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Abstract. We develop several distributionally robust equilibrium models, following the recent
research surge of robust game theory, in which some or all of the players in the games lack of
complete information on the true probability distribution of underlying uncertainty but they
need to make a decision prior to the realization of such uncertainty. We start with a distribu-
tionally robust Nash equilibrium model where each player uses partial information to construct
a set of distributions and chooses an optimal decision on the basis of the worst distribution
rather than the worst scenario to hedge the risk arising from ambiguity of the true probabil-
ity distribution. We investigate the existence of equilibrium, develop a numerical scheme for
its computation, and consider special cases where the distributionally robust Nash equilibrium
model can be reformulated as an ordinary deterministic Nash equilibrium. We then extend our
modeling scheme to two possible frameworks of distributionally robust Stackelberg setting: a
distributionally robust follower model and a distributionally robust leader model. These two
frameworks are employed to study an innovative problem of hierarchical competition in a sup-

ply chain where a buyer not only invests in its own capacity to supply an end-product market
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under demand uncertainty but also outsources a certain amount of market supplies to multiply
competing suppliers who invest in capacity for obtaining the buyer’s orders. In this application,
we show that the buyer has more incentives to invest in capacity whereas the suppliers have less
to do so when those suppliers are confronted with more demand uncertainty in the end-product

market over the buyer.

Key words. Game theory, distributionally robust Nash equilibrium, distributionally robust

Stackelberg models, risk-averse equilibrium models, hierarchical capacity investment

1 Introduction

Nash equilibrium has been an important modeling paradigm for optimal decision making prob-
lems which involve several decision makers who are in a competitive relationship. When the
underlying data of these decision making problems contain uncertain parameters, a stochastic
Nash equilibrium model is a must need. Over the past few decades, various stochastic Nash e-
quilibrium models have been proposed depending on the decision-making processes. To be more
specific, consider a stochastic Nash equilibrium problem where players need to make decisions
prior to the realization of uncertainty and they do so by minimizing their expected disutility,
that is, each player i, ¢ = 1,---,m, sets out its optimal decision by solving an optimization
problem

in E \Yiy Y—1i, ’
min plfi(yi, y—i, )]

where Y; C IR™ denotes the set of feasible decisions by player ¢, y_; stands for the decision
vectors of its rivals, £ is a k-dimensional random vector defined on probability space (Z, F, P)
with support set E representing the underlying uncertainty (e.g., market demand, supply relia-
bility), fi(-) is real-valued continuous function defined on IR™ x R* with n = 37", n;, and the

mathematical expectation E[-] is taken with respect to the probability distribution of .

Stochastic Nash equilibrium models described as the above are ubiquitous in operations liter-
ature [10]. For instance, if manufacturing firms compete simultaneously on capacity investment
and production, Haurie et al. [24] show that each firm chooses its optimal decision by solving
a two-stage stochastic optimization problem. If firms compete sequentially on capacity invest-
ment and production (i.e., capacity investment before the realization of demand uncertainty and
production after the realization of demand uncertainty), this capacity and production problem
becomes a two-stage stochastic equilibrium programs with equilibrium constraints (SEPEC);
the relevant discussions can be found in DeMiguel and Xu [14] for a two-stage multiple-leader
stochastic Stackelberg Nash-Cournot model and Henrion and Romisch [25] for the two-stage

SEPEC models to study competition in electricity markets.



We argue that a stochastic Nash equilibrium problem is far trickier than the above discussion
when the decision maker does not have complete information on the distributions of random
variables; for example, some firms have less information on the distribution of market demand
than the other firms in the aforementioned capacity investment and production problems. The
operations literature suggests a reasonable option to choose an optimal decision on the basis of
extreme values of random variables in order to mitigate the risks while the decision maker does
not have any information other than the range of random variables. This sort of decision making
framework is known as robust optimization. In the past two decades, robust optimization has
been well studied in theories, algorithms and applications, see the monograph by Ben-tal et al.
[6] and the survey by Bertsimas et al. [7] for the recent development on robust optimization.
In particular, Aghassi and Bertsimas [1] make the first attempt to investigate robust games.
They consider a distribution-free model of incomplete-information finite games, both with and
without private information, in which the players use a robust optimization approach to contend

with payoff uncertainty, see also [21, 28] and references therein.

The above discussion motivates us to consider an alternative and possibly less conservative
Nash equilibrium concept by following the idea of distributionally robust optimization (DRO
for short) to consider that the players in a game are lacking in complete information on the true
probability distribution of underlying uncertainty but they can use available information such as
historical data, sample information, or subjective judgments to construct a set of distributions
which contains or approximates the true distribution. The optimal decision is consequently
chosen on the basis of the worst distribution to hedge against the risk arising from ambiguity
of the true probability distribution. Over the past decade, DRO approach has been intensively
studied for a range of stochastic programming models from one stage to multistage and chance-
constrained problems, see [16, 8, 48, 20, 22, 23, 27, 29, 47, 49] and references therein. In contrast,
research on distributionally robust games and equilibrium problems is still in its infancy with a
few papers available to date. Qu and Goh [36] seem to be the first to consider a distributionally
robust formulation of a stochastic finite game where each player uses the worst probability dis-
tribution rather than the worst scenario as in [1] to tackle incomplete information of extraneous
uncertainty. Sun and Xu [45] present a stability analysis of distributionally robust Nash equi-
librium when players gain more and more information. Ahipasaoglu et al. [2] study the DRO
stochastic user equilibrium where the players only have the information of the first and second
moments of the random variables. Singh et al. [41] consider robust finite chance-constrained
games and study the existence of mixed-strategy Nash equilibrium. Along that direction, Loizou
[31, 32] proposes a distributionally robust Nash equilibirum model with each player’s objective
being Conditional Value at Risk (CVaR for short). In the case where the threshold of CVaR is

zero, his model coincides with Qu and Goh’s model. One of the main focuses of Loizou’s work is



to investigate cases where distributionally robust games are equivalent to Nash games without
private information, that is, to reformulate the distributionally robust games as deterministic

Nash games when the ambiguity sets have some special structures.

The existing research on distributionally robust games in the literature focuses on finite
games where each player plays a mixed (pure) strategy over finite action space, it is unclear
how the established results can be applied to continuous Nash games particularly in terms of
numerical methods for computing an equilibrium. Indeed, the numerical method for distribu-
tionally robust finite Nash games is still in infancy, with the main streamline being based on the
dual reformulation when the ambiguity set has some specific structure, see [36, 31] for details.
This paper aims to fill out the gap. We start by investigating the existence of the equilibrium
for distributionally robust Nash (DRNE for short) model, and algorithms for computing it, and
then followed by analyzing distributionally robust Stackelberg problems. Since the dual formu-
lation of DRNE can be atypically sophisticated, especially the Stackelberg model, the prevailing
dual formulation technique in the literature for DRO problem is no longer a powerful tool here.
Instead, we focus on some special cases where either the DRNE can be significantly simplified

or they are related to risk averse Nash equilibrium models.

We consider a real-world case related to distributionally robust Stackelberg models. As a
well-known fact documented in the operations and supply chain literature, the sector of con-
sumer electronics is subject to tight capacity constraints. When launching new products, quan-
tity produced is limited by existing workforce, facilities, and/or raw material availability. The
production capacity is often reached and limits the possible output quantity for seizing further
market opportunities. Therefore, outsourcing is a key strategy that firms use to overcome capac-
ity limit when launching new products. By outsourcing, firms (henceforth buyers, to distinguish
them from suppliers) can produce the amount of products above the installed capacity in house,
while contracting out certain amount of production to suppliers who may need to expand their
capacity, as well, for obtaining the buyers’ orders. While outsourcing reduces a buyer’s pres-
sure on capacity expansion, it gives rise to the phenomenon whereby the suppliers can directly
compete with the buyer by supplying the residual capacity to the product market. Specifically,
outsourcing opens a window of opportunity for the suppliers to enter the product market. One
prominent example of this hierarchical capacity competition across a supply chain is HT'C who
began as a contract cell phone manufacturer and later entered the smartphone market with its
own brand [52]. To address this hierarchical capacity competition problem in a supply chain,
we therefore propose two distributionally robust Stackelberg models, distributionally robust fol-
lower model and distributionally robust leader model. The first model suits the case that the
leader (i.e., the buyer in our case) dominates the market with complete information on market

uncertainty, however, the followers (i.e., the suppliers in our case) only have partial information.



