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Abstract

Identifying critical nodes in complex networks has become an important
task across a variety of application domains. The Critical Node Detec-
tion Problem (CNDP) is an optimization problem that aims to minimize
pairwise connectivity in a graph by removing a subset of K nodes. De-
spite the CNDP being recognized as a bi-objective problem, until now only
single-objective problem formulations have been proposed. In this paper we
propose a bi-objective version of the problem that aims to maximize the
number of connected components in a graph while simultaneously minimiz-
ing the variance of their cardinalities by removing a subset of K nodes. We
prove that our bi-objective formulation is distinct from the CNDP, despite
their common motivation. Finally, we give a brief comparison of six common
multi-objective evolutionary algorithms using sixteen common benchmark
problem instances, including for the node-weighted CNDP. We find that of
the examined algorithms, NSGAII generally produces the most desirable
approximation fronts.

Keywords: Networks, critical node detection, multi-objective,
evolutionary algorithms

1. Introduction

The problem of identifying critical nodes in a network has recently at-
tracted a significant amount of research attention. These critical nodes may
be used to promote or mitigate a diffusive process spreading on the net-
work, or to identify critical junctions through which the process spreads.
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A number of different definitions of a critical node have been proposed due
to the variety of application domains where discovering such nodes is im-
portant. For instance, to define junctions in cell-signaling or protein-protein
networks [1], to identify highly influential individuals [2], to determine smart
grid vulnerability [3], to discover key points in brain functionality [4], and to
determine individuals to target for vaccination or quarantine when mitigat-
ing disease spread [5, 6, 7]. A number of other applications in the military
domain have also been identified [8].

In this paper we are motivated primarily by the Critical Node Detection
Problem (CNDP), as described in [9], where it was also proven to be NP-
hard. Given a network G = (V,E) of |V | = n nodes/vertices and |E| = m
links/edges, the goal of the problem is to minimize pairwise connectivity
in G by removing no more than K nodes. Several variants of the CNDP
have been investigated. In [10], an integer linear programming model with a
non-polynomial number of constraints was given and branch-and-cut algo-
rithms were proposed. The particular case where G is a tree structure was
shown to be NP-complete for non-unit edge costs [11]. A polynomial-time
dynamic programming algorithm with worst-case complexity O(n3K2) for
solving the unit edge cost problem in graphs was proposed in [12]. Recently,
a reformulation of the CNDP was proposed in [13, 14] in order to reduce
the number of constraints from Θ(n3) to Θ(n2). Approximation algorithms
based on β-edge disruptors were given in [15, 16] along with an alternative
proof for the NP-hardness of the CNDP. Bicriteria randomized rounding
approaches based on an LP-relaxation have been proposed in [6, 17]. Simu-
lated annealing and population-based incremental learning algorithms with-
out approximation bounds were given in [18]. Other recent investigations
include [19], which provides multiple greedy constructive heuristics and [20]
that examines two local search metaheuristics. A variable neighborhood
search was proposed in [21] that outperformed the population-based results
of [18].

Using the network data of [13] and [18], [22] demonstrated the effective-
ness of two newly proposed heuristics for the CNDP (one heuristic was for
the cardinality constrained variant of the problem). Despite the reformu-
lation of [13, 14], traditional mathematical programming techniques have
not yet been shown feasible for networks containing hundreds of thousands
or millions of vertices. However, a fast greedy algorithm has been recently
presented for approximating solutions for such very large scale networks
[23]. All of the aforementioned algorithms considered the CNDP as a single-
objective problem.

Critical node detection is related to other problems of graph fragmenta-
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tion and network interdiction. Graph fragmentation is concerned with the
splitting of a given graph according to some set of criteria by removing edges
and/or vertices. Some fragmentation problems having the most in common
with critical node detection are the minimum contamination problem [24]
and the sum-of-squares partitioning problem [25, 7]. Other relevant exam-
ples include the minimum multi-cut problem [26], k-way vertex cut [27],
classical multi-way cut, multi-cut and k-cut problems [28, 29], in addition
to the sparsest cut problem [30]. Further information pertaining to graph
fragmentation problems can be found in [31, 32].

Related to network fragmentation is the area of network interdiction,
which refers to the monitoring or halting of an adversary’s activity on a
network [33]. Without loss of generality, these types of problems are de-
scribed within a game theoretic framework where an evader operates on the
network to maximize some objective function, and the interdictor has the
ability to modify the network structure so as to minimize the evader’s ob-
jective function. Within this context, multi-objective problems have been
investigated using mathematical programming [34] and evolutionary algo-
rithms [35]. The main difference between interdiction and fragmentation
problems concerns the explicit consideration of an evader.

1.1. Our Contributions

In this work we propose a bi-objective critical node detection problem
that we term the BOCNDP and we provide experimental results based on
a variety of standard evolutionary algorithms. Our contributions are more
explicitly stated as:

1. Propose BOCNDP: Pairwise connectivity is loosely composed of two
separate objectives; maximizing the total number of connected compo-
nents and minimizing the variance in the cardinality (number of nodes)
among the connected components, after removing K vertices from the
original graph. A single objective formulation of this problem has been
studied previously, however, despite the implied bi-objective nature,
to date no multi-objective investigations have been performed. We
outline the BOCNDP and provide arguments showing its uniqueness
from the CNDP as well as highlight other properties and observations.

2. Experimental comparison: Six common multi-objective evolutionary
algorithms are employed in order to discover solutions to the BOC-
NDP. The algorithms and brief descriptions are provided in Section
3.1. We compare the ability of these algorithms to arrive at quality
solutions against a set of benchmark problem instances described in
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[18] and a new set of instances (described below). The Pareto front
approximation of each algorithm is also analyzed using the additive
epsilon indicator, hypervolume, and spacing measures.

3. Benchmark networks: A set of benchmark network instances is created
for evaluating node-weighted network fragmentation problems. Two
variations of node weights (random and lagaritmic) are created by
modifying existing benchmark instances for unweighted networks [18].
This set of networks is publicly available online from [36].

It should be noted that this work builds upon our preliminary results
presented in [37]. The first major contribution of this article, not present in
the previous work, is with regards to the theoretical foundations, from which
the formulation of the BOCNDP from the CNDP directly follows. Secondly,
we provide proofs that the optimal CNDP solution need not lie within the
Pareto front of the corresponding BOCNDP instance (Theorem 1) and that
the BOCNDP is NP-hard (Theorem 2). Lastly, we provide additional em-
pirical analysis with regards to the multi-objective results. Specifically, we
additionally compare the entire set of non-dominated solutions found by the
optimizers across all runs (on a given benchmark problem), in contrast to
comparing on individual runs, thereby giving a more comprehensive analy-
sis of the search capabilities of each optimizer. The additional results are
generally agreeable with previous findings, however, they do highlight cases
where the low levels of diversity present in the individual Pareto fronts can
be misleading with regards to the overall performance of an optimizer. An-
other experiment is conducted for two variations of node weighted problem
instances.

The remainder of this paper is organized as follows. Section 2 describes
the BOCNDP and the motivation from the single objective CNDP. In Sec-
tion 3 the experimental setup is described and a variety of results are shown.
Finally, conclusions and avenues for future work are provided in Section 4.

2. The Bi-Objective Critical Node Detection Problem

The BOCNDP is a distinct bi-objective optimization problem that is
motivated by the goals of the critical node detection problem. As such, the
latter is first discussed before introducing the BOCNDP.

