik equals either −tjk
or tkj, depending on which product is replenished first. Note that once t is determined in

this way, the set τ can be determined given any τi. However, the specific value of τ is not

important, as we focus on the long-term average profit. Thus, it is enough to determine t.

To simplify these either-or constraints that maintain the “triangle” relationship, we in-

troduce binary variable zij ∈ {0, 1} for ∀i, j and let matrix z := {zij}. Then, the either-or

relashionship can be written as

tij − tik = zkjtkj − zjktjk, ∀i 6= j 6= k ∈ P , (11)

zkj + zjk = 1, ∀j 6= k ∈ P . (12)

The capacitated problem with independent replenishments can now be formulated as

(CPI) max
∑
i∈P

(
visi −HiQi −

κiyi
T

)
s.t. (2)− (6), (9)− (12),

Qi = siT ∀i, (13)

zij ∈ {0, 1} ∀i, j, (14)

tij ≥ 0, tii = T ∀i, j. (15)

12

Constraint (13) ensures that demand in a cycle (siT) equals replenishment quantity (Qi),

while (14) and (15) enforce the variable range. The CPI is a mixed integer program with a

non-linear objective and quadratic constraints.

Theorem 1. The CPI is NP-hard.

Theorem 1 implies that we may not be able to solve the CPI to optimality for large

sized real problems. We verify the complexity in the computational study. In Section 4, we

will analyze CPI first and the results will be useful to analyze the capacitated problem with

combined replenishments considered next.

3.3 Capacitated Problem with Combined Replenishments

We consider the case when a setup cost Kn ≥ 0 is incurred for a replenishment order of group

n, no matter how many products of group n are included in the same order. In this case,

we should decide which products to combine in a replenishment order. Let Pn index the set

of products in group n, and n(i) index the group that contains product i; i.e., i ∈ Pn(i). We

further introduce the following decision variables.

Decision variables:

oi: 0-1 variable that equals 1 if the i-th replenishment order is placed, and 0 otherwise.

Note that there are M products in total, so we can place at most M orders in a replenishment

cycle.

rij: 0-1 variable that equals 1 if product i is included in the j-th order, and 0 otherwise;

Because it is useful to combine only products of the same group, we require that rij = 0 for

any j /∈ Pn(i).

The variables should satisfy the following constraints. First, any product that is included

in the assortment has to be included in one and at most one replenishment order. Thus, we

need

yi ≤
∑

j∈Pn(i)

rij ∀i ∈ P . (16)

Futhermore, if any products are included in an order, the order has to be placed. Thus, we

13

have

oi ≥ rji ∀i, j ∈ P . (17)

Lastly, if any two products are combined for replenishment in the same order, their replen-

ishments are made at the same time. Hence,

ti′i′′ ≤ T · (2− ri′j − ri′′j) ∀i′, i′′ ∈ Pn(j), i
′ < i′′, ∀j ∈ P . (18)

The full version of the retail space management problem can be formulated as

(CPC) max
∑
i∈P

(
visi −HisiT −

κiyi
T
−
Kn(i)oi
T

)
s.t. (2)− (5), (9)− (12), (14)− (18)

oi ∈ {0, 1} ∀i, (19)

xij ≥ 0, rij ∈
{

0, I
{
j ∈ Pn(i)

}}
∀i, j. (20)

Given the additional binary variables and constraints, the CPC can be potentially more

difficult to solve than the CPI. In Section 4.2, we decompose the problem and develop

structural properties to facilitate the development of an effective solution procedure.

4 The Space-Sharing Strategy

In this section, to analyze and solve the capacitated problem with the space-sharing strategy,

we focus on independent replenishments first and then consider combined replenishments.

Due to the computational difficulty of the problems, we focus on heuristics that provide good

feasible solutions. An upper bound will then be developed to gauge the effectiveness of these

heuristics.

4.1 Managing Independent Replenishments

Let v := (v1, ..., vM)′, H := (H1, ..., HM)′, κ := (κ1, ..., κM)′, K := (Kn(1), ..., Kn(M))
′,

o := (o1, . . . , oM)′, and r := {rij}. Observe that there are two subproblems embedded

14

in the CPI. One is an assortment planning problem that decides {y, x, s}, and the other is a

replenishiment scheduling problem, which decides {T, t, z}. Note that Q is defined by s and

T . However, due to the quadratic term in the objective and constraints, s and {T, t} cannot

be decomposed by traditional methods such as Lagrangian relaxation. Considering that the

two problems optimize the same objective, we decouple CPI into a Capacitated Assort-

ment Planning Problem (CAPP) given a common replenishment cycle and a Capacitated

Replenishment Scheduling Problem (CRSP) given an assortment.

(CAPP) g(T, t) = max
s,x,y

v′s− T ·H ′s− 1

T
· κ′y

s.t. (2)− (5), (9), and xij ≥ 0, ∀i, j

(CRSP) f(s, y) = max
T,t,z

v′s− T ·H ′s− 1

T
· κ′y

s.t. (9)− (12), (14), and (15)

Observe that CAPP and CRSP have the same objective. Further, as shown in Lemma

2 below, we do not need to obtain all the optimal decisions at once; instead, we just need

to determine (y∗, s∗) or (T ∗, t∗), and then we can get the rest by solving CRSP or CAPP ,

respectively. We call this property preservation of optimality.

Lemma 2. If {T ∗, t∗, x∗, y∗, z∗, s∗} solves CPI and achieves objective value V ∗, then V ∗ =

g (T ∗, t∗) = f (s∗, y∗).

Observe that the objective of CAPP given T is a linear function, and constraint (9)

given (T, t) is a set of linear constraints. We use Lagrangian multipliers to move (9) into

the objective. Note that for a given value of the multipliers, the Lagrangian-relaxed CAPP

has a linear (and thus convex) objective. Then, from Proposition 1, the binary constraints

(5) can be replaced by (7) and the problem becomes an LP. In the FI algorithm introduced

later, we use a bisection (binary search) method to find the Lagrangian multipliers so that

constraint (9) holds and the space consumption is feasible in each round of iteration.

The CRSP is more complicated and it is not amenable to a standard solution method.