The second model is suitable to the case where reversely the followers have complete information

on the market uncertainty.

To sum up, the main contributions of our work are summarized as follows.

e We propose a distributionally robust formulation for stochastic continuous Nash equilib-
rium problems, which extends the recent work by Aghassi and Bertsimas [1], Qu and Goh
[36] and Loizou [31, 32]. We investigate the existence of equilibrium and develop a numeri-
cal scheme for computing it. Special cases are considered where the distributionally robust

Nash equilibrium model can be reformulated as ordinary deterministic Nash equilibrium.

e We propose two distributionally robust formulations for stochastic Stackelberg games: a
distributionally robust follower model and a distributionally robust leader model. We
demonstrate that the former can be recast into a mathematical program with equilibrium
constraints (MPEC for short) model whereas the latter can be reformulated as a standard

distributionally robust optimization problem under some specific circumstances.

e We use the proposed distributionally robust follower model to analyze a hierarchical ca-
pacity competition problem and conduct a numerical study. The results underscore the
importance of informational completeness on uncertainty and some managerial insights

are derived.

The rest of the paper is organized as follows. In section 2, we give an exact definition of the
DRNE model and investigate existence of an equilibrium. An algorithmic framework is proposed
for solving the DRNE problem. In section 3, we discuss two special cases where the ambiguity
sets are defined through prior moments and linked to coherent risk measure. The former allows
us to reformulate the DRNE model into an ordinary deterministic Nash equilibrium model
while the latter relates the DRNE to standard risk-averse Nash games. In section 4, we move
on to discuss distributionally robust Stackelberg model from two perspectives, a distributionally
robust follower model and a distributionally robust leader model. Finally, in section 5 we apply
the proposed models to hierarchical capacity competition in a supply chain where a buyer not
only invests in its own capacity to supply an uncertain market but also outsources a certain
amount of market supply to multiple competing suppliers who invest in capacity for obtaining

the buyer’s orders.

2 Distributionally robust Nash equilibrium

Stochastic Nash equilibrium (SNE for short) is an important solution concept in game theory

and has found many applications in engineering, economics, operations, and marketing, see [51,



37, 39] and the references therein. An important assumption in the stochastic Nash equilibrium
models is that the true probability distribution of underlying uncertainty is known. However,
in many practical circumstances, we may only have partial information such as the range of
uncertain parameters, historical data, or subjective judgment of the probability distributions.
Assuming each player is risk averse against ambiguity of the true probability distribution, then
the resulting Nash equilibrium may be different from stochastic equilibrium. This motivates us

to investigate the former in terms of the models and numerical methods.

To start with, an individual player ¢’s decision-making problem can be formulated as:

. Eolf (v v 2.1
;flelﬁr/lglr}’le%;i P[fl(yl')y zag)]v ( )

where f;(-) is a continuous function from IR"™ x R to R, n = > i, yi € Y; C IR™ denotes
player i’s decision vector, and y_; represents the decision variables of its rivals. A key element
in this formulation is the maximum operation w.r.t. P which means the player bases its optimal
decision on the worst expected value of f; from the set of distributions P; which is constructed
from available information. Assuming each player takes a decision based on (2.1), then we look

into a situation where no player can get better off by unilaterally changing its position.

Definition 2.1 An m-tuple (y7,--- ,y},) is called an equilibrium of distributionally robust Nash
equilibrium (DRNE) if

Yl e argﬁlei% Iryea?gi]]ﬂp[fi(yi,yfi,f)], for i=1,---,m. (2.2)
This type of model is first studied by Qu and Goh [36] for a two-players finite game. In the
case where P;, i = 1,--- ,m, contains a singe distribution, (2.2) collapses to stochastic Nash
equilibrium problem. On the other hand, when P; comprises the set of all the probability
measures (over the support of £ induced by &), (2.2) reduces to the distribution-free robust
model proposed by Aghassi and Bertsimas [1]. Note that the objective of each player in this
model is the expected value of a random function. It is possible to consider the case where the
objective is a risk measure such as CVaR in [31, 32] and more broadly distortion risk measure

which would cover any law invariant coherent risk measure, see [33, Section 4].

In what follows, we investigate the existence of equilibrium of the DRNE model and numerical

schemes for computing such an equilibrium.
Assumption 2.1 Let f;(-) be defined as in (2.2). The following assertions hold fori = 1,--- ,m.

(a) fi(+) is a continuous function and for each fixed (y—;, &), fi(+,y—i, &) is convex over Y;.



(b) Y :=Y] x--- x Y, is a compact set.
(¢) Eplfi(yi,y—i,&)] is finite valued for any y € Y and P € P;.

(d) P; is weakly compact.?

Assumption 2.1 ensures that each player’s objective function is finite valued and it is convex
w.r.t. its decision vector. Indeed, under Assumption 2.1 (a)-(b), Ep[fi(yi,y—i,&)], i =1,--- ,m,
is well defined and it is convex w.r.t. y; for each fixed y_;. Conditions (c)-(d) ensure that
optimum of the inner maximization problem can be achieved by some probabilities P € P;.

Under Assumption 2.1, we may reformulate the problem (2.2) as a single optimization problem.

Proposition 2.1 Let
m
= E . . . .
¢($7y) Zzgglea:,gi P[fz(xuy ug)]
Under Assumption 2.1, y* is an equilibrium of DRNE (2.2) if and only if

* . *
y" € argming(z, y”).

Proof. The reformulation is well known for deterministic Nash equilibrium, see for example
Rosen [40]. Here we provide a proof as the DRNE involves minimax operations. The “if” part
follows from the fact that if y* is not an equilibrium, then there exists some 1 < ip < m and
Z;, €Y, such that

B Bl (i, < g Bl (vl )

Let Z := (Y, Ui 1, Tigs Uiy 15" > Um), We have ¢(Z,y*) < ¢(y*,y"), a contradiction. The

“only if” part is obvious as

E ACZS) ji? Z E 7 ;(7 *—i7
max plfi(zi, v, €)] max pLfi(y;, v2i,6)]

for i = 1,--- ,m and summing up w.r.t. ¢ on both sides of the inequality shows y* is a global

minimizer. [ |

Based on Proposition 2.1, we have the following existence results for DRNE (2.2).

3A set of probability measures A is said to be weakly compact if every sequence {Pnx} C A contains a

subsequence {Py'} and P € A such that Py converges to P weakly.



Theorem 2.1 Under Assumption 2.1, DRNE (2.2) has an equilibrium.

Proof. Under Assumption 2.1, Ep[fi(-,y—i,&)] is continuous and convex for every P € P; and
i=1,--- ,m. The supremum preserves the convexity and, under weakly compactness of P;, the

continuity. Therefore ¢(-,y) is continuous and convex w.r.t. x on Y for any fixed y € Y.

The existence of an optimal solution to mingecy ¢(z,y) follows from compactness of Y under
Assumption 2.1 (c). To complete the proof, we are left to show the existence of y* € Y such
that

y" € argminé(z,y").
Let I'(y) be the set of optimal solutions to mingcy ¢(z,y) for each fixed y € Y. Then I'(y) C Y.
By the convexity of ¢(-,y), ['(y) is a convex set. Moreover, it is easy to show that I'(y) is closed,
that is, for yr — y and xp € I'(yg) with 2 — &, Z € I'(y). Further, it follows by [4, Theorem
4.2.1] that I'() is upper semi-continuous on Y. By Kakutani’s fixed point theorem [26], there
exists y* € Y such that y* € I'(y*). [ |

The next key step towards understanding the DRNE model and applying it to practical
problems is to develop an efficient numerical method for identifying an equilibrium of DRNE
(2.2). Obviously, the DRNE model is mathematically more sophisticated than SNE and therefore

requires new methods different from the existing numerical schemes.

