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Abstract

This paper introduces a new vehicle routing problem that arises in an urban area where several

carriers operate and some of their customers have demand of service for more than one carrier.

The problem, called Shared Customer Collaboration Vehicle Routing Problem, aims at reducing

the overall operational cost in a collaboration framework among the carriers for the service of the

shared customers. Alternative mathematical programming formulations are proposed for the prob-

lem that are solved with a branch-and-cut algorithm. Computational experiments on different sets

of benchmark instances are run to assess the effectiveness of the formulations. Moreover, in order

to estimate the savings coming from the collaboration, the optimal solutions are compared with the

solutions obtained when carriers work independently from each other.

Keywords: Vehicle routing problem, carriers collaboration, mixed integer programming,

branch-and-cut algorithm, urban logistics

1. Introduction

Most major cities present a dense and complex urban fabric, which hinders considerably last-mile

deliveries. Multiple carriers offer delivery services through the city, involving numerous simulta-

neous trips to common areas, consuming partial loads and emanating from different depots. As a

consequence last-mile deliveries generate various negative effects, such as high carriers costs, high

traffic and space occupancy, or pollution, all of which are highly inconvenient for citizens. Collabo-

ration among carriers who must serve common customers within the same time period may result

in significant savings in such an scenario. Carriers could serve part of the demand for other carri-

ers without deteriorating their own routes, better exploiting the vehicles capacity, thus obtaining

savings both in terms of number of vehicles used and distance travelled. This is precisely the focus

of this paper, where we introduce the Shared Customer Collaboration Vehicle Routing Problem

(SCC-VRP), a new collaboration model that optimizes the potential benefits derived from alliances

among carriers in this setting.

The benefits of collaboration in the freight transportation sector have raised increasing attention,

especially in the last decade due to the availability of communication technologies that enable
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collaboration. Collaboration among companies at the same level of the supply chain is known as

horizontal cooperation [16, 39]. When dealing with road transportation, horizontal cooperation

among carriers can be further classified according to the operational collaboration mode in order

sharing and capacity sharing (see for instance the recent survey [45]). Order sharing includes all

situations where collaborating carriers combine, share or exchange customers orders or requests. In

this setting the fleet of each collaborating carrier remains unchanged, as well as its trucks, which

remain located at the same depots, from which the carrier’s order delivery routes are performed.

Capacity sharing on the other hand includes scenarios where carriers may acquire capacity from

collaborative partners to satisfy their customer demand. In this case collaborating carriers do not

share customer requests and every carrier delivers its individual order set.

The SCC-VRP deals with horizontal collaboration with order sharing in the framework of last-

mile deliveries. Multiple carriers jointly operate in the same area, each of them, serving its own

customers, from its own depot with its own fleet of vehicles. While some customers require service

exclusively from only one carrier, others have service demand for multiple carriers (shared cus-

tomers). Broadly speaking, the objective of the SCC-VRP is to exploit the benefits derived from

allowing carriers to deliver products to the shared customers on behalf of other carriers. One specific

characteristics of the SCC-VRP is that different carriers operate from different depots. Another

characteristic is that not all customers can be shared. Moreover, the subset of carriers that can

serve a given shared customer is not fixed, as it depends on the customer. We are not aware of any

work dealing with carriers collaboration where any of these characteristics has been addressed.

The literature on carriers collaboration is certainly very large and an extensive review of the state

of the art for all collaboration modes is outside the scope of this paper. We thus refer the interested

reader to the survey [45] for a comprehensive and detailed discussion of the related literature, and

we briefly overview here the main contributions and recent works with a closer relation to the

operational problem that we study. Few works address quantitative models for decision support

to carriers in a collaborative framework. Some papers propose methods to optimize collaboration

among carriers in line-haul environments, either using mixed integer programming models (see, for

example, [1]) or proposing a simple estimating formula, as in [10]. Auction systems that model

the interactions among partners in a collaboration framework have been studied in [11, 18, 23, 33].

A model where all collaborating carriers offer all their requests for exchange, which seems rather

unrealistic in practice, is studied in [47].

A few other papers analyze instead the possibility for companies to exchange customers or to

form alliances. In [9] a framework is proposed to build and manage inter-firm relationships in the

logistics area based on three case studies. In the case of [17], on-line cooperative express networks are

proposed. Dynamic pickup and delivery and a decision support system are studied. The formation

of alliances is studied for the problem of liner shipping in [2].

Some authors [15, 20, 21, 30, 38, 44] have addressed the collaboration problem from a joint

route planning perspective where the overall demand of each customer is totally served from one

single carrier. In particular, [15] estimate the synergy from the combination of outsourcing and

horizontal cooperation by modelling the problem as a single-depot vehicle routing problem with

time windows. The lane covering problem, which tries to identify repeatable or dedicated truckload

tours for companies that regularly send truckload shipments that traverse (cover) some links (lanes)

of the distribution network, was first considered in [20, 21] and later in [38] from a multi-company

perspective. Other approaches consider specific features like: the use of resource pooling based on
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Erlang delay systems [30] or the partners’ flexibility [44] in order to evaluate cooperation.

A major issue in an order sharing collaboration framework is how the savings are shared among

the coalition of the collaborating carriers. The behavior of collaborating partners was modelled

in [31, 32] with a game theoretic approach in three phases: preprocessing, profit optimization and

profit sharing. Also in [35] the problem of allocating the joint cost savings of the cooperation is

tackled using cooperative game theory.

One of the few papers dealing with routing aspects of collaboration is [46]. Their model integrates

transshipment into the conventional pickup and delivery problem with collaboration. A Mixed

Integer Programming (MIP) formulation is presented for a problem that allows exchanging requests

between carriers and the possibility of demand exchange at pre-specified transshipment points. An

arc routing problem is analyzed in [22] to model collaboration in truckload shipping. A lower

bound on the individual profit of each carrier is set in the optimization model to guarantee that all

carriers benefit from the collaboration. A collaborative version of a routing problem with profits is

proposed in [19], where the customers of different companies form a coalition and all customers can

be served with the joint available resources. The formulations incorporate different cost allocation

rules that can guarantee the desired behavior of the participants. Again, the coalition considers

that all customers can be shared in the system.

Similarly to some of the works referenced above, the SCC-VRP focuses on the routing aspects

of collaboration. Due to its specific characteristics the SCC-VRP gives rise to a new vehicle routing

problem. In fact, the SCC-VRP generalizes the classical Multiple Depot Vehicle Routing Problem

(MDVRP) (see, for example, [41, 42]) and becomes the MDVRP when no customer is shared. On

the one hand the vehicle routing problem underlying the SCC-VRP must be stated on a multi-

depot setting, as carriers do not operate from a common origin (consolidation center) but from

different garages/warehouses. On the other hand, deciding the allocation of customers to carriers

becomes involved as shared customers may be visited by one or more carrier. Moreover, even if

it were known that a customer would be served by more than one carrier, the amount of demand

served by each of them would not be known in advance, as carriers could decide to interchange

their served demands to better use of the capacity of their vehicles. This aspect somehow relates

the SCC-VRP with split delivery routing problems in which the overall demand of customers can

be split among the vehicles routes. The essential difference with respect to classical split-delivery

models is that in the SCC-VRP the overall customers demands cannot be split arbitrarily, since

only quantities corresponding to individual customer/carrier orders can be served in the different

routes. This feature is indeed one of the main difficulties of the SCC-VRP for which setting suitable

mathematical programming formulations becomes a challenge on its own.

Potential applications for the SCC-VRP include regular deliveries to bars and restaurants, daily

parcel deliveries, or other deliveries of goods of various nature. As an example, [15] describes

the real case of three Dutch companies of distribution of frozen products. The companies had a

considerable amount of overlap between customers, on average 68%, and collaboration reduced the

traveled distance by 30.8% and the fleet size by 50%. Nevertheless, in other initiatives mentioned

in that work, the savings range from 15% to 30%. Another example can be found on [40], where a

case from the German food industry is presented and several manufacturers with same customers

but complementary food products share their vehicle fleets to deliver their customers. Results show

that cooperative scenarios outperform the non-cooperative one.

The scope and contributions of this paper are two-fold:
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• Modeling. We introduce a new model for horizontal collaboration with order sharing, with

potential applications in the framework of last-mile deliveries, and we quantify the tradeoff

derived from this type of collaboration with respect to the situation where carriers work

independently from each other. For this, we give a theoretical bound on the savings that

can be obtained and show that the bound is tight. We also perform an empirical analysis

based on the results from computational experiments on several sets of benchmark instances.

The results indicate that the average cost savings range from 10.7% to 18.2% on random

instances and from 2.5% to 16.4% on clustered instances. We finally present an extension

of the SCC-VRP that includes the cost of transferring goods between depots, which may be

needed in some circumstances in a collaborative framework and compare the savings with the

transferring cost.

• Methodological and algorithmic. We study the new vehicle routing problem that arises when

the SCC-VRP is addressed from a mathematical programming perspective. For this, we

propose and study two alternative mixed integer linear programming (MILP) formulations for

the SCC-VRP. The first formulation is a vehicle-based formulation, which follows the spirit

of classical formulations for the Multiple Depot Vehicle Routing Problem (MDVRP) [27], by

associating decision variables with the vehicles routes, both for the arcs that are traversed and

for the customers that are visited. Even if reinforced with several families of valid inequalities

the vehicle-based formulation is computationally cumbersome. Thus, following the current

trend in complex vehicle routing problems [7, 34], a load-based formulation is also proposed.

The main advantage of this formulation is that the number of binary decision variables reduces

notably, since they are only associated with depots, but no longer with vehicles. However, this

comes at the expenses of an additional set of continuous load variables, which are needed to

guarantee that the balance constraints redistribute correctly the loads of the different routes.

For each formulation we discuss several families of valid inequalities as well as the solution

to the separation problems for the families of constraints of exponential sizes. An exact

branch-and-cut algorithm is proposed for the solution of each formulation. Computational

experiments on different sets of benchmark instances compare the performance of the two

proposed formulations and find the maximum size of instances that can be solved to optimality

with the best formulation.