2.1. The Critical Node Detection Problem

The CNDP is an NP-hard optimization problem formulated by [9, 38].
Let G = (V,E) be an unweighted, undirected graph composed of |V | = n
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vertices and |E| = m edges. The goal of the CNDP is to determine a subset
of vertices R ⊆ V such that the residual graph G(V \ R) has minimum
pairwise connectivity where |R| ≤ K. The problem has decision variables
[9]:

xuv =

{
1 if vertices u, v are in the same component of G(V \R)

0 otherwise
(1)

yu =

{
1 if vertex u is deleted in the solution

0 otherwise
(2)

and subsequently mathematically formulated by the following integer pro-
gram:

minimize
∑
u,v∈V

xuv (3)

subject to xuv + yu + yv ≥ 1 ∀(u, v) ∈ E (4)

xuv + xvw − xwu ≤ 1 ∀u, v, w ∈ V (5)

xuv − xvw + xwu ≤ 1 ∀u, v, w ∈ V (6)

−xuv + xvw + xwu ≤ 1 ∀u, v, w ∈ V (7)∑
u∈V

yu ≤ K (8)

xuv ∈ {0, 1} ∀u, v ∈ V (9)

yu ∈ {0, 1} ∀u ∈ V (10)

The constraint in Equation (4) enforces the rule that deleted vertices do not
share an edge to any other vertex by setting edge xuv as deleted if either or
both vertices u and v are deleted. Equations (5)-(7) are focused on ensur-
ing that vertices belonging to the same connected component are properly
identified by enforcing a triangle inequality whereby if vertices u, v and v, w
are connected in the residual graph, then u and w must also be connected
(recall that a subgraph GS = (VS ⊆ V,ES ⊆ E) of G is a connected compo-
nent if and only if (1) there exists an undirected path between every pair of
vertices u, v ∈ VS and (2) ∀ v ∈ (V \ VS) there does not exist u ∈ VS such
that (u, v) ∈ E). The constraint in Equation (8) ensures that no more than
K vertices are deleted from G. The node-weighted version of the CNDP
(wCNDP) will have Equation (8) replaced with

∑
u∈V ω(u)yu ≤ W where

W ∈ R>0, and ω : V 7→ R>0 defines the node weight. As described in
the introduction, the CNDP has a variety of applications and has spurred a
number of subsequent research endeavors.
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2.2. From CNDP to BOCNDP

To better illustrate the BOCNDP we begin with a more general for-
mulation. Let D = {Ci} be a finite set of connected components of the
residual graph G(V \R), and let |D| be the cardinality of this set (number
of connected components). Then, the CNDP can be equivalently written as
the problem of determining a subset R ⊆ V such that the residual graph
contains i = 1, . . . , |D| connected components that each contain |Ci| vertices
[12]:

minimize

|D|∑
i=1

(
|Ci|
2

)
(11)

subject to
∑
i∈R

wi ≤W (12)

where wi > 0 are weights associated with each vertex and W > 0 is a
knapsack constraint. The CNDP formulation given in the previous section
is a special case where wi = 1 ∀ i = 1, . . . , n. As shown in [15], the CNDP
objective function can be rewritten as

|D|∑
i=1

(
|Ci|
2

)
=

1

2

 |D|∑
i=1

|Ci|2 − |V |

 (13)

=
1

2

(
n2∗
|D|
− n∗

)
+
|D|
2
var(D) (14)

where

var(D) =
1

|D|

|D|∑
i=1

(
|Ci| −

n∗
|D|

)2

(15)

is the biased sample variance of the cardinalities of the connected compo-

nents, and n∗ =
∑|D|

i=1 |Ci| is the number of nodes in G(V \R). The following
two lemmas highlight the preference of CNDP solution in circumstances of
equal size or number of connected components.

Lemma 1 (from [9]). Let D be a partition of G = (V,E) into |D| connected
components obtained by deleting a set of R nodes, where |R| = K. Then the

objective function
∑|D|

i=1
|Ci|(|Ci|−1)

2 ≥
(|V |−K)

(
|V |−K
|D| −1

)
2 , with equality holding

if and only if |Ci| = |Cj | ∀i, j = 1, . . . , |D|, where |Ci| is the number of nodes
in the ith component of D.
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Lemma 2 (from [9]). Let D1 and D2 be two sets of partitions obtained by
deleting R1, R2 ⊆ V from G = (V,E), where |R1| = |R2| = K. Let |D1|
and |D2| be the number of connected components in D1 and D2, respectively,
and let |D1| ≥ |D2|. If each component of D1 contains an equal number of
vertices, then the CNDP objective function value obtained by deleting R1 is
lower than if deleting R2.

From Lemmas 1 and 2, [9] states that the CNDP can be viewed as simul-
taneously minimizing the variance and maximizing the number of connected
components. However, the two statements are made independently of each
other and, as we show in Theorem 1, there are solutions whose optimal
CNDP solution does not simultaneously minimize the variance and max-
imize the number of connected components. This suggests the BOCNDP,
while motivated by the CNDP, is a different optimization problem and would
permit a user to decide among a number of potential graph fragmentations
that would better suit their particular circumstance. Such a situation arises
frequently in the real-world. For instance, when the user is not able to
properly formulate the optimization problem due to stochastic effects, or
the value of a node is at least partially assigned qualitatively, nodes have
complicated contextual information or missing data, thereby resulting in
the need to evaluate solution trade-offs by inspection and/or subsequent
methods before a decision can be made.

Consider disrupting a terrorist communication network by neutralizing
a subset of individuals. Maximizing the number of connected components in
the residual graph could create many smaller, and perhaps less dangerous,
cells. However, if many individuals are isolated (i.e., component containing
a single individual) then a large connected component may remain intact
and the network will not be significantly impacted unless, perhaps, if the
isolated individuals are high value targets. The CNDP introduces bias into
the objective function toward components containing an equal number of
individuals, implying that each individual or community is of equal value,
which seems unlikely in context. However, if all connected components have
an equal number of individuals then potential information flow between any
arbitrary pair of terrorists is minimized and could be beneficial for limiting
the transmission of command orders; but this implies that a connected com-
ponent is unlikely capable of operating independently. Introducing weighted
nodes is possible but in practice accurately determining a weight may be
extremely difficult or impossible. Alternatively, determining a set of po-
tential solutions that trade off general objectives (maximal fragmentation
with minimum variance between the number of nodes in each component)
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in conjunction with contextual information by an outside source (as a proxy
for node weights) could better solve the problem.

2.3. BOCNDP Formulation and Properties

We therefore propose to reconsider Equation (13). Specifically, since
the number of vertices in the original graph n is fixed, the focus lies on
maximizing |D| and minimizing var(D) as calculated in Equation (15), and
thus the goal is to optimize the bi-objective problem:

minimize var(D) (16)

maximize |D| (17)

subject to
∑
i∈R

wi ≤W (18)

Maximizing |D| is equivalent to maximizing the multiplicity of eigenvalue
0 of the graph Laplacian (i.e., for a graph with |D| connected components,
eigenvalue 0 has multiplicity |D|) [39].

We refer to Equations (16)-(18) as the BOCNDP. Since the BOCNDP
is a multi-objective problem, the goal is to best approximate the Pareto
front in order to discover and better understand the trade-offs between the
objectives. The BOCNDP is a similarly stated, but fundamentally different
problem than the CNDP and despite their common motivation, solutions
cannot be meaningfully compared because the BOCNDP cannot be trans-
formed into the CNDP. Their differences are highlighted by the following
result that shows the optimal CNDP solution need not exist in the Pareto
front of the BOCNDP.

Theorem 1. For a network G = (V,E) with real-valued node weights given
by ω : V 7→ R>0, the optimal CNDP solution after deleting K ≥ 1 nodes
does not necessarily exist in the BOCNDP Pareto front.