If the objective functions are convex w.r.t. each player’s decision vector, we may consider

an iterative scheme where at each iteration we solve a single minimax optimization problem.



Algorithm 1: Conceptual algorithm for DRNE
Step 0: Let p? € P;, v’ € Y and P? := {pV},i=1,--- ,m; set t := 0.
Step 1: For given P! and y', solve

min oL+ +om
y70-17“. 7Um
s.t. yey,

Epelfi(yi,yti,€)] < o4, for pf € Pli=1,--- ,m.

Let (g*,0%,--+ ,0t)) denote the optimal solution.
Step 2: If y' = 4, go to Step 3, otherwise, y* := %', go to Step 1.

Step 3: For i = 1,--- ,m, solve maximization problem

m}g,x Ep[ fl(yfayt_zaf)]

st. Pep,.
Let p! and v} denote the optimal solution and the optimal value. If for i = 1,--- ,m,
vl < 0!, then stop.
Step 4: Update Pf“ by
' PtU{p} if ! >af ’

set y!Tt: =yt and t :=t + 1, go to Step 1.

Algorithm 1 is motivated by a similar algorithm proposed by Xu, Liu and Sun [50] for solving

a distributionally robust portfolio problem. Steps 1-2 are designed to solve

m
min ¢/ (z, y') Z ma Ep[fi(wi,y", )], (2:3)
or equivalently to find an equilibrium of
min max Ep[fi(yi,y—i,&)], for i=1,--- m. (2.4)

yi€Y; PeP!

At the end of the Step 2, we obtain # which solves (2.4). Note that the objective function of

t

(2.3) is separable, therefore o; corresponds to the optimal value of (2.4).

Step 3 is to examine whether 7' is an equilibrium of DRNE (2.2). Observe that v} > o!
because P! C P;. In the case where the equality holds for all ¢ = 1,--- ,m, we can replace

maxpept Ep(fi(yi, y—i, &)] with maxpep, Ep[fi(yi, y—i, )] for y = y' and this means §* solves
DRNE (2.2).

From the discussions above, we conclude that if the algorithm terminates in a finite number

of iterations ¢, then y' (or y') must be an equilibrium to DRNE (2.2). The theorem below



addresses the case that Algorithm 1 does not stop in a finite number of iterations.

Theorem 2.2 Let {y'} be generated by Algorithm 1. Assume that the conditions of Theorem

2.1 are satisfied. Then every accumulation point * of sequence {y'} is an equilibrium of DRNE

(2.2).

Proof. Let y* be an accumulation point of sequence {y'}. By the procedures of Algorithm 1, for

each i = 1,--- ,m, the sequence {P!} is monotonically increasing in the sense that P! C Pf“.
As P;,i=1,---,m, is a compact set, there exists P; C P; such that

lim P! = P;.

t—00

Taking advantage of the analysis on case that Algorithm 1 stops at finite steps, it is sufficient

to show that

max Ep[ fi(yf,y2, O] = max Ep[ filyl,yZ, ) i=1.--- m.

PeP; ;
Since for each t and i = 1,--- ,m,
(bt = (bt
max Ep[ fi(yi, v~ )] = Jmax, Ep[ filyi, i &) (2.5)

K3

Then, we have

maxpep, Ep| fi(yf,y*;,€)] = limy oo maxpep, Ep[ fi(yl, y';,€)]
= hmt—>oo Il’laXPG,PiH—l EP[ f’L (yfv yt—iv 5)]
= limt—wo maXPePii EP[ fz (yf, yt—ia {)]

= maXpep; Ep[ fi(y!, v, €)],

where the first equality follows from [9, Proposition 4.4] and the second equality follows (2.5).
The proof is complete. n

It might be helpful to note that Algorithm 1 only provides a conceptual numerical framework
for solving DNRE (2.2) under the abstract form of the ambiguity sets P;, i = 1,--- ,m. For
instance, Step 3 requires to solve an optimization problem w.r.t. probability measure which
is difficult if P; consists of continuous distributions. In that case, further discretization might
be needed, see Xu et al. [50] where a discretion scheme is proposed for the case when the
ambiguity set is defined by generalized moment conditions. Note also that when P; has a

specific structure, it might be possible to reformulate each player’s optimization problem as

“We say c* is an accumulation point of sequence {c"} if there is a subsequence {c*} of {c"} converges to c*.

10



a semidefinite programming problem (SDP for short) and then as a system of Karush-Kuhn-
Tucker condition, see Qu and Goh [36] and Loizou [31, 32] for distributionally robust finite Nash

games.

At the end of this section, we provide a simple example to explain the difference between

stochastic Nash equilibrium and distributionally robust Nash equilibrium.

Example 2.1 (Boxed pigs) A pig and a piglet are put in a box with a lever at one end of the
box and dispenses food at the other end. So the pig that presses the lever must run to the other
end to eat, and by the time it gets there, the other pig has eaten most, but not all the food.
The big pig is dominant and the piglet is subordinate. Therefore big pig is able to prevent piglet
from getting any food when both are at the food. When a pig presses the lever, it will incur a
disutility of o units (which can be interpreted as the energy to be consumed), and & units (a

random variable taking integer values) of food will be released at the dispenser.

We assume that the pigs can reason like game theorists and they need to decide as to whether
to press the lever or wait at the dispenser. Since the big pig is a ‘dominant’ player, if it gets the
dispenser first (wait at the dispenser) or at the same time (both press the lever and then run to

the dispenser) with the small pig, it will get the following amount of the food

e é" &-S 9’
Pa(8) := { 9+ In(—9), €10,

whereby the small pig gets the rest. If, instead, the small pig waits at the dispenser first, it will

e 67 5347
Ps(8) = { 4+1In(¢—4), £€>5,

and the big pig gets the rest. Let a = 6 for the big pig and a = 2 for the small pig. Table 2.1

get

summarizes the payoffs for the strategies Press (P) the panel and Wait (W) at the dispenser.

Small pig
P W
e T PO =6 €= =) (€1l ~6. 1)
W (pa(§), € —pa(§) —2) (0,0)

Table 1: Boxed Pigs

W=

Suppose that the random variable £ may follow the two potential distributions P;(§ = 4) =
and Pi(§ =15) =32 or Po(( =4) = 2 and P({ = 15) = 1.

In what follows, we compare the equilibria when the pigs play a stochastic equilibrium and

robust equilibrium. In Table 2, we display the outcomes of the expected utilities when the pigs

11



play a stochastic game with P;. It is easy to see that there are two SNE: (W, P) and (P,W),

which means one of the pigs will press the lever.

Suppose that the two pigs know that the true probability could be P; or P» but there is an
ambiguity of which one it is. In that case, they may take a robust strategy by considering the
worst probability distribution in its decision making. Table 3 displays four possible outcomes
and the DRNE is (W,W), no one will press the lever.

Small pig
P W
o P (2.0938, 1.1562)  (0.4516, 5.7984)
Big pig
W (8.0938, 1.1562) (0,0)
Table 2: SNE model with P;
Small pig
P %Y
o P (—0.302, —0.948) (—2.8495, 3.5995)
Big pig
W (5.698, —0.948) (0,0)

Table 3: DRNE model with {Py, P»}

The example shows that the SNE and DRNE models generate complete different equilibrium
outcomes. From our perspective (modelers), we may not know which type of game is played
out in practice. However, if a player does not have complete information on the true probability
distribution, it is reasonable for us to assume that the player would take a robust strategy. By
comparing our modelling/analytical equilibrium results with practically equilibrium outcomes,
we may provide practitioners with some business insights as to whether an SNE model or a
DRNE model is better suited to the practice. In others words, our DRNE model may provide
an alternative mathematical modelling paradigm for understanding and/or predicting market

competition and giving the regulator some guidance.
To explain how Algorithm 1 works in this example, we highlight the moves following the
algorithmic procedures as follows.
(i) Set PY := {P1} and PY := {P;}. Return an equilibrium (W, P) (or (P,W)) by going
through Steps 1-2 (based on calculations displayed in Table 2).
(ii) Check the optimality of (W, P) (or (P,W)) in Step 3. Both of the two pigs fail.