The remainder of this paper is structured as follows. In Section 2 the SCC-VRP is introduced

and the theoretical bound on the maximum saving that can be obtained through collaboration is

derived. The vehicle-based and the load-based formulations are presented in Section 3. Section

4 gathers the methodological aspects of the solution algorithms that we propose. In particular,

for each formulation, several families of valid inequalities are proposed, and their corresponding

separation algorithms presented. The section ends with the detailed description of the branch-

and-cut algorithm for each case. Section 5 describes the computational experiments. We present

the numerical results, compare the MILP formulations, and analyze the structure of the obtained

solutions under different possible scenarios. We close the paper in Section 6 with some comments

and promising lines for further research.
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2. The Shared Customer Collaboration Vehicle Routing Problem

We consider a set of transport companies (carriers) that operate in the same urban area with a

high customer density and are willing to collaborate to reduce distribution costs. We assume that

some customers are shared by different carriers, in the sense that they have demand (request goods)

from more than one carrier. One shared customer may represent a group of individual customers

that may request service from different carriers but are located close enough that one carrier could

serve them with one stop in the delivery route. In this context, collaboration among carriers means

that each of them is willing to transfer a part of its demand to other carriers, namely the part of its

demand corresponding to some of the shared customers. Customers will only be transferred when

the transfer decreases the overall distribution cost. Below we give a formal definition of the Shared

Customer Collaboration Vehicle Routing Problem (SCC-VRP).

Let C denote a given set of carriers operating in a given area and N the set of customers in the

area. We will denote by m = |C| and n = |N | the number of carriers and customers, respectively.

Each carrier r ∈ C has its own depot or and a homogeneous fleet of vehicles of capacity Q (the same

for all carriers). Let G = (V,A) denote the complete directed network, where V = N ∪ (∪r∈C{or})
is the set of customers plus the depots, and A is the set of arcs connecting each pair of customers

and each customer with the depots, i.e., A = V × V . Associated with each arc (i, j) ∈ A there is a

travel cost cij ≥ 0. We assume that travel costs satisfy the triangle inequality.

For i ∈ N , r ∈ C, dri ≥ 0 denotes the demand of customer i with respect to carrier r. When

dri > 0 we say that i is a customer for carrier r. We denote by Nr the set of customers for carrier

r ∈ C. For i ∈ N , the set of carriers that have i as customer is denoted by Ci ⊆ C and referred to

as the set of carriers for customer i. Indeed, for i ∈ N , r ∈ C, i ∈ Nr if and only if r ∈ Ci. When

Ci = {r} for i ∈ N , i.e. |Ci| = 1, then the demand of customer i must be served by carrier r. On

the contrary, if |Ci| > 1, the demand dsi of customer i for carrier s ∈ Ci can be transferred to any

carrier r ∈ Ci, meaning that it can be served by carrier r. Moreover, interchanging the demands of

a customer between two of its carriers is allowed. That is, for a customer i ∈ N and two carriers

r, s ∈ Ci, it is possible that carrier s serves the demand dri and carrier r serves the demand dsi . On

the contrary, splitting the demand of a customer for a carrier among several carriers is not allowed.

Hence, each service demand dsi , i ∈ N , s ∈ Ci must be entirely served by the same carrier r ∈ Ci

(not necessarily carrier s).

In the SCC-VRP each carrier performs a set of routes, starting and ending at its depot. The

overall demand served by each route cannot exceed the capacity Q. For each customer i ∈ N , each

of its service demands dri , r ∈ Ci must be allocated to a route of some of its carriers Ci. The

objective is to minimize the total cost of the routes of the carriers.

We note that, as the arc costs satisfy the triangle inequality, there always exists an optimal

solution where any carrier r ∈ C only visits a subset of Nr, that is, carrier r does not visit any

customer i ∈ N \ Nr. Hence, in the routes associated with carrier r the only arcs that can be

traversed are the ones in Ar = {(i, j) ∈ A : i, j ∈ Nr, or (i = or and j ∈ Nr), or (i ∈ Nr and j =

or)}.
The SCC-VRP is NP-hard, as the particular case with one single carrier reduces to the well-

known Vehicle Routing Problem (VRP) (see, for instance, [43]). Another well-known particular

case of the SCC-VRP is the Multiple Depot Vehicle Routing Problem (MDVRP) (see, for instance,

[12, 26, 27, 41, 42, 48]), which arises when all customers are shared, i.e. Ci = C for all i ∈ N .

However, as we note below, the SCC-VRP is more general than the MDVRP.
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• When a shared customer is not assigned to one single carrier (depot), i.e. |Ci| > 1, then it

can be served by each company separately, by only one of the companies, or by any other

combination. Furthermore, when a shared customer is served by more than one company, the

exact amount that will be served by each company has to be decided, since interchanging the

demands of a customer between two of its carriers is allowed.

• The SCC-VRP also models the case when carriers may forbid that some of their customers

are served by a different carrier. Suppose that (due to marketing reasons) carrier r ∈ C wants

to serve customer i ∈ Nr, with |Ci| > 1. This case can be easily modeled with the SCC-VRP

by just defining a copy of customer i, say i′, co-located with i, and with Ci′ = {r}.

• The SCC-VRP also allows to model the reverse case, where several customers, each of them

with demand for only one of the carriers, are located close enough so that one carrier could

serve all of them with one stop in the delivery route. For this, all such customers should be

merged into a single one with the same demand with respect to each of the carriers.

In fact, the SCC-VRP can be seen as a variant of a multi-depot split delivery VRP, in which

the overall demand of each customer, Di =
∑

r∈C d
r
i can be split among the routes of the different

carriers. The essential difference with respect to traditional split-delivery models is that Di cannot

be split arbitrarily. Only quantities corresponding to the individual demands dri can be served in

the different routes. Moreover each individual demand dri must be served by one of the routes.

This feature is indeed one of the main difficulties of the SCC-VRP as specific decision variables are

needed in order to decide the carrier and specific route that will serve each demand dri .

We illustrate the SCC-VRP with an example and then show how large the savings can be.

Example: Figure 1 shows an example of a SCC-VRP instance with 2 carriers, A and B, 3 customers

and vehicle capacity Q = 10. For ease of presentation Figure 1(a) only depicts a few of the arcs

of the complete network and their associated Euclidean costs, where each pair of horizontally or

vertically consecutive nodes are at distance 1. In this example NA = {1, 2} and NB = {1, 2, 3}, i.e.,

customers 1 and 2 have demand for both carriers, whereas customer 3 has demand for carrier B

only. Figure 1(b) shows the optimal solution when no collaboration exists. Since Q = 10, carrier

A needs two routes to serve its two customers, which, in total, have a demand of 11. In contrast,

carrier B may serve its three customers in one single route. The overall cost of the solution without

collaboration is 5+2
√

2+
√

5. Figure 1(c) gives the optimal solution when collaboration is allowed.

Now, the demand dB1 has been transferred to carrier A, who serves the two service demands of

customer 1. Moreover, the two service demands of customer 2 have been interchanged, so carrier

A serves dB2 and carrier B serves dA2 . The result is that carrier A performs one single route that

serves a total demand of 10 = (dA1 + dB1 ) + dB2 , and carrier B also performs one single route that

serves a total demand of 10 = dA2 + dB3 . The overall cost of the optimal solution with collaboration

is 4 + 2
√

2, with savings of about one third with respect to the solution without collaboration.

2.1. Maximum saving

We investigate here the maximum cost reduction that can be achieved thanks to the collaboration

among carriers. We first give a lower bound for the optimal cost of the SCC-VRP and then show

that such bound can indeed be achieved.

We denote by z∗(SCC-VRP) the optimal cost of the SCC-VRP, by z∗(VRPr) the minimum cost

of the delivery routes of carrier r ∈ C, when it operates independently of all other carriers, that
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(a) SCC-VRP Instance (b) Optimal solution
without collaboration

(c) Optimal solution with
collaboration
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Figure 1: SCC-VRP Example

is when carrier r serves its own customers Nr, and by z∗(m-VRP)=
∑

r∈C z
∗(VRPr) the overall

cost when no collaboration exists. The optimal solution of each VRPr can be obtained by solving

a classical VRP over the set of customer Nr.

Obviously, the total cost with collaboration, z∗(SCC-VRP), cannot be smaller than the cost of

each individual carrier and, in particular, the maximum cost of any carrier in the solution without

collaboration. That is,

z∗(SCC-VRP) ≥ max
r∈C

z∗(VRPr).

Thus, z∗(SCC-VRP) cannot also be smaller than the average cost of a carrier without collaboration.

Therefore,

Proposition 1.

z∗(SCC-VRP) ≥ z∗(m-VRP)

m
.

The above relationship defines a lower bound for the optimal cost of the SCC-VRP that depends

on the minimum total cost without collaboration. We will show now that it can indeed happen that

the cost with collaboration z∗(SCC-VRP) equals 1/m times the total cost without collaboration

z∗(m-VRP), reducing by a factor m the cost without collaboration.

Consider an instance with m carriers where all depots are co-located and all carriers share one

customer and have no other customer. The distance between the depot and the customer is equal

to 1. Let us assume that the demand of the customer for each carrier is very small and, in any

case, such that the sum of the demands for all carriers does not exceed the capacity of the vehicle.

Then, in the solution without collaboration each carrier has to visit the customer with a vehicle

and z∗(m-VRP)= 2m whereas in the solution with collaboration only one vehicle will be sent to

the customer and z∗(SCC-VRP)= 2.

Clearly, this analysis shows the extreme case, that is the maximum possible saving. In the rest

of the paper we will explore the average behaviour of a collaborative strategy.

3. MILP formulations for the SCC-VRP

In this section we propose two different MILP formulations for the SCC-VRP. The first one, that

we call vehicle-based formulation, uses decision variables that describe explicitly the arcs traversed

by the routes of each carrier. The second formulation, that we call load-based formulation, avoids

the use of specific variables associated with each vehicle and is based on the load of the vehicles
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at the visited vertices. In each case, specific decision variables are needed to establish the specific

demand orders of the customers served by each of the carriers.

We will use the following standard additional notation. For S ⊂ V , δ+(S) = {(i, j) ∈ A | i ∈
S, j ∈ V \S} denotes the set of arcs “leaving” S, and δ−(S) = {(i, j) ∈ A | i ∈ V \S, j ∈ S} denotes

the set of arcs “entering” S. For a singleton we simply write δ(i)+ = δ+({i}) and δ(i)− = δ−({i}).
For a subset S ⊂ V and a carrier r ∈ C the set of arcs of Ar in δ+(S) and δ−(S) are respectively

denoted by δ+r (S) = δ+(S) ∩ Ar and δ−r (S) = δ−(S) ∩ Ar. Finally, for a vector y ∈ R|A| and a set

of arcs F ⊂ A, we use the compact notation y(F ) =
∑

a∈F ya.

3.1. Vehicle-based formulation

For the vehicle-based formulation we extend the classical Vehicle Routing formulation with de-

cision variables associated with arcs traversed by each of the vehicles [43].