Proof. (By counterexample) Let D be the optimal partition of G after delet-
ing K vertices, and let X = |D| be the number of connected components and
Y = var(D) as calculated by Equation (15). The BOCNDP Pareto front for
partitions of G(V \K) will be represented by P. If (X,Y ) ∈ P ∀ G, then it
must be that (X,Y ) is always non-dominated with respect to both BOCNDP
objectives. By providing a counterexample network instance for when the
range of ω is constant or non-constant, we show that (X,Y ) 6∈ P ∀ G, which
proves that the CNDP and the BOCNDP are indeed different problems.

Case 1: constant vertex weight. Without loss of generality ω(v) =
1 ∀v ∈ V . The network in Figure 1 (a) contains 24 nodes and for K = 3,
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Figure 1: Counterexamples showing that the optimal CNDP solution does not necessar-
ily exist in the BOCNDP Pareto front. (a) and (d) are the constructed networks with
red nodes being common between the optimal CNDP solution (in (b) and (e)) and the
BOCNDP counter-example (in (c) and (f)), respectively; gray nodes exist only in the
optimal CNDP cut set and blue nodes exist only in the BOCNDP cut set. Node colors
for figures (b), (c), (e) and (f) are to better highlight the connected components of the
residual network after deleting nodes. Node weights are shown for (d)-(f). The network
with constant weights contains 24 nodes and uses a constraint K = 3, whereas that with
random weights contains 22 nodes and has a constraint W = 3.
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an optimal CNDP solution is shown in (b) with objective value 101 and
contains |Dc| = 4 connected components of sizes {5, 14, 1, 1} nodes, respec-
tively, and variance of Yc = 28.1875, as calculated by Equation (15). How-
ever, there exists a BOCNDP solution shown in (c) that has a corresponding
CNDP objective value of 106, but contains |Db| = 6 connected components
of {15, 1, 2, 1, 1, 1} nodes, respectively, and a variance of Yb = 26.58333.
Since |Db| > |Dc| and Yb < Yc, (|Dc|, Yc) 6∈ P.

Case 2: random vertex weights. The network in Figure 1 (d) con-
tains 22 nodes and for W = 3 has an optimal CNDP objective value of
61 that is presented in (e) and contains |Dc| = 5 connected components of
{4, 11, 1, 1, 1} nodes, respectively, and a variance of Yc = 15.04. However,
there exists a BOCNDP solution shown in (f) that has |Db| = 7 connected
components containing {1, 12, 1, 1, 1, 1, 1} nodes, respectively, and a variance
of Yb = 14.81633, but CNDP objective value of 66. Since |Db| > |Dc| and
Yb < Yc, (|Dc|, Yc) 6∈ P.

Moreover, the BOCNDP is straightforwardly shown to be NP-hard by
showing that any objective is NP-hard. Specifically, we refer to the maxi-
mization of the number of connected components through the K-WAY VER-
TEX CUT problem [27].

Theorem 2. The BOCNDP is NP-hard.

Proof. The objective of maximizing the number of connected components
by removal of R ⊆ V from G is known as the K-WAY VERTEX CUT
problem [27], which has already been shown to be NP-hard. Therefore, the
BOCNDP is also NP-hard.

3. Experimental Setup and Results

We evaluate a number of standard multi-objective evolutionary algo-
rithms for the BOCNDP using standard benchmark problems from [18]. The
experimental results highlight the performance of each algorithm in com-
parison to a random search, which is used as a control for the experiment.
Ideally, the objectives of the BOCNDP would be independent. However,
previous studies suggest that variable dependence does not necessarily lead
to deteriorated performance and, in some two-objective problems, the addi-
tion of highly dependent objectives actually improved performance [40, 41].
We first provide an outline of the experimental setup and parameters.
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3.1. Setup

Here we describe the algorithms, their parameterization and the bench-
mark problem instances. All results were obtained using the MOEA 2.1
Java library [42], and ran on a Linux Mint Debian Edition operating system
with an Intel i7-4930K 3.4GHz CPU and 64GB of RAM. Experiments were
run for 20 trials.

MO Algorithms: We compare results attained by the MOCHC [43], PAES
[44], NSGAII [45], eNSGAII [46], eMOEA [47], and PESA2 [48] algorithms,
each of which is briefly outlined below. As a control, we also implement a
random search. We use a bit string representation that indicates whether a
particular node is present in a solution or not. The empirically-determined
population size for each algorithm is equal to the size of the largest compo-
nent in the current benchmark instance and the mutation rate is inversely
proportional to this size. The number of iterations for each algorithm is
set as 3000 times the size of the largest network component in the current
benchmark. All algorithms utilize the HUX half uniform crossover and other
default settings in the MOEA Framework as presented in Table 1. For the
‘Parent selection’ parameter in Table 1, R refers to random selection while
T refers to tournament selection with k = 2.

MOCHC: The Multi-Objective Cross generational elitist selection, Het-
erogeneous recombination, and Cataclysmic mutation (MOCHC) algorithm
is a variant of the genetic algorithm that couples a conservative selection
strategy with highly disruptive recombination in an attempt to produce off-
spring that are maximally different from the parents.

PAES: The (1+1) Pareto Archived Evolution Strategy (PAES) algo-
rithm is a multi-objective evolutionary strategy that uses an adaptive grid
archive to maintain a fixed-size set of diverse solutions.

NSGAII: The Non-dominated Sorting Genetic Algorithm II (NSGAII)
sorts the population into sub-populations based on the ordering of Pareto
dominance and calculates a crowding distance between members of the sub-
populations to provide a ranking within each sub-population such that iso-
lated solutions are preferred. These ranking mechanisms are subsequently
used during the selection phase.

eNSGAII: The Epsilon NSGAII (eNSGAII) algorithm is an extension
of NSGAII that uses a solution archive based on a relaxation of the tradi-
tional dominance relation, namely an ε-archive. Furthermore, eNSGAII also
has random restarts to (ideally) provide a more diverse set of solutions.

eMOEA: The Epsilon Multi-Objective Evolutionary Algorithm (eMOEA)
is a steady-state evolutionary algorithm that uses an ε-archive to promote
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Table 1: Algorithm parameters. All algorithms had as the maximum number of evalua-
tions, 3000 × the number of nodes in the initial network.

Parameter MOCHC PAES eNSGAII eMOEA NSGAII PESA2
Initial convergence count 25%
Preserved population 5%
Convergence value (k) 3
Parent selection R T T T
Archive size 100 100
Bisections 8 8
Epsilon (ε) 0.01 0.01
Injection rate 25%
Population size (range) [100, 10000]
Window size 100

diversity.
PESA2: The Pareto-Envelope based Selection Algorithm II (PESA2)

partitions the objective space into a number of hyperboxes and derives a
fitness value for each non-empty hyperbox, rather than assigning fitness val-
ues to individual solutions, to promote a selection bias towards less-crowded
solutions. The selection phase then uses any standard selection technique to
select a hyperbox and the individual used for genetic operations is selected
randomly from the chosen hyperbox.

Data: We utilize the benchmark data proposed in [18] and highlighted in
Table 2. This data set contains sixteen undirected, unweighted networks
created using common complex network generator algorithms: Barabasi-
Albert, Watts-Strogatz, Forest Fire, and the Erdos-Renyi random graph.
The first three of these models generate networks with a single component
whereas the random graph algorithm may contain a number of connected
components and only the largest is retained in the data set. Note that
the problem name indicates the size of the largest connected component,
e.g., ER 234 indicates that the largest connected component contains 234
vertices. Further information about the network structures can be found in
[18].