However, after examining the structure of CRSP , we find that it can be simplified as follows.

15

We first formulate a Maximum Space Minimization Scheduling Problem (MSMSP), where

B is the amount of space that can accommodate a given assortment and replenishment

schedule.

(MSMSP) B(s, T) = min
t,z,B

B

s.t.
∑
j

cjsj (tij + T · θj) ≤ B ∀i,

(10)− (12), (14), and (15).

MSMSP minimizes the required maximum space given assortment s and cycle time T .

Note that MSMSP incorporates all of CRSP ’s constraints except (9), the aggregate space

constraint. However, (9) can be incorporated if we add in B ≤ C. Hence, when s is given, T

is feasible for CRSP if and only if B(s, T) ≤ C. This is because if B(s, T) ≤ C, then there

exists a set of {T, t, z} that satisfies (9) - (12), (14), and (15), and vice versa. Therefore, if

we solve MSMSP , then CRSP is reduced to minT≥0 T ·H ′s+ 1
T
·κ′y subject to B(s, T) ≤ C.

In the following, we show that MSMSP is equivalent to a simpler problem, which we call

the Normalized Scheduling Problem (NSP). In preparation, let β = B/T represent the

minimum marginal space required as the cycle time increases.

Lemma 3. MSMSP is equivalent to the NSP

(NSP) B(s, T) = min
t,z,β

T · β

s.t.
∑
j

cjsj (tij + θj) ≤ β ∀i,

t + t′ = 1n×n + In,

z + z′ = 1n×n − In,

tij − tik + tjk = zjk, ∀i 6= j 6= k,

t ≥ 0, z : binary.

Note that T is not contained in any constraints of NSP . Consequently, the optimal β for

NSP only depends on s. Let β(s) be the optimal solution. We thus have B(s, T) = β(s) ·T ,

16

and constraint B(s, T) ≤ C is equivalent to

β(s) · T ≤ C. (21)

Therefore, if we can solve NSP to obtain t and β(s), then CRSP can be solved, as shown

next in Proposition 3.

Proposition 3. The optimal cycle time for the CRSP given s is T ∗(s) = min

{√
κ′y
H′s

, C
β(s)

}
.

Since the NSP is a mixed integer linear program, it could still be NP-hard. However, we

find that, by exploiting the property described in Theorem 2 below, we can show that it can

be further reduced to an LP. To proceed, let SCi (τj) = cisi (tji + θi) denote the normalized

expected space consumption of product i at replenishment time τj, and SC(t) =
∑
SCi(t)

the total space consumption.

Theorem 2. The optimal solution to NSP is τ ∗(s) such that SC (τi) = β(s) for all i ∈

{j : sj > 0}, and is invariant of the order of products, i.e., τ ∗(s) is not unique.

Here we give a sketch of the proof. Define As := {j : sj > 0}. For any i ∈ As, define

SC−i(t) :=
∑

k∈Asr{i} SCk(t) as the expected total space consumption of products except i.

For any t 6= τk, where k ∈ As r {i}, we have dSC−i(t)/dt =
∑

k∈Asr{i} cksk . Thus, if we

increase τi by δi, i.e., τ ′i = τi+δi, then we get SC (τi)−SC (τ ′i) = δi ·
∑

k∈Asr{i} cksk; in other

words, the spike generated by the replenishment of i will be reduced by δi ·
∑

k∈Asr{i} cksk.

However, at the same time, other spikes will all be increased by δicisi. Therefore, we can

solve NSP in the following way.

Let τ > 0 be the starting set. Let τi = 0 for i /∈ As. Let i0 := arg min {τi : i ∈ As}

and set τi0 = 0. Let Al = {i0}. Let i1 := arg min {τi : i ∈ As r Al} and adjust τi1 so that

SC (τi0) = SC (τi1). Then let Al = Al∪{i1} and continue until Al = As. At last, we will have

τi0 < τi1 < · · · and SC (τi0) = SC (τi1) = · · · = SC (τik) = · · · = β for all ik ∈ As. Now if we

adjust any τi, we get maxt SC(t) > β. It can be verified ex post that replenishment follows

a cycle in which τik − τik−1
= ciksik/

∑
sici := lik , and this is independent of the location

of τik ; if we switch the order for ik−1 and ik and set τik = τik−2
+ lik and τik−1

= τik + lik−1
,

we obtain the same total space consumption β. We can apply this result to switching order

17

between any two products and get the same total space consumption. A detailed proof is

provided in the appendix.

Since the order in which products are replenished is not consequential, the binary variables

used to enforce the order can be discarded. Therefore, we can use any fixed order, and NSP

is equivalent to the following Linear Scheduling Problem (LSP).

(LSP) B(s, T) = min
τ,β

T · β

s.t.
∑
i

SCi (τj) ≤ β ∀j,

SCi (τj) = cisi (1 + θi) ∀i = j,

SCi (τj) = cisi (τi − τj + θi) ∀i > j,

SCi (τj) = cisi (τi − τj + 1 + θi) ∀i < j,

0 ≤ τi ≤ τj ≤ 1 ∀i < j.

The minimum, normalized total space consumption is given by the following Corollary.

Corollary 1. Given assortment s, the minimum, normalized total space consumption is

β(s) =
M∑
i=1

(
sici ·

i∑
j=1

sjcj

)
/

M∑
i=1

sici. (22)

To summarize, we have transformed the CPI into two interrelated problems that are more

amenable to computation: The first is a space-relaxed CAPP , which is an LP; The second

is the CRSP , which has a pseudo-closed-form solution that is based on a linear program

(LSP). In addition, the output solution of one will serve as the input of the other, and they

are all feasible. Hence, we can design a Feedback-Iteration (FI) algorithm to approach the

optimal solution. Due to the optimality-preservation porperty of our decoupled problems,

the iteration will converge and stop at optimality. The following decribes the steps in the

FI algorithm. Note that since s contains all the information in (s, y) because yi = I (si > 0),

we use s to replace (s, y) in this algorithm.

Feedback-Iteration Algorithm

18

[0] Initialize k = 0, sk = d, tk = 0, and T k = 0. Set stopping criteria δ and S. Let

LOWER = L be the lower bound, and s̃ = d be the current best assortment.