For each carrier r ∈ C we denote by Kr the index set of its (unlimited) fleet of homogeneous

vehicles. We use two sets of decision variables: the routing variables x, which indicate the arcs

traversed in each route, and the variables z, which indicate allocation of customer demands to

carriers.

For each carrier r ∈ C, k ∈ Kr, (i, j) ∈ Ar, let xkij be a binary routing variable, which takes the

value 1 if arc (i, j) is used by vehicle k and 0 otherwise. As previously mentioned, these variables

only need to be defined for arcs connecting pairs of customers sharing carrier r, or one such customer

with depot or, as these are the only arcs that can be used in an optimal route associated with carrier

r. For the allocation of customer demands to carriers, for r ∈ C, let zkirs be a binary variable that

takes the value 1 if and only if the demand dri of customer i ∈ Nr is served by carrier s ∈ Ci in

route k ∈ Ks.

Then, the vehicle-based formulation (VF) for the SCC-VRP is:

(V F ) min
∑
r∈C

∑
k∈Kr

∑
(i,j)∈Ar

cijx
k
ij (1)

subject to
∑
s∈Ci

∑
k∈Ks

zkirs = 1 i ∈ N, r ∈ Ci (2)

xk(δ+r (or)) ≤ 1 r ∈ C, k ∈ Kr (3)

xk(δ−r (i))− xk(δ+r (i)) = 0 r ∈ C, k ∈ Kr, i ∈ Nr (4)

xk(δ+r (W )) ≥ zkisr r, s ∈ C, k ∈ Kr, W ⊂ Nr \ {or}, i ∈W ∩Ns (5)∑
i∈Nr

∑
s∈Ci

dsi z
k
isr ≤ Q r ∈ C, k ∈ Cr (6)

∑
i∈Nr

∑
s∈Ci

zk−1isr ≥
∑
i∈Nr

∑
s∈Ci

zkisr r ∈ C, k ∈ Kr \ {min
k
Kr} (7)

xkij ∈ {0, 1} r ∈ C, (i, j) ∈ Ar, k ∈ Kr (8)

zkirs ∈ {0, 1} i ∈ N, r, s ∈ Ci, k ∈ Ks. (9)

The objective function (1) is the minimization of the total cost of all the arcs traversed by the

routes of all carriers. Constraints (2) guarantee that each of the demands (for different carriers) of

each customer are allocated to some of its carriers. Constraints (3)–(4) describe the flow balance

on the nodes traversed by the vehicle routes. Constraints (5) play a double role. On the one hand,
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for singletons W = {i} they guarantee that if the demand of customer i for carrier s is assigned to

route k ∈ Kr of carrier r ∈ Ci, then customer i is visited by some arc of that route. On the other

hand, in general, they guarantee the connectivity of the routes with their depots by imposing that

if some demand of a customer in a set W is visited by route k of carrier r, then that route must use

at least one arc exiting from set W . Constraints (6) ensure that the capacity of the vehicles is not

exceeded. Finally, constraints (7) partially avoid symmetry of the solutions by imposing that the

k-th vehicle of each carrier is not used unless vehicle k − 1 of carrier r is used as well. Moreover,

we order the routes of each carrier by non-decreasing number of served customers. The domains of

the variables are defined in (8)–(9).

Formulation (1)–(9) has
∑

r∈C |Ar||Kr| variables x and
∑

i∈N,s∈Ci
|Ci|2|Ks| variables z. Except

for connectivity inequalities (5), the sizes of all other families of constraints are polynomial in the

parameters of the problem. On the contrary, for a fixed r ∈ C, the size of family (5) is exponential

in |Nr|.

Remark 1.

1. Similarly to [24] constraints (5) can be replaced by the subtour elimination constraints∑
i,j∈W

xkij ≤ |W | − 1, for all r ∈ C, k ∈ Kr,W ⊆ Nr \ {or}, (10)

which do not depend on the z variables and, together with (2), also guarantee that for each
vehicle k of carrier r at least one arc leaves each vertex set W visited by k and not containing
the depot or.

2. Any binary vector z satisfying constraints (2), (6) and (7), can be extended to a solution (x, z),
which is feasible for VF. For this, a series of Traveling Salesman Problems has to be solved,
one for each activated route and allocated customers. These are still NP-hard problems.

3. Contrary to the previous item, not any binary vector x satisfying constraints (3), (4), and
(10) can be transformed into a feasible solution for VF, unless constraints imposing explicitly
the assignment of customers demands to carriers are included.

4. Note that it is not enough to impose binary conditions on only one of the subsets of variables,
x or z, so explicit binary conditions are needed both for the z and the x variables.

3.2. Load-based formulation

As we will see in Section 5 VF is extremely demanding from a computational point of view.

This can be explained by its high number of binary variables; note, in particular, the very high

number of allocation variables z. This difficulty encouraged us to look for alternative formulations

with a smaller number of binary variables. Here we introduce a formulation for the SCC-VRP that

avoids the use of the vehicle index (k) for any design binary variable. This comes at the expenses of

continuous load variables, controlling the total load of the routes on the traversed arcs, associated

with a higher number of indices. Load-based formulations have been proposed in recent years by

several authors [34, 7, 5] for different types of vehicle routing problems. In our case, in addition to

the routing and load variables which are the usual ones in such models, we need specific assignment

variables that keep track of the carriers that serve each of the customer demands.

The new routing variables xrij take value 1 if arc (i, j) ∈ Ar is used by a route of carrier

r ∈ C, and 0 otherwise. Note that, since these variables are associated with carriers, for r ∈ C

fixed, (xrij)(i,j)∈Ar represent all the routes of carrier r in an aggregated fashion. For the additional
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demand allocation variables we are also able to drop the index associated with vehicles. Now we use

decision variables zirs, with i ∈ N and r, s ∈ Ci, to indicate whether or not the demand dri is served

by carrier s. The role of the additional set of load variables is to guarantee that vehicle capacities

are not violated. For this it is crucial to guarantee a correct redistribution of incoming flows at

the different nodes. The usual technique would be to associate load variables with the different

routes. However, this is no longer valid in our case, unless we also associate with the routes the

design variables x and z, which is precisely what we are trying to avoid. On the other hand, if the

load variables are only associated with the carriers, we would not guarantee that incoming flows

are correctly redistributed. To avoid this we use load variables associated with origin/destination

pairs. In particular, we define continuous load variables lrhij , with r ∈ C, h ∈ Nr, (i, j) ∈ Ar, which

indicate the load served by carrier r to customer h that circulates through arc (i, j). With the

above decision variables, the load-based formulation (LF) is the following:

(LF ) min
∑
r∈C

∑
(i,j)∈Ar

cijx
r
ij (11)

subject to
∑
s∈Ci

zirs = 1 i ∈ N, r ∈ Ci (12)

xr(δ+r (i))− xr(δ−r (i)) = 0 i ∈ N, r ∈ Ci (13)

xs(δ+s (i)) ≥ zirs i ∈ N, r, s ∈ Ci (14)

lrh(δ+r (or)) =
∑
s∈Ch

dshzhsr r ∈ C, h ∈ Nr (15)

lrh(δ+r (i))− lrh(δ−r (i)) =

0, if h 6= i

−
∑

s∈Ci
dsi zisr, if h = i

r ∈ C , i, h ∈ Nr (16)

∑
h∈Nr

lrhij ≤ Qxrij r ∈ C, (i, j) ∈ Ar (17)

xrij ∈ {0, 1} r ∈ C, (i, j) ∈ Ar, (18)

zirs ∈ {0, 1} i ∈ N, r, s ∈ Ci (19)

lrsij ≥ 0 r ∈ C, s ∈ Nr, (i, j) ∈ Ar.

(20)

Like in the VF, the objective (11) represents the total routing costs. Constraints (12) guarantee

that all the demands are allocated to some carrier. Constraints (13) describe the flows for the

aggregated routes for each carrier. In particular, these constraints ensure at each customer a

balance on the number of incoming and outgoing routes from each carrier. Quite similarly to

constraints (5), constraints (14) relate variables x and z and guarantee that if the assignment is

made to a given carrier (zirs), some routing variable associated with that carrier (xsij) is activated.

Constraints (15)–(17) are the flow balance constraints for the load variables, and update the loads

through the arcs according to the served demands. In particular, constraints (15) impose that the

overall load of all the routes starting at depot or for customer h coincides with the total demand

served in the routes of carrier r for customer h. In turn constraints (16) impose that the load served

by carrier r with destination at customer i delivered at customer h is zero, unless h = i. In such

a case the delivered load is
∑

s∈Ci
dsi zisr. The relation between the routing and load variables is

modeled by constraints (17), which also guarantee that the capacity of the vehicles is not exceeded.

10



Finally, the domains of the variables are given in (18)–(20).

Formulation (11)–(20) has
∑

r∈C |Ar| binary routing variables x. The number of demand alloca-

tion variables z is
∑

i∈N |Ci|2. The overall number of continuous load variables l, is
∑

r∈C |Nr||Ar|.
As for the number of constraints, now the sizes of all families are polynomial in the parameters of

the problem.

Therefore, in terms of number of variables and constraints LF should be preferred to VF, as it

has a smaller number of both binary variables and constraints. On the other hand, it is well-known

that the linear programming (LP) bound of vehicle-based formulations is tighter than that of load-

based formulations [34]. In Section 5 we will compare empirically VF and LF and we will see that,

in practice, the size of the formulation is more important.

4. Solution methodology

This section presents the methodological aspects of the proposed exact solution algorithms for

VF and LF. A reason for solving the SCC-VRP exactly is that, being a new optimization problem,

optimal solutions of as large as possible instances are required for assessing the quality of any

heuristic. Even more importantly, by solving the SCC-VRP exactly it is possible to quantify

precisely the savings that can be achieved through collaboration, by comparing the minimum cost

of the SCC-VRP with the sum of the minimum costs faced independently by the carriers when

no collaboration takes place. A heuristic solution of the SCC-VRP and an exact solution of the

individual optimization problems of the carriers without collaboration would provide only a lower

bound on the savings, while heuristic solutions of the optimization problems with and without

collaboration would not allow us to assess the value of a collaborative solution.

The section starts by describing several families of valid inequalities for each formulation, and

their corresponding separation algorithms. Then, a detailed description of the branch-and-cut al-

gorithm for each formulation is provided.

4.1. Valid Inequalities for VF

Below we present some families of valid inequalities for VF.