(iii) Update P} = {Py, P2} and P} := { P}, P»}.

12



(iv) Go to Steps 1-2 and return with an equilibrium (W, W) (based on calculations in the Table
3). Check the optimality in Step 3, and clearly it is satisfied.

3 Reformulation of DRNE

The DRNE model and the numerical scheme considered in the preceding section have not taken
into account the specific structure of the ambiguity set which reflects player’s perception of the
distribution of underlying uncertainty. In this section, we investigate some special cases where
(a) the ambiguity set is constructed through prior moment information and (b) each player’s
objective is to minimize the tail risk measure such as entropic risk measure and conditional
value at risk (CVaR for short). This will enable us to simplify the mathematical structure of

the DRNE model and propose simpler numerical methods to solve it.

3.1 DRNE with moment information

In this subsection, we consider the case that the ambiguity set is defined through moment
condition of the random variable. The underlying consideration of moment condition is that
given some historical data, it is often easier to estimate the moments of random parameters than
to derive their probability distributions. Here we focus on two kinds of ambiguity sets considered
in the recent works [13, 35]. By employing the new results in [13, 35], we can get an explicit
solution to the inner maximization of each player’s distributionally robust problem (2.1) and then
reformulate the distributionally robust Nash equilibrium as a deterministic Nash game. Indeed,
Loizou [31, 32| first studies the equivalence between DRNE and standard Nash equilibrium.
He shows that in finite action games, when each player’s objective is a linear function of the
underlying random variables, the DRNE is equivalent to the standard Nash equilibrium when
the first moment of the random variables is known. It is not difficult to extend Loizou’s results

to continuous DRNE under the same setting and therefore our focus is on the nonlinear case.

First, consider the case that

P={Pec2(E): P =1, Epll=p Ep[(©)]<0 }, (3.6)

where (=) denotes the set of all probability measures (over the support =), p is the mean
value of random variable £, and #(-) is a convex functions. (3.6) is first considered by Delage
et al. [13] and they study a two-stage mixed-integer stochastic linear programs. Ambiguity

set (3.6) can capture well the information we would have in hand in early steps of uncertainty

13



assessment. The following special case is first considered in [12]:

" {P € 2(5): Epl¢ — ' ST Ep[E —p] <m }

0= Ep[(§ — (€~ )] =20l
where v and 7 are nonnegative constants and 3 is the covariance of £. Based on the results in

[13], we have the following explicit expression of each player’s objective.

Example 3.1 Consider the case where f;(y;,y—i,-) is concave with respect to ¢ for each fixed

y and P; is defined in the form of (3.6). It follows by [13, Proposition 1]

max Ep[fi(yisy—is )] = fi(yi, y—i, 1),

where p is the mean value of random variable £&. Consequently, we may reformulate the DRNE
(2.2) as:

y; € argﬁleill}i filyi,y*; p), for i=1,--- m.
The latter is a deterministic Nash equilibrium problem so that well-established numerical meth-

ods in the literature are ready to be used.

Another case allowing us to develop a simple reformulation as in Example 3.1 is when the

ambiguity set is defined as:

P={Pe2@): Epl)=p, Epll&—pmll=di, Vi, & L&, Vi#j |, (3.7)

where Z := [a1, 1] X - - X [ag, bg] and & L &; denotes the stochastic independence of components
& and ;. Postek et al. [35] derive exact robust counterparts of expected feasibility of convex
constraints by employing some more earlier results [5] when the ambiguity set is defined by (3.7).

We use their results to provide the closed form of DRNE model.

Example 3.2 Suppose that (a) for any given y € Y, fi(y;,y—s,-) is concave with respect to &,
(b) P; is defined in the form of (3.7). Then by [35, Section 2.3]

]I%’lea’)g( EP[fz(yla Y—is 5)] = fl(yza y*l) = Z Hfilpf@f(yla Y—i, A,}ﬂ’ e ’)\ﬁk)’ (38)
! wE{1,2,3}k

where {1,2,3}* denotes the set of all enumerating over 3* permutations of outcomes a;, yi;, b; of
&,
No=a;, MNo=p;, MNo=0b, fori=1---k

and




Subsequently, we may reformulate (2.2) as:
y; € arg min fi(yi,yii), for i=1,---,m. (3.9)
Yi€Y;

Again, (3.9) is a standard Nash equilibrium.

In the two examples, the specific structure of the prior moment conditions enables us to
reformulate the DRNE as a deterministic Nash equilibrium problem. When the moment con-
ditions are presented in a more general form, we might not be able to obtain a closed form for
the inner maximization problem. For instance, Wiesemann et al. [48] recently consider a type
of ambiguity sets:

P o= {P € P(R™ x R™) : Ep[A + BE| = b, P{(¢,€) € T;} € [pi,pil,i € 1} ,

where P represents a joint probability distribution of the random vector £ € IR™' and some
auxiliary random vectors £ € R™2, A € R¥™ B e RF*™2 I = {1,---,I}

[

i ={(£,€) : Ci& + D =k, c;}

with C; € Rl>*™ D, € R>*™  ¢; € RY, K; being proper cone and 3" =<, 3 meaning
y —y"” € K;. Through dual reformulation, they convert the resulting distributionally robust
optimization problem into a tractable semidefinite programming problem. Accordingly, we can

easily plug their results [48] into our DRNE model.

Suppose that (a) the confidence set E; is bounded and has probability one, that is, p; =
pr = 1; (b) the Slater condition holds; (c) the objective function f;(y,{) can be written as

fi(y, &) = max g(x,§)

1<I<L

with gi(y, &) = s1()Ty+1(8), s1(§) = Si€+sp, S € R™™ s € R, 1(€) = T {+t;, T, € R™
and t; € IR; (d) for all i,4" € I, either B; C By, Ey C E; or ;N E; = (. By [48, Theorem 1],

player j’s distributionally robust optimization problem can be reformulated as

min b’ + Y ictPiki — Pili

yi7ﬁ7“<’7)\7¢
Cqubil + SlT(yi? y*i) + tl < Zi’EA(i) [kz’ - )\z’] (310)
s.1. Cloa+ATB =S (yi,y—i) + Ty teL1<I<L,
D] ¢y +B"3=0
where 8 € RF, s, A\ € R, ¢y € Kf,i €I,1 <1< Land A6) =iU{i' € LE; C Ey}.
If E; is described by linear, conic-quadratic or semidefinite inequalities, then we are guar-

anteed by [48, Theorem 1] that (3.10) is a linear, conic-quadratic or semidefinite programming
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problem. If we further use the Karush-Kuhn-Tucker condition to reformulate the Nash equilib-
rium, we may have a system of equalities and inequalities. Note that in problem (3.10), player
j’s feasible solution set depends on the other players’ decision variables, and thus the resulting
reformulation of DRNE is a generalized Nash equilibrium problem rather than a simple Nash
equilibrium problem as in the two examples. We refer readers to an excellent survey paper by
Facchinei and Kanzow [17] for numerical methods and underlying theory for generalized Nash

equilibrium.

3.2 Linking DRNE to risk-averse equilibrium models

The DRNE model can also be related to stochastic equilibrium models where the objective of
each player is a coherent risk measure. The latter has been investigated by a few papers, for
example, Ralph and Smeers [37] develop a so-called stochastic endogenous equilibrium framework
for pricing risks of risk assets and Ravat and Shanbhag [39] study risk-averse Nash-Cournot
games. Singh et al. [41] study the existence of equilibria of chance-constrained games. Loizou
[31] proposes a DRNE model where each player employs a distributionally robust CVaR as
their objective. In what follows, we start to establish a link between the DRNE model and two

risk-averse equilibrium models.

