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An Improved Least Squares Monte Carlo Valuation Method

Based on Heteroscedasticity

1. Introduction

The problem of pricing American-style derivatives has been extensively

examined over the past 40 years1. A long series of papers have focused on

the approximation of the conditional expected payoff to the option holder

from continuation. While they all use regression methods in a dynamic pro-

gramming context, they have distinctive features. Carriere (1996) estimates

the continuation value along each simulated path by employing spline re-

gressions and regressions with a local polynomial smoother, while Tsitsiklis

and Van Roy (2001) and Longstaff and Schwartz (2001) employ the ordinary

least squares (OLS) regression.

The regression-based methods for pricing American options are centered

on the least squares Monte Carlo (LSMC) method described in Longstaff

and Schwartz (2001). Stentoft (2014) justified the widespread use of LSMC

by noting that it has the smallest absolute bias and less error accumu-

lation when compared to other regression-based algorithms. Longstaff and

Schwartz (2001) proved the convergence for problems with one state variable

and only one exercise date (except maturity). Clement et al. (2002) showed

that, for a given set of basis functions, the error resulting from Monte Carlo

simulation goes to zero when the number of paths goes to infinity. Within

1Recently, several important applications emerged that have successfully employed the
LSMC algorithm in fields other than the American option pricing problem. Jarrow et al.
(2010) priced callable bonds via the LSMC method, showing that the same technique can
be applied to mortgage-backed securities. Carmona and Ludkovski (2010) utilised the
LSMC for optimal switching models with inventory to evaluate energy storage facilities.
Broadie and Detemple (1996, 2004), Glasserman (2003) and Detemple (2005) provide
reviews of the literature related to this issue.
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a multi-dimensional and multi-period setting, Stentoft (2004b) proved con-

vergence as the number of basis functions M and the number of paths ns go

to infinity with M3/ns → 0. Studying the LSMC near the beginning of the

contract when the time-step size approaches zero, Mostovyi (2013) found

that the regression problem is ill-posed, making the LSMC unstable.

On the computational side, Moreno and Navas (2003), Stentoft (2004a)

and Areal et al. (2008) assessed the pricing performance of LSMC under dif-

ferent numbers of simulated paths, payoff structures and polynomial families

in the regressions. They argued that the performance of LSMC is virtually

the same for vanilla options when different polynomial families are employed

but that their selection has a major impact in the case of exotic options.

Wang and Caflisch (2010) modified LSMC to calculate directly the delta

and the gamma parameters.

The literature has shown that the pricing bias in the LSMC is a combi-

nation of the downward bias caused by the approximation of this curve by

a finite low-dimensional polynomial, and the upward bias caused by using

the same paths to estimate the optimal stopping time (see, among others,

Létourneau and Stentoft (2014)). Létourneau and Stentoft (2014) employed

the linear inequality constrained least squares (ICLS) method to impose

monotonicity and convexity properties on the continuation value curve, as

the theoretical results suggest. They showed that the ICLS algorithm is less

prone to curve-overfitting compared to LSMC and thus the upward pricing

bias is substantially reduced.

Another improvement for the Monte Carlo regression used in American

option pricing has been described in Belomestny (2011) and Belomestny

et al. (2015) where they apply local polynomial kernel regression to the

problem of pricing Bermudan options. The idea is to generate an additional
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independent set of Monte Carlo sample paths to the sample already used in

the prior regression step and then average the payoffs stopped according to

simple rule that, although is suboptimal, is capable of producing a low-biased

estimate for the option price that has improved convergence properties, as

discussed in Zanger (2016). Other authors that used methods for generating

a new set of independent random paths corresponding to the underlying

process at each exercise time increment, independent of all the other sets

of paths generated at all other time-steps, were Glasserman and Yu (2004),

Egloff et al. (2007) and Zanger (2013). A survey of regression-based Monte

Carlo methods for pricing American options can be found in Kohler (2010)

and an excellent discussion of the convergence of various algorithms proposed

for pricing American options is contained in Zanger (2013).

The calibration and parameter estimation processes can be sometimes

impossible to separate and model misspecification may be difficult to disen-

tangle given the information available in the options market, as pointed out

by Jarrow and Kwok (2015). Even when the data generating process is fully

known, Monte Carlo pricing methods coupled with least-squares algorithms

may be subject to inefficient parameter estimation. This seems to be the

case in the literature employing LSMC, as we highlight here, and this phe-

nomenon goes beyond the geometric Brownian motion standard assumption

widely utilized when pricing American options.

In this paper, we propose an improved pricing method which we refer

to as the weighted least squares Monte Carlo (wLSMC) for American put

option pricing. The wLSMC, similar in structure to the LSMC, employs

the weighted least squares regression (WLS) method instead of the OLS

method. We proceed by proving that the homoscedasticity of the errors,

one of the assumptions underpinning the OLS method, does not hold for
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the regressions in the LSMC. Consequently, the errors of the regressions of

LSMC are heteroscedastic, a condition which makes the OLS estimators not

the best linear unbiased estimators (BLUE). We show that in LSMC, the

OLS estimators tend to exhibit large pricing bias because they are more

prone to overfitting the continuation value curve. Our analysis extends

to the multi-asset American option pricing case, where similar results are

valid. Here we also emphasize the importance of an improved estimation

and we provide numerical evidence that correcting for heteroscedasticity in

our proposed wLSMC method also improves the option price estimators.