• Cover inequalities

We can derive valid cover-type inequalities (see, for instance, [37]) associated with the capacity

constraints (6). A pair (S, {Ci}i∈S) with S ⊂ Nr and Ci ⊂ Ci for all i ∈ S, defines a cover

for carrier r ∈ C, if
∑

i∈S
∑

s∈Ci
dsi > Q. The cover inequality associated with a cover for

carrier r is ∑
i∈S

∑
s∈Ci

zkisr ≤
∑
i∈S
|Ci| − 1. (21)

As usual, the tightest cover inequalities (21) are associated with minimal covers, i.e. the ones

that do not contain any cover.

• Capacity-cut inequalities

Capacity-cut inequalities (CCIs) and their extensions have been widely used in vehicle routing

problems (see, for instance, [28, 34, 36]). These constraints impose that any feasible solution

must traverse a minimum number of arcs in the cut-set associated with a given set of customers
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W ; this number depends on the overall demand of the set W , d(W ), and on the vehicles

capacity Q. However, typical CCIs are no longer valid for the SCC-VRP, neither considering

individually each of the routes of a given carrier or aggregating all of them. The reason is one of

the main characteristics of the SCC-VRP, which, in turn, becomes one of its main difficulties,

namely that the amount of demand of each customer that will be actually served by each

carrier is unknown in advance. Still, we can derive ad-hoc CCIs, closer in spirit to Generalized

Large Multistar inequalities [28, 34], which also combine the rationale of the connectivity and

capacity constraints (5)-(6) but remain valid for the SCC-VRP, in particular, for VF. Our

CCIs impose, for each carrier, a minimum number of arc traversals in the cut-set associated

with a given set of customers W , depending on the overall demand of the set W served by the

carrier and the vehicles capacity Q. In particular, consider a carrier r ∈ C and W ⊂ Nr. The

overall demand of the customers of W served by carrier r is
∑

i∈W
∑

s∈Ci
dsi
(∑

k∈Kr
zkisr
)
.

Thus, taking into account the vehicles capacity Q, the number of arcs of δ+(W ) traversed by

the vehicles of carrier r must be at least

⌈∑
i∈W

∑
s∈Ci

ds
i (

∑
k∈Kr

zk
isr)

Q

⌉
. Hence, the following

inequality is valid for VF:

∑
k∈Kr

xk(δ+r (W )) ≥

⌈∑
i∈W

∑
s∈Ci

dsi
(∑

k∈Kr
zkisr
)

Q

⌉
. (22)

Unfortunately, the right hand side of inequality (22) is non-linear, although the inequality can

be substituted by the weaker linear inequality

∑
k∈Kr

xk(δ+r (W )) ≥
∑

i∈W
∑

s∈Ci
dsi
(∑

k∈Kr
zkisr
)

Q
. (23)

• Symmetry breaking inequalities

The inequalities below can be used to partially break the symmetry of the solutions produced

by VF. Similar inequalities have been proposed in [8]

xrj,or ≤
∑
i<j

xror,i, j ∈ Nr, r ∈ C. (24)

4.2. Valid Inequalities for LF

Below we present some families of valid inequalities for LF.

• Connectivity inequalities

In LF the connectivity of the routes of the carriers with their corresponding depots is guaran-

teed by the flow balance constraints and the relation between the x and l variables. Therefore

the following inequalities:

xr(δ+(W )) ≥ zisr (25)

are satisfied for all r, s ∈ C, i ∈ Cs, even if they are not explicitly stated in the formulation.

Nevertheless, when the integrality of the x variables is relaxed, LF may produce fractional

solutions that do not satisfy the above connectivity constraints (25), which are valid for LF

and can be used to reinforce this formulation.
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• Capacity-cut inequalities

Capacity-cut inequalities can also be derived for LF. Recall that constraints (15) indicate that

the overall load in the arcs leaving the depot of a given carrier r ∈ C is precisely the total

demand served by that carrier. Thus taking into account the vehicles capacity Q we can also

deduce a lower bound for the number of arcs that must leave that depot, which must be at

least
⌈∑

i∈Nr

∑
s∈Ci

ds
i zisr

Q

⌉
. Hence, we obtain the following capacity-cut inequality, which is

valid for LF:

xr(δ+r (or)) ≥
⌈∑

i∈Nr

∑
s∈Ci

dsi zisr

Q

⌉
. (26)

As in the analogous capacity-cut inequalities for VF, the right hand side of inequality (26) is

non-linear, although we can substitute the inequality by the weaker linear inequality

xr(δ+r (or)) ≥
∑

i∈Nr

∑
s∈Ci

dsi zisr

Q
. (27)

Note that the expression of the weaker inequality (27) associated with each carrier is quite

simple, so it can be directly be incorporated to LF to reinforce it.

• Symmetry breaking inequalities

Quite similarly to (24), inspired by [8], the inequalities below can be used to partially break

the symmetry of the solutions produced by LF:

xrjor ≤
∑
i≤j

xrori j ∈ Nr, r ∈ C. (28)

4.3. Separation algorithms

With the exception of the symmetry breaking inequalities, the number of inequalities in each

of the families of valid inequalities introduced above is exponential on the number of customers.

Hence, in order to use them within an algorithmic framework it is necessary to know how to solve

the separation problem in each case. Below we address this issue for the proposed families of valid

inequalities.

4.3.1. Separation of connectivity inequalities (5)

Let (x, z) denote the current LP solution and, for each carrier r ∈ C and vehicle k ∈ Kr,

xk the partial LP solution associated with vehicle k, i.e. the components of x associated with

k. Furthermore, Gk
x = (V k, Ak

x) denotes the support graph of the partial solution xk for vehicle

k ∈ Kr, r ∈ C, obtained from G by eliminating all arcs in Ar with xkij = 0 and all vertices that are

not incident with any arc of Ak
x.

Exact separation For each carrier r ∈ C and vehicle k ∈ K, we identify min-cuts in Gk
x relative

to the capacities xka for all a ∈ Axk . In particular, for each carrier s ∈ C and customer i ∈ Ns

with zkisr > 0 we find the minimum cut δ+(W ) separating i and or. If the value of the min-cut

is smaller than zkisr then the inequality (5) associated with W , r, s ∈ C k ∈ Kr, and customer

i ∈ Ns is violated by (xk, zk). This separation is exact and similar to procedures that have been

used by other authors to separate connectivity constraints for other node and arc routing problems

[3, 4, 13].
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Note that the exact separation described above can be quite time consuming as it requires to

solve a max-flow problem for each r, s ∈ C, k ∈ Kr, i ∈ Ns with zkisr > 0. Even if the complexity

of each max-flow problem is polynomial (see, for instance, [25]), in practice, it may be preferable

to use a heuristic separation of these constraints.

Heuristic separation The heuristic for the separation of (5) associated with a carrier r ∈ C and

vehicle k ∈ K, looks for connected components in the subgraph of Gk
x, that contains only those

arcs with values xk > ε, where ε is a given parameter. Then, we compute the real value of the cut

associated with each connected component W , that does not contain depot or. If xk(δ+(W )) <

max{zkisr : s ∈ C, i ∈ Ns}, the connectivity inequality (5) associated with W is violated by (x, z).

The complexity of this heuristic separation is indeed much smaller than the exact separation

as it only requires to compute the connected components of the subgraphs of Gk
x induced by the

considered value of the parameter ε. This can be efficiently done with any algorithm based on

Recursive Deep First Search, which has complexity linear on the number on |Ek|+ |V k| [29].

Observe that when the partial LP solution x is integer the above separation becomes exact for

ε = 0, independently of whether or not the components of zk are integer. That is, when xk is

integer, an inequality (5) violated by (xk, zk) will be found if it exists.

4.3.2. Separation of cover cut inequalities (21)

The performance of the branch-and-cut algorithm can be enhanced by separating and incorpo-

rating violated cover inequalities (21). To identify a cover cut violated by the current LP solution

(x, z) we adapt to our case the usual separation for cover cuts (see, for instance, [37]) as follows. For

each carrier r ∈ C and vehicle k ∈ Kr, we define an auxiliary problem, which uses binary decision

variables wis for all i ∈ N , s ∈ Ci. The subproblem is

(Covkr ) w∗ = min
∑
i∈N

∑
s∈Ci

(1− zkisr)wis (29)

subject to
∑
i∈N

∑
s∈Ci

dsiwis > Q (30)

wis ∈ {0, 1} r ∈ C, k ∈ Kr. (31)

It is easy to see that there is a cover inequality (21) violated by (x, z) if an only if w∗ < 1. In this

case, the cover that induces a violated cut is associated with the index set of the variables at value 1

in an optimal solution to (Covkr ). That is, for all i ∈ N , Ci = {si | wis = 1 in the optimal solution},
and S = ∪i∈NCi. The detected violated cuts are lifted to obtain tightest inequalities with the

procedure developed in [37].

4.3.3. Separation of capacity-cut inequalities

The exact separation of capacity-cut inequalities is intricate, even for their linearized weaker

version. In fact, no polynomial time algorithm is known for similar inequalities for other types

of problems and even the heuristic separation becomes quite involved [34]. Hence, we have not

considered them in our branch and cut algorithm as we already consider the connectivity constraints

and the cover cuts independently.
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4.4. Solution algorithms

In this section we present the solution algorithms we propose for solving the vehicle-based for-

mulation (VF) and the load-based formulation (LF) introduced in Section 3. Below we describe the

main elements of the solution algorithm used in each case.

4.5. Branch-and-cut for the VF

The VF for the SCC-VRP (1)-(9) has been solved with an exact branch-and-cut algorithm. As

usual, at each node of the enumeration tree, the algorithm solves a relaxed Linear Programming

(LP) formulation and ad hoc separation procedures are applied to detect relaxed constraints and

valid inequalities violated by the current LP solution. The current LP formulation is reinforced

by incorporating to it the detected violated cuts, and the reinforced formulation is resolved. If no

violated cuts are detected, the algorithm selects a variable to branch on and the current node is

substituted by the two nodes associated with the corresponding subproblems. Initially the family

of connectivity constraints (5), which is of exponential size, is relaxed and only a small subset of

such constraints is kept. This subset contains all the constraints (5) associated with singletons,

i.e. W = {i} with i ∈ Nr ∩ Ns, r, s ∈ C, for all k ∈ Kr. Recall that this subset of connectivity

constraints guarantees that each customer is visited by a route associated with the carrier that

serves its demand.

4.6. Enumeration algorithm for the LF

The LF for the SCC-VRP (11)-(20) has also been solved with a branch-and-cut algorithm.

The family of inequalities that we have used to reinforce LF is small. On the one hand no cover

inequalities can be derived. On the other hand, as mentioned, LF does not contain any family

of constraints of exponential size and the family of valid cuts (25) will be satisfied by any integer

solution. Still, for fractional LP solutions (x, z) they can be separated with the same procedures

presented in Section 4.3.1. This can be combined with the reinforcement of the initial LF with the

simple family of capacity-cut inequalities (27) associated with each carrier.