Let Z denote the loss of an investment which is a random variable defined over space Z :=
Zp(Q2, F,P) and Z* its dual. A real valued function p : Z — IR, is called a coherent risk
measure if it satisfies the axiom of risk measures including convexity, monotonicity, translation
invariance and positive homogeneity, see Artzner et al. [3] for details. It is well known that if p
is a coherent risk measure, then p(Z) can be written as

p(Z) = supE¢[Z],
geA
where A ={( € B :((,Z) < p(Z),VZ € Z} and

B = {C S/ / ((w)dP(w) =1, ¢ > 0},
Q
see comprehensive discussions by Shapiro et al. in [43, Chapter 6].

Let us now return to consider a stochastic Nash equilibrium where each player aims to
minimize its risk

;ﬂelg pi(fi(iry—i, §)), (3.11)

where f;(yi,y—i, &) is player ¢’s random objective function such as value of an asset or a portfolio
loss. In the case when p; is a coherent risk measure, we can reformulate (3.11) as a DRNE based

on the discussions above

min sup E¢[fi(yi, y—i, §)]
Yi€Yi cenl
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In what follows, we consider two particular coherent risk measures: coherent entropic risk mea-
sure and conditional value at risk (CVaR for short). Since both of them are closely related to

tail distribution of the underlying random variable, they are also known as tail risk measures.

1. Stochastic Nash equilibrium with coherent entropic risk measure. Let Z € Z be a

random variable. The entropic risk measure of Z is defined as
1 -~z
ey(Z) = ;lnEp[e 7],

where 7 is a positive constant. Note that e, () is a convex risk measure but not necessarily
coherent [18]. Follmer and Knispel [19] develop a coherent version of the entropic risk measure

by considering the Moreau-Fenchel duality of e(-)

where 7 > 0 is a parameter. An important feature of p,(-) is that

p-(2) = sup Ep[-7],
PeP;

where P, := {Q € Z(E) : Dy (Q,P) < 7}, 7 is a positive number and Dy, (+,-) denotes
the Kullback-Leibler (KL for short) divergence. In the literature on distributionally robust
optimization, P is known as a nominal distribution which may be constructed through empirical
data. KL divergence originates in the field of information theory, and it has been widely used

in the area of the distributionally robust optimization, see [20, 22, 30] for recent applications.
Substituting the coherent risk measure p,(-) into (3.11), we obtain the following risk averse
stochastic Nash equilibrium
Yi S a‘rgynlelg pTZ(f’L(y’my—’ug)% for i = 17 e, M

and its DRNE formulation

y; € arg min sup Ep[fi(yi,y—,§)], fori=1,--- m, (3.12)
Yi€Yi pep;

where P; := {Q € & : Dy (Q, P;) < 7;}, P; is player i’s nominal distribution, 7; is player i’s

ambiguity parameter. Moreover, by using [19, Proposition 3.1], we have

. . Ti
min sup Ep|fi(yi,y—i, &)= min  — 4+ e (—fi(yi, y—i,&))-
ey PE% plfi(Yi, y-i,§)] B EYii>0 ; %( fi(yisy—i, §))

By taking (y;,7;) as the decision variable of player i, we may consider the following Nash

equilibrium:

. T .
(v, 7)) € argyieg}}%w;: + ey, (= filyi, ¥, €)), fori=1,--- m. (3.13)
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In what follows, we show that solving DRNE (3.12) is equivalent to solving (3.13). From a
computational perspective, the latter is more preferable because it is an ordinary deterministic

Nash equilibrium problem.

Proposition 3.1 y* is a Nash equilibrium of problem (3.12) if and only if there exists a v* > 0
such that (y*,~*) solves (3.13).

Proof. Following a similar argument to Proposition 2.1, we can show that (y*,~*) is a solution
to (3.13) if and only if it solves the following optimization problem
m

. Ti
Ti (= iy v, 6)). 3.14
ye$,lvn>0 i—1 Vi T en(=filvir75,8) 40

Let (y*,~7*) be an optimal solution to problem (3.14). Suppose that y* is not a Nash equi-
librium of (3.12), that is, there exists, ¥ € Y such that

Zpﬁ'(_fi(giu y*,”f)) < Zpﬁ(_fi<y:7yji7£))'

i=1 i=1
Then
m . m -
i : 7oy — in & (T
mipd St enCAEe ) = 3 min e (il v 8)
m -
=1 o0
m
= ZT+67:(7fl(yzvy—zvé))a
iz1 Vi

which yields a contradiction to the optimality of (y*,~*). Conversely, if y* solves (3.12), that is,
for any y € Y,

> o (— i@y 59)) =D pr(— iy v i)
=1 =1

then by [19, Proposition 3.1], there exists a positive v* such that

m m
LT . . Ti .
mln4 +671(_f1(y27y—27§)) 2 m1n4+67i(_fi(yiuy—i7€))

i—1 7i>0 Y4 P >0 y;

m
= Z o + 67:(_fl(yl ) yfiag)%
—
7
which means that (y*,~*) is an optimal solution to problem (3.14). [ |

2. Stochastic Nash equilibrium with conditional value at risk (CVaR). Conditional

value at risk, sometimes called expected shortfall has received a great deal of attention as a
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measure of risk [38, 53]. In a financial context, it has a number of advantages over the commonly
used value at risk (VaR) and has been proposed as the primary tool for banking capital regulation
in the draft Basel III standard.

For a given random variable Z € Z and confidence level o € (0, 1), CVaR is defined as

_ 1 /
~ 1-a Jieze>VaRa(2))

CVaRq(2) : ZP(dE),

where VaR,(Z) := inf{t: F(t) > a} and F(-) is the cumulative distribution function of Z.

Assuming that each player is risk averse by minimizing the CVaR risk measure, then we

arrive at a stochastic Nash equilibrium model with CVaR risk measure
Y; € arg mi{} CVaRy, (fi(yi,y—i,§)), fori=1,--- m. (3.15)
Yi €Y
By the dual representation [43, Chapter 6], (3.15) can be recast into a DRNE

y; € arg min sup Ep[fi(yi,y—, )], fori=1,--- m, (3.16)
yi€Yi pep;

where

Pw:{Pe@:w@Mﬂulj%LﬁeE}
and gp(-) denotes the density function corresponding to P. Moreover, by Rockafellar and Urya-
sev [38, Theorem 1], minimizing CVaR can be achieved by minimizing a more tractable auxiliary
function without predetermining the corresponding VaR first, that is,

CVaRa(Z) = mins + ﬁ /:(Z — n)+ P(dE),

where ()4 = max(0,¢). Then we may reformulate the DRNE as:
(y:a 77:() € arg min ¢1(y17y*—17nl)7 for i = 1, y M, (317)
Y €Y,

where
1

1—0@

v vem) =t o | Gyt~ Plde).

Similar to Proposition 3.1, we have the following result.

Proposition 3.2 y* solves DRNE (3.16) if and only if there exists an n* such that (y*,n*)
solves (3.17).
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4 Distributionally robust Stackelberg models

The DRNE model that we discussed in the preceding sections are restricted to the case that
players are in an equal competitive status under Nash conjecture. In this section, we deviate
from the model by considering a hierarchical structure namely Stackelberg leader-follower model
to describe a situation where some players are in a more strategic position than others such as
new entrants of a market or capacity expansion of a dominant player. Note that research on
stochastic Stackelberg model has been well documented, see for example De Wolf and Smeers
[15] and DeMiguel and Xu [14]. Here we consider a robust counterpart where information on
the underlying uncertainty is incomplete. Specifically we consider two models: (a) Stackelberg
distributionally robust follower model where the leader is risk neutral and/or has more infor-
mation about the underlying uncertainty whereas the followers have less information and hence
are more risk averse, (b) Stackelberg distributionally robust leader model where leader is risk

averse by playing robust strategy and followers play a stochastic game.