In order to evaluate algorithm performance on weighted networks new
benchmark instances were created by assigning vertex weights to the net-
works in [18] (these can be downloaded from [36]). Two different weighting
schemes were considered:

1. Randomly assigned, where ω(v) ∈ [0.2, 3] ∀ v ∈ V .

2. Logarithmic with node degree dv, where ω(v) = log(dv) + 0.5 ∀ v ∈ V .
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Table 2: The sixteen benchmark problems, their associated maximum K-critical nodes
for constant-weighted instances, and associated maximum knapsack constraint W for
weighted instances.

Name Vertices Edges K W Name Vertices Edges K W
ER 234 250 349 50 70 BA 500 500 499 50 60
ER 465 500 699 80 130 BA 1000 1000 999 75 110
ER 940 1000 1399 140 175 BA 2500 2500 2499 100 200
ER 2343 2500 3499 200 325 BA 5000 5000 4999 150 350

WS 250 250 1249 70 150 FF 250 250 400 13 70
WS 500 500 1499 125 275 FF 500 500 792 25 130
WS 1000 1000 4999 200 565 FF 1000 1000 1633 50 175
WS 1500 1500 4499 265 565 FF 2500 2500 4046 125 300

3.2. Algorithm Performance

Our comparison is from two perspectives: (1) the quality of solutions
with respect to the two objectives, and (2) the algorithms’ ability to ap-
proximate the Pareto front. Concerning the latter perspective, the additive
epsilon indicator [49], hypervolume [50], and spacing [51] measures are con-
sidered as they provide both an indication of the quality (i.e., proximity
to the true front) and spread of solutions in the approximation front. The
additive epsilon and hypervolume indicators are Pareto-compliant while the
spacing measure is non-compliant.

Additive Epsilon Indicator (AE): is the minimum ε such that for every
solution in the approximation front, there exists a solution in the reference
front that is no more than ε better in all objectives.

Hypervolume (H): measures the volume of objective space dominated by
an approximation front.

Spacing (S): quantifies the distribution of solutions in the approximation
front.

We rank the algorithms performance using the following procedure. First,
a Kruskal-Wallis test is performed to determine whether a performance dif-
ference exists between the algorithms. If so, then pairwise Mann-Whitney
U-tests are conducted in order to determine where the differences occur and
tabulate a “win” accordingly, based on a comparison of medians. Finally, a
rank is assigned to each algorithm based on the difference in number of wins
and losses. All statistical tests are performed at the 95% confidence level.
Note that while full-precision was used for the statistical analysis, only a
limited number of significant figures are presented in tabular form due to
space limitations. Therefore, in some instances a statistically significant
difference is noted for results where there appears to be no disparity.
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3.3. Final Solution Quality

In this section we compare the final results obtained for each objective
by the six algorithms. Tables 3 to 5 present the average objective values
for each of the examined problem instances. Additionally, tables outlining
the extreme points (max |D|, ) and ( ,min var(D)) are provided in the sup-
plementary material for this paper. Bold entries denote the highest ranked
objective values using the statistical ranking procedure described in Section
3.2. We note that the results for the constant-weighted Watts-Strogatz prob-
lems are problematic due to degenerate solutions being produced. Therefore,
the results are unreliable and no further analysis is performed with regards
to these problems. A more comprehensive analysis would consider different
search operators and may alleviate this issue.

When considering maximization of the number of components, it is clear
that the NSGAII algorithm is generally superior to the other algorithms, ir-
respective of the network type or node weighting scheme. Similarly, the
eNSGAII algorithm attains the best performance on a number of problems,
most notably the Forest Fire networks. Evidently, the non-dominating sort-
ing procedure is highly effective at finding solutions that maximize the num-
ber of components.

When considering the variance objective, the results were far more prob-
lem dependent. However, the NSGAII or MOCHC algorithms lead to the
lowest variance on a majority of problems, with the PAES algorithm occa-
sionally leading to the best variance. Given that minimizing the variance in
the BOCNDP is not completely independent from maximizing the number
of components, these results may suggest that the BOCNDP has a slight
bias towards maximizing the number of components (expected given that
the number of components is a factor in computing Equation (15)).

3.4. Pareto Front Approximation

Tables 6 to 8 present the aggregated ranks1 for each of the multi-objective
measures as a means to evaluate the ability to approximate the true Pareto
front.

When considering both the constant-weighted and log-weighted prob-
lems, as shown in Tables 6 and 7, the NSGAII optimizer generally attains the
best average rank for both the hypervolume and additive epsilon measures,
but shows significantly poorer results for the spacing measure. Considering

1The individual ranks and difference scores for each problem instance are provided in
the supplementary data.
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Table 3: Summary results for the two BOCNDP objectives across the constant-weighted
benchmark instances.

|D| var(D) |D| var(D)
Algorithm Problem µ σ µ σ Problem µ σ µ σ
eMOEA

BA 500

312.6 0.5 0.62 0.00

ER 234

61.2 2.3 12.01 13.48
eNSGAII 312.9 0.3 7.23 0.23 61.5 2.5 10.49 9.83
MOCHC 291.7 9.9 1.16 0.31 62.5 2.7 16.23 12.67
NSGAII 312.7 0.4 0.62 0.00 62.2 2.9 15.28 13.89
PAES 311.2 1.6 0.65 0.03 59.5 2.4 5.11 1.88
PESA2 311.9 1.1 0.63 0.01 60.5 2.1 10.12 12.61
Random 239.5 4.6 4.66 0.89 35.6 2.2 430.18 37.34
eMOEA

BA 1000

589.9 0.3 1.01 0.00

ER 465

101.1 3.2 304.82 34.84
eNSGAII 590.0 0.0 1.01 0.00 97.8 4.3 274.04 41.81
MOCHC 563.5 14.5 1.46 0.29 102.1 3.6 286.56 33.43
NSGAII 589.9 0.3 1.01 0.00 101.5 4.3 296.30 35.75
PAES 588.6 1.4 1.03 0.02 90.2 5.9 215.90 78.52
PESA2 589.5 0.9 1.02 0.01 95.2 4.5 250.48 59.13
Random 413.1 9.8 12.79 3.55 48.4 1.4 2009.30 83.49
eMOEA

BA 2500

1119.0 5.7 4.39 0.15

ER 940

190.5 3.4 1062.37 56.88
eNSGAII 1119.9 5.6 4.39 0.16 184.5 3.8 1058.93 86.21
MOCHC 1105.6 11.4 4.76 0.36 179.6 2.2 1486.77 46.17
NSGAII 1117.0 7.4 4.34 0.16 192.8 4.9 1011.98 52.69
PAES 1106.2 6.2 4.70 0.21 183.2 6.3 961.36 127.76
PESA2 1117.2 4.4 4.39 0.10 182.3 4.3 1083.48 83.21
Random 623.8 16.6 91.69 16.10 86.1 1.6 5273.81 108.28
eMOEA