5. Computational experiments

In this section we describe the computational experiments we have run to analyze and compare

the formulations proposed in the previous section. The formulations have been implemented in

the Optimization Programming Language OPL and solved with a tailored branch-and-cut algorithm

described in Section 4, and based on the commercial software CPLEX 12.1. All experiments have

been run on a PC limited to 1 thread running at 2.6GHz and 60GB of RAM. In all cases the

computing time is limited to two hours.

We have run two types of experiments. The first ones focus on the effectiveness of the alternative

formulations we have proposed and, in particular, on the limits of the instance size that can be

solved. The second series of experiments aims at getting insights on the empirical performance of

the SCC-VRP in terms of the savings that can be obtained, the level of collaboration that can be

achieved and the potential benefits of the collaboration, proving insights for the ultimate goal of

this paper.

The section is organized as follows. First, the sets of benchmark instances used in the ex-

periments are described in Section 5.1. Section 5.2 discusses the effect of the different separation

strategies described in Section 4 and compares the numerical results obtained with the two proposed

15



formulations for one set of the benchmark instances. Section 5.3 gives the results of the LF on all

the sets of benchmark instances. Sections 5.4 and 5.5 analyze the characteristics of the solutions

provided by the SCC-VRP. First, the potential savings due to collaboration and other indicators

are discussed in Section 5.4. Then, in Section 5.5 we extend the SCC-VRP to consider a more

general model that allows us to evaluate the impact that transfer costs among depots have on the

savings that can be obtained.

5.1. Benchmark instances

We generated two sets of benchmark instances (S1, S2), where all instances have two carriers (A,

B). The first set (S1) consists of 12 test instances inspired by the instances proposed by Cordeau

[14] for the Multiple Depot Vehicle Routing Problem (MDVRP). The second set (S2) consists of

100 instances where customers are located in a square of 100 units of edge.

For the instances in S1 we selected 12 two-depot instances from [14] for the MDVRP. The

problem proposed here is new but close to the MDVRP as explained in Section 2. For that reason,

we inspired some of the instances to already existing MDVRP instances, with their distances and

capacities, and assigned one depot to each carrier. To obtain instances of reasonable size for

the SCC-VRP, we limited the number of customers to values between 18 and 30, and used the

corresponding data from the original instances. Then, each customer was declared shared with

probability 0.25, and we split in two halves the demand of each shared customer between the two

carriers, assigning one more unit of demand to the first carrier in case it is an odd number. Finally,

each non-shared customer was assigned to one carrier: the first half of the non-shared customers

to the first carrier, and the second half to the second carrier. The characteristics of the instances

are summarized in Table 1. Column Q gives the capacity of the vehicles. Column d(NA) gives the

total demand for carrier A and in brackets the quantity of this demand corresponding to shared

customers. Column d(NB) gives the same information relative to carrier B, and d(N) the overall

demand of all customers. Then N , NA and NB give the total number of customers, the number

of customers with demand for carrier A and the number of customers with demand for carrier B,

respectively. Finally, column Shared gives the number of shared customers.

S1 instance Q d(NA) d(NB) d(N) |N | (|NA|, |NB |) Shared
1 100 152 (42) 176 (39) 328 23 (12, 17) 6
2 100 201 (55) 196 (53) 397 29 (16, 19) 6
3 100 163 (15) 110 (13) 273 20 (14, 9) 3
4 100 176 (37) 136 (34) 312 23 (16, 14) 7
5 100 179 (53) 173 (52) 352 24 (16, 16) 8
6 200 61 (25) 213 (22) 274 21 (8, 17) 4
7 200 93 (50) 180 (48) 273 20 (10, 16) 6
8 200 189 (57) 210 (54) 399 30 (17, 19) 6
9 500 585 (113) 325 (111) 910 20 (14, 9) 3
10 500 524 (56) 386 (54) 910 20 (14, 10) 4
11 60 56 (20) 112 (20) 168 18 (8, 14) 4
12 60 40 (20) 136 (20) 176 20 (8, 17) 5

Table 1: Data summary of the S1 instances

The set of benchmark instances S2 consists of two subsets: subset S2R, which contains 50

instances where customers are randomly located in the above-mentioned 100×100 square; and

subset S2C , which contains 50 instances with clustered customers, where each instance has between
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3 and 5 clusters. Depots are located at two different extremes of the square, i.e. one is located

at position (0,0) and the other one at (100,100). In each subset we generated 10 instances for

each of the values of |N | ∈ {10, 15, 20, 25, 30}, where again each customer has a probability of 0.25

of being a shared customer. Capacity takes the following values: 100, 200, 300, 400 or 500, and

demands were generated accordingly. Demands were generated from integer uniform distributions

with different parameters, to generate groups of instances with smaller and higher demands. See

details in the Appendix, Tables 11 and 12. The meaning of the columns is the same as in Table

1, with an extra column Demand that contains the parameters of the uniform distribution that

were used to generate the demands in the given instance. Both sets of instances are available at

http://mrocariu.github.io/code/.

5.2. Preliminary results with benchmark set S1

Below we describe the results we obtained in some preliminary experiments that we run with VF

and LF under different settings, in order to set the best strategies for their corresponding solution

algorithms and to compare their efficiencies.

5.2.1. Numerical results for VF

We compared several strategies for the solution of VF, particularly for the separation of the

cover cuts in combination with the cuts generated by CPLEX. In all cases the initial formulation

includes the subset of constraints (5) associated with singletons, i.e. W = {i} with i ∈ Nr ∩ Ns,

r, s ∈ C, for all k ∈ Kr. The remaining constraints (5) are handled as lazy constraints, i.e., they

are only separated at the nodes where the LP relaxation is integer. As mentioned, in that case the

heuristic separation of Section 4.3.1 is exact.

First, we show the effect of CPLEX cuts on the VF. The left part of Table 2 compares the results

for different cut parameter values for CPLEX: cuts applied freely, cover cuts forbidden and all cuts

forbidden. All the experiments ended reaching the time limit. Under the column Obj the value of

the best feasible solution found is presented, except when no feasible solution was found, showed

by ”-”. In general, better feasible solutions are obtained when no CPLEX cuts are generated. On

average, the best objective values found when CPLEX applies cuts freely are +27.2 % worse, and

when only cover cuts are forbidden +19.3% worse. Therefore, for the following experiments with

the VF all CPLEX cuts are deactivated.

Second, we evaluated the effect of lifted cover cuts to decide how often the separation procedure

should be applied: only at the root node or also at some of the nodes of the enumeration tree.

Results are presented in the right part of Table 2, where the value of the best feasible solution

found is shown. All the experiments ended either reaching the time limit or reaching memory

requirements limits (indicated in the table with an M). When lifted cover cuts are applied every

500 nodes, memory problems arise and, in general, the solutions obtained are not better than

the ones obtained without lifted cover cuts. However, applying lifted cover cuts at the root node

usually improves the results obtained without applying lifted cover cuts, for all but one instance.

We conclude that the best performance of the VF is achieved when CPLEX cuts are deactivated and

when lifted cover cuts are separated only at the root node.

5.2.2. Numerical results for LF

We have also run some preliminary experiments with LF and the benchmark set S1 for comparing

different strategies for its solution. The strategies that we compared are the following:
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VF + CPLEX Cuts VF + Lifted Cover Cuts
Freely Cover forbidden All forbidden Root node Every 500

S1 Obj Obj Obj Obj Obj
1 650.82 421.37 416.97 368.15 397.46
2 - 858.48 578.22 555.56 M
3 279.45 - - 345.29 M
4 824.36 478.46 466.65 552.38 610.55
5 580.44 - 430.87 425.65 M
6 280.19 289.83 297.47 326.16 330.74
7 174.75 269.1 162.22 162.22 162.22
8 582.55 870.64 424.22 424.22 M
9 837.01 644.74 716.98 716.98 732.87
10 1040.29 670.01 727.81 727.81 598.24
11 524.87 522.93 507.10 507.1 509.06
12 839.02 957.08 820.92 820.92 820.92

+27.2 % +19.3 % - +1.0% +2.8%

Table 2: Solutions for the VF with different CPLEX cut parameters and different frequencies of the lifted cover cuts
separation

ST1 LF with no added cuts and default parameters for CPLEX (block of columns under LF + CPLEX

Default).

ST2 LF with no added cuts and default parameters for CPLEX except for the selection of the

branching variables. Branching first on fractional assignment variables zirs is enhanced by

assigning them a higher priority (block of columns under LF + Branching prio on z).

ST3 LF reinforced initially with the simple family of capacity-cut inequalities (27) associated with

each carrier and with default parameters for CPLEX (block of columns under LF + capacity

cuts (27)).

ST4 LF enhanced with separation of connectivity cuts (4.3.1) for fractional solutions and default

parameters for CPLEX (block of columns under LF + connectivity cuts (25)).

A summary of the obtained results is presented in Table 3. Each block consists of three columns.

Columns under Obj give the value of the best solution at termination, columns under %Gap the

percentage gap between the values of the best solution found and the lower bound at termination,

and columns under T(s) the computing time. The time in seconds needed to optimally solve

the instances or TL when the time limit was reached before proving optimality. Sometimes the

executions terminated because of insufficient memory. Such cases are identified with an (M) after

the computing time.

Strategies ST1, ST2, and ST3 find an optimal solution for six of the benchmark instances, but

fail to prove optimality of the best solution found within the maximum computing time for the

remaining six instances. In all three strategies the instances solved to optimality are the same.