4.1 Stackelberg robust followers model

Let us start by considering a situation where the leader is interested in the equilibrium outcome
of the followers and it has some mechanism to influence the equilibrium to achieve its own goal.
In practice, the leader could be a strategic market player who plans to enter a new market or
expand its existing capacity, it can also be a regulator of a new market. We will come to concrete

applications in Section 5.

Let z denote the decision vector of the leader and h(z,y) its utility function. The utility
function depends on z and the equilibrium of the followers is denoted by y. The leader pre-
sumes that the followers are risk averse due to incomplete information on the distribution of the
underlying uncertainty and hence they play a distributionally robust game:

i axEp|fi(z, ¥i,y—i, )], for i=1,--- m. 4.18
min max Bp|fi(z yi,y—i, £)], for i m (4.18)

The dependence of f; on z means that the leader’s decision has an impact on the disutility of

the followers.

We consider the leader’s optimal decision making problem which is to find an optimal decision
z which maximizes its utility h(z, y) with anticipation that the followers will reach an equilibrium
(4.18), that is,

max h(z,
2€2y (9] (4.19)
st. yeSr),

where S(z) denotes the set of Nash equilibria of (4.18) for each given z € Z. In the case when
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S(z) is not a singleton, formulation (4.19) means that the leader’s optimal decision is based on
the best equilibrium in favor of the leader. We say this is an optimistic model. A pessimistic

model can be formulated if we consider the worst equilibrium of the followers:

in h
max min A(z,y)

st. y e S(z).
The two models coincide when the set S(z) reduces to a singleton, see similar discussions by

Shapiro and Xu [44, Section 2] on a stochastic Stackelberg model.

In what follows, we discuss numerical schemes for solving problem (4.19). Assuming

E 1\%y Y1y Y—1,
max plfi(z Y, y—i,§)]

is convex in g;. Then each player’s optimization problem can be represented by its first-order
Karush-Kuhn-Tucker condition. The main challenge here is that the function is not necessarily

continuously differentiable.

Recall that Clarke subdifferential of a locally Lipschitz continuous function ¢(z) at x, denoted
by 0¢(x), is defined as follows:

0(z) = conv{ lim qu(:v’)},

z'eD,x' —x
where D denotes the set of points near = at which ¢ is Fréchet differentiable, and V¢(z) denotes

the gradient of ¢ at x. For a convex set C' C IR", the normal cone to x at x € C is
Ne(x)={¢eR": ¢("d<0,vd e To(z)},

where To(z) = liminf 1(C — 2’) and No(z) = ) when = ¢ C; see [11] for details of the

t—0, Coz’' -z t
subdifferential and normal cone.

Assume that for fixed (z,y—;, &), fi(2, yi, y—i, &) is convex w.r.t. y; and Y; is a convex set and

denote
191'(27 Yi, yfl) = ]Igle% EP[fi(Z, Yiy Y—i, 5)]

Then, ¥;(z,y;,y—;) is convex in y; for each given z and y_;. Subsequently, the robust Nash

equilibrium is equivalent to
0 € 9y, Yi(2,yi,y—i) + Ny, (i), for i=1,--- ,m,

where Ny, (y;) is the normal cone to Y; at y; € Y;. Consequently, (4.19) can be equivalently

written as
min  h(z,y)
Z7y
st. z€Z, (4.20)

UIS ayiﬁi(z7yiay—i) +Nyl(yz), for i = ]_’ cee L, m.
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The equilibrium constraint is difficult to handle since 0y,9;(2, ys,y—;) is a set-valued mapping.
However, when ¥;(z, y;, y—;) is continuously differentiable w.r.t. y;, (4.20) reduces to an ordinary
MPEC which can be solved by available code such as NLPEC (in GAMS).

Example 4.1 (KL divergence) Suppose that follower i does not have complete information
on the distribution of uncertainty & and it constructs an estimation P; based on some historical

information. For safety, it takes the ambiguity set
Pi:={Q € & :Dx.(Q, ;) < 7i},

where 7; > 0 is the ambiguity (or robust) parameter. By the analysis in the section 3.2, we may

reformulate the follower’s Nash equilibrium (4.18) as:
y: € arg min pTi(fi(Za yhy*—zvé))7 for i = 1,---,m.
yi€Y;

Suppose that f;(-, &) is continuously differentiable for every £ € Z. Then by proposition 3.1, we

may reformulate the distributionally robust follower model as:

min  h(z,y)
Z7y7T
st. z€Z,

0 € Vypr(2:Yir Y—irvi) + Ny; (yi), for i=1,--- m,
V’YipTi(Z7yi7y*i7’Yi) = 0, for 1 = ]_’ cee LM,

which is a standard stochastic MPEC.

Example 4.2 (Moment information) Consider the case that followers only have some mo-
ment information and they construct the ambiguity sets as in (3.6). Suppose the conditions of

Example 3.1 hold, and then for any given leader’s decision z, the follower’s DRNE model is:

y: € arg min fi(zay%yiinu’)? for Z:]-, ,m,
Yi€Y;
where p is the mean value of random variable . If in addition, f;(-,p), ¢ = 1,---,m, is

continuously differentiable, we may reformulate the distributionally robust follower model as:

min  h(z,y)
Z?y
st. z€Z,

0e Vyifi(zyyivy—ivﬂ) +N)/Z(yz), for 1 = 1,---,m,
which is an MPEC.

Similarly, if the followers construct the ambiguity sets in the form of (3.7) based on the

moment information. Then under the conditions of Example 3.2 and continuously differentiable
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assumption, we may reformulate the distributionally robust follower model as:

min  h(z,y)
Z?y
st. z€Z,

0€ vyz‘fi(zayiay—i) + My, (yi), for i=1,---,m,

where f(-) is defined in the form of (3.8). Again, we reformulate the distributionally robust
follower problem as an MPEC.

4.2 Stackelberg robust leader model

In the previous subsection, we consider robust follower model in the framework of Stackelberg
paradigm. We now turn to discuss robust leader model under the same framework where the
followers play a stochastic Nash game. This applies to practice such as introduction of a new
market where the regulator (the leader) contemplates outcome of competition of market players
(followers). In that case, the leader usually has less information about the underlying extraneous
uncertainty whereas the followers will have complete information about the distribution of the
uncertainty when the game is played, that is, for each P € P and leader’s variable z € Z, the

follower’s problem can be formulated as a stochastic Nash equilibrium:

y;,k € arg H1€1§/1 EP[fi(Z?yiay*—iaé-)]’ for ¢ = 17 e, M. (42]—)
YicYy

Assume that the leader (regulator) is able to construct a set of probability distributions P
based on incomplete information and believes the true probability distribution lies in the set.
Then the leader would contemplate all possible equilibrium from each of the distributions and
base his optimal decision on the worst equilibrium outcome to hedge the risks. Mathematically,
the leader solves the following optimization problem

i h Y 7P7
P B MEVED) 22

where S(z, P) denotes the set of Nash equilibrium of (4.21). If in addition, for each z € Z,

fi(z,yi,y—4, &) is convex w.r.t. (y;,y—;) and Y; is a convex set. We can reformulate (4.22) as

min  max_ h(z,y)
2€Z PePyeY (4.23)

s.t. 0 S Ep[vyifi(zvyi)y—i7£)] +NYz(yl)7 for i = 1) e, M.

Problem (4.23) is a kind of robust formulation of mathematical program with stochastic vari-
ational inequality constraint. However, it differs from standard formulation of DRO model in
that the inner maximization problem takes not only the worst probability distribution from

ambiguity set P but the worst equilibrium of the followers. Moreover, the maximization in P
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and y cannot be separated which means we are unable to derive a dual formulation of the max-
imization w.r.t. P, a standard approach in DRO. However, when follower’s problem has some
specific structure, then problem (4.23) can be converted into a standard DRO. The following

proposition states that.