BA 5000

1973.3 7.7 7.17 0.17

ER 2343

320.1 2.2 8689.69 86.22
eNSGAII 1976.4 8.6 7.23 0.23 297.8 4.8 9393.59 202.32
MOCHC 1855.3 13.0 10.95 0.55 276.4 1.7 11608.73 89.20
NSGAII 1978.5 11.5 7.36 0.46 322.1 1.6 8626.23 48.92
PAES 1939.6 10.5 8.11 0.35 298.1 4.7 9313.26 190.47
PESA2 1971.5 5.3 7.40 0.14 295.0 5.1 9487.31 243.45
Random 900.2 21.8 414.01 80.90 110.5 1.9 35968.10 638.26

eMOEA

FF 250

88.3 2.1 1.86 0.18

WS 250

7.2 1.4 3823.42 815.45
eNSGAII 89.0 2.1 1.77 0.18 2.4 0.5 13087.30 2474.35
MOCHC 88.1 2.4 1.82 0.20 6.5 1.3 4460.09 1382.36
NSGAII 89.4 1.8 1.72 0.16 4.6 1.9 7551.23 3460.25
PAES 87.9 2.7 1.77 0.20 1.0 0.0 N/A N/A
PESA2 88.5 2.2 1.75 0.18 1.0 0.1 N/A N/A
Random 46.7 7.2 454.93 2401.21 3.0 0.0 10416.60 64.48
eMOEA

FF 500

210.3 2.1 0.97 0.04

WS 500

41.5 2.5 1854.82 198.39
eNSGAII 209.9 2.5 0.94 0.04 17.9 3.6 5967.07 1820.51
MOCHC 211.0 2.4 0.96 0.05 27.1 2.2 3777.43 379.39
NSGAII 209.7 3.1 0.93 0.03 42.4 2.1 1869.55 137.73
PAES 208.1 2.7 0.95 0.05 10.0 3.0 13226.46 4836.73
PESA2 208.1 3.1 0.95 0.04 12.6 4.0 10696.66 5168.13
Random 122.7 5.2 47.44 33.09 7.1 0.3 17999.61 733.81
eMOEA

FF 1000

318.5 5.1 4.03 0.23

WS 1000

4.6 1.4 149116.31 45420.14
eNSGAII 321.0 5.2 4.17 0.33 1.2 0.5 N/A N/A
MOCHC 301.8 5.9 6.73 0.79 3.4 1.0 204464.44 58524.47
NSGAII 326.9 7.0 4.55 0.85 4.7 1.5 150344.05 54543.17
PAES 319.3 5.6 4.16 0.39 1.0 0.0 N/A N/A
PESA2 319.3 4.8 4.03 0.26 1.0 0.0 N/A N/A
Random 143.2 6.7 1474.97 254.84 3.0 0.2 216277.22 21435.87
eMOEA

FF 2500

476.4 5.6 10.52 0.73

WS 1500

32.2 2.7 41583.12 3863.97
eNSGAII 477.7 5.6 10.56 0.67 11.3 4.2 144741.13 58000.05
MOCHC 385.0 8.4 45.16 6.10 15.0 1.7 95784.40 11325.50
NSGAII 486.7 5.4 12.43 1.70 30.6 2.6 44283.78 3951.78
PAES 473.7 7.0 10.62 0.89 1.9 2.6 N/A N/A
PESA2 476.5 5.6 10.47 0.70 7.0 2.8 274558.48 187676.18
Random 187.2 13.3 7078.06 963.17 6.5 0.7 226824.92 20049.19

the additive epsilon and hypervolume measures, the performance of NSGAII
versus the other techniques does not seem to be highly influenced by the net-
work topology, or if so, all approaches are similarly influenced such that their
relative performance remains. The inferior performance with respect to the
spacing measure is likely a result of not having an explicit mechanism, such
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Table 4: Summary results for the two BOCNDP objectives across the log-weighted bench-
mark instances.

|D| var(D) |D| var(D)
Algorithm Problem µ σ µ σ Problem µ σ µ σ
eMOEA

BA 500

302.9 4.5 0.79 0.12

ER 234

78.2 3.7 2.17 0.91
eNSGAII 317.5 0.8 0.52 0.02 95.5 1.8 0.67 0.08
MOCHC 280.0 14.5 0.51 0.26 94.9 2.7 0.45 0.06
NSGAII 317.3 1.1 0.52 0.01 95.8 1.7 0.63 0.07
PAES 254.9 12.8 0.77 0.32 80.9 3.3 0.53 0.12
PESA2 259.5 9.4 3.09 0.91 61.2 4.0 15.43 10.82
Random 265.9 4.4 2.54 0.42 55.3 3.5 25.54 16.28
eMOEA

BA 1000

607.0 5.7 0.81 0.08

ER 465

137.9 6.5 11.79 10.09
eNSGAII 629.8 1.0 0.59 0.01 176.9 1.9 1.40 0.17
MOCHC 550.4 34.0 0.76 0.49 175.3 4.0 0.85 0.12
NSGAII 628.7 1.9 0.59 0.02 178.3 2.3 1.12 0.09
PAES 524.6 13.5 0.67 0.07 153.7 4.4 1.03 0.10
PESA2 508.6 21.0 4.33 1.57 102.5 9.5 104.76 84.46
Random 508.9 6.0 4.06 0.69 86.0 6.3 215.06 79.65
eMOEA

BA 2500

1214.5 27.4 3.37 0.66

ER 940

226.1 5.7 742.60 51.61
eNSGAII 1322.7 2.7 1.77 0.03 243.2 2.0 655.13 35.36
MOCHC 931.4 82.9 18.81 14.29 232.6 7.8 457.73 45.60
NSGAII 1325.3 2.9 1.69 0.03 245.8 3.0 543.79 29.89
PAES 873.5 24.7 11.16 1.30 197.3 5.4 659.73 76.12
PESA2 950.0 43.8 21.18 6.80 113.8 7.2 2801.69 256.49
Random 944.3 12.9 21.33 4.11 119.5 2.5 2540.98 82.27
eMOEA

BA 5000

2235.2 29.9 4.97 0.50

ER 2343

477.3 5.7 3888.58 75.83
eNSGAII 2446.4 9.9 2.79 0.11 468.7 15.1 4255.21 295.68
MOCHC 1559.9 98.8 50.63 30.56 470.1 4.2 3613.00 54.35
NSGAII 2467.5 9.0 2.44 0.08 499.4 2.8 3506.31 47.69
PAES 1195.0 80.8 1900.00 1447.48 272.3 5.8 8202.48 207.51
PESA2 1664.2 91.4 50.89 22.79 186.1 11.5 15639.56 1095.42
Random 1586.5 26.9 58.61 9.43 193.8 2.1 14673.93 195.68

eMOEA

FF 250

84.4 4.6 4.60 2.03

WS 250

13.0 1.6 1057.95 204.43
eNSGAII 97.3 2.4 1.67 0.25 12.4 1.6 1180.16 214.04
MOCHC 91.1 4.5 1.28 0.24 21.0 1.4 405.11 109.23
NSGAII 96.6 2.7 1.68 0.26 14.2 1.6 926.05 117.55
PAES 82.8 5.6 1.80 1.20 8.7 3.4 1056.90 1204.76
PESA2 67.5 5.5 38.22 30.82 2.8 0.5 6676.80 1228.48
Random 60.0 3.9 42.35 22.75 4.7 0.5 3656.26 239.31
eMOEA

FF 500

196.4 6.6 2.18 0.49

WS 500

59.4 3.9 8.81 7.35
eNSGAII 222.6 1.8 1.02 0.10 71.0 6.4 3.22 0.75
MOCHC 207.9 5.8 0.74 0.09 67.0 6.6 1.78 0.72
NSGAII 222.2 2.5 0.97 0.11 82.5 7.2 1.84 0.44
PAES 193.2 6.2 0.83 0.13 71.1 5.8 0.95 0.51
PESA2 160.9 9.4 8.35 5.31 33.1 6.2 295.20 358.84
Random 145.0 4.9 17.95 13.58 25.7 3.1 455.56 249.20
eMOEA