[1] Let k = k + 1 and solve f(sk−1) to get an improved cycle time T k and replenishment

schedule tk.

[2] Solve g
(
T k, tk

)
to get sk.

[3] If LOWER < f
(
sk
)
− δ, then let s̃ = sk, update the lower bound by setting

LOWER = f
(
sk
)
, and go to step [4]; otherwise, stop.

[4] If k > S, stop; otherwise, go to step [1].

4.2 Managing Combined Replenishments

The CPC consists of three subproblems: an assortment problem, a consolidating problem,

and a scheduling problem. Note that the assortment problem and scheduling problem are

related by the space constraint (9), the assortment problem and consolidating problem are

related by constraint (16), and the scheduling problem and consolidating problem are related

by constraint (18). The assortment and consolidating problems are more closely related

because products that are consolidated in one order can be viewed as a single product and

thus the consolidating problem essentially generates a new assortment.

To solve the CPC, we adopt a heuristic-based, feedback-iteration approach similar to

what we use for the CPI. This approach consists of three steps. In the first step, we solve

the scheduling problem given the full assortment without consolidations. In the second step,

we solve the joint assortment and consolidating problem given the schedule and cycle time

obtained from the previous step. When solving the joint assortment and consolidating prob-

lem, we relaxed the integrality constraints on y and o. The optimal vlaues of y and o will be

achieved on the boundaries, given that r’s are integers. In this manner, we greatly reduce

the number of integer variables in our problem. In the third step, with a new assortment and

the consolidation solution, we go back and solve the scheduling problem with the combined

products taken as a single product. We repeat this procedure until the optimal profit con-

verges. This approach is formalized by the following Sequenced-Feedback-Iteration (SFI)

algorithm.

19

Sequenced-Feedback-Iteration Algorithm

[0] Set Aij = 1 for all i and j. Set stopping criteria S > N . Let s̃ = d, ỹ = 1, õ = 1, and

r̃ = I. Re-index the groups according to Kn in a descending order. Let pointer pn = 1 and

the set of product pairs Ω = ∅.

[1] If |Ppn| < 2 or (i, j) ∈ Ω for ∀i, j ∈ Ppn and i 6= j, then set pn = pn + 1 and go to

step [1]. If pn ≤ N , find i∗, j∗ ∈ Ppn such that (i∗, j∗) = arg min(k1,k2)/∈Ω {sk1 · ck1 · sk2 · ck2}

and set Ai∗j∗ = Aj∗i∗ = 2.

[2] Solve LSP using the effective assortment s̃′r̃ to get β(s̃′r̃). Solve L = maxT v
′s− T ·

H ′s̃− 1
T
·κ′ỹ− 1

T
·K ′õ subject to 0 ≤ T ≤ C/β(s̃′r̃), where K ′ =

(
Kn(1), · · · , Kn(M)

)
. Obtain

an improved cycle time T̃ .

[3] Solve U = maxs,y,x,o,r v
′s− T̃ ·H ′s− 1

T̃
·κ′y− 1

T̃
·K ′o subject to (2)-(4), (9), (19)-(20),

xij ≥ 0, yi ∈ [0, 1],oi ∈ [0, 1], rij ∈
{

0, I
{
j ∈ Pn(i)

}}
for ∀i, j,m ∈ P , rim + rjm ≤ Aij for

∀i 6= j, and rij = r̃ij for ∀i, j /∈ Ppn. Obtain s∗, y∗, o∗, and r∗.

[4] If U ≤ L, set pn = pn+ 1. Otherwise, set s̃ = s∗, ỹ = y∗, õ = o∗, and r̃ = r∗.

[5] If pn ≤ N , let Ω = Ω ∪ {(i∗, j∗)}. If pn > S, stop; otherwise, go to step [1].

Notice that in the second step of this algorithm, we do not solve the consolidating problem

for the entire product set. Instead, we solve the consolidating problem group by group, in a

descending order of group setup cost. Further, in solving the consolidating problem within a

group, we gradually expand the set of products that can be consolidated until the profit is no

longer improved. In particular, we each time choose the consolidation of two more products

so that this causes the least impact on the required space. The following corollary describes

the impact on required space if we combine the replenishment orders of product i and j of

the same group. Basically, we treat the combination of product i and j as a single product

that frees up the space at the rate of sici + sjcj and we denote s̃ as the “new” assortment.

Corollary 2. The change in the minimum, normalized total space consumption after com-

bining the replenishment of product i and j is

β(s̃)− β(s) = si · ci · sj · cj/
M∑
k=1

skck. (23)

20

4.3 An Upper Bound

To assess the effectiveness of our heuristics, we develop an upper bound on the optimal

solution. Here we focus on the CPC, because the analysis of the CPI is similar. An upper

bound for the CPC can be obtained by solving the following linear program, which we call

the Relaxed CPC (RCPC). Let TL and TU denote a lower and an upper bound on T ,

respectively. Note that θj · TL ≤ tij + T · θj. Thus, we relax the space constraint (9) by

replacing it with ∑
j

cjsjθjTL ≤ C. (24)

By dropping tij, we drop the scheduling problem entirely. Notice that the costs of scheduling

are mainly driven by the group setup costs. If the group setup costs are high, retailers should

consolidate the orders and compromise on the scheduling optimality; if the group setup costs

are low, dropping the scheduling problem will not significantly affect the total profit. The

RCPC can be formulated as

(RCPC) max
s,x,y,r,o

∑
i∈P

[
visi −HisiTL −

κiyi
TU
−
Kn(i)oi
TU

]

s.t. (2)− (4), (16), (17), (24),

yi, oi ∈ [0, 1], rij ∈
[
0, I
{
j ∈ Pn(i)

}]
, xij ≥ 0 ∀i, j.

Proposition 4. The optimal value for RCPC is an upper bound on the CPC.

Since the RCPC is an LP, it can be solved efficiently. We solve this problem as follows.

We first set TU = TL = T and then conduct a linear search for the optimal T ∗ by utilizing

a small step size. Once we find the T̂ ∗ that gives the highest profit, then set TU and TL

plus and minus a step from T̂ ∗, respectively. Because the optimal value of the RCPC given

TU = TL = T ∗ is an upper bound for CPC, the relaxation of TU and TL also generates an

upper bound. As shown later in Section 6, this upper bound and the profit generated by our

heuristic algorithms are quite close for a wide range of parameter settings, which validates

the effectiveness of our heuristics as well as the upper bound.