The outline of this paper is as follows. In Section 2 we review the

American option pricing problem and the LSMC method in Longstaff and

Schwartz (2001). Section 3 provides substantial evidence on the existence

of heteroscedasticity in each regression step of the LSMC method. After

introducing the wLSMC method in Section 4, we compare the pricing per-

formances of the LSMC, ICLS and wLSMC methods under several price

dynamics and show how the wLSMC reduces significantly the upward pric-

ing bias of LSMC and ICLS. Section 5 expands the results in the previous

sections to multi-asset payoffs. Section 6 highlights the application of our

method for stochastic volatility models. A detailed numerical and empiri-

cal analysis based of the performance of the new method is provided in the

Online Appendix. Section 7 concludes our paper.

2. American Options and the LSMC Method

Consider the filtered probability space (Ω,F , (Ft)t≥0,Q) associated to a

financial market consisting of three assets: a bank account dMt = rMtdt,

where the risk-free interest rate r is assumed constant over time, a risky

asset with the dynamics {St}t≥0 given under the risk-neutral measure Q as
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St = S0e
st , where S0 > 0 and {st}t≥0 is a Markovian process with s0 = 0,

and an American put option written on the risky asset (usually referred to as

the underlying asset) with strike price K and maturity date T . The pricing

problem for the American put option can be formulated as the problem to

find the optimal expected discounted payoff given by supτ∈ΓE0 [h(Sτ )|S0 ],

where h(St) = e−rt max{0,K −St} is the payoff in time-0 dollars to the op-

tion holder from exercise at time t and Γ is the class of admissible stopping

times in (0, T ]. The numerical applications we carry out in this paper are

for the four different dynamics outlined in the Online Appendix: geomet-

ric Brownian motion, exponential Ornstein-Uhlenbeck process, log-normal

jump-diffusion process and double exponential jump diffusion process. In

addition, we also investigate two stochastic volatility models.

Numerical methods usually restrict the pricing of American options to

contracts that can be exercised only at a fixed set of exercise opportunities

t1 < t2 < . . . < tm = T and t0 = 0, the time of evaluation, is not usually part

of this set. Without loss of generality, we can assume that ∆ti = ti+1− ti =

T/m = ∆t, for any i = 0, . . . ,m − 1. Henceforth, to simplify the notation

under the discrete-time settings, we denote the underlying asset price at the

ith exercise opportunity (the one at time ti), simply as Si so the logarithmic

return over the period (ti, ti+1) will be si+1−si; the payoff function in time-0

dollars for exercise at time ti when current state is Si = X as

hi(X ) = r0,i max{0,K −X} (1)

where r0,i = e−ri∆t and Vi(X ) is the value in time-0 dollars of the option at
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time ti given Si = X , which is calculated with the dynamic programming:2{
Vm(X ) = hm(X ) (2)

Vi(X ) = max{hi(X ), Ci(X )}, i = 0, · · · ,m− 1 (3)

where

Ci(X ) = Ei [Vi+1(Si+1)|Si = X ] (4)

is the continuation value of the American put option measured in time-

0 dollars conditioned on the current state X and Ei [·] is the expectation

operator under the risk-neutral measure Q. One is ultimately interested in

V0(S0). Furthermore, let us define Sfi as the underling asset price such that

hi(Sfi) = Ci(Sfi) which is commonly referred to as the optimal exercise price

(OEP). By employing the optimal exercise price3, an equivalent formulation

of problem (2)-(3) for American put options is


Vm(X ) = hm(X ) (5)

Vi(X ) =

hi(X ) if X ≤ Sfi

Ci(X ) if X > Sfi

, i = 0, . . . ,m− 1. (6)

The LSMC method in Longstaff and Schwartz (2001) solves the dynamic

programming problem in (2)-(3) by combining Monte Carlo simulation and

OLS regression method. Given a set of ns simulated paths of the Markovian

2Note that time t0 is excluded from the set of exercise opportunities by choosing
h0(S0) = 0.

3Chockalingam and Muthuraman (2015) introduced the approximate moving bound-
aries method which iteratively finds an approximation of the OEP while Chockalingam
and Feng (2015) extended Ibanez and Paraskevopoulos (2011) and investigated the cost
of using suboptimal OEP. For long-term American options Fabozzi et al. (2016) designed
a construction method for the OEP based on an approximation of the optimal exercise
price near the beginning of the contract combined with existing quasi-analytical pricing
approaches for the remaining part.
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process {St}t≥0, a set of M + 1 basis functions4 ψl (·) : < 7→ < and a set

of M + 1 parameters βi,l ∈ <, l = 0, · · · ,M , for any time ti with i =

1, . . . ,m − 1, Longstaff and Schwartz employ the following approximation

for the continuation value (4):

Ĉi(X ) =

M∑
l=0

βi,lψl (X ) , (7)

The OLS method is applied to calculate the parameters βi,l from the pairs(
Si(j) , Vi+1