FF 1000

261.0 7.8 70.07 48.75

WS 1000

52.7 3.1 4562.57 376.66
eNSGAII 310.7 3.3 7.50 0.91 13.1 3.5 27104.17 7346.39
MOCHC 281.0 12.1 16.22 15.02 66.6 3.5 3006.87 239.54
NSGAII 310.8 5.8 6.47 1.13 62.8 4.1 3478.90 401.80
PAES 251.5 6.8 45.34 36.02 38.8 3.7 4728.78 891.91
PESA2 201.4 17.0 450.56 285.04 3.9 0.5 87393.61 10139.50
Random 166.3 9.6 835.91 219.58 6.5 0.5 51185.87 3633.52
eMOEA

FF 2000

468.5 11.0 40.74 8.24

WS 1500

112.1 4.9 3216.61 483.68
eNSGAII 572.7 5.7 11.32 0.80 48.4 15.0 14048.96 5664.27
MOCHC 502.8 19.0 13.94 9.81 109.1 6.2 164.83 275.08
NSGAII 571.0 14.0 8.86 1.40 175.3 3.2 1164.41 156.22
PAES 395.6 9.4 374.98 221.51 119.0 5.2 72.91 90.65
PESA2 379.7 28.6 477.94 607.80 17.3 1.2 49864.89 3584.08
Random 284.3 14.5 1913.19 760.26 22.8 1.0 35310.50 1821.11

as an ε-archive, for promoting diversity. When faced with random-weighted
problems, MOCHC generally performs better than NSGAII. It is notewor-
thy that the MOCHC algorithm performs well on both problems with a
random network topology (i.e., Erdos-Renyi networks) and a random vertex
weighting.
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Table 5: Summary results for the two BOCNDP objectives across the random-weighted
benchmark instances.

|D| var(D) |D| var(D)
Algorithm Problem µ σ µ σ Problem µ σ µ σ
eMOEA

BA 500

334.7 3.6 0.28 0.05

ER 234

99.9 4.1 0.35 0.09
eNSGAII 344.2 0.8 0.20 0.00 112.6 2.0 0.14 0.01
MOCHC 317.1 17.5 0.41 0.52 114.1 1.1 0.09 0.01
NSGAII 344.0 0.7 0.20 0.00 112.8 1.7 0.13 0.01
PAES 329.6 3.1 0.17 0.01 108.5 2.8 0.13 0.02
PESA2 276.9 11.5 2.08 0.75 66.7 7.8 8.57 6.82
Random 286.3 4.6 1.50 0.22 63.0 3.5 9.12 6.50
eMOEA

BA 1000

659.2 10.6 0.38 0.09

ER 465

185.6 8.7 0.70 0.26
eNSGAII 682.8 0.6 0.23 0.00 225.8 2.0 0.16 0.01
MOCHC 641.1 17.1 0.38 0.18 224.0 2.2 0.13 0.00
NSGAII 682.3 0.9 0.23 0.00 224.2 2.0 0.16 0.01
PAES 626.1 7.1 0.40 0.03 213.2 3.5 0.17 0.01
PESA2 525.9 31.1 3.96 1.79 117.0 17.2 43.64 55.57
Random 529.1 6.6 3.27 0.63 99.1 5.4 57.30 27.77
eMOEA

BA 2500

1476.8 22.6 1.04 0.18

ER 940

307.8 15.1 21.36 32.19
eNSGAII 1580.0 3.5 0.54 0.02 380.4 3.5 1.06 0.09
MOCHC 1469.3 39.7 1.02 0.81 376.9 4.7 0.78 0.06
NSGAII 1585.3 1.8 0.51 0.01 382.6 2.7 0.87 0.06
PAES 787.5 83.5 388.91 396.29 337.2 5.6 1.31 0.19
PESA2 1019.3 68.3 16.94 6.54 129.5 15.8 2111.64 477.68
Random 1003.2 18.9 17.16 3.09 127.0 4.6 2090.59 88.79
eMOEA

BA 5000

2793.5 55.8 1.57 0.24

ER 2343

620.2 12.8 1219.25 124.19
eNSGAII 3015.7 15.8 0.84 0.05 650.5 15.8 1051.85 158.33
MOCHC 2854.9 48.7 1.08 0.19 587.5 16.1 112.86 130.44
NSGAII 3050.3 8.3 0.72 0.01 693.1 13.0 427.60 44.05
PAES 1215.0 114.0 2308.86 1635.00 387.4 7.8 3480.74 167.71
PESA2 1796.6 142.1 39.76 21.20 195.1 18.0 14262.88 1598.92
Random 1681.8 35.9 48.69 10.39 202.1 3.4 13510.86 319.98

eMOEA

FF 250

111.3 3.5 0.29 0.07

WS 250

29.4 2.8 0.51 0.20
eNSGAII 121.1 1.1 0.14 0.01 40.9 1.5 0.14 0.03
MOCHC 121.4 0.6 0.12 0.00 34.8 6.2 0.09 0.05
NSGAII 121.1 0.7 0.14 0.00 39.3 2.8 0.16 0.04
PAES 119.8 1.1 0.13 0.01 32.7 3.1 0.13 0.07
PESA2 75.9 8.7 9.53 7.38 22.8 3.0 3.07 2.18
Random 76.8 3.3 5.69 3.70 18.3 7.6 2.57 1.33
eMOEA

FF 500

237.9 4.3 0.31 0.07

WS 500

93.3 4.9 0.44 0.11
eNSGAII 260.1 0.9 0.13 0.00 117.1 3.0 0.10 0.03
MOCHC 257.5 1.1 0.10 0.00 126.5 2.5 0.04 0.01
NSGAII 260.1 0.7 0.13 0.00 123.5 3.3 0.04 0.02
PAES 249.4 2.6 0.12 0.01 91.4 6.4 0.12 0.06
PESA2 179.4 15.6 3.42 2.01 71.5 7.2 2.19 1.33
Random 173.1 4.7 3.67 1.40 62.4 3.3 3.45 1.34
eMOEA

FF 1000

363.8 11.1 3.41 0.72

WS 1000

107.7 5.3 1.74 0.41
eNSGAII 445.3 1.9 0.86 0.04 130.2 7.8 0.65 0.20
MOCHC 435.6 5.7 0.72 0.05 148.1 6.1 0.48 0.08
NSGAII 446.5 2.9 0.78 0.04 167.8 3.3 0.19 0.01
PAES 398.9 5.7 1.06 0.07 123.1 12.2 0.39 0.12
PESA2 239.0 28.9 216.63 214.92 67.3 12.7 30.16 43.08
Random 199.1 10.1 348.51 144.76 50.5 3.4 72.65 42.52
eMOEA

FF 2000

633.5 25.4 7.25 1.65

WS 1500

185.3 9.8 6.76 1.33
eNSGAII 822.7 8.2 1.57 0.15 226.7 14.7 3.07 0.83
MOCHC 796.9 12.4 1.19 0.10 252.1 11.7 1.27 0.20
NSGAII 834.2 10.2 1.17 0.09 299.4 8.9 0.81 0.10
PAES 599.7 8.4 5.56 0.48 208.0 8.7 1.55 0.22
PESA2 430.7 43.8 283.56 411.07 103.7 20.0 367.34 887.60
Random 327.5 15.2 962.11 534.79 63.5 5.4 1519.00 767.34

In general, the best performance for the spacing measure is problem de-
pendent for constant-weighted networks, with little consistency across var-
ious problems. However, for both the log-weighted and random-weighted
problem sets, the PESA2 optimizer always attains the best value for the
spacing measure, irrespective of the network type. In general, the eMOEA
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and eNSGAII algorithms also perform well with respect to the spacing mea-
sure. These results strongly indicate that the explicit diversity maintenance
strategies employed by the PESA2, eMOEA and eNSGAII algorithms pro-
mote well-spread solutions within the Pareto front.