Strategy ST4 proves the optimality of the best solution found for four of the instances. For the

remaining eight instances it terminates without an optimal solution, because of insufficient memory

with three instances, and because of the time limit with the remaining five instances. No substantial

differences can be appreciated among the first three strategies: ST2 and ST3 seem to be a little

faster for the instances solved to optimality, although the gaps for the unsolved instances seem to

be a little better for ST1.
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LF + CPLEX Default LF + Branching prio on z LF + capacity cuts (27) LF + connectivity cuts (25)
Obj %Gap T(s) Obj %Gap T(s) Obj %Gap T(s) Obj %Gap T(s)

1 273.88 5.46 TL 274.05 8.58 TL 275.08 7.22 TL 273.77 8.61 TL (M)
2 324.19 7.28 TL 323.76 6.51 TL 322.01 6.56 TL 498.01 41.79 7133 (M)
3 233.02 0.98 TL 233.63 5.19 TL 233.02 6.65 TL 292.10 30.62 4706 (M)
4 322.32 3.70 TL 322.30 9.90 TL 322.51 8.81 TL 322.51 12.72 TL (M)
5 328.02 7.01 TL 326.94 7.12 TL 322.79 3.91 TL 323.77 12.04 TL (M)
6 230.08 0.00 134 230.08 0.00 126 230.08 0.00 92 230.08 0.00 278.8 (M)
7 156.93 0.00 120 156.93 0.00 103 156.93 0.00 481 156.93 0.00 1279 (M)
8 237.83 0.00 2472 237.83 0.00 1718 237.83 0.00 690 359.91 37.29 TL (M)
9 392.06 0.00 60 392.06 0.00 46 392.06 0.00 54 392.06 0.00 89 (M)
10 455.71 0.00 90 455.71 0.00 110 455.71 0.00 116 455.71 4.77 TL (M)
11 486.90 0.00 727 486.90 0.00 726 486.90 0.00 712 486.90 0.00 1341 (M)
12 750.68 13.00 TL 749.84 12.26 TL 750.52 8.40 TL 751.08 14.57 TL (M)

Table 3: Solutions for different strategies with the LF

The results obtained with all tested strategies indicate that effectiveness of the LF does not

seem to be affected by the inclusion of valid inequalities or tailored cuts. This behavior is analogous

to that of other load-based formulations for similar problems studied in recent papers (see [6]).

5.2.3. VF versus LF

Next we compare the results obtained with VF against the ones obtained with LF for the set

of instances S1. For this analysis we compare the results produced by VF when CPLEX cuts are

deactivated and lifted cover cuts are separated only at the root node, and those produced by LF

with strategy ST1. The comparison is summarized in Table 4. Columns under Obj give the values

of the best feasible solution found in each case. Columns rA, rB indicate the number of vehicles

needed by each carrier in the optimal/best-known solution. Columns under T (s) give the computing

times (in seconds). These are the times needed to optimally solve the instances or TL when the

time limit was reached before proving optimality.

VF LF
Obj rA rB %Gap T (s) Obj rA rB %Gap T (s)

1 337.45 2 2 53.44 TL 273.88 2 2 5.46 TL
2 518.13 2 2 66.05 TL 324.19 2 2 7.28 TL
3 316.78 2 2 55.11 TL 233.28 2 1 0.98 TL
4 563.58 2 2 68.00 TL 322.3 2 2 3.7 TL
5 468.54 2 2 60.60 TL 328.02 2 2 7.01 TL
6 259.87 1 2 32.68 TL 230.08 1 2 0 134.11
7 180.56 1 1 35.81 TL 156.93 1 1 0 120.1
8 536.03 2 2 65.82 TL 237.83 1 1 0 2472.56
9 515.48 2 2 54.12 TL 392.06 1 1 0 59.9
10 685.95 2 1 65.05 TL 455.71 1 1 0 90.19
11 494.6 1 2 20.53 TL 486.9 1 2 0 726.98
12 882.65 1 2 56.54 TL 750.6 1 2 13.00 TL

Table 4: Solutions for the VF and the LF for instances S1.

As it can be seen, the results of the LF clearly outperform those of the VF. The LF is able to

provide optimal solutions for 6 of the S1 instances, with maximum percentage optimality gaps of

13%. On the contrary, despite the efforts to reinforce the formulation and to separate violated cuts,

none of the 12 tested instances could be optimally solved with the VF within the 2 hours time limit.

Furthermore, the percentage optimality gaps and the percentage deviations of the VF solution with

respect to the LF solution are quite large. Note that the smallest percentage gap at termination of
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the solutions produced by VF is 20%. We observe that, quite consistently, solutions proven to be

optimal or with small percentage gaps involve a small number of routes for the carriers.

The obtained numerical results confirm empirically that the smaller number of binary variables

of the LF determines its effectiveness in comparison to the VF. Therefore, all the experiments that

we report in the following were run with the LF with strategy ST1.

5.3. LF with S2 instance set

Here we analyze the results of the LF for the 100 instances of set S2, which are summarized

in Table 5. The table contains two blocks of columns, one for the random instances of S2R and

another one for the clustered instances of S2C . Within each block, each row gives aggregate or

average results for the 10 instances of the same size in the block. The sizes of the instances are

given in the first column (labeled |N |). Entries in columns #Opt give the number of instances

in the group optimally solved with the formulation. Entries in columns Gap(%) give the average

percentage optimality gaps. The last column in each block (T(s)) shows the average computing

times in seconds.

S2R S2C
Random Clustered

|N | #Opt %Gap T(s) #Opt %Gap T(s)
10 10 0.00 12.11 10 0.00 5.67
15 10 0.00 412.63 9 0.23 807.70
20 5 2.95 3682.59 6 3.24 3546.46
25 4 5.94 4388.68 3 9.79 5112.67
30 1 10.69 6646.46 0 12.51 7200.00

Table 5: Summary of solutions for set S2

As it can be seen, all instances but one with up to 15 customers were optimally solved, for both

the S2R and the S2C classes. A provable optimal solution was also found for the 5 S2R instances

with 20 customers and 6 out of the 10 S2C instances of the same size. As expected, the number

of optimally solved instances decreases as their size increases. In particular, only one instance with

30 customers for the class S2R is optimally solved. Nevertheless, for the instances that were not

optimally solved, the percentage optimality gaps are relatively small and, on average 10.69% for the

30 customers instances of S2R and 12.51% for the S2C instances of the same size. In general, the

random instances seem to be somehow less hard to solve than the clustered instances, as the average

computing times and percentage optimality gaps are smaller. In order to obtain better managerial

insights of the potential savings produced by the proposed model, in the following sections we

further discuss this and other related issues.

5.4. Savings due to the collaboration

In this section we compare the solutions produced by the LF with the solutions of the same

instances when no collaboration exists and each carrier serves all its customers independently from

the other carriers. The optimal solution for each individual carrier is obtained by finding the optimal

routes that visit all its customers. The cost of the solutions in the setting without collaboration is

obtained summing up the individual costs of all the carriers. All VRPs without collaboration were

optimally solved both for instances in S1 and S2. Even if for each collaborative instance, we need
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to solve two individual instances, one for each carrier, individual problems are easier to solve as

they require less decisions, and also their size decreases considerably.

The two sets of instances, S1 and S2, are analyzed separately. Table 6 presents, for the 12

instances of S1, the results for the independent carriers (under Without collaboration (A,B)) and

the results for the SCC-VRP (under Collaboration). ObjA, ObjB and Obj are the costs of the

routes performed by carriers A and B in the solution without collaboration and of the collaborative

solution, respectively. rA and rB give the number of routes and “- %” the savings. On some

instances, the LF does not obtain optimal solutions, as previously shown in Table 4. Still, the

obtained results allow us to appreciate the savings that could be obtained on these instances via

collaboration, given that the savings obtained with suboptimal solutions are lower bounds of the

actual savings that can be obtained with optimal solutions. Thus, the value of the best-known

solution at termination has been used for the comparison, also in the cases where this solution was

not proven to be optimal. The results of Table 6 show that the obtained cost savings range from a

minimum of 6.5% to a maximum of 25.2%. The average cost reduction is 13.9%. Furthermore, in

terms of number of vehicles, the collaborative solution allows us to reduce the fleet size in several

instances.

S1 Without collaboration (A,B) Collaboration Savings
Instance ObjA ObjB ObjA + ObjB rA rB Obj rA rB - % -%A -%B

1 171.38 168.02 339.4 2 2 273.88 2 2 23.9 35.5 2.9
2 173.37 179.8 353.17 3 2 324.19 2 2 8.9 17.9 2.7
3 158.56 113.45 272.01 2 2 233.02 2 1 16.7 1.8 31.6
4 194.97 173.14 368.11 2 2 322.3 2 2 14.2 14.5 10.8
5 171.94 191.66 363.6 2 2 328.02 2 2 10.8 10.3 13.3
6 107.48 145.87 253.35 1 2 230.08 1 2 10.1 17.6 2.9
7 65.8 104.7 170.5 1 1 156.93 1 1 8.6 0 12.9
8 118.65 161.41 280.06 1 2 237.83 1 1 17.8 1.6 25
9 296.37 194.45 490.82 2 1 392.06 1 1 25.2 33.3 0
10 293.45 230.38 523.83 2 1 455.71 1 1 14.9 18.1 6.5
11 203.49 329.21 532.7 1 2 486.9 1 2 9.4 22.4 0
12 243.27 556.01 799.28 1 3 750.68 1 2 6.5 0 8.9

Table 6: Solutions for set S1 without and with collaboration

The set of instances S2 was similarly solved under the same settings. Table 7 summarizes the

percentage savings obtained in each group of instances. Note that this is again a lower bound on

the savings, even if some collaborative solutions were not proven to be optimal. The number of

optimal solutions obtained in each set of instances is under column #Opt. Column “-%” gives the

average cost savings in the set of instances.

Average cost savings range from 9.8 to 18.3 % in the random set S2R and from 2.5 to 17.8 %

in the clustered set S2C . Lower savings can be observed in the clustered instances of smaller sizes.

This is due to the fact that collaboration does not bring significant benefits in clustered instances

with few shared customers. When clusters have exclusive customers of both carriers, transferring

shared customers will not avoid that both carriers visit those clusters. Higher savings are expected

in instances of larger size (25 and 30). Unfortunately, we can only provide a lower bound on savings

for these sizes since optimal solutions are unknown. In any case, except for the small clustered

instances, savings are larger than 9.8 %.

Going further in the analysis, one question that arises is what costs and revenues are for each
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of the carriers in the collaborative solutions. Our results provide insights on this issue, even if a

sophisticated analysis is beyond the scope of this paper where we highlight the potential benefits of

the simplest form of collaboration among carriers. As mentioned, on average, in the collaborative

solution there is a reduction of the overall routing costs. Hence, it is possible to split the overall

savings in such a way that both carriers individually experience cost reductions. In fact, columns

“-%A” and “-%B” of Tables 6 and 7 indicate that in each group of instances both carriers already

experience savings, on average. However, in some cases individual savings are not balanced and do

not reflect the value of transferred demand. Moreover, in some particular instances it is possible

that a given carrier experiences an increase of its routing costs. In the following subsection 5.4.1

we discuss this situation for a particular instance.