(
Si+1(j)

))
, j = 1 . . . , ns where Si(j) indicates the value of process

{St}t≥0 at time ti for the j-th simulated path. The LSMC has the steps:

1. Simulate ns independent paths {S1(j) , · · · , Sm(j)}, j = 1, · · · , ns,

2. Set the option terminal-value equal to Vm(Sm(j)) = hm(Sm(j)), j =

1, . . . , ns,

3. Using backward dynamic programming for i = m− 1, · · · , 1,

(a) Select the set J̃i = {j|hi(Si(j)) > 0} of in-the-money paths at

time-step i

(b) Run an OLS regression on the pairs
(
Si(j) , Vi+1

(
Si+1(j)

))
for j ∈

J̃i, with basis functions ψl (·), to determine βi,l,

(c) For each j ∈ J̃i set

Vi(Si(j)) =

hi(Si(j)), hi(Si(j)) ≥ Ĉi(Si(j));

Vi+1

(
Si+1(j)

)
hi(Si(j)) < Ĉi(Si(j))

(8)

with Ĉi(·) as in (7) and βi,l found in step 3b. For j ∈ {1, · · · , ns} \ J̃i

4It is usually required that ψ0 (·) = 1.
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(out-of-the money paths), set Vi(Si(j)) = Vi+1

(
Si+1(j)

)
,

4. Set V0(S0) = 1
ns

∑ns
j=1 V1(S1(j)).

3. Heteroscedastic Errors in LSMC

In this section, we prove that the assumption of homoscedastic errors

for the OLS regressions in the LSMC method (step 3b above) does not

hold when the method is applied to the estimation of the continuation value

of American put options.5 This provides the foundation for the wLSMC

method proposed in Section 4, which corrects LSMC for heteroscedasticity.

Let us consider the regression at any given time-step i = 1, . . . ,m − 1 and

define ui as the error of the time-ti regression given the current price Si:

ui = Vi+1(Si+1)− Ci(Si) (9)

which is a random variable dependent on Si+1 = Sie
si+1−si . These errors

are homoscedastic if

Var[ui|Si = X ] = c, c ∈ <+, for all X ∈ (0,K]. (10)

We note that in (10) it is required that ui, the variance of the error of the

OLS regression at time-step i, is equal to a constant c whatever the value

X taken by the underlying asset Si. However, we shall show that for the

regressions in step 3b there exist some values X1 and X2 of the underlying

asset such that6 Var[ui|Si = X1] 6= Var[ui|Si = X2]. This means that

5Similar results are found for American call options but are not reported here due to
space constraints. Section 5 extends the results in Section 3 to American basket options.

6Note that the subscript i denotes a time period along the simulated paths whereas the
subscript j is for different observation values associated with different paths. Moreover,
the construction presented in this paper is feasible for any time period i.
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the conditional variance of errors changes with the underlying spot price, a

condition usually defined as heteroscedasticity of the errors.

To start with, we construct a set of American put options written on

assets whose risk-neutral price dynamics are given by one of the following:

geometric Brownian motion, exponential Ornstein-Uhlenbeck process, log-

normal jump diffusion process and double exponential jump diffusion pro-

cess. Overall, the set is generated from 160 scenarios spanned by the values

for the parameters associated with the underlying processes. The values are

similar to those shown in Longstaff and Schwartz (2001). Under geomet-

ric Brownian motion, the study is carried out on the 20 scenarios (rescaled

for the strike price) described in (Longstaff and Schwartz, 2001, Table 1).

The parameters are S0 ∈ {0.9, 0.95, 1, 1.05, 1.1}, σ ∈ {0.2, 0.4}, T = {1, 2}

year(s), r = 6% and K = 1. For the other three processes, we use the fol-

lowing additional parameters: the exponential Ornstein-Uhlenbeck process

has η ∈ {0.15, 0.3}, µ = {0, log(0.9)} and T = 1 year; the log-normal jump

diffusion process has λ ∈ {0.5, 1}, αJ ∈ {−0.25, 0.25}, σJ ∈ {0.2, 0.4} and

T = 1 year, and the double exponential jump diffusion process has q = 0.5,

λ = 0.5, (η1, η2) ∈ {(2, 3), (4, 6)} and T = 1 year. In Table 1 we provide evi-

dence on three main statistical tests, rejecting overall the null hypothesis of

homoscedasticity resulting from the application of LSMC and highlighting

the improvement achieved by the wLSMC correction.