Proposition 4.1 Suppose that (a) for fixed leader’s decision z, leader’s object h(z,y) is linear
in y; (b) for each given leader’s decision z and probability measure P € P, there exists a unique
stochastic Nash equilibrium y(z, P) = Ep[g(z,&)], where g(z,€) is a measure function. Then
problem (4.22) can be reformulated as a standard DRO:

E%i? r]gg%(EP[h(Z; 9(z,))].

We omit the proof as it is straightforward. Here we give an example to explain the claim.

Example 4.3 Consider the case where the leader is a regulator who chooses its decision variable
z € Z to affect the follower’s plan. Assume for simplicity that there are two followers who
compete to provide homogeneous goods or services to a market. Market demand is described

by an inverse demand function

p(q,2,8) = a(2,§) — b(2,8)q,

where ¢ is the total supply to the market and £ is a random variable representing uncertainty in
demand. The dependence on z means that the regulator has an influence on the demand, i.e.,
tax on goods or services. Let x1 and x5 denote the production by firm 1 and firm 2. Assume
that both firms need to make a decision on their production level prior to the realization of
demand uncertainty and they can observe decisions from each other. Then firm 1’s decision

making problem is
max  Ep|(a(z,€) = b(z, &) (1 + 22))21] — cr21
s.t. 0 < i} < ui,

where cix1 is the production cost and u; is the capacity limit. Likewise, we can formulate firm

2’s decision problem

max  Ep|(a(z,€) = b(z, (1 + 22))22] — 222

st. 0< 29 <uo.

Assume for the simplicity of discussion that u; and us are sufficiently large such that at any

equilibrium neither firm will reach its capacity limit. Suppose also that for any z and P € P,
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E[b(z,£)] > 0 (a sufficient condition is that b(z,£) > 0,Vz € Z,£ € E) and ¢1,c2 > 0. Then by

[46, Theorem 1], there exists a unique Nash equilibrium:

{Ep[a(z,g)] +co — 2¢1 Ep[a(z,f)] +c1 — 2¢9 }
Ep[3b(z,6)] 7 Ep[3b(z,9)] '

Suppose that the leader’s utility is a linear function f(z,y) in the follower’s response y and

b(z,&) = b(z) is not dependent on &, and then the leader’s problem can be reformulated as:

: L a(z,£)+ca—2c1  a(z,£)+c1—2ca
min wax Eplh(zy) =0z (00— " am )

which is a standard DRO problem.

5 Hierarchical capacity competition problem

Supply chain and outsourcing practices are ubiquitous in today’s competitive global business
environment. In the capacity investment context, we have seen that for entering a new, uncertain
market, a firms may not only invests in its own capacity but also outsources a certain amount of
production to other firms who need to expand their capacity, as well, for obtaining the orders. A
notable case in semiconductor manufacturing is that the global giant Samsung always expands
its capacity and outsources to other competing manufacturers in China, Japan and Taiwan at
the same time. In consumer electronics sector, the similar strategy is also found in Apple’s new

product launches such as the next generations of iPhone and iPad.

This distinctive business practice of simultaneous capacity investment and outsourcing in
high-tech sectors motivates us to study a supply chain model of hierarchical capacity competition
where a buying firm (buyer; e.g., Samsung) not only invests in its own capacity to supply a new,
uncertain market but also outsources a certain amount of market supply to multiply compete
with supplying firms (suppliers, i = 1,--- ,m; e.g., semiconductor manufacturers in China,
Japan and Taiwan) who invest in their capacity for the buyer’s orders (that can be thought of

as a spot market).

We suppose that the buyer and the suppliers follow the following rules: the buyer and
suppliers sign a forward contract with fixed qualities and strike price agpp, where 0 < ag < 1 is
parameter and pp is buyer’s unit price determined by the market. The suppliers must fulfil the
contract with the buyer and sell the residual production directly to the market. Likewise, the
supplier’s market price pj is determined by market, which is often lower than buyer’s market
price. The buyer’s demand of end-product to consumers satisfies the following stochastic linear

inverse demand function:

m m
po(@,y,2,8) =ap—ro(@+ > _yi) =5 Y (2 — i) + &,
i=1 5
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where ap is the upper bound for customers’ willingness to pay for the buyer’s product, £ is a
random variable which characterizes the fluctuation of the price, 1, is buyer’s inverse demand
sensitivity, r; is suppliers’s inverse demand sensitivity, = is the buyer’s supply via its own ca-
pacity, y; is the buyer’s supply via the supplier i’s production, and z; is the total capacity of
supplier i. For simplicity, we denote Y =3 " y; and Z = > z;. Then

po(@,y,2,8) =ap —mp(x+Y) —rp(Z = Y) + ¢
The buyer’s ex ante profit can be written as

7Tb(1', Y, ’275) = [pb(xa Y, Zaé.) - Cb](x + Y) — Up — a‘()pb(x’ya Z,§)Y7

where ¢, is the buyer’s marginal cost of end-product production, v, is the buyer’s marginal

investment cost of capacity.

We suppose that the buyer knows how the suppliers will choose their decisions (see the
discussion below) but does not know which demand scenario will occur in future at the time
when is made the decision. As being a dominant player over other players, we suppose that
buyer has more information on £ and it is a risk taker. Then the buyer can do at best is to
maximize the expected profit based on its knowledge on the market demand. For simplicity, we
consider the case that the buyer has full information of random &£. Then buyer’s ex post decision

problem can be formulated as

E
zzoglgéfzzo P[%(%Z/v%@] (524)

s.t. z € S(z,y),
where S(x,y) denotes the set of suppliers’ optimal decision corresponding to the given buyer’s
decision (z,y). Similar to problem (4.19), model (5.24) may be interpreted as an optimistic view

of the buyer if S(z,y) is not singleton.

Next, we analyze the suppliers’ optimal decision. Given the buyer’s capacity x and order
quality y, the ith supplier chooses its level of capacity investment, z;, to maximize its profit from
selling its production to the buyer and market. Suppose that supplier i’'s demand of end-product

to consumers satisfies the similar stochastic linear inverse demand function:
pf(x,y,Z,f) = a’f - Tb(x + Y) - Tg(Z - Y) + 57

where a; is the upper bound for customers’ willingness to pay for the supplier i’s product. We
should keep in mind that a; < a; as supplier is the small player which means its value of brand
is lower than buyer’s. For the given buyer’s decision (z,y) and other suppliers decision Z_;, the

ith supplier’s ex post profit is:
77;(21‘, 5) = [%Pb(% Y, 2, g) - Tz]yl + [pf(xv Y, z, 5) - Ci](z’i - yl) — Vi%i,
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where 7; is the supplier ¢’s marginal cost of component production, ¢; is the supplier ’s marginal
cost of end-product production, and v; is its marginal investment cost of capacity. Note that r;
is different from r, so the quality difference between the buyer and suppliers’ end products is

considered.

For the given buyer’s decision (x,y) and other suppliers’ decision Z_;, supplier i’s ex ante
decision problem can be formulated as

max Ep[r] (2, &)

Zi

S.t. z =Yg,

where the constraints mean that the supplier’s capacity must be no less than the order quality

on the signed contract.

Different from the buyer, the suppliers may only have some partial information on £ and as a
dominated players, they tend to be risk averse. Thus we may model them by DRNE, that is, by
viewing the buyer’s decision (z,y) as given, the suppliers compete by playing a distributionally
robust Nash-Cournot game:

f E
g?g;f};gpz plmi(2i, )],

where P; is the ambiguity set perceived by supplier ¢ based on its information on the uncertainty.
Obviously, for given (z,y) and Z_;, 7}(-,€) is a concave function. By Theorem 2.1, there is a

robust Nash equilibrium, hence, S(z,y) # 0.