S2R Random S2C Clustered
N #Opt -% -% A -% B #Opt -% -%A -%B

10 10 13.4 7.9 13.7 10 2.5 2.5 2.5
15 10 12.0 12.6 6.4 9 7.3 1.2 11.1
20 5 18.3 19.2 11 6 17.8 8.3 18.6
25 4 9.8 8.4 10.9 3 11.1 6.1 12.6
30 1 15 20.5 8.1 0 11.4 14 7.5

Table 7: Average cost savings in the set of instances S2 with collaboration. Individual savings need to be computed

5.4.1. Cost compensation

In this section we discuss the results for one particular instance to get better insights on the

current results and possible compensation mechanisms.

For the analysis we selected instance 1001 of the set S2R (see Table 11). Figure 2 shows the

instance, which has four shared customers depicted in green, two exclusive customers of carrier A in

red and five exclusive customers of carrier B in blue. The obtained solutions with collaboration are

plotted on the left and the individual solutions without collaboration on the right. In the individual

solution both carriers visit all the shared customers. Red carrier (A) needs one route to visit all

customers, and blue carrier (B) uses two different routes. Instead, in the collaborative solution

three out of the four shared customers are transferred from B to A. This makes carrier A build

a new route because, due to capacity reasons, it cannot incorporate the additional demand in one

single route. Instead, carrier B can now serve all its assigned demand with only 1 route. In terms

of costs, the overall cost is reduced by 25.65 %. However, looking at individual costs, carrier A

suffers an increase of 22.9 % and only carrier B has a decrease of 44.52 %. These costs reflect the

transfer of shared customers from carrier B to carrier A. Table 8 summarizes the features of the

solution. Columns DemAB and DemBA give the fraction of the overall demand corresponding to

shared customers transferred from A to B and from B to A, respectively. Unlike what happens in

most cases, in this particular instance, carrier A experiences a considerable increase of cost.

ObjA ObjB Obj rA rB rT DemAB DemBA

Without collaboration 249.71 448.77 698.48 1 2 3 - -
Collaboration 306.89 248.99 555.89 2 1 3 0 0.8

Variation +22.90 -44.52 - 25.65 +1 -1 = - -

Table 8: Solution data for instance 1001 with and without collaboration

With the above information, a compensating mechanism should be adopted, based on the shared
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Figure 2: SCC-VRP Solution 1001 with and without collaboration

customers transferred and the final costs of the collaborative solution, that can be attractive for both

carriers. For instance, constraints could be added to the formulation to guarantee that no carrier

performs routes with greater costs than in the case without collaboration. Such an alternative was

proposed in [22] for the collaboration uncapacitated arc routing problem. Other possibilities could

take into account the proportion of shared demand of each carrier transferred to the other carrier.

In its simplest form, the overall saving, Sav, would be split among carriers A and B in quantities

SavA and SavB , respectively, such that Sav = SavA +SavB , and SavA/DemBA = SavB/DemAB ,

where DemAB (resp DemBA) denote the fraction of shared demand of carrier A (resp. B) which

has been transferred to carrier B (resp. A). Note that in the case that one carrier does not serve

any transferred demand from the other (i.e. DemAB or DemBA are zero), the previous formula is

not valid. For this case we suggest that the carrier that does not serve any transferred demand gets

a smaller portion of the savings compared to the one serving the transferred demand. For instance,

if DemAB = 0 and DemBA 6= 0, then SavB = kSavA with k ∈ [0, 1). This guarantees that the

company serving the transferred demand (A) gets a bigger portion of the savings, but the other

company (B) receives a part of the savings too.

5.4.2. Sharing percentage

In this section we describe the outcome of a specific experiment we performed in order to study

the impact that the percentage of shared customers has on the potential savings. For the experiment,

one test instance with 15 shared customers was specifically created. Then, the same instance was

solved under different sharing assumptions. First, the instance was solved without collaboration.

Then, the instance was solved under all intermediate levels of collaboration, i.e., assuming one,

two, three, ... customers are shared. Finally, the instance was also solved under total collaboration

circumstances, i.e. carriers share all customers.

In the above experiment, some of the instances could not be optimally solved within the allowed

computing time of two hours. This happened for the cases with a smaller percentage of shared

customers. Note that the size of the instances increases as the number of customers that cannot be

shared increases, as such customers must be represented as two co-located non-shared customers,

each of them with demand for one carrier.
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Figure 3 gives the objective function values for the different percentages of shared customers.

In the cases where optimal solutions could not be obtained, best-known results were used. The

obtained results clearly indicate that, as expected, higher savings can be obtained as the percentage

of shared customers increases.

Figure 3: Objective function values for different percentage of shared customers. Instance with 15 clustered customers

5.5. The cost of demand transfer

In the previous section we focused on the potential savings achieved from carriers collaboration.

Nevertheless, it is clear that collaboration may also imply some logistics costs. For instance, when

the products distributed by the different carriers are not the same, round trips connecting the depots

of the carriers may be needed to make the necessary amount of transferred demand available to the

serving carrier. Note, however, that these costs do not always apply. For instance, when the depots

of the carriers are co-located, as it is the case when carriers operate from the same consolidation

center.

Below we extend the LF to include the transfer cost among carriers when they arise. We assume

that at most one round-trip is needed to connect each pair of depots (i.e., sufficiently large vehicles

are used). Thus, we consider a fixed set-up cost (F ) for each round-trip between a pair of depots.

Then, we define the following set of binary variables to determine whether or not a trip takes place

between a given pair of depots. Let yrs, r, s ∈ C, s > r, be a binary variable that takes value 1

if and only if some demand of carrier r is served by carrier s or vice versa. Let vC denote the

overall number of round-trips between depots. Then, in order to account for the transfer costs, the

objective function is extended to:

min
∑
r∈C

∑
(i,j)∈A

cijx
r
ij + FvC . (32)

In addition, the following sets of constraints must be added to relate the demand allocation variables
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to the new transfer variables:

zirs ≤ yrs i ∈ N, r, s ∈ Ci, s > r (33)

zisr ≤ yrs i ∈ N, r, s ∈ Ci, s > r (34)

vC =
∑
r∈C

∑
s∈C,s>r

yrs (35)

yrs binary, r, s ∈ C , s > r (36)

vC integer. (37)

Constraints (33)–(34) relate the z and y variables, by activating round-trip connections between

pairs of depots when there is a demand transfer between the corresponding carriers. Constraint (35)

simply counts the overall number of round-trips. The domains of the variables, and binary/integer

conditions, are given in (36)–(37).

We present now the results obtained to analyze the tradeoff between transfer costs and potential

savings. In Tables 9 and 10 we compare the results of three experiments, one for each value to

F ∈ {0, 20, 50}. We solve the collaborative problem that includes transfer costs and the problem

without collaboration. Column #Opt shows the number of instances solved to optimality in the

collaborative case. Column #Col shows the number of instances where the optimal (or best-known)

collaborative solution allows a cost reduction with respect to the solution without collaboration.

The saving is shown under “-%”. As expected, the results in Tables 9 and 10 indicate that almost

in all cases the solution is exactly the same when the transfer cost is small (F = 20). In such cases

the only difference is in the value of the objective function, which increases by 20 units (the cost

of the round-trip between the two depots). For F = 20 there are, however, some cases where the

savings due to collaboration do not compensate the increase of 20 units due to the round-trip and

the solution without collaboration is best. Of course, this behavior becomes more frequent as the

transfer cost increases, as can be seen in the block of columns with F = 50. Both tables also show

the average computing times in seconds. Note that these are comparable with the ones obtained

without transfer cost presented in Table 5.

Transfer cost = 0 Transfer cost = 20 Transfer cost = 50
N #Opt #Col -% # Opt #Col T(s) -% #Opt #Col T(s) -%
10 10 10 13.4 10 10 20.99 9.1 10 7 14.19 4.6
15 10 10 12.0 10 9 720.92 8.6 10 7 414.52 4.4
20 5 10 18.3 6 10 3540.08 14.8 5 10 3723.96 10.0
25 4 10 9.8 4 10 4385.97 7.4 4 7 4405.88 4.1
30 1 10 15 2 9 6375.33 12.8 2 9 6485.68 7.9

Table 9: Comparison of solutions with and without collaboration with transfer cost 0, 20 and 50 in S2R.Colaboration
index should be revised
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Transfer cost = 0 Transfer cost = 20 Transfer cost = 50
N #Opt #Col -% # Opt #Col T(s) -% #Opt #Col T(s) -%
10 10 10 2.5 10 1 6.13 0.4 10 0 4.34 0.0
15 9 10 7.3 9 5 954.75 4.6 9 4 938.62 2.5
20 6 10 17.8 5 9 3729.4 13.8 6 7 3668.65 9
25 3 10 11.1 3 10 5081.65 7.8 3 4 5097.87 3.4
30 0 10 11.4 0 10 7200 8.3 1 8 7018.83 5.7

Table 10: Comparison of solutions with and without collaboration with transfer cost 0, 20 and 50 in S2C . Colabo-
ration index should be revised

6. Conclusions

In this paper the Shared Customer Collaboration Vehicle Routing Problem (SCC-VRP), a new

model for horizontal collaboration in the framework of last-mile deliveries, was introduced. The

main goal of the paper is to assess the benefits of a collaborative approach to freight distribution

in the context of urban environments.

From the methodological point of view, it was shown that for the new collaborative model a

load-based formulation is more effective than a vehicle-based formulation. The minimum cost that

can be achieved through collaboration, obtained through the optimal solution of the SCC-VRP,

was compared to the sum of the costs of the carriers in case they work independently from each

other, that is without collaboration. The solution without collaboration was obtained by solving

a classical Vehicle Routing Problem for each of the carriers. Whereas the saving factor due to

collaboration may be as large as the number of carriers, the saving computed on a set of benchmark

instances solved to optimality depends on the number of shared customers and on their location

and ranges from 6.5 % to 25.2 %.

The proposed model can be used to assess the potential benefits of collaboration among inde-

pendent carriers that may, thanks to the computed benefits, be motivated to form a coalition and

put in place a collaborative scheme. It may also be used to optimize the operations of an already

formed coalition. A collaborative scheme among carriers may be of crucial importance in a compet-

itive environment, especially when carriers are of small or medium size. With this paper we intend

to stimulate research on collaborative schemes that, besides making carriers more competitive, can

contribute to reduce the freight distribution costs thanks to an overall reduced distance travelled,

a higher average load, and a smaller number of used vehicles. Such reduction of operational costs

in turn implies a lower level of environmental impact of freight distribution.