3.1. Heuristic Evidence of Heteroscedasticity

This section provides a heuristic proof that the conditional standard

deviation of the errors as a function of the values of the underlying asset

prices is not constant and, consequently, provides evidence of the existence

of heteroscedasticity in the LSMC algorithm. This argument is valid for

any regression step of the LSMC procedure and our evidence and conclu-
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Table 1: Results of statistical tests for heteroscedasticity: American put options

Statistical test under LSMC
Park’s White’s BPG

Critical Value 1% 5% 1% 5% 1% 5%

GBM 2.30% 2.03% 4.05% 2.84% 9.19% 7.36%
Exp. Ornstein-Uhlenbeck 4.18% 3.27% 5.77% 3.93% 13.01% 11.02%

Log-normal jumps 2.19% 1.43% 10.38% 6.61% 9.54% 7.17%
Double Exp. jumps 0.56% 0.36% 12.45% 6.79% 6.94% 4.08%

Statistical test under wLSMC
Park’s White’s BPG

Critical Value 1% 5% 1% 5% 1% 5%

GBM 21.69% 16.46% 36.51% 30.34% 49.50% 40.44%
Exp. Ornstein-Uhlenbeck 13.19% 10.16% 42.45% 35.81% 44.16% 35.83%

Log-normal jumps 30.07% 23.48% 79.94% 71.88% 83.16% 75.22%
Double Exp. jumps 20.27% 14.85% 76.48% 63.29% 86.17% 76.82%

Note: The entries in the table are the percentages of time for which it is not possible
to reject the null hypothesis of homoscedasticity for the regressions in the LSMC and
the wLSMC algorithm, respectively, for the 160 put option scenarios considered. A low
percentage indicates serious evidence of heteroscedasticity among the option scenarios
considered.

sions hold the same for all four models. The reason for considering such an

alternative method is that the statistical tests considered above are based

on the residuals rather than the (theoretical) errors in (9) and one may er-

roneously conclude that heteroscedasticity depends on the selection of the

basis functions ψl (·) for the regressions at step 3b.

We start by using the formula for the standard deviation,

std[ui|Si = X ] = std[Vi+1(Si+1)|Si = X ], (11)

and estimate the conditional standard deviation on the right-hand side via

the MC simulation technique. We consider the time-steps i = 1, . . . , T/∆t

with ∆t = 0.1 years and discretize7 the underlying spot price range as

7As in the LSMC algorithm, we consider in-the-money paths only.
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S = 0,∆S , . . . ,K with step size ∆S = 0.05. For each point on the grid

(i, S), we simulate Nh = 100 stock prices at the next time-step (i+ 1)

conditional on the spot price at the current time-step X . We then price the

American options for each of the Nh underlying spot prices at time ti+1 using

the appropriate binomial tree method, see the Online Appendix. Then, we

calculate the standard deviation of the Nh prices. The plots in Figure 1

Figure 1: Heteroscedasticity in the regressions of the LSMC algorithm via simu-
lation: American put options
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Note: The plots report the conditional standard deviations std(S) =
√

Var[ui|Si = X ], i =
1, . . . , 9 calculated using formula (12) for American put options under four price dynamics.
All price dynamics have σ = 20%, r = 6%, K = 1 and T = 1. Moreover, the exponential
Ornstein-Uhlenbeck process has η = 0.15 and µ = 0; the log-normal jump-diffusion has
αJ = −0.25, σJ = 0.2 and λ = 0.5; the double exponential jump-diffusion has λ = 0.5,
η1 = 2, η2 = 3 and q = 0.5. The plots are created for a grid with ∆S = 0.05 and ∆T = 0.1
years. For each point on the grid (i, S), Nh = 100 (50+50 antithetic) simulations of Si+1

(conditional on Si = X ) are calculated together with the price of the option with time-to-
maturity T − ti+1 and underlying spot price Si+1. The option prices are calculated using
the binomial tree method. The plots represent the standard deviation of the Nh prices.

illustrate the standard deviations of the errors for American options priced

under different models. Each cross section along the i axis is the standard

deviation of the regression errors conditional on the underlying asset price
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being S at time-step i. Figure 1 indicates that the conditional standard

deviation changes with the level of price S and hence, for the eight selected

options, the errors are heteroscedastic. These patterns can be observed for

all the other scenarios and there is graphical evidence of heteroscedasticity

for the 160 option scenarios considered.

In the next section we provide a formal proof of heteroscedasticity for an

underlying asset whose price follows the general dynamics St = S0e
st where

{st}t≥0 is a Markovian process. In what follows, we make use of the equality

Var[ui|Si = X ] = Var[Vi+1(Si+1)|Si = X ], (12)

which follows from (9).

3.2. Correcting for Heteroscedasticity

Let us consider the American put option written on the risky asset whose

price dynamics St = S0e
st has the first two moments finite and is defined

such that S0 > 0 and {st}t≥0 is a Markovian process with s0 = 0. In the

following proposition, we prove the main result of the paper.

Proposition 3.1. The errors of the regressions in the LSMC algorithm for

the American put option are heteroscedastic.

A proof of this proposition is detailed in the Online Appendix. In Sec-

tion 5 we also offer a general proof for the multi-asset case.

The proposition and the numerical evidence highlighted above indicate

that the βi,l estimated via OLS regression in LSMC is not BLUE. Section 4

introduces a new pricing method which retains the BLUE property even in

the presence of heteroscedastic errors and shows the positive effect of this

new pricing method on the pricing bias.
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4. The Weighted LSMC Valuation Method

It is well known that under all classical linear regression assumptions

with the exception of homoscedasticity of the errors, the WLS estimators

are BLUE, see Greene (2012). This theorem and the results in Section 3 lay

the foundation for us to introduce the new valuation method for American

option pricing, the weighted least squared Monte Carlo method.