21

5 The Space-Dedication Strategy

When space is dedicated to each product, replenishment is more flexible and easier to im-

plement as there is no need to coordinate the replenishment schedules and adopt a common

replenishment cycle for all the products. Thus, each product can have a different replenish-

ment cycle time. This flexibility may enable the space-dedication strategy to outperform the

space-sharing strategy. However, we still need to solve the consolidating problem in order to

reduce setup cost to the extent possible. In this context, if two products are combined for

replenishment, we need to ensure that they have the same replenishment schedule.

Here, instead of using a common cycle time T , each product i has its own cycle time Ti.

Given the fixed space allocation, we can replace the space constraints in (9) with a single

space constraint ∑
i∈P

(1 + θi) cisiTi ≤ C. (25)

In addition, we need to enforce that products that are combined for replenishment must have

the same cycle time. Let Ti denote the cycle time of the i-th order. We then replace (18)

with

Ti =
∑
j

rij · Tj ∀i. (26)

Note that (16) will always be binding in order to maximize profit. In other words,
∑

j rij = 0

if yi = 0 and
∑

j rij = 1 if yi = 1. Given such conditions, (26) requires that Ti should equal

at most one of the Tj’s. Equivalently, 1/Ti should equal at most one of the 1/Tj’s. Therefore,

(26) can be written as 1/Ti =
∑

j rij/Tj if Ti 6= 0 and Ti 6= 0 for all i. This form allows the

rij’s to appear in the numerator and makes it easier to solve the problem. Lastly, all the

constraints related to t and z can be dropped. As a result, the problem of dedicated-space

strategy can be formulated as follows.

(DSS) max
∑
i∈P

visi −
∑
i∈P

Hisi
∑
j∈P

rij · Tj −
∑
i∈P

κiyi
∑
j∈P

rij/Tj −
∑
j∈P

Kn(j)oj/Tj

s.t. (2)− (5), (16), (17), (19), (20), (25), (26), and x ≥ 0.

Because we do not have the scheduling problem, the DSS consists of an assortment

22

subproblem, which determines s and T, and a consolidating subproblem, which determines

r. Note that y is determined by s, and o is determined by r. Observing that T is only

contained in constraints (25) and (26), we first use a Lagrangian multiplier λ ≥ 0 to move

(25) to the objective to get

T∗j(s, r, λ) =

√ ∑
i κiyirij +Kn(j)oj∑

i sirij [(1 + θi) ciλ+Hi]
. (27)

We then use (27) in the following Dedicated-Space Iteration (DSI) algorithm to solve this

problem.

Dedicated-Space Iteration Algorithm

[0] Let k = 0, set sk = d, yk = 1, ok = 1, and rk = I.

[1] Let k = k + 1. Use (27) to compute Tk
(
sk−1, rk−1, λ

)
for a given λ.

[2] Use the bisection method to search for the smallest λ∗ ≥ 0 that satisfies (25).

[3] Solve DSS given Tk, rk−1 and ok−1 to get sk and yk. If s converges, go to [4]; Else,

let rk = rk−1, ok = ok−1, and go to [1].

[4] Solve DSS given Tk, sk and yk to get rk and ok. If r converges, stop; Else, go to [1].

Note that in step [3] and [4], respectively, the integrality constraints on y, r, and o

can be relaxed and replaced by interval constraints. The argument is similar to the proof

of Proposition 1. Further, note that this algorithm preserves optimality because the same

objective function and the same set of constraints are used in each step. The objective value

will only be improved in each iteration. Hence, the effectiveness of this algorithm depends on

how many local maxima there are in the feasible region. Fortunately, the objective function

of DSS does not have multiple local maxima.7 Lastly, finding the largest λ∗ that dissatisfies

(25) in step [2] and relaxing (25) with λ∗ in step [3] and [4] can generate an upper bound,

denoted by DSU .

7By checking the first order conditions of the objective function with respect to all the decision variables,
we can find that there can be at most one solution for every variable within the feasible range. In addition,
the objective function is not strictly convex for any decision variable. Therefore, the objective function can
have only one maximum point in the feasible region. The detailed proof is omitted.

23

6 Computational Study

In this section, we verify the computational difficulty of CPI using numerical examples,

then evaluate how the heuristics perform against the upper bounds on the CPC and DSS

under various parameter settings, and finally explore when space sharing outperforms space

dedication by comparing the performance of the heuristics and upper bounds.

6.1 Computational Difficulty

Given the CPI can be derived as a special instance of the CPC, computing the CPC will

be at least as hard as the CPI. Thus, it suffices to focus on the computational difficulty

of the CPI. We tried solving the CPI using GAMS via NEOS Server.8 Within NEOS, we

employed two powerful, commercially available solvers: the DICOPT solver,9 which is used

for mixed integer nonlinear optimization problems, and the LINDOGlobal solver,10 which

uses branch-and-cut methods to solve non-linearly constrained optimization problems.

We found that the DICOPT solver could not solve the CPI, while LINDOGlobal could

solve this problem only up to three products. An instance of size 3 is shown in Table-1. Any

problem instance with more than 3 products was not solved by the LINDOGlobal solver even

after 1,000,000 seconds. Hence, this justifies the need for heuristics to address the CPI and

the CPC.