Several research directions remain to be explored. Heuristics should be designed for the pro-

posed SCC-VRP. Moreover, extensions of the proposed model include accurate modeling of the

costs of transferring goods between depots, location decisions for the depots or for a joint consoli-

dation center, a multi-period setting. A particularly important and challenging research direction

concerns the design and analysis of compensation schemes that should guarantee that each carrier

has benefits from the collaboration and be fair to all carriers.
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7. Appendix

7.1. Instance set S2R

Instance R/C Q Demand d(NA) d(NB) d(N) |N | (|NA|, |NB |) Shared
1001 R 100 U∼ [5, 20] 76(59) 147(65) 223 10 (5, 9) 4
1002 R 200 U∼ [5, 20] 42(19) 102(24) 144 10 (4, 8) 2
1003 R 300 U∼ [25, 40] 90(45) 127(47) 217 10 (6, 7) 3
1004 R 400 U∼ [25, 40] 104(51) 91(43) 195 10 (7, 6) 3
1005 R 500 U∼ [25, 50] 201(61) 178(61) 379 10 (6, 6) 2
1006 R 100 U∼ [5, 20] 154(53) 72(53) 226 15 (13, 6) 4
1007 R 200 U∼ [5, 20] 123(62) 108(30) 231 15 (9, 10) 4
1008 R 300 U∼ [25, 40] 149(64) 159(50) 308 15 (8, 10) 3
1009 R 400 U∼ [25, 40] 144(30) 148(37) 292 15 (9, 8) 2
1010 R 500 U∼ [25, 50] 162(35) 332(31) 494 15 (5, 11) 1
1011 R 100 U∼ [5, 20] 139(46) 153(48) 292 20 (12, 12) 4
1012 R 200 U∼ [5, 20] 173(73) 150(58) 323 20 (13, 13) 6
1013 R 300 U∼ [25, 40] 188(98) 234(102) 422 20 (12, 14) 6
1014 R 400 U∼ [25, 40] 192(111) 277(126) 469 20 (11, 16) 7
1015 R 500 U∼ [25, 50] 451(238) 415(238) 866 20 (15, 13) 8
1016 R 100 U∼ [5, 20] 208(80) 202(79) 410 25 (16, 15) 6
1017 R 200 U∼ [5, 20] 223(31) 160(47) 383 25 (16, 12) 3
1018 R 300 U∼ [25, 40] 253(70) 247(77) 500 25 (14, 15) 4
1019 R 400 U∼ [25, 40] 263(82) 301(75) 564 25 (13, 16) 4
1020 R 500 U∼ [25, 50] 551(42) 339(22) 890 25 (16, 10) 1
1021 R 100 U∼ [5, 20] 285(120) 176(100) 461 30 (24, 15) 9
1022 R 200 U∼ [5, 20] 287(134) 261(168) 548 30 (22, 19) 11
1023 R 300 U∼ [25, 40] 383(65) 225(70) 608 30 (21, 13) 4
1024 R 400 U∼ [25, 40] 375(177) 369(161) 744 30 (20, 19) 9
1025 R 500 U∼ [25, 50] 674(281) 573(273) 1247 30 (19, 19) 8
1026 R 100 U∼ [5, 35] 151(91) 121(57) 272 10 (7, 7) 4
1027 R 200 U∼ [5, 35] 66(37) 138(44) 204 10 (4, 8) 2
1028 R 300 U∼ [25, 50] 222(95) 296(128) 518 10 (6, 7) 3
1029 R 400 U∼ [25, 50] 230(116) 238(85) 468 10 (6, 7) 3
1030 R 500 U∼ [25, 75] 197(156) 401(191) 598 10 (5, 9) 4
1031 R 100 U∼ [5, 35] 149(14) 117(17) 266 15 (9, 7) 1
1032 R 200 U∼ [5, 35] 103(40) 211(36) 314 15 (6, 11) 2
1033 R 300 U∼ [25, 50] 349(195) 404(179) 753 15 (9, 11) 5
1034 R 400 U∼ [25, 50] 390(59) 247(63) 637 15 (10, 7) 2
1035 R 500 U∼ [25, 75] 601(189) 398(136) 999 15 (10, 8) 3
1036 R 100 U∼ [5, 35] 235(61) 243(66) 478 20 (12, 11) 3
1037 R 200 U∼ [5, 35] 268(96) 217(81) 485 20 (14, 11) 5
1038 R 300 U∼ [25, 50] 510(201) 520(239) 1030 20 (13, 12) 5
1039 R 400 U∼ [25, 50] 488(173) 448(160) 936 20 (12, 12) 4
1040 R 500 U∼ [25, 75] 611(187) 567(247) 1178 20 (13, 11) 4
1041 R 100 U∼ [5, 35] 343(64) 169(37) 512 25 (16, 11) 2
1042 R 200 U∼ [5, 35] 298(88) 340(127) 638 25 (16, 14) 5
1043 R 300 U∼ [25, 50] 362(81) 704(70) 1066 25 (9, 18) 2
1044 R 400 U∼ [25, 50] 662(190) 482(152) 1144 25 (16, 14) 5
1045 R 500 U∼ [25, 75] 773(298) 745(272) 1518 25 (16, 15) 6
1046 R 100 U∼ [5, 35] 418(238) 463(222) 881 30 (20, 20) 10
1047 R 200 U∼ [5, 35] 313(108) 352(105) 665 30 (18, 17) 5
1048 R 300 U∼ [25, 50] 691(360) 789(355) 1480 30 (18, 22) 10
1049 R 400 U∼ [25, 50] 565(343) 855(374) 1420 30 (16, 23) 9
1050 R 500 U∼ [25, 75] 1095(432) 892(455) 1987 30 (22, 17) 9

Table 11: Data summary of set S2R
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7.2. Instance set S2C

Instance R/C Q Demand d(NA) d(NB) d(N) |N | (|NA|, |NB |) Shared
1051 C 100 U∼ [5, 20] 97(44) 85(38) 182 10 (7, 6) 3
1052 C 200 U∼ [5, 20] 45(27) 126(45) 171 10 (5, 8) 3
1053 C 300 U∼ [25, 40] 79(52) 127(37) 206 10 (5, 8) 3
1054 C 400 U∼ [25, 40] 110(22) 72(16) 182 10 (6, 5) 1
1055 C 500 U∼ [25, 50] 174(50) 181(56) 355 10 (6, 6) 2
1056 C 100 U∼ [5, 20] 124(40) 134(47) 258 15 (9, 9) 3
1057 C 200 U∼ [5, 20] 114(73) 143(68) 257 15 (9, 12) 6
1058 C 300 U∼ [25, 40] 138(54) 183(62) 321 15 (9, 9) 3
1059 C 400 U∼ [25, 40] 196(40) 116(36) 312 15 (11, 6) 2
1060 C 500 U∼ [25, 50] 295(115) 353(157) 648 15 (9, 10) 4
1061 C 100 U∼ [5, 20] 73(22) 181(29) 254 20 (7, 15) 2
1062 C 200 U∼ [5, 20] 114(55) 201(92) 315 20 (11, 15) 6
1063 C 300 U∼ [25, 40] 201(83) 211(76) 412 20 (12, 13) 5
1064 C 400 U∼ [25, 40] 233(82) 176(86) 409 20 (14, 11) 5
1065 C 500 U∼ [25, 50] 314(155) 479(142) 793 20 (10, 15) 5
1066 C 100 U∼ [5, 20] 193(86) 236(103) 429 25 (16, 16) 7
1067 C 200 U∼ [5, 20] 247(87) 174(111) 421 25 (19, 14) 8
1068 C 300 U∼ [25, 40] 236(78) 288(88) 524 25 (14, 16) 5
1069 C 400 U∼ [25, 40] 297(144) 254(141) 551 25 (18, 15) 8
1070 C 500 U∼ [25, 50] 572(158) 355(113) 927 25 (17, 13) 5
1071 C 100 U∼ [5, 20] 268(54) 158(45) 426 30 (21, 13) 4
1072 C 200 U∼ [5, 20] 301(106) 176(106) 477 30 (25, 14) 9
1073 C 300 U∼ [25, 40] 348(123) 264(114) 612 30 (21, 16) 7
1074 C 400 U∼ [25, 40] 490(230) 298(210) 788 30 (25, 17) 12
1075 C 500 U∼ [25, 50] 704(277) 587(261) 1291 30 (20, 18) 8
1076 C 100 U∼ [5, 35] 20(0) 224(0) 244 10 (1, 9) 0
1077 C 200 U∼ [5, 35] 109(25) 107(32) 216 10 (7, 5) 2
1078 C 300 U∼ [25, 50] 245(154) 281(144) 526 10 (6, 8) 4
1079 C 400 U∼ [25, 50] 315(91) 147(118) 462 10 (9, 4) 3
1080 C 500 U∼ [25, 75] 289(42) 271(53) 560 10 (6, 5) 1
1081 C 100 U∼ [5, 35] 180(54) 204(20) 384 15 (7, 10) 2
1082 C 200 U∼ [5, 35] 119(8) 216(20) 335 15 (7, 9) 1
1083 C 300 U∼ [25, 50] 356(115) 309(120) 665 15 (10, 8) 3
1084 C 400 U∼ [25, 50] 356(40) 246(30) 602 15 (9, 7) 1
1085 C 500 U∼ [25, 75] 390(96) 468(113) 858 15 (7, 10) 2
1086 C 100 U∼ [5, 35] 278(78) 220(73) 498 20 (14, 9) 3
1087 C 200 U∼ [5, 35] 285(107) 286(108) 571 20 (12, 13) 5
1088 C 300 U∼ [25, 50] 566(121) 321(112) 887 20 (14, 9) 3
1089 C 400 U∼ [25, 50] 440(139) 432(167) 872 20 (12, 12) 4
1090 C 500 U∼ [25, 75] 652(159) 577(189) 1229 20 (13, 11) 4
1091 C 100 U∼ [5, 35] 404(172) 236(148) 640 25 (19, 15) 9
1092 C 200 U∼ [5, 35] 246(77) 360(90) 606 25 (14, 15) 4
1093 C 300 U∼ [25, 50] 575(307) 685(310) 1260 25 (15, 18) 8
1094 C 400 U∼ [25, 50] 542(133) 562(125) 1104 25 (14, 15) 4
1095 C 500 U∼ [25, 75] 918(281) 624(277) 1542 25 (19, 11) 5
1096 C 100 U∼ [5, 35] 453(116) 332(106) 785 30 (20, 16) 6
1097 C 200 U∼ [5, 35] 367(174) 385(175) 752 30 (19, 21) 10
1098 C 300 U∼ [25, 50] 578(343) 904(390) 1482 30 (15, 24) 9
1099 C 400 U∼ [25, 50] 626(314) 756(310) 1382 30 (18, 21) 9
1100 C 500 U∼ [25, 75] 936(453) 972(475) 1908 30 (20, 19) 9

Table 12: Data summary of set S2C
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