4.1. Description of the valuation method

The new method is equivalent to the LSMC whose step 3b is substituted by

3bw Run a WLS regression on the pairs
(
Si(j) , Vi+1

(
Si+1(j)

))
for j ∈ J̃i,

with basis functions ψl (·), to determine βwi,l.

Fitting a WLS regression corresponds to computing an OLS regression for

the transformed variables

ψl (Si(j))

std(Si(j))
→ ψwl (Si(j)) ,

Vi+1

(
Si+1(j)

)
std(Si(j))

→ V w
i+1

(
Si+1(j)

)
(13)

where std(Si(j)) =
√

Var[ui|Si = Si(j) ] is the conditional standard deviation

of the errors and ψl (·) are the basis functions in (7). Thus, the continuation

value is now calculated as: Ĉi(X ) =
∑M

l=0 β
w
i,lψl (X ). For the estimation of

std(·), we resort to the two-step algorithm outlined in Greene (2012). This

algorithm first computes the conditional standard deviation using the OLS

residuals; then, in the second step, it employs this standard deviation as a

weighting function in the WLS regression. We assume the structure:

û2
i,j = ϕ0 + ϕ1Si(j) + ϕ2S

2
i(j) (14)
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where ûi,j is the residual resulting from the OLS regression in correspondence

to state Si(j) and û2
i,j is used as a proxy for the variances of the residuals.

5. The Case of Multi-asset Payoffs

In this section, we extend the newly improved LSMC valuation method

based on heteroscedasticity to the case of multi-asset payoffs. For this pur-

pose, let us expand the financial market considered in Section 2 by consid-

ering Υ risky assets whose price dynamics under the risk-neutral measure Q

are of the type S
(k)
t = S

(k)
0 es

(k)
t , k = 1, . . . ,Υ where S

(k)
0 > 0 and

{
s

(k)
t

}
t≥0

is

a Markovian process with s
(k)
0 = 0. We indicate by St = [S

(1)
t , S

(2)
t , . . . , S

(Υ)
t ]

the column vector of the underlying asset prices at time t.

Under the discrete settings introduced in Section 2, the quantities de-

fined above will be indicated as S
(k)
i , s

(k)
i and Si where i stands for the

early exercise date at ti. Additionally the correlation between any cou-

ple of assets (k1, k2) is given as cov(es
(k1)
i+1 , es

(k2)
i+1 |S(k1)

i , S
(k2)
i ) = σk1,k2 ∈ <

and we indicate by Ξ the variance-covariance matrix. The multi-asset pay-

off function in time 0 dollars for exercise at time ti when current state is

Si = X = [X (1),X (2), . . . ,X (Υ)] is defined as

hi(X ) = r0,i+1 max {0,K −B(X )} (15)

This represents an American basket put option, where

B(X ) =

Υ∑
k=1

akX (k) (16)

is the basket value and the asset weights, ak, are deterministic and can be

both positive and negative.
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Equivalently, we also consider the multi-asset continuation value function

Ci(·) : <Υ 7→ < as

Ci(X ) = Ei [Vi+1(Si+1)|Si = X ] , (17)

where Vi(·) : <Υ 7→ < is the value in time-0 dollars of the multi-asset

option at time ti. Under these multi-asset settings, the LSMC algorithm

follows the same steps as defined in Section 2 and the set of basis functions

ψl (·) : <Υ 7→ < also includes the cross product terms. Finally, we define the

error of the time-ti regression given the current prices Si as

ui = Vi+1(Si+1)− Ci(Si),

which, similar to the unidimensional case in (9), is a random variable de-

pendent on the Υ random variables S
(k)
i+1 = S

(k)
i es

(k)
i+1−s

(k)
i , i = 1, . . . ,Υ.

As in Section 3, we start identifying heteroscedasticity over a set of

simulated option scenarios. In particular, we considered the five American

basket option scenarios in (Kovalov et al., 2007, Table 1). The underlying

baskets are composed of assets whose prices follow a geometric Brownian

motion. The number of assets in the five scenarios are Υ = {2, 3, 4, 5, 6},

the risk-free rate r = 3%, the strike price K = 100 and maturity is at

T = 0.25 year. Additionally, the underlying spot prices are S
(k)
0 = 100,

the asset weights ak = 1
Υ , the variances of the log-returns are 20% and the

correlation among each couple of assets is 0.5.

The results of the statistical tests are reported in Table 2 and show that

heteroscedasticity is also an issue for the vast majority (more than 87%)

of the regressions of the LSMC applied to American basket options. More-

over, considering the graphical test proposed in Section 3.1, the graphs in
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Table 2: Statistical tests for heteroscedasticity: American basket options

Park’s White’s BPG

Critical value 1% 5% 1% 5% 1% 5%

N
o
.

o
f

A
ss

et
s

2 14.29% 12.24% 10.20% 6.12% 6.12% 2.04%
3 12.24% 12.24% 8.16% 8.16% 18.37% 10.20%
4 22.45% 12.24% 16.37% 8.16% 14.29% 8.16%
5 16.33% 14.29% 2.04% 2.04% 18.37% 16.33%
6 12.24% 10.20% 8.16% 6.12% 20.41% 18.37%

Note: The entries in the table are the percentages of time for which it is not possible to

reject the null hypothesis of homoscedasticity for the regressions in the LSMC algorithm

for the 5 basket option scenarios in (Kovalov et al., 2007, Table 1). A low percentage

indicates serious evidence of heteroscedasticity among the option scenarios considered.