Table 1: An Instance of CPI

i di vi κi ci θi hi C wij #1 #2 #3
#1 194 6 50 0.02 2 0.02 80 #1 1 0 0
#2 182 19 100 0.07 2 0.07 80 #2 0.4 1 0
#3 190 18 50 0.03 2 0.03 80 #3 0.4 0.4 1

8http://www.neos-server.org/neos/
9https://www.gams.com/help/topic/gams.doc/solvers/dicopt/index.html

10https://www.gams.com/help/topic/gams.doc/solvers/lindo/index.html

24

6.2 Performance of Heuristics

In this section, we evaluate the performance of the heuristics used to compute the solutions

under the space sharing and the space dedication strategies. Recollect that the Sequenced

Feedback Iteration (SFI) algorithm was used for the space sharing strategy, while the Dedi-

cated Space Iteration (DSI) algorithm was employed for the space dedication algorithm. To

evaluate the heuristics, we consider a broad range of parameters (summarized in Table 2)

and generated 500 random problems instances, each comprising between 5 to 15 candidate

product.11 We then computed the solutions provided by the appropriate algorithms and

compared these solutions with the appropriate upper bound solution for each strategy. To

solve the optimization problems associated with the upper bounds and heuristics, we use the

CVX in Matlab with the Mosek solver (version 7.1.0.12) on a computer with an Intel Core

i5-3210M 2.50GHz processor and 4 GB of RAM memory. The performance of the heuristics

(Vi, i ∈ {SFI,DSI}) are evaluated based on the % gap from their respective upper bounds

(Vj, j ∈ {RCPC,DSU}). The % gaps are defined as: µSFI := VRCPC−VSFI

VSFI
× 100% and

µDSI := VDSU−VDSI

VDSI
× 100%.

Table 3 summarizes the mean, median, standard deviation, and range of the values of the

upper bounds, heuristics, and the appropriate gaps. The following observations can be made.

First, for the space-sharing strategy, the performance of the SFI algorithm is reasonably

good, with a mean gap of 3.3% from the upper bound. Second, for the space-dedication

strategy, the performance of the DSI algorithm is extremely good, with a mean gap of 0.4%

from the upper bound. This suggests that both heuristics can achieve profits that are very

close to the optimal.

6.3 Space Sharing vs. Space Dedication

In this section, we use the performance of the heuristics and the upper bound to better

understand the performance of the space sharing and the space dedication strategies. We

then use this analysis to develop insight on which strategy is better under which circumstance

115˜15 is a reasonable size for a product category such as orange juice, tooth paste, basic undergarments,
socks, etc. at a retail store.

25

Table 2: Summary of Parameters Used in Computational Study

Parameters Distribution/Formula Parameters Distribution/Formula

M 5 + round(10U) N roundup(M/5)

C (5 + 30U) ·M κi κ̄+ (U − 0.5)∆κ

CVi U · CVB κ̄ 30 + 70U

CVB 1 + 9U ∆κ 50U

θi 1.65 · CVi ci c̄+ (U − 0.5)∆c

di d̄+ (U − 0.5)∆d c̄ 0.05 + 0.1U

d̄ 50 + 100U ∆c 0.09U

∆d 80U Hi ci ·
(

1
2

+ θi
)

vi v̄ + (U − 0.5)∆v Kn K̄ + (U − 0.5)∆K

v̄ 5 + 10U K̄ 10 + 40U

∆v 8U ∆K 20U
Note: U represents a uniformly random number on (0,1).

Table 3: Performances of Algorithms

Mean Median Std.Dev. Range

VRCPC 9,177 8,318 5,016 28,234

VSFI 8,904 7,936 4,895 27,395

VDSU 9,002 8,081 4,989 31,333

VDSI 8,999 8,071 4,946 28,057

µSFI 3.30% 2.03% 3.69% 24.97%

µDSI 0.40% 0.24% 0.95% 11.47%

and why. Although the heuristics are near-optimal, we still cannot compare the performance

of space sharing versus space dedication solely based on the gaps between the upper bounds

and the heuristics. This is because the gaps could be caused by the inefficiency of the

heuristic algorithms or the inefficiency of the upper bound algorithms. Therefore, we need

to supplement gaps with other criteria for making these comparisons.

First, we know that space sharing is certainly better (worse) than space dedication if

VSFI > VDSU (VRCPC < VDSI). Otherwise, we consider the two strategies to have similar

performance. We call this the Absolute Criterion. However, this criterion is not always

satisfied in the numerical experiments. Hence, we need a weaker criterion. The second

26

criterion we use is called the Bounds Criterion. We decide that space sharing outperforms

space dedication if both VRCPC > VDSU and VSFI > VDSI . Similarly, space dedication

outperforms space sharing if both VRCPC < VDSU and VSFI < VDSI . Else, as before, we

define the performance of the two strategies to be similar. We also use an even weaker

third criterion, which we call the Middle Criterion. Under this criterion, space sharing

outperforms space dedication if VRCPC+VSFI

2
> VDSU+VDSI

2
, underperforms space dedication if

VRCPC+VSFI

2
< VDSU+VDSI

2
, and similar if VRCPC+VSFI

2
= VDSU+VDSI

2
. As we can see from the

following analysis, the results with different criteria are very consistent, which suggests that

these criteria can be reliably used to compare space sharing with space dedication.

Given these criteria, we next compare the performance of the two strategies. An im-

portant aspect in this paper is the space availability per product represented by C/M . We

divide the value of C/M into several segments (levels). Given a level of space availabil-

ity per product, we compute the percentage of numerical instances in which space sharing

outperforms space dedication, underperforms space dedication, and when they have similar

performance. The results for the three different criteria are shown in Figure 3. We can see

that space sharing is likely to outperform (underperform) space dedication across all criteria

when the level of space availability is low (high). This is intuitive because as the level of

space availability increases, the benefit of space sharing decreases while the benefit of space

dedication increases.

To better understand how the performance of the two strategies change with model

parameters, we use regression analysis and define the dependent variable as follows. We set

the dependent variable to 1 if space sharing is better than dedication, -1 if space dedication is

better than sharing, and 0 if the performance is similar. The following variables are included

in the regression model: M , CVB, C, C/M , d̄, ∆d, v̄, ∆v, κ̄, ∆κ, c̄, ∆c, K̄, and ∆K . Based

on this analysis, we find that factors that significantly influence the relative performance of

the two strategies include: the number of products (M), the demand variability (CVB), the

availablility of storage space (C/M), the mean demand level (d̄), the mean order setup cost

for each product (κ̄), the mean space consumption rate (c̄), and the mean order setup cost

for each group (K̄). Details on these significant factors are summarized in Table 4.

27

Figure 3: The impact of space availability on the result of comparison

Note: SS = space sharing is better; SP = similar performances; SD = space dedication is better.