In what follows, we discuss conditions for the uniqueness of equilibrium because the unique-
ness is of interest from both computational and economic perspectives. We proceed the analysis
by invoking Rosen’s earlier result, namely [40, Theorem 2] for the uniqueness of a deterministic

Nash equilibrium problem. Define

sz inf Ep[r; (2, )],

PeP;

where v = (v, ,vn) > 0. According to [40, Theorem 2], if o(z,v) is diagonally strictly
concave for some r > 0 (see [40, Defintion 1]), then there exists a unique Nash equilibrium.
In this context, a sufficient condition for o(z,v) to be diagonally strictly concave is that the

Jacobian of function

01V, inf pep, Ep[m](21,£)]
U(z,v):= :

'Umvzm infpe'pi Ep[ﬂ'fn(zm, €)]
is a negative definite matrix. To this end, we need to discuss sufficient conditions for continuous

differentiability of P;, inf pep, Ep[n] (2, )] in z;. This is beyond the focus of this paper, we refer
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interested readers to [43, Chapater 6], where the authors discussed differentiability of coherent

risk measures.

However, we might consider simpler case as we discussed in Section 2.1 that if the ambiguity
set is defined through moment conditions such as (3.6) (or (3.7)), then we can obtain a closed
form for infpep, Ep[m?(z;,&)]. Since 77(-) is linear in &, if P;, ¢ = 1,--- ,m, is in the form of
(3.6), then

01V, (21, 1)

U(z,v) = : )
Umvzmﬂ-fn(zma ,u)
where p denotes the mean of £. For v = (1,--- 1),
A R 4
_T»S _27.8 R _7,3
VU(z,v) = b b b
—ry =Ty e =213

Since r; > 0, it is easy to verify the negative definiteness of V¥(z,v) by the principal minors.

Consequently, the uniqueness follows.

5.1 Numerical study

We consider the case that there is a buyer, b, and two suppliers, i € {1,2}, who both employ

the KL divergence to be risk averse:
P = {Q €7 DKL(Q)PO) < 7}7

where Py is the nominal distribution. By the analysis of Example 4.1, we may reformulate the
buyer’s model as an MPEC problem and then we call the solver NLPEC under GAMS installed
in a PC with Windows XP operating system to solve the MPEC. We report the numerical results
for comparing the robust model with stochastic model by varying the ambiguity parameter
7 from 0.05 to 0.8. In the stochastic model, the suppliers also have full information of the
uncertainty ¢ as does the buyer. We set the parameters involved in the model (5.24): a; = 0.8,
rp =1, 17 = 0.7, ¢, = 0.001, vy = 0.0015, ap = 0.8, aj = 0.5, a5 = 0.65, ¢; = 0.003, c2 = 0.003,
r1 = 0.002, ro = 0.002, v; = 1.1¢1, v = 1.1co, and the nominal Py is normally distributed with

mean g = 0 and standard deviation o = 0.1.

Figures 1 and 2 illustrate the numerical results of the robust follower model (5.24) with a fixed

sample size 30 in the sample average approximation method and by increasing the ambiguity
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parameter 7 (where 7 = 0 is corresponding to the SP model). To reduce the impact of the
samples on the results, we generate 30 groups of the sample and then take the average of the
optimal solutions and optimal values. Figure 1 shows that buyer’s profit (red solid line) has
a tendency of increasing in the ambiguity parameter 7. On the contrary, the suppliers’s profit
(blue dash-dot line) has a tendency of decreasing in the ambiguity parameter 7. Moreover,
the total profit of a supply chain (the green dash line) is stable with the value around 0.15.
Figure 2 depicts the variation trend of buyer’s (red solid line) and suppliers’ (blue dash-dot
line) capacity investments. It shows that the capacity investments have similar trends with the
profits in Figure 1. By increasing the ambiguity parameter 7, the market is more uncertain to
the suppliers and they are thus reluctant to invest in capacity. At the same time, the buyer will

invest more in capacity.

0.16 057 -
= Buyer's capacity x
0.14 \‘ == == Suppliers' capacity 2,4z,
0.4k \‘ Suppliers' capacity (to Buyer) Y,1Y,
0.12 -
\\
0.1 N\

m—Buyer's profit

E’ 0.08 === = Suppliers' profit
e Total profit

0.06

\5
0.04 \-_.___
------- -y
°~
0.02 | N,
O L L L L L L L I L L L L L L L J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Parameter 7 Parameter 7

Figure 1: Capacity investment w.r.t ambiguity Figure 2: Profit w.r.t ambiguity parameter

parameter

To summarize, our findings suggest that the suppliers’ capacity investments and profits are
increasing with the degree of informational completeness on demand uncertainty, but the buyer’s
capacity investment and profit are decreasing with the degree of informational completeness on
demand uncertainty. In Figure 1, we can observe that the total supply chain profit remains
unchanged over the value range of ambiguity parameter we consider. This is simply because
the degree of information completeness on demand uncertainty primarily plays the role of how
different supply-chain parties (buyer versus suppliers) appropriate the total profit they co-create,
but does not impact the total profit generated by the entire supply chain. These observations
point out an effective strategy for the buyer in a supply chain involving hierarchical capacity
competition, consistent with the real-world practice: release less information on product demand
to the suppliers so it can capture more supply chain profits by simultaneously investing heavily
in the own capacity and outsourcing a sizable amount to the suppliers for utilizing most of

their capacity. If the suppliers have more information on product demand, this strategy of
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simultaneous capacity investment and outsourcing is less effective since the buyer is harder to
fully utilize the suppliers’ capacity through outsourcing while they can also invest heavily in
capacity to counteract with the buyer’s strategic deployment. This numerical study shows the
promise of the proposed methods contributing to a sizable body of operations and supply chain
literature that many well-received insights are derived from stochastic Nash equilibrium schemes
and they may be altered when decision makers have no complete information on underlying

uncertainties, as demonstrated here.

6 Concluding remarks

Motivated by recent research on robust game theory and distributinally robust finite game
[1, 36, 31, 32, 2, 41|, we study several distributionally robust equilibrium models. We start with
a distributionally robust Nash equilibrium (DRNE) model. Different from the existing studies,
we focus on the general DRNE game rather than the finite DRNE games. We investigate the ex-
istence of equilibrium for the DRNE model, propose a numerical scheme for its computation, and
specify some cases where the DRNE models can be reformulated as ordinary deterministic Nash
equilibrium models. We then extend the discussion on DRNE to two distributionally robust S-
tackelberg models: a distributionally robust follower model and a distributionally robust leader
model. Based on the discussion on DRNE, we reformulate the distributionally robust follower
model as a mathematical program with equilibrium constraints and the distributionally robust
leader model as a standard distributionally robust optimization problem under some moderate
conditions. To demonstrate the applicability of our theoretical and numerical approaches, we
employ the distributionally robust follower model to analyze the hierarchical capacity competi-
tion problem in a supply chain which, to the best of our knowledge, has not been systematically

studied in the operations and supply chain literature.

It might be possible to take this work further in the following directions. First, it might
be interesting to extend our model to the case where each player’s objective is a distortion risk
measure and explore existence of an equilibrium and computational schemes for calculating an
equilibrium. Second, as we can see from this paper, the structure of the ambiguity set has a big
impact on numerical solvability of our models. In the literature of DRO, a number of statistical
methods have been proposed for construction of ambiguity set depending on the availability of
information. It might be helpful to look into how our models and numerical schemes are played
out when the ambiguity set of each player is constructed through Wasserstein metric. More-
over, in practice, the ambiguity set might be constructed through samples and other statistical
information, and it will therefore be interesting to investigate how the change of information

would affect the equilibrium. This kind of research has been carried out for DROs in the sense
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of stability analysis, see recent papers by Zhang et al. [54] and Sun and Xu [45]. It will be

both theoretically and numerically interesting to establish qualitative and quantitative stabil-

ity results for the robust equilibrium problems. Finally this paper touches briefly Stackelberg

robust leader model where the leaders play a robust game whereas followers play a stochastic

Nash game. We believe this kind of model is practically interesting but unfortunately here we

don’t have much space to explore the model and numerical scheme further.
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