The ‘No. of assets’ represents the number of assets in the basket of the option scenario.

Figure 2 show, for a regression of the LSMC applied to each basket option

with Υ = 2, that the conditional standard deviation of errors is not con-

stant for any of the three different multi-asset American options, suggesting

heteroscedasticity. Finally, in the following proposition, we provide a theo-

retical proof for generic asset prices of the type S
(k)
t = S

(k)
0 es

(k)
t with the first

two moments finite and defined such that S
(k)
0 > 0 and {s(k)

t }t≥0 is a Marko-

vian process with s
(k)
0 = 0. These dynamics include but are not limited

to correlated geometric Brownian motion, exponential Ornstein-Uhlenbeck

process, various jump processes and also a mixture of them.

Proposition 5.1. The errors of the regressions in the LSMC method for

the American basket put option are heteroscedastic.

The proof consists in showing that for any X 2, there is X 1 such that

Var[ui|Si = X 1] < Var[ui|Si = X 2] (18)

is satisfied. We consider the regression at any given time-step i = 1, . . . ,m−1

and we calculate a lower bound of the conditional variance in correspondence
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Figure 2: Heteroscedasticity in the regressions of the LSMC algorithm via simu-
lations: multi-asset American options
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Note: The three plots show the conditional standard deviation of the errors std(ui) =√
Var[ui|Si = X ] for i such that ti = 0.15 year, as a function of the two underlying

asset values, S
(1)
i = S(1) and S

(2)
i = S(2). The basket considered each time has Υ = 2

assets whose price dynamics have σk = 20%, r = 3%, K = 1 (rescaled) and T = 0.25
year, ∆S = 0.05. For each point on the grid (X (1),X (2)), Nh = 100 (50+50 antithetic)
simulations of Si+1 (conditional on Si = X ) are calculated together with the price of the
option with time-to-maturity T − ti+1 and underlying spot price Si+1. The option prices
are calculated using the binomial tree method. The plotted points represent the standard
deviation of the Nh prices.
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of X 2 and an upper bound in correspondence of X 1 and then show that the

upper bound can be made smaller than the lower bound. We calculate the

lower bound for the variance of the error ui for the right-hand-side of (18):

Var[ui|Si = X 2] ≥ Var[Vi+1(Si+1)|Si = X 2, Xi+1 = 1]Q(Xi+1 = 1|Si = X 2)

= Var[hi+1(Si+1)|Si = X 2, Xi+1 = 1]Q(Xi+1 = 1|Si = X 2)

= r2
0,i+1Var

[
Υ∑
k=1

akS
(k)
i+1|Si = X 2, Xi+1 = 1

]
Q(Xi+1 = 1|Si = X 2)

= r2
0,i+1Q(Xi+1 = 1|Si = X 2)×

×
Υ∑

k1=1

Υ∑
k2=1

X̃ (k1)
2 X̃ (k2)

2 cov

[
e∆s

(k1)
i+1 , e∆s

(k2)
i+1 |Si = X 2, Xi+1 = 1

]
= r2

0,i+1Q(Xi+1 = 1|Si = X 2)X̃ T
2 Ξ X̃ 2

where X̃ 2 is the vector whose components are X̃ (k)
2 = akX

(k)
2 , ∆ denotes the

first difference operator, and Xi+1 indicates whether the option is exercised

at time-step i + 1. The last term in (5) is strictly positive for any X 2

since Ξ is positive-definite8 and the probability of an early exercise for an

American-style derivative is strictly positive for at least one state X 2.

Conversely, we derive an upper bound for the conditional variance on

the left-hand-side of (18). Let g(Si+1) = Vi+1(Si+1)−Vi+1(0)
B(Si+1) where B(·) is

as defined in (16) and 0 is the null vector in <Υ. It can be proved that,

for any Si+1, g(Si+1) ∈ (−r0,i+1, 0) since it correspond to the delta of the

8This follows from the fact that the quadratic form X̃ T
2 Ξ X̃ 2 corresponds to the vari-

ance of the basket.
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discounted option price9 Vi+1(·). Consequently,

E
[
(Vi+1(Si+1)− Vi+1(0))2 |Si = X 1

]
= E

[
B(Si+1)2g2(Si+1)|Si = X 1

]
(19)

= E

( Υ∑
k=1

akS
(k)
i+1

)2

g2(Si+1)|Si = X 1

 ≤ r2
0,i+1E

( Υ∑
k=1

akS
(k)
i+1

)2

|Si = X 1


= r2

0,i+1

Υ∑
k1=1

Υ∑
k2=1

ak1ak2X
(k1)
1 X (k2)