28

Our analysis shows that space sharing or space dedication can be optimal, depending on

the parameter setting. In this regard, Table 4 can be used to draw the following conclusions.

First, the benefits of space sharing increase as the number of products, demand variability

across products and space availability per product decrease. This is because fewer products

require less replenishment coordination and less associated costs. As demand variability de-

creases, there is more stability in space consumption across products making space sharing

more effective and space dedication less necessary. As space availability per product de-

creases, the gains from space sharing increases as the costs under space dedication increase

due to more frequent replenishments now necessary due to lower inventory. Second, the ben-

efits from space sharing increase when average product demand, replenishment setup cost

and space consumption per product increases. As demand increases or product space con-

sumption increases, there are larger inventory requirements making space dedication more

costly to implement. As replenishment setup costs increase, there are more benefits for space

sharing as it allows less frequent replenishments by increasing space utilization. However, if

the group replenishment setup costs increase, the benefits of space sharing are diminished

due to the increased cost of coordinating replenishments within a group.

We next consider the potential reduction in space under space sharing when compared to

space dedication. To conduct this analysis, define the percentage space consumption gap as

100%×(1 - [space consumed with space sharing]/[space consumed with space dedication]). In

Figure 4, we plot the space consumption by space sharing and space dedication respectively,

for 200 different assortments. The average space consumption gap is 31% with a standard

deviation of 5.53%. Therefore, by sharing space with an optimal replenishment scheduling

program, we can on average reduce space consumption by 31% across a range of parameter

values, which is quite significant. The practical implication is that by adopting an inventory

strategy that uses space sharing rather than space dedication, we can potentially carry more

products with the same amount of space. Conversely, for the same assortment, space sharing

requires a smaller storage or display room, and this could lead to lowered property rent and

administration costs.

To summarize, the following managerial insights can be drawn from the computational

29

Table 4: Regressions Results for Selected Factors

Absolute Criterion Bounds Criterion Middle Criterion

M
-0.0512*** -0.0700*** -0.0538*

(0.0155) (0.0208) (0.0320)

CVB
-0.0256*** -0.0157* -0.0255*

(0.0069) (0.0093) (0.0143)

C/M
-0.0296*** -0.0439*** -0.0537***

(0.0073) (0.0098) (0.0151)

d̄
0.0025*** 0.0023*** 0.0035***

(0.0006) (0.0008) (0.0012)

κ̄
0.0038*** 0.0067*** 0.0091***

(0.0009) (0.0012) (0.0019)

c̄
2.8526*** 2.4862*** 3.7486***

(0.6253) (0.8401) (1.2901)

K̄
-0.0026* -0.0055*** -0.0099***

(0.0016) (0.0021) (0.0032)

Note: Standard errors are in brackets. *p<0.1; **p<0.05; ***p<0.01.

study. First, the optimal choice of inventory strategy is not clear a priori, since this depends

on many different factors that are either related to space availability, the total number of

products, their demand characteristics, and the cost of inventory replenishment. Second,

space sharing is likely to be a better choice for basic product categories that have small

product choice sets, lower demand variability, less available space, greater demand rates,

higher individual setup costs, higher space consumption rates, and lower group setup costs.

Third, the space-sharing strategy could be used to save space and consequently retail rents.

7 Conclusions

In this paper, we formulated the retail space management problem for basic products and

we compare two inventory management strategies: space sharing and space dedication. The

main components are assortment selection, replenishment scheduling, and the consolida-

tion of product replenishment. There components are linked by the storage or shelf space

30

Figure 4: Marginal Impact of Space Sharing on Space Consumption

Note: The dots represent space consumed by dedication and sharing strategies, respectively, for

200 different assortments. The assortments are ordered and indexed according to the consumption

by space sharing strategy. The horizontal axis is the index of the assortment. The graph shows

how the gap evolves as the space consumption increases.

constraints. We showed that this problem is NP-hard. We therefore decoupled the joint opti-

mization problem into an assortment planning problem, a replenishment scheduling problem,

and a consolidation problem. We proved that the sequencing problem in the replenishment

scheduling can be disregarded and this allows for an efficient solution to this problem. We

also developed heuristic algorithms and upper bounds to solve this problem under space

sharing and space dedication strategies and defined three criteria for the comparison. The

algorithms are efficient and the performance gaps are small relative to an upper bound on

the optimal solution.

Using an extensive computational study, we find that by sharing space with the optimal

replenishment scheduling program, space consumption can be reduced by 31% on average.

While space dedication is easier to implement as it does not require coordination of replen-

ishment schedules across products, our results show that it requires more space than space

sharing does. In addition, the relative benefit of space sharing over space dedication depends

on a number of different factors, which are described and analyzed.

This model has the following limitations. First, we do not consider complementary effects

among products. This is because in this paper we focus on the assortment and inventory

31

management for products in the same category, and it is more reasonable to consider substi-

tution effects. When we need to jointly manage multiple categories, complementary effects

should be considered, and coordinating replenishments will become even more challenging.

Second, our methods and results could be tested with other types of demand models. Third,

various practical situations may entail additional and different constraints. Extending our

model to incorporate these constraints in a real application could be a fruitful area for future

research.

References

[1] Bernstein, F., A.G. Kök, L. Xie. 2015. Dynamic Assortment Customization with Limited

Inventories. Manufacturing & Service Operations Management 17(4) pp.538-553.

[2] Borin, N., P.W. Farris, J.R. Freeland. 1994. A Model for Determining Retail Product

Category Assortment and Shelf Space Allocation. Decision Sciences 25(3) pp.359-384.

[3] Bultez, A., P. Naert. 1988. S.H.A.R.P.: Shelf Allocation for Retailer’s Profit. Marketing

Science 7(3) pp.211-231.

[4] Bultez, A., P. Naert, E. Gijsbrechts, P.V. Abelle. 1989. Asymmetric Cannibalism in

Retail Assortment. Journal of Retailing 65(2) pp.153-192.

[5] Caro, F., J. Gallien. 2007. Dynamic Assortment with Demand Learning for Seasonal

Consumer Goods. Management Science 53(2) pp.276-292.

[6] Corstjens, M., P. Doyle. 1981. A Model for Optimizing Retail Space Allocations. Man-

agement Science 27(7) pp.822-833.

[7] d’Aspremont, A., S. Boyd. 2003. Relaxations and Randomized Methods for Nonconvex

QCQPs. Stanford University.

[8] Gaur, V., D. Honhon. 2006. Assortment Planning and Inventory Decisions Under a

Locational Choice Model. Management Science 52(10) pp.1528-1543.

[9] Geng, P.C., R.G. Vickson. 1988. WRLSP: A Single-Machine, Warehouse Restricted Lot

Scheduling Problem. IIE Transactions 20(4) pp.354-359.

[10] Hadley, G., T.M. Whitin. 1963. Analysis of Inventory Systems. Prentice Hall.

32

[11] Honhon, D., V. Gaur, S. Seshadri. 2010. Assortment Planning and Inventory Decisions

Under Stockout-Based Substitution. Operations Research 58(5) pp.1364-1379.

[12] Kök, A.G., M.L. Fisher. 2007. Demand Estimation and Assortment Optimization Under

Substitution: Methodology and Application. Operations Research 55(6) pp.1001-1021.

[13] Kök, A.G., M.L. Fisher, R. Vaidyanathan. 2009. Assortment Planning: Review of Lit-

erature and Industry Practice. Retail Supply Chain Management, Eds. N. Agrawal and

S. A. Smith, Kluwer Publishers.

[14] Rajaram, K. 2001. Assortment Planning in Fashion Retailing: Methodology, Application

and Analysis. European J. Operational Research 129 pp.186-208.

[15] Smith, S.A., N. Agrawal. 2000. Management of Multi-Item Retail Inventory Systems

with Demand Substitution. Operations Research 48 pp.50-64.

[16] Urban, T.L. 1998. An Inventory-Theoretic Approach to Product Assortment and Shelf-

Space Allocation. Journal of Retailing 74(1) pp.15-35.

[17] van Ryzin, G., S. Mahajan. 1999. On the Relationship Between Inventory Costs and

Variety Benefits in Retail Assortments. Management Science 45 pp.1496-1509.

[18] Yao, M.-J., W.-M. Chu. 2008. A Genetic Algorithm for Determining Optimal Replenish-

ment Cycles to Minimize Maximum Warehouse Space Requirements. Omega 36 pp.619-

631.

Appendix

The Proof of Lemma 1.

Given Qi =
√

κisi
Hi

for ∀i, objective (1) now becomes
∑

i∈N
(
visi − 2

√
Hiκisi

)
. Since

√
si

is concave, −√si is convex in si. visi is linear in si, so the objective is convex in si. �

The Proof of Lemma 2.

Suppose W ∗ := {x∗, y∗, z∗, s∗, T ∗, t∗} maximizes V , CPI’s objective. If {x∗, y∗, s∗} /∈

arg maxV (x, y, s|z∗, T ∗, t∗), then ∃{x0, y0, s0} such that V (x0, y0, s0, z∗, T ∗, t∗) > V (W ∗),

which contradicts the fact thatW ∗ maximizes V . A similar argument applies to {z∗, T ∗, t∗} =

arg maxV (z, T, t|x∗, y∗, s∗). Then g (T ∗) = V (W ∗) = f (s∗, y∗). �

33

The Proof of Lemma 3.

The fourth set of constraints can be obtained by substituting (13) into (12). Then we can

scale up both sides of all the constraints by T and define t′ij = tij · T as a decision variable,

to get the MSMSP . �

The Proof of Proposition 1.

Note that by definition si =
∑

j wijdjxij, so s is linear in x. Because wijdj ≥ 0 for ∀i, j,

so by Lemma 1, we know that the objective is convex in xij. Hence, the optimal xij is either

0 or the maximal. Combining (3) and (4), we have for a specific i that xij ≤ yi ≤ 1− xki for

∀j and ∀k 6= i.

Now suppose the binary constraints in (5) is replaced by yi ∈ [0, 1] and there exists i such

that the optimal y∗i ∈ (0, 1). Let J and K be two sets such that for ∀j ∈ J and ∀k ∈ K we

have x∗ij > 0 and x∗ki > 0. (I) If J = K = Ø, then the value of yi is irrelevant and the LP

relaxation won’t affect the optimal value. (II) If J = Ø but K 6= Ø, then we should have

y∗i = 0, which is a contradiction. (III) If K = Ø but J 6= Ø, then we should have y∗i = 1,

which is a contradiction. (IV) Suppose 0 < x∗ij = y∗i = 1− x∗ki < 1 for ∀j ∈ J and ∀k ∈ K.

Thus, it is profitable to increase both xij and xki, and the total marginal value of increasing

all the xij’s and that of increasing all xki’s are equal. However, since the objective is convex

in x, we can either increase yi or decrease yi to increase the objective value. If we increase

yi, then the total marginal gain from xij’s will overweigh the total marginal loss from xki’s.

The same argument applies to decreasing yi. As a result, we should have y∗i = 0 or 1, which

is a contradiction. Therefore, an LP relaxation on y will not affect the optimal solution. �

The Proof of Proposition 2.

At any time t such that τi − T ≤ t < τi, the average inventory level Ii(t) equals the

average demand during [t, τi] plus the amount of safety stock T · si · θi; Similarly, At any

time t such that τi ≤ t < τi +T , the average inventory level Ii(t) equals the average demand

during [t, τi + T] plus the amount of safety stock. Note that τi − T and τi + T are the order

34

delivery time in the previous and next cycle, respectively. Accordingly, we have

Ii(t) =

si(τi − t) + T · si · θi, t < τi

si(T + τi − t) + T · si · θi, t ≥ τi

=si [T · I{t ≥ τi} − t+ τi + T · θi] . (28)

For t = τj, we can write (28) as Ii(τj) = si (tji + T · θi) except when j < i and τi = τj. (Note

that tji = 0 when j < i and τi = τj, but we should have Ii(τj) = si (T + T · θi).) However,

this issue will not afffect the optimal solution, because we have two space constraints at time

τi = τj: Ii(τi) + Ij(τi) ≤ C and Ii(τj) + Ij(τj) ≤ C. One of the constraints must be effective

in the sense that it always represents the true situation and is always tighter. This logic

applies to the case wherein more than two products are replenished at the same time and

the space constraint corresponding to the product with the largest index is always effective.