Table 6: Average ranks for the multi-objective measures across the constant-weighted
benchmark instances. The ‘BRF’ column indicates the Best Rank Frequency, that is, the
number of benchmark problems that the algorithm attained a rank of 1.

Additive Epsilon Hypervolume Spacing
Algorithm µ σ BRF µ σ BRF µ σ BRF

Overall

eMOEA 3.700 1.767 1 3.600 1.897 2 2.400 1.897 4
eNSGAII 2.500 0.527 0 1.900 0.994 4 2.300 1.337 3
MOCHC 4.500 1.900 1 3.600 2.066 2 5.100 2.079 1
NSGAII 1.500 1.269 8 1.500 1.269 8 3.500 1.841 1
PAES 3.300 1.947 3 2.900 1.969 4 4.100 2.183 2
PESA2 3.500 0.972 0 2.900 1.287 2 2.400 1.075 1
Random 7.000 0.000 0 5.700 2.497 2 3.200 2.573 5

BA

eMOEA 2.000 1.414 1 2.000 1.414 1 2.000 1.414 1
eNSGAII 2.500 0.707 0 1.000 0.000 2 2.500 0.707 0
MOCHC 5.500 0.707 0 3.000 2.828 1 6.500 0.707 0
NSGAII 1.000 0.000 2 1.000 0.000 2 3.500 0.707 0
PAES 5.500 0.707 0 3.000 2.828 1 4.000 2.828 0
PESA2 4.000 0.000 0 2.500 2.121 1 2.500 0.707 0
Random 7.000 0.000 0 4.000 4.243 1 3.000 2.828 1

ER

eMOEA 3.750 1.708 0 3.500 2.082 1 3.750 2.363 0
eNSGAII 2.750 0.500 0 2.250 1.500 2 3.250 1.500 0
MOCHC 3.750 2.630 1 3.000 2.160 1 4.500 1.915 0
NSGAII 2.250 1.893 2 2.250 1.893 2 4.000 2.449 0
PAES 2.750 2.363 2 2.250 2.500 3 4.500 2.646 1
PESA2 3.750 1.500 0 3.250 1.708 1 2.750 1.500 0
Random 7.000 0.000 0 5.500 3.000 1 1.500 1.000 3

FF

eMOEA 4.500 1.732 0 4.500 1.732 0 1.250 0.500 3
eNSGAII 2.250 0.500 0 2.000 0.000 0 1.250 0.500 3
MOCHC 4.750 1.500 0 4.500 1.915 0 5.000 2.708 1
NSGAII 1.000 0.000 4 1.000 0.000 4 3.000 1.826 1
PAES 2.750 1.258 1 3.500 1.291 0 3.750 2.062 1
PESA2 3.000 0.000 0 2.750 0.500 0 2.000 0.816 1
Random 7.000 0.000 0 6.750 0.500 0 5.000 2.828 1

To provide an overall indicator of performance for the constant-weighted
problems, we plot the aggregated set of non-dominated points obtained by
each of the optimizers and calculate the hypervolume accordingly using the
algorithm of [52]. For the hypervolume calculation, the reference point is
taken as the worst observed values for each objective. Furthermore, we
generate a reference Pareto front by taking the non-dominated union of each
respective Pareto front. Visualizations of the Pareto fronts are provided in
Figures 2 to 4 while the hypervolume values can be found in Tables 9 to 11.
For clarity (i.e., to prevent skewing of the axes in the Pareto front plots and
the values of the hypervolume indicator), results from the random approach
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Table 7: Average ranks for the multi-objective measures across the log-weighted bench-
mark instances. The ‘BRF’ column indicates the Best Rank Frequency, that is, the number
of benchmark problems that the algorithm attained a rank of 1.

Additive Epsilon Hypervolume Spacing
Algorithm µ σ BRF µ σ BRF µ σ BRF

Overall

eMOEA 4.063 0.998 0 2.813 1.167 2 2.188 1.167 5
eNSGAII 3.125 1.147 0 2.188 0.750 2 2.000 0.966 6
MOCHC 1.938 1.124 8 1.750 0.856 8 4.938 1.914 2
NSGAII 1.688 0.704 7 1.625 1.088 10 2.875 1.586 4
PAES 3.563 1.459 1 2.500 1.095 3 4.125 1.784 2
PESA2 6.250 0.683 0 3.125 1.586 2 1.063 0.250 15
Random 6.063 0.443 0 3.125 1.586 2 4.875 2.500 3

BA

eMOEA 3.750 0.957 0 3.000 1.155 0 1.500 0.577 2
eNSGAII 2.250 0.500 0 2.000 0.000 0 2.500 1.000 1
MOCHC 2.750 1.500 1 2.000 0.816 1 5.750 0.957 0
NSGAII 1.250 0.500 3 1.500 1.000 3 3.250 1.500 1
PAES 4.750 1.500 0 3.000 1.155 0 5.500 0.577 0
PESA2 6.000 0.816 0 3.000 1.155 0 1.000 0.000 4
Random 5.750 0.500 0 3.000 1.155 0 5.250 1.258 0

ER

eMOEA 4.250 1.500 0 2.250 0.500 0 3.500 1.291 0
eNSGAII 3.250 0.500 0 2.250 0.500 0 1.750 0.957 2
MOCHC 1.500 1.000 3 1.250 0.500 3 5.750 0.500 0
NSGAII 2.000 0.816 1 1.750 0.500 1 4.000 1.826 0
PAES 3.000 1.414 0 2.250 0.500 0 4.250 0.957 0
PESA2 6.500 0.577 0 2.250 0.500 0 1.250 0.500 3
Random 6.000 0.000 0 2.250 0.500 0 4.750 2.630 0

FF

eMOEA 4.500 0.577 0 3.750 0.957 0 2.500 0.577 0
eNSGAII 2.250 0.500 0 2.250 0.500 0 2.500 1.000 0
MOCHC 2.000 1.155 2 2.000 1.155 2 4.500 1.732 0
NSGAII 1.500 0.577 2 1.250 0.500 3 3.000 1.155 0
PAES 4.250 0.500 0 3.500 0.577 0 4.250 1.708 0
PESA2 5.750 0.500 0 3.750 0.957 0 1.000 0.000 4
Random 6.500 0.577 0 3.750 0.957 0 7.000 0.000 0

WS

eMOEA 3.750 0.957 0 2.250 1.500 2 1.250 0.500 3
eNSGAII 4.750 0.500 0 2.250 1.500 2 1.250 0.500 3
MOCHC 1.500 0.577 2 1.750 0.957 2 3.750 3.202 2
NSGAII 2.000 0.816 1 2.000 2.000 3 1.250 0.500 3
PAES 2.250 0.957 1 1.250 0.500 3 2.500 2.380 2
PESA2 6.750 0.500 0 3.500 2.887 2 1.000 0.000 4
Random 6.000 0.000 0 3.500 2.887 2 2.500 3.000 3

are omitted in this analysis.
For the BA 500 benchmark, with the exception of MOCHC, each opti-

mizer ultimately arrives at the same two non-dominated points (see Figure
2a). Given the agreement among the optimizers, it is hypothesized that
these two points lie on the true Pareto optimal front for this problem.