1 E

[
e∆s

(k1)
i+1 e∆s

(k2)
i+1

]
= r2

0,i+1X̃
T
1 ΘX̃ 1,

where X̃ (k)
1 = akX

(k)
1 and Θ ∈ <Υ×Υ is a symmetrical matrix with entries

E

[
e∆s

(k1)
i+1 e∆s

(k2)
i+1

]
> 0. Then,

Var[ui|Si = X 1] = Var[Vi+1(Si+1)|Si = X 1] (20)

= Var[Vi+1(Si+1)− Vi+1(0)|Si = X 1] ≤ r2
0,i+1X̃

T
1 ΘX̃ 1.

since E[Vi+1(Si+1)−Vi+1(0)|Si = X 1]2 ≥ 0. The last term on the right hand

side in (19) will be non-negative since E
[
(Vi+1(Si+1)− Vi+1(0))2 |Si = X 1

]
is non-negative. Since the matrix Θ is symmetrical, it is known that

X̃ T
1 ΘX̃ 1 ≤ λmax

Υ∑
k=1

(X̃ (k)
1 )2, (21)

where λmax is the maximum eigenvalue Θ.

Notice that the last term of (5) (lower bound) is strictly greater than

the term on the right-hand side of (21) (upper bound), if there is a state

9In case of negative strike price, g(Si+1) ∈ (0, r0,i+1) and this proof is still valid.
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vector X 1 such that

r2
0,i+1λmax

Υ∑
k=1

(X̃ (k)
1 )2 < r2

0,i+1Q(Xi+1 = 1|Si = X 2)X̃ T
2 Ξ X̃ 2. (22)

The left-hand side term of (22) is a positive constant r2
0,i+1λmax times the

square of the Euclidian norm ‖ · ‖ of the vector X̃1. There will always be at

least one X 1 such that the left-hand side in (22) is equal to half the positive

value on the right-hand side of (22).

The wLSMC method can be applied to correct for heteroscedasticity.

We highlight how the option pricing with the LSMC can be improved. Ta-

ble 3 shows the pricing performances of the LSMC and the wLSMC10 for

an increasing number of the polynomial order over the five basket option

scenarios described above. As in the univariate case, the upper bias in the

LSMC (MRE) and the price dispersion (RMSE) increase with the polyno-

mial order. The correction for heteroscedasticity by using our wLSMC

method has a significant impact in reducing both MRE and RMSE. Ad-

ditionally, Figure 3 shows the evolution of the upper bias in pricing a for

various number of paths and all basis functions polynomials of order 5. As

for the univariate case, the wLSMC has a substantial impact in reducing

the pricing bias. The figure also reveals that the improvements in the er-

ror performance measure for the wLSMC are substantial. More evidence is

presented in the Online Appendix.

10For the variance of the residual, similarly to (14), we assume the following structure:

û2
i,j = ϕ0 +

∑Υ
k=1 ϕkS

(k)

i(j)
+

∑Υ
k1=1

∑Υ
k2=k1

ϕk1k2S
(k1)

i(j)
S

(k2)

i(j)
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Figure 3: Pricing comparison for American basket option scenarios
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Note: The methods compared are the least squares Monte Carlo (LSMC) and the
weighted least squares Monte Carlo (wLSMC). The mean relative errors (MRE) are based
on the mean over 100 independent simulations. The five option scenarios considered
(Υ = 2, 3, 4, 5, 6) are the American basket options in (Kovalov et al., 2007, Table 1). Fifty
exercise dates per year are used and the label of each data point indicates the number of
paths ns (in thousands). The results are based on number of regressors equal to M=5.

22



Table 3: Pricing performance comparison for American basket options

LSMC wLSMC

Polynomial Order Polynomial Order

Benchmark 2 3 4 5 2 3 4 5

N
o
.

A
ss

et
s 2 3.1396 3.178 3.120 3.218 3.237 3.162 3.191 3.207 3.221

3 2.944 3.001 3.040 3.071 3.124 2.981 3.018 3.041 3.079
4 2.840 2.917 2.970 3.042 3.141 2.882 2.936 2.997 3.075
5 2.772 2.865 2.940 3.055 3.2407 2.828 2.895 2.996 3.178
6 2.718 2.829 2.938 3.120 3.514 2.776 2.883 3.056 3.477

RMSE 0.082 0.144 0.248 0.444 0.044 0.107 0.198 0.408
MRE 0.075 0.134 0.218 0.368 0.043 0.102 0.176 0.323

Note: The entries represent the prices for the five option scenarios in (Kovalov et al.,
2007, Table 1) calculated by the LSMC algorithm of Longstaff and Schwartz (2001) and
our wLSMC algorithm as average of 100 simulations each with nS =1,000 simulated
paths. The benchmark prices are calculated by using the FEM method in Kovalov et al.
(2007). Per column, it is indicated the maximum polynomial order of the basis functions
considered. The bottom two rows summarise the root mean squared relative error (RMSE)
and the mean relative error (MRE).