The rest of the constraints are redundant. �

The Proof of Proposition 3.

Note that CRSP given s can be written as min0≤T≤C/β(s) T · H ′s + 1
T
· κ′y, which is

a simple constrained convex optimization problem. Using the KKT conditions, we can

obtain the following. If
√

κ′y
H′s

< C
β(s)

, then T ∗(s) =
√

κ′y
H′s

; If
√

κ′y
H′s
≥ C

β(s)
, then we have

λ(s) = β(s)2

C2 κ
′y −H ′s and thus T ∗(s) =

√
κ′y

H′s+λ(s)
= C

β(s)
. �

The Proof of Proposition 4.

First, since we no longer need t in the space constraint, we drop all constraints related

to t and z. Second, we substitute (13) into the objective function to eliminate Qi and its

associated domain in (6). Third, we relax (5), (19), and (20) by replacing them with their

linear relaxations. These relaxations of (5), (19), (20) and (9) and the eliminations of (10)

through (15) relax the feasible set. This leads to a non-linear optimization problem with

objective
∑

i∈P

[
visi −HisiT − κiyi

T
− Kn(i)oi

T

]
and linear constraints. Next, it is clear that∑

i∈P

[
visi −HisiTL − κiyi

TU
− Kn(i)oi

TU

]
is an upper bound on the objective of the CPC. Hence,

the result follows.

35

The Proof of Theorem 1.

To simplify this problem, we eliminate constraint (13) by replacing Qi with siT in the

objective function. This removes a set of quadratic equality constraints. By introducing an

auxiliary variable λ, and by adding quadratic inequality constraint

λT ≥ 1, (29)

we can transform the objective function into

max
∑
i∈P

visi −
∑
i∈P

HisiT −
∑
i∈P

κiyiλ, (30)

Thus, we transform the CPI into a Mixed Integer Quadratically Constrained Quadratic

Program (MIQCQP), in which the objective is not convex. In addition, a special instance of

the CPI can be obtained by dropping the integrality constraints so that we get a non-convex

QCQP, which is NP-hard (d’Aspremont and Boyd, 2003). Since a special instance of the

CPI is NP-hard, this reduction establishes that the CPI is also NP-hard. �

The Proof of Theorem 2.

The main idea of the proof is to show that any change of the product replenishment order

does not affect the maximum space consumption. To prove this, it suffices to show that if

we switch the order for any two adjacent products, this does not affect the maximum space

consumption. To be consistent with NSP , we normalize T to 1.

Claim 1. For any given product order Ω = {τi1 ≤ · · · ≤ τin}, we have SC
(
τ ∗ik
)

= βΩ for all

ik ∈ {j : sj > 0} if τ ∗ = arg minτ |Ω max0≤t≤1 SC(t).

Without loss of generality, suppose max0≤t≤1 SC(t) = SC (τik) > SC (τim) for all m > k,

then we can shift all τim slightly earlier for all m > k, then max0≤t≤1 SC(t) is reduced.

Claim 2. For τ ∗ = arg minτ |Ω max0≤t≤1 SC(t), if we switch the order of any two adjacent

products and get Ω′ =
{
· · · ≤ τik+1

≤ τik ≤ · · ·
}

, then we have βΩ′ = βΩ.

For notational simplicity, let i = ik and j = ik+1, so j = i+1. The graphical representation

of inventory level with the optimal schedule given Ω is shown in Figure 5.

36

Figure 5: Inventory Levels with Optimal Schedules

In Figure 5, we use the solid line to represent the aggregate inventory level for products

except i, j, and use the dotted line to represent the aggregate inventory level for all products.

Hence, the slope of the dotted line is
∑

k cksk and the slope of the solid line is
∑

k 6=i,j cksk.

In addition, denote x := τ ∗i − τ ∗i−1 and y := τ ∗j − τ ∗i−1. Therefore, we have

a = x · cisi + y · cjsj. (A1)

According to Claim 1, we have βΩ = SC
(
τ ∗i−1

)
= SC (τ ∗i) = SC

(
τ ∗j
)
. First, by using

SC
(
τ ∗i−1

)
= SC (τ ∗i), we get

a+ x ·
∑
k 6=i,j

cksk = ciQi + (y − x) · cjsj. (A2)

Second, from SC
(
τ ∗i−1

)
= SC

(
τ ∗j
)
, we obtain

a+ y ·
∑
k 6=i,j

cksk = cjQj + (ciQi − (y − x) · cisi) . (A3)

Moreover, we have that Qi = siT = si for all i. By combining (A1), (A2) and (A3), we get

37

x = cisi/
∑

k cksk and y = (cisi + cjsj) /
∑

k cksk. Therefore,

a =
(cisi)

2 + (cjsj)
2 + cisicjsj∑

k cksk
. (A4)

Now if we switch the order of i, j and go through the same analysis, then we have

y = cjsj/
∑

k cksk and x = (cisi + cjsj) /
∑

k cksk, which lead to a′ = x · cisi + y · cjsj = a.

Note that the schedule of other products are not changed, so the solid line is unaffected.

Hence, βΩ′ = βΩ. �

The Proof of Corollary 1.

Without loss of any generality, suppose the products are sequenced by their index. We

know that the time interval between product i−1 and i is li = cisi/
∑
sjcj. Suppose product

1 is replenished at time l1 and product M is replenished at time t = 1 or 0. Hence, the total

space consumption at time 0 is β(s) =
∑M

i=1 sici
∑i

j=1 lj, which can be rewritten as (25). �

The Proof of Corollary 2.

Denote ui = si · ci and U =
∑M

i=1 sici. It is easy to verify that

β(s) =

u2
i + ui ·

∑
k 6=i,j

uk + u2
j + uj ·

∑
k 6=i,j

uk + ui · uj + L

 /U, (C-1)

where L does not contain ui and uj. Similarly, we have

β(s̃) =

(ui + uj)
2 + (ui + uj) ·

∑
k 6=i,j

uk + L

 /U. (C-2)

Hence, β(s̃)− β(s) = ui · uj/U . �

38