With the exception of the ER 234 benchmark, the overall hypervolume
results disagree with those attained using the individual hypervolume values.
The inconsistent results on the Erdos-Renyi problems are likely a result of
the inherent random structure that provides no exploitable structure for any

19



Table 8: Average ranks for the multi-objective measures across the random-weighted
benchmark instances. The ‘BRF’ column indicates the Best Rank Frequency, that is, the
number of benchmark problems that the algorithm attained a rank of 1.

Additive Epsilon Hypervolume Spacing
Algorithm µ σ BRF µ σ BRF µ σ BRF

Overall

eMOEA 4.688 0.602 0 2.188 1.047 5 2.313 1.302 7
eNSGAII 2.688 0.873 1 2.250 1.183 5 1.500 0.730 10
MOCHC 1.750 0.856 8 1.438 0.512 9 5.375 2.156 2
NSGAII 1.688 0.704 7 1.500 0.894 11 2.563 1.896 8
PAES 3.750 1.770 2 2.125 1.088 6 3.125 1.928 6
PESA2 6.063 0.574 0 2.500 1.461 5 1.063 0.250 15
Random 6.063 0.574 0 2.500 1.461 5 5.438 1.861 1

BA

eMOEA 4.000 0.816 0 2.000 0.816 1 1.750 1.500 3
eNSGAII 2.000 0.816 1 2.500 1.732 1 1.000 0.000 4
MOCHC 2.750 0.500 0 1.750 0.500 1 6.750 0.500 0
NSGAII 1.500 1.000 3 1.500 1.000 3 3.000 2.309 2
PAES 5.000 2.828 1 1.500 0.577 2 2.000 2.000 3
PESA2 5.750 0.957 0 2.750 2.217 1 1.000 0.000 4
Random 5.500 0.577 0 2.750 2.217 1 5.750 0.500 0

ER

eMOEA 4.750 0.500 0 2.250 0.957 1 2.000 1.155 2
eNSGAII 2.500 0.577 0 2.250 0.957 1 1.750 0.957 2
MOCHC 1.250 0.500 3 1.250 0.500 3 5.250 2.872 1
NSGAII 1.750 0.500 1 2.000 1.414 2 3.250 2.630 2
PAES 4.250 0.500 0 2.750 1.258 1 2.500 1.915 2
PESA2 6.250 0.500 0 2.750 1.258 1 1.000 0.000 4
Random 6.000 0.000 0 2.750 1.258 1 4.500 2.380 0

FF

eMOEA 5.000 0.000 0 2.500 1.291 1 2.250 0.957 1
eNSGAII 2.500 0.577 0 2.250 0.957 1 1.750 0.500 1
MOCHC 1.250 0.500 3 2.250 0.957 1 5.000 2.000 0
NSGAII 1.750 0.500 1 1.500 0.577 2 2.750 1.500 1
PAES 3.500 1.000 0 1.250 0.500 3 3.000 1.826 1
PESA2 6.000 0.000 0 2.500 1.291 1 1.250 0.500 3
Random 6.250 0.500 0 2.500 1.291 1 5.250 2.872 1

WS

eMOEA 5.000 0.000 0 2.000 1.414 2 3.250 1.500 1
eNSGAII 3.750 0.500 0 2.000 1.414 2 1.500 1.000 3
MOCHC 1.750 0.957 2 1.250 0.500 3 4.500 2.646 1
NSGAII 1.750 0.957 2 1.250 0.500 3 1.250 0.500 3
PAES 2.250 0.957 1 1.750 0.957 2 5.000 0.816 0
PESA2 6.250 0.500 0 2.000 1.414 2 1.000 0.000 4
Random 6.500 0.577 0 2.000 1.414 2 6.250 0.957 0

of the optimizers, thereby leading to more variability in the individual fronts
attained. In contrast, the overall hypervolume results are agreeable with the
individual results for the Forest Fire problems.

Another noteworthy observation is that for nearly all problems, the hy-
pervolume of the reference front is greater than the hypervolume of any one
optimizer. This indicates that the reference front consists of points attained
by more than one optimizer and thus there is no optimizer that produces a
Pareto front that completely dominates all others.

Interestingly, in some cases the observations regarding hypervolume for
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Figure 2: Non-dominated union of obtained Pareto fronts for the constant-weighted
Barabasi-Albert benchmark problems.

Table 9: Hypervolume of the non-dominated union of obtained Pareto fronts on the
constant-weighted Barabasi-Albert benchmark problems.

Algorithm BA 500 BA 2500
eMOEA 2.56 27.01
eNSGAII 2.56 27.00
MOCHC 0.62 21.26
NSGAII 2.56 26.98
PAES 2.56 12.57
PESA2 2.56 25.34
Reference 2.56 27.01

the overall set of non-dominated points differ from those attained on com-
parisons of individual runs. This suggests that the set of solutions attained
on any specific run may not be indicative of the overall exploratory power
of each optimizer. Moreover, this may be attributed to the lack of diversity
in the Pareto front attained on any specific run, however, when considering
the overall set of solutions found across multiple runs, we achieve a better
representation of the overall search capabilities.

4. Conclusions

In this paper we proposed a bi-objective critical node detection problem
(BOCNDP). While it had been recognized previously that the critical node
detection problem (CNDP) is inherently bi-objective, this is the first study
that formulated the problem as multi-objective. The goals of the BOCNDP
are to maximize the number of connected components and minimize the
variance of their cardinalities, and we proved the BOCNDP to be distinct
from the CNDP.
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Figure 3: Non-dominated union of obtained Pareto fronts for the constant-weighted Erdos-
Renyi benchmark problems.

Table 10: Hypervolume of the non-dominated union of obtained Pareto fronts on the
constant-weighted Erdos-Renyi benchmark problems.

Algorithm ER 234 ER 465 ER 940 ER 2343
eMOEA 612.00 3267.38 19473.84 19715.88
eNSGAII 647.92 4125.17 19057.87 781.99
MOCHC 642.42 3167.43 1642.45 N/A
NSGAII 655.22 3593.59 23026.62 18075.93
PAES 538.61 4514.06 22901.50 N/A
PESA2 575.88 4703.53 15031.79 33.46
Reference 660.32 5445.15 26579.08 19715.88
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Figure 4: Non-dominated union of obtained Pareto fronts for the constant-weighted Forest
Fire benchmark problems.

Table 11: Hypervolume of the non-dominated union of obtained Pareto fronts on the
constant-weighted Forest Fire benchmark problems.

Algorithm FF 250 FF 500 FF 1000 FF 2500
eMOEA 3.41 1.47 114.79 3528.45
eNSGAII 3.64 1.78 115.99 3487.77
MOCHC 3.45 1.42 17.17 37.59
NSGAII 3.64 1.81 134.07 3605.54
PAES 3.70 1.42 117.75 3543.75
PESA2 3.76 1.61 117.89 3543.89
Reference 3.76 1.86 136.17 3727.80
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We compared the results using six common multi-objective evolutionary
algorithms from two viewpoints: on the attained values of the objectives,
and on the ability to approximate the Pareto front. Three well-known multi-
objective measures were used to analyze the quality of the BOCNDP solu-
tions from the Pareto front perspective. The multi-objective evolutionary
optimizers were tested on a suite of recently proposed benchmark problems,
representing a variety of different network properties and sizes. The results
indicated that the NSGAII algorithm typically outperformed the other ap-
proaches when considering the hypervolume and additive epsilon measures.

Future work includes expanding the number and types of networks, es-
pecially to incorporate real-world complex networks. To provide a more
comprehensive analysis different search operators should also be considered,
in addition to a larger set of multi-objective algorithms and even expanding
the definition to other interdiction objectives.
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