6. Stochastic Volatility Models and Other Methods

Our adjustment based on wLSMC works well also with stochastic volatil-

ity models. Here we consider the stochastic volatility model Heston-type

with Merton-type jumps Bates (1996) that will be called ‘stochastic volatil-

ity with jumps’ and it is described by

St = S0e
Xt , dXt =

(
r − δ − λκ− 1

2
Yt

)
dt+

√
YtdW

1
t + dZt, X0 = 0

dYt = ε(η − Yt)dt+ θ
√
YtdW

2
t (23)

where W 1
t and W 2

t are standard Wiener processes with constant volatility,

Z is a compound Poisson process with intensity λ and the jumps J are

Gaussian distributed with mean γ and standard deviation δJ .

In addition, we analyse the mean reverting stochastic volatility (MRSV)
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model described in Rambharat and Brockwell (2010) as

dSt = rStdt+ σ(Yt)StdW
1
t

σ(Yt) = exp(Yt)

dYt = α(β − λγ

α
− Yt)dt+ γdW 2

t (24)

where, as before, the two Wiener processes W 1
t and W 2

t have correlation ρ.

For the stochastic volatility model with jumps we run the comparison of

LSMC and wLSMC over the 10 scenarios (normalized for strike): K = 1,

T = 0.5 year, r = 0.03, δ = 0.05, S0 in the set {0.8, 0.9, 1, 1.1, 1.2}, ε =

2, η = 0.04, θ = 0.4, λ = 5, δJ = 0.1, γ = − δ2
J
2 and ρ = {0.5,−0.5}.

κ = exp γ + σ2
J/2− 1. The benchmark prices are taken from Chiarella et al.

(2009) calculated by using finite difference approximations and Monte Carlo

simulations on an extremely fine mesh. For the mean reverting stochastic

volatility model we run the comparison over the nine scenarios described in

Rambharat and Brockwell (2010) and summarised in Table 4.

Table 4: American option pricing scenarios for the mean reverting stochastic
volatility model.

ρ α β γ λ T r S0 σ0 Benchmark
1 -0.055 3.3 log(0.55) 0.5 -0.1 0.040 0.055 0.86957 0.5 0.1328
2 -0.035 0.25 log(0.2) 2.1 -1 0.079 0.0255 0.88235 0.35 0.1279
3 -0.09 0.95 log(0.25) 3.95 -0.025 0.056 0.0325 0.9375 0.3 0.0806
4 -0.01 0.02 log(0.25) 2.95 -0.021 0.198 0.03 0.92593 0.5 0.1864
5 -0.03 0.015 log(0.35) 3 -0.02 0.198 0.0225 0.9 0.35 0.1695
6 -0.017 0.019 log(0.7) 2.5 -0.015 0.218 0.0325 0.89474 0.75 0.2574
7 -0.075 0.015 log(0.75) 6.25 0 0.067 0.0325 0.9375 0.35 0.1317
8 -0.025 0.035 log(0.15) 5.07 -0.015 0.060 0.055 1.11111 0.2 0.0115
9 -0.05 0.025 log(0.25) 4.5 -0.015 0.099 0.025 0.89474 0.35 0.1065

We report the results per unit of strike. Since we are interested in the

convergence of the method, the benchmark prices are calculated by the stan-

dard LSMC method with 150000 paths. We consider the original scenarios

plus the scenarios for maturity 10 times longer.
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Figure 4: Stochastic volatility with jumps
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Note: The two plots show the performance of wLSMC versus LSMC for three different sets
of paths, where “A” is 2000 paths in the simulation, “B” is 5000 paths and “C” is 10000
paths. Performance is measured in time to complete the simulation on the horizontal axis
and the MRE percentage error from benchmark prices on the vertical axis. The wLSMC
values are in blue while the LSMC values are in red.

The results described in Figure 4 indicate that using the wLSMC method

improves the MRE and RMSE measures at a small cost in terms of computa-

tional speed. In the online appendix we report in Table 8 the heteroscedas-

ticity tests for the residuals of both LSMC and wLSMC under stochastic

volatility. For both the mean-reverting stochastic volatility and the stochas-

tic volatility with jumps, there is an improvement when applying wLSMC for

models with stochastic volatility. Thus the argument for using the wLSMC

method even in the stochastic volatility case becomes stronger11.

7. Conclusion

In this paper we studied in detail the regression step of the least squares

Monte Carlo algorithm for pricing American-style options. We evidenced

11We thank an anonymous referee for suggesting this line of investigation.
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both numerically and theoretically that there exists heteroscedasticity in

the regressions performed for pricing American put options, for several well

known models of the underlying asset prices.

As a solution to this problem we proposed the weighted least squares

Monte Carlo method that retains all the original steps of the (ordinary) least

squares Monte Carlo method described in Longstaff and Schwartz (2001) but

substitutes the ordinary least squares regression by its weighted version in

order to account for heteroscedasticity. In our numerical study, we find that

for each of the six considered underlying price dynamics the wLSMC pro-

duces a smaller pricing error than the LSMC. Also comparing the wLSMC

with other competing methods, we show that in many cases the wLSMC

produces similar or better results.

The improvements that can be gained by using our proposed method

is demonstrated for multi-asset American options as well. In addition, we

provide ample evidence in the Online Appendix that wLSMC produces the

lowest error measures or is highly comparable with the ICLS method, un-

der various polynomial regression orders, for various numbers of assets in a

basket, maturities and across moneyness